
Coordination through Information Design
in the Presence of Hype*

Preliminary

Christopher Teh†

This version: March 18, 2024 (Latest)

Abstract

I study information design in binary-action supermodular games. Agents

determine their equilibrium behaviour by introspection, which rests on an ini-

tial belief about others’ behaviour called hype. I show that all outcomes are im-

plemented by information structures which send “direct” recommendations to

some agents to begin taking the high action (invest) early in the introspection

process, i.e., as leaders, then sends “private email” recommendations to other

agents to invest later on, i.e., as followers. I show that by reducing the cost of

creating leaders, increasing hype increases aggregate investment and changes

the optimal composition of leaders and followers to induce investment. Thus,

optimal information structures can vary non-monotonically in hype.
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1 Introduction

In settings with strategic complementarities, how should a designer optimally dis-
close information to agents to facilitate coordination? This question has clear eco-
nomic relevance. For instance, to designing banking stress tests to limit bank runs,
media propaganda which determines citizen engagement in regime uprisings, and
the information policy of crowdfunding platforms raising funds for projects. Here,
the answer depends critically on the assumption of equilibrium selection, as evi-
dent by current analyses studying the extremes of designer-preferred (e.g., Berge-
mann and Morris, 2019) or adversarial (e.g., Mathevet et al., 2020) selection, which
offer starkly different predictions. Yet lessons from behavioural economics suggest
that the reasoning of real-world agents is rarely as extreme, and often influenced
by payoff-irrelevant factors which the current literature is silent about. This paper
considers information design in Binary-Action Supermodular (BAS) games under a
selection criterion which not only incorporates such concerns, but also includes
prior analyses from the literature as special cases.

In the model, a unit mass of symmetric agents each face a binary decision: in-
vest or not invest. Agents’ payoffs depend on a unknown state-of-the-world and
the aggregate investment. An agent’s incentive to invest over not is non-decreasing
in the aggregate investment. The information designer prefers a larger aggregate
investment on each state, and she chooses the information structure of agents
to maximize her expected payoff, given the underlying Bayes-Nash equilibrium
(BNE) selection criterion.

The key assumptions I make revolve around equilibrium selection. Given an
information structure, one first defines a sequence of best-responses for agents that
coincides with Level-K thinking (Crawford et al., 2013): a L1 best-response given
an “initially believed” aggregate investment, a L2 best-response assuming other
agents follow L1 strategies, and so on. If agents only switch from not investing to
investing along the sequence, then I call the limit the monotone introspective equi-
librium. The BNE selected is the monotone introspective equilibrium supported
by the largest initial belief subject to an upper bound, called the level of hype. An
increase in hype leads to a larger BNE selected, and the largest and smallest BNE,
studied in the literature,1 are selected under largest and smallest hype respectively.

1This is as prior works often consider a designer with monotone preferences. There, designer-
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I first consider optimizing over public information structures. I show that the
optimal public information structure has a simple threshold structure. Ordering
states in decreasing order of the cost (agent’s payoff from investing over not on the
state given the level of hype) to benefit (designer’s benefit from agents investing
over not) ratio, all agents invest only on sufficiently highly ordered states. Increas-
ing hype not only increases agents’ incentives to invest on every state, but also
increases agents’ incentives to invest on different states at different rates. The for-
mer implies the designer benefits from higher levels of hype. The latter implies
that changes in hype can change the order over states, which leads to possible
non-monotonicities in the optimal information structure.

I then consider optimizing over all information structures. Fixing the level of
hype, I observe that under a monotone introspective equilibrium of an informa-
tion structure, any signal that induces an agent to invest “assigns” agents to one of
two roles. Agents can either be a leader who begins investing at the earliest level of
introspection, or a follower who begins investing at a later level. Every information
structure implements a family of conditional distributions over (masses of) lead-
ers and followers on each state. I call these leader-follower outcomes, which are my
paper’s analogue to outcomes in the standard approach to studying information
design (Bergemann and Morris, 2016).

I show that implementable leader-follower outcomes are fully characterized by
introspective obedience constraints. These can be understood in the context of the
“hybrid” information structures which canonically implement all such outcomes.
There, agents observe one of three kinds of recommendations. First, a “direct” rec-
ommendation to be a leader and so invest at all levels. Agents obey this if and only
if leader obedience holds: the agent prefers to invest given both (i) the level of hype,
and (ii) only other leaders invest. Second, a “private email” recommendation to
be followers and so invest only at some later level. Agents obey this if and only
if follower obedience holds: the agent prefers to invest given all other leaders invest
and holding uniform beliefs over the mass of other followers who invest. Third,
a direct recommendation not to invest. Agents obey this if and only if downwards
obedience holds: the agent prefers to invest given both (i) the level of hype, and
(ii) all other leaders and followers do not invest. Notably, the introspective obe-
dience constraints slacken from increases in hype, and “collapse” to the standard

preferred and largest selection coincide, and adversarial selection and smallest selection coincide.
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obedience constraints (Bergemann and Morris, 2016) under the highest hype, and
those which characterise smallest equilibrium implementable outcomes (Morris et
al., 2022a, Morris et al., 2022b) under the lowest hype.2

I use my implementation result to study the general information design prob-
lem. A key observation is that increasing hype reduces the “cost” of inducing
investment via leaders (over followers). This induces the designer to switch to a
leader-follower outcome with a greater mass of leaders. In turn, a leader- only or
follower-only outcome is optimal only under extreme hype. I provide general nec-
essary and sufficient conditions for when these occur, and find that for most values
of hype, a mix of leaders and followers is strictly optimal.

I obtain a sharp characterization of optimal leader-follower outcomes in thresh-
old games, where agents’ payoffs are constant in the aggregate investment when
they prefer not to invest (e.g., the Regime change game of Morris and Shin (2003)).
Under an optimal leader-follower outcome, all agents invest only on state ordered
high enough, where the order depends on the cost of inducing investment from
an “efficient” composition of leaders and followers on the state, relative to the de-
signer’s benefit from investment. Changes in hype affect the ordering by changing
the efficient composition. When payoffs are monotone in states, the ordering does
not change, so increasing hype increases the set of states on which all agents invest,
and the mass of leaders who invest on each state.

I extend the model in three ways, while restricting the designer to public in-
formation. First, I allow hype to either be chosen by the designer, or indirectly
determined by the information structure. I provide sufficient conditions for a sim-
ple upper censorship information structures to be optimal. Second, I allow agents
to obtain exogenous private information about the state. I find that an increase in
hype also benefits the designer through a bandwagon effect, i.e., where a greater set
of agents “discard” their private information and begin investing earlier. Third, I
consider when hype is uncertain to the designer, and draw a connection to general
Bayesian Persuasion problems (Kamenica and Gentzkow, 2011).

My paper contributes to the vast literature on information design, particularly
to the study of BAS games. A non-exhaustive list of preceding works include, for
designer-preferred selection, Arieli and Babichenko (2019) (binary states), Cando-
gan and Drakopoulos (2020) (linear networks), and Taneva and Mathevet (2023)

2Refer to Section 4 for a precise statement, and comparison to prior results.
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(constrained information design), for adversarial selection, Goldstein and Huang
(2016) and Inostroza and Pavan (2023) (public information with exogenous private
information in global games), Li et al. (2022) (general information structures with
no private information in global games) and Mathevet et al. (2020) (through apply-
ing the belief-based approach).3 Relative to these, I study information design in a
general setting under various degree of equilibrium adversariality.

My paper also relates to the literature on implementation through information
design in games. Aumann (1974) and Bergemann and Morris (2016) characterise
the outcomes partially implementable, i.e., under some form of equilibrium selec-
tion, in games without and with common state uncertainty respectively, the weak-
est form of implementation. Building on the earlier insights of Rubinstein (1989)
and Carlsson and van Damme (1993), Oyama and Takahashi (2020) and Morris
and Ui (2005) provide necessary and sufficient conditions, respectively, for unique
implementation, the strongest form of implementation, of equilibria for complete
information BAS games.4 Morris et al. (2022a) extends the construction of Oyama
and Takahashi (2020) to fully characterize smallest and unique implementation in
finite-player incomplete information BAS games, and Morris et al. (2022b) extends
these to having a continuum of players.5 I build upon these results by providing
conditions for “intermediate” implementation under a given level of hype.

Monotone introspective equilibrium is a special case of the introspective equi-
librium solution concept introduced in Kets and Sandroni (2020). The solution
concept has been applied in many contexts recently, for instance, in the study of
valuing coordination games (Kets et al., 2022), organisational design (Kets, 2021),
raising investment (Akerlof and Holden, 2019), competition in markets with net-
work externalities (Akerlof et al., 2023), and supply chain coordination (Akerlof
and Holden, 2023). All these papers focus on a complete-information environment
and consider the design of various non-informational aspects of the game. I focus
on an incomplete information setting, and consider optimal information design.

The interaction between leaders and followers in coordinating investments takes

3Also related are papers studying unique implementation in supermodular environments
through minimum cost incentives which allow for information design (Hoshino, 2022, Halac et
al., 2021, Halac et al., 2022, Morris et al., 2022c)

4To be precise, Morris and Ui (2005) provided sufficient conditions for the equilibrium a com-
plete information game to be fully implemented in an ϵ-elaboration of the game by an information
structure. Oyama and Takahashi (2020) shows that the condition is necessary in BAS games.

5Both papers also study adversarial information design in general BAS games.
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center-stage in my model. More generally, Andreoni (1998) studies (among oth-
ers) the problem of a charity choosing an optimal mix of leading contributors to
achieve a charitable fundraising goal. Morris and Shin (2006) studies how the IMF
(leader), through funding injections, can coordinate the efforts of interested parties
(followers) to mitigate financial crises. Akerlof and Holden (2019) considers how
investors with large block or network capital (leaders) can facilitate capital assem-
bly (also see Akerlof and Holden, 2016). Deb et al. (2023) and Ellman and Fabi
(2022) study how (strategically timed) contributions by early funders (leaders) can
be used to coordinate other funders’ contributions (followers) in crowdfunding. A
novel contribution of this paper is in examining the designer’s incentives to opti-
mally create leaders and followers through offering differential information, and
how this trade-off is shaped by the degree of equilibrium adversariality.

The rest of the paper is organised as follows. Section 2 introduces the model.
Section 3 studies the benchmark where the designer is restricted to public informa-
tion. Section 4 considers implementation in the general setting. Section 5 studies
optimal information design in the general setting. Section 6 considers extensions.
All proofs are relegated to the Appendix A-C, and the Online Appendix.

2 The Model

2.1 Statement of the Problem

Base Game There are two kinds of players: a designer and a unit mass of sym-
metric agents i ∈ [0, 1]. Each agent faces a binary decision ai ∈ {0, 1}, where I
refer to ai = 1 and ai = 0 as invest and not invest respectively. Meanwhile, the de-
signer chooses the information structure (defined later), which provides agents
with information about an unknown state of the world θ ∈ Θ ≡ [θ, θ], where
−∞ < θ < θ < ∞ Players share a common prior F ∈ ∆(Θ), where I assume F

has full support, and is continuously differentiable with density f .6

An agent’s payoff from not investing is zero. Meanwhile, an agent’s payoff
from investing, and the designer’s payoff, depends both on the state θ and the
aggregate investment A ∈ [0, 1]. I denote the agent’s payoff from investing by
D(A, θ), and the designer’s payoff by v(A, θ). Both D(A, θ) and v(A, θ) are assumed

6∆(X) denotes the set of Borel probability measures over X , equipped with the weak topology.
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to be upper-semicontinuous in (A, θ).
I focus on an environment in which agents’ investments are complementary,

and the designer aims to foster investment by agents. That is, I assume that for all
θ ∈ Θ, D(A, θ) and v(A, θ) are non-decreasing in A ∈ [0, 1]. To simplify exposition,
I further assume that the designer strictly prefers for all agents to invest over not,
i.e., v(0, θ) = 0 < v(1, θ), and that there exists a measurable subset Θ ⊆ Θ with∫
Θ
dF (θ) > 0 such that for all θ ∈ Θ, D(0, θ) > 0 holds.7

Information Structure An information structure is a pair S ≡ (S, (π(·|θ))θ∈Θ).8 S ⊆
R is a non-empty Borel set of signals observed by agents. Meanwhile, for each θ ∈
Θ, π(·|θ) ∈ ∆(∆(S)) is a distribution over signal distributions for agents µ ∈ ∆(S)

(see timing below), under which π(Y |θ) is measurable in θ for each Y ∈ B(∆(S)),
where B(X) denotes the Borel sigma-algebra of X .

Given an information structure S, let π denote the induced joint distribution
over S × ∆(S) × Θ, i.e., so π(X × Y × Z) ≡

∫
Z

∫
Y

∫
X
dµ(s)dπ(µ|θ)f(θ)dθ for each

X ∈ B(S), Y ∈ B(∆(S)) and Z ∈ B(Θ). Further let π(·|s) denote any version of the
regular conditional probability on ∆(S) × Θ given s ∈ S. Finally, let the marginal
distribution over the signal space S and the product ∆(S)×Θ be denoted by πS .

Timing First, the designer commits to an information structure S. Next, the state
θ ∈ Θ is drawn according to F , and a signal distribution µ ∈ ∆(S) is drawn ac-
cording to π(·|θ). Signals are allocated anonymously across agents, so each agent
then privately observes an independent draw of a signal from µ. By an appro-
priate “large of large numbers” (Sun, 2006), µ also represents the empirical dis-
tribution over signal realizations, and so an agent who observes signal s ∈ S de-
velops a posterior belief over (the distribution over) other agents’ signals and the
state (µ, θ) ∈ ∆(S) × Θ, given by π(·|s). Each agent then independently chooses
ai ∈ {0, 1}. Given the aggregate investment and state, players obtain their payoffs.

Solution Concept An information structure S induces a Bayesian game between
agents. A pure-strategy for agents in this game is a measurable function αi : S →

7The former assumption simply makes the orderings over θ in Sections 3 and 5 easier to state.
The latter assumption implies that regardless of the degree of adversariality of equilibrium selec-
tion, the designer’s information design problem is non-trivial.

8I follow the modelling approach of Morris et al. (2022b)
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{0, 1}. I focus on symmetric pure strategies throughout, and so drop the subscript.
Conditional on distribution µ being drawn, let A(α|µ) ≡ µ({s ∈ S : α(s) = 1})

denote the measure of agents who invest under pure strategy α. A (symmetric)
Bayes-Nash Equilibrium (BNE) of S is a pure strategy α∗ under which no agent has a
unilateral incentive to deviate given their beliefs about other agents signals, π(·|s):

α∗(s) ∈ argmax
a∈{0,1}

{
Ia=1

∫
∆(S)×Θ

D(A(α∗|µ), θ)dπ(µ, θ|s)
}
, ∀s ∈ S

The Information Design Problem The designer chooses an information struc-
ture S to maximize her expected payoff, subject to agents’ behaviours coinciding
with the designer’s anticipated BNE of S. Here, I assume that the designer’s antic-
ipated BNE is her most-preferred h-monotone introspective equilibrium of S subject
to h ≤ H , where H ∈ [0, 1] is referred to as the maximum level of hype. I defer the
discussion of such concepts to Section 2.2 next. For now, I denote this equilibrium
by αS,H , so that the designer’s problem is

V ∗(H) ≡ sup
S

∫
Θ

∫
∆(S)

v(A(αS,H |µ), θ)dπ(µ|θ)f(θ)dθ (1)

I refer to any solution of (1) as an optimal information structure for the designer.

2.2 Monotone Introspective Equilibrium

I begin by introducing the notion of a monotone introspective equilibrium.

Definition 1. Given an information structure S, and h ∈ [0, 1], let (αS,h,k)∞k=1 be the
sequence of pure-strategies defined as follows

1. If k = 1, then

αS,h,1(s) ≡

1,
∫
∆(S)×Θ

D(h, θ)dπ(µ, θ|s) ≥ 0

0, otherwise
, ∀s ∈ S (2)
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2. If k > 1, then

αS,h,k(s) ≡

1,
∫
∆(S)×Θ

D(A(αS,h,k−1|µ), θ)dπ(µ, θ|s) ≥ 0

0, otherwise
, ∀s ∈ S (3)

If the sequence (αS,h,k)∞k=1 is (point-wise) non-decreasing in k, then I refer to the limit
α ≡ limk→∞ αS,h,k as the h-monotone introspective equilibrium of S.

Definition 1 follows from the following introspection process of agents. Fix a
state θ and profile of signals observed by agents. Each agent starts with an “initial”
belief that the aggregate investment is h,9 and so forms a “L1” best-response to
this belief, yielding αS,h,1 defined in (2). Then, agents revise their beliefs through
introspection, forming a “L2” best-response assuming other agents follow their
L1 best-responses. This yields αS,h,2 defined in (3). Repeating the introspection
process then yields the sequence of best-responses (αS,h,k)∞k=1. If agents only switch
from not investing to investing along the sequence, then the limit exists and is
referred to as the h-monotone introspective equilibrium of S.

With an abuse of notation, I let (αS,H,k)∞k=1 denote the pure strategy sequence
associated to the largest h-monotone introspective equilibrium of S satisfying h ≤
H , and denote its limit by αS,H . Furthermore, I refer to an agent as investing at Lk
under signal s ∈ S if αS,H,k(s) = 1, and as investing under S if αS,H(s) = 1.

Properties of Monotone Introspective Equilibria As I prove in the Appendix
(Theorem 5), every monotone introspective equilibrium is a BNE. That is, mono-
tone introspective equilibrium is a form of equilibrium selection. In particular,
for a given information structure S, through applying the argument of Milgrom
and Roberts (1990) and breaking ties in favour of investment, the smallest BNE
is the monotone introspective equilibrium for h = 0. Following the argument
in Morris et al. (2022b), the smallest BNE exists, so αS,H is well-defined for each
H ∈ [0, 1], and the designer’s problem under adversarial equilibrium selection co-
incides with the designer in our problem expecting the lowest level of hype. By

9In the interpretation of Kets and Sandroni (2020), each agent independently observes an im-
pulse to invest and not to invest with probabilities h and 1− h respectively. Initially, all agents are
believed to blindly follow their impulses, so the aggregate investment is h.
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a similar argument, for H = 1, the designer’s problem coincides with that under
designer-preferred equilibrium selection.

More important are the “intermediate” monotone introspective equilibria which
are neither the smallest nor largest BNE. For example, if D(A, θ) = IA≥θ−ϵ − 1/2

for ϵ > 0 small, then under full disclosure (so S = Θ), there exists a contin-
uum of monotone introspective equilibria (αS,h)h∈[0,1] which involves αS,h(s) = 1 if
h ≥ s − ϵ, and αS,h(s) = 0 if h < s − ϵ. How these equilibria shape the designer’s
problem for intermediate levels of hype play a big role in the following analysis.

Remark 1. Monotone introspective equilibrium is a refinement of the Introspective equi-
librium solution concept introduced in Kets and Sandroni (2020). There, the sequence
(αS,h,k)∞k=1 is only required to converge. The additional monotonicity requirement has no
effect when the designer only uses public information (Section 3), but is otherwise desirable
for two reasons. First, verifying whether an information structure has a monotone intro-
spective equilibrium reduces to verifying that if an agent invests at L1 under a signal, then
the agent also invests at L2 (see Lemma 4, Appendix A). This adds significant tractabil-
ity to the analysis. Second, monotonicity rules out introspective equilibria which rely on
overly optimistic initial beliefs to induce investment. Notice that an agent invests at L1 if
the anticipated investment of other agents h is large, and at L2 if the actual investment of
agents (at L1) is large. Thus, the designer only anticipates equilibria selected where actual
investment is at least as large as the anticipated investment.

2.3 An application to crowdfunding

I now interpret the model in the context of crowdfunding. I will provide a concrete
interpretation of “hype”, and an example of how my results can be applied.

Consider a group of funders (agents) deciding whether to invest in the project
of an entrepreneur. The project is hosted on a crowdfunding platform (designer),
and yields a positive return to funders if and only if enough funds are raised.
Funders incur a cost from investing (e.g., due to a flexible funding model, as in In-
diegogo, or opportunity costs from foregone investment opportunities), and can-
not observe others’ behaviours (e.g., due to a short funding window).10 The plat-
form earns commissions from investments, and aims to maximize profits.

10Beyond the short funding window, the static assumption, applied in several studies of crowd-
funding (e.g. Strausz, 2017, Ellman and Hurkens, 2019, Chang, 2020) is not entirely unreasonable.
Empirical evidence suggests that early investment is a key determinant for project funding success
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Funders’ investments depend on two sources of uncertainty. First, on beliefs
about project characteristics (e.g. product features), which affects their benefit from
investing if the project is funded. What funders learn is determined by the plat-
form, who mandates what and how information about project characteristics is
communicated to funders, i.e., the information structure.

Second, on beliefs about whether other funders will invest. Uncertainty arises
here due to the anonymity and “small-scale” of funders, typical in crowdfund-
ing. Here, funders’ reasoning often depends on pre-launch hype around the project.
For instance, on the project awareness created through marketing and social me-
dia posts, entrepreneur / platform reputation, and past performance by the plat-
form. Notably, platforms have limited control over hype. While entrepreneurs
are strongly recommended to create hype (e.g., Kickstarter, 2023, Indiegogo, 2023),
the recommendation is non-binding. Also, hype can be dependent on past per-
formance or prior trends inherited by the current platform manager. These con-
straints are captured by the exogenous upper bound H .

By the above, the platform’s problem is to choose funders’ information (struc-
ture) to maximize investment, holding fixed the hype around the project. In prac-
tice, one often observes a simple “hybrid” disclosure method by platforms: a big
announcement to induce some funders to invest, and follow-up private recom-
mendations to other funders to invest. For example, Kickstarter’s newsletters,
widely circulated among funders, are reserved for new projects, while their tar-
geted recommendations involve projects already with a sizable backing.

My results shed light on the preceding phenomenon. Theorem 2 shows that
all equilibrium outcomes under introspection can be implemented by a similar
hybrid information structure. Furthermore, Theorem 3 states that unless hype is
sufficiently extreme, both “parts” of the hybrid information structure are necessary
for the platform to maximize investments. Finally, Section 5.3 explicitly charac-
terises the optimal information structure for a generalized funding setting, while
Corollary 3 shows that higher levels of hype imply that more agents are leaders,
i.e., a more wide-spread initial annoucement.

My results also provide a rationale for why platforms prefer “hyped-up” projects.
Higher levels of hype allow the platform to exploit funders’ greater incentives

(e.g. Colombo et al., 2015, Crosetto and Regner, 2018). Also, platforms themselves may also have
an incentive to limit funders’ information about investments (Ellman and Fabi, 2022).
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to invest “early” in the project to more widely recommend investment into the
project. Also, higher levels of hype generate a bandwagon effect, drowning out
funders’ private information (if any), which can inhibit investment (Section 6.2).

3 Benchmark: Public Information

I first characterise the designer’s optimal information structure under the restric-
tion to public information structures, i.e., when all agents observe the same signal
drawn.11 The goal is to abstract away from how hype affects the type of informa-
tion provided by the designer, e.g., private vs public, and draw focus to how hype
affects the set of states on which agents invest, i.e., the “reach” of persuasion.

Excessive assurance I first pin down agents’ monotone introspective equilibrium
behaviour. Fix a public information structure S , and a level of hype H ∈ [0, 1].
Take any signal s ∈ S, and suppose that agents invest at L1 upon observing s.
With symmetric strategies and public information, the agent believes that all other
agents invest under signal s. Thus,∫

∆(S)×Θ

D(A(αS,H,1|µ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
Payoff from investing at L2+

=

∫
Θ

D(1, θ)dπ(θ|s) ≥
∫
Θ

D(H, θ)dπ(θ|s)︸ ︷︷ ︸
Payoff from investing at L1

≥ 0

so the agent invests at L2. By induction, the agent invests at all higher levels. Re-
versing the argument, if the agent does not invest at L1, then anticipating no other
agents to invest at L1, the agent does not invest at L2+. This yields the following:

Lemma 1. Fix a public information structure S and H ∈ [0, 1]. Then, for all signals
s ∈ S, an agent invests if and only if he invests at L1.

Lemma 1 highlights the key feature of public information: excessive assurance. Ev-
ery agent who invests in the monotone introspective equilibrium is a leader, i.e.,
invests at all levels. Consequently, every agent offers every other agent assurance
to continue investing at all higher levels. In turn, an agent’s decision of whether
to invest only depends on first-order beliefs and the level of hype. An implication
of this is that public information is often sub-optimal: when hype H is not too

11Formally, for each θ ∈ Θ, π(·|θ) is a distribution over Dirac measures {δs}s∈S .
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large, any agent who invests at L1, has a strict incentive to invest at higher levels.
Intuitively, the designer would then benefit from “using” the excessive assurance
built to induce a subset agents to begin investing at later levels, but under lower
first-order beliefs. This can only be done via a private information structure.

Optimal information structures I now solve the public information design prob-
lem. Because agents’ behaviours are symmetric, and whether an agent invests
only depends on whether she invests at L1 (Lemma 1), the designer’s problem is
mathematically equivalent to a single-agent problem, where (i) the agent(s) decide
between investing or not, obtaining payoffs on state θ of D(H, θ) and 0 respec-
tively, and (ii) the designer’s payoff when the agent invests and does not invest
are v(1, θ) and 0 respectively. Following the standard approach of Bergemann and
Morris (2016), the principal’s problem reduces to choosing an outcome, i.e., a Θ-
measurable map q : Θ → [0, 1], to solve

max
q

∫
Θ

v(1, θ)q(θ)f(θ)dθ (4)

s.t.
∫
Θ

D(H, θ)q(θ)f(θ)dθ ≥ 0 (5)

where q(θ) is the probability agents invest on state θ, and (5) captures’ agents’
upwards-obedience constraint, i.e., concerning deviating from investing to not.12

The problem above can be solved via an “efficiency argument” (verified for-
mally in the Appendix). Define the following order xH

L : Θ → Θ over states

xH
L (θ) < xH

L (θ
′) ⇐⇒ −D(H, θ′)

v(1, θ′)
≤ −D(H, θ)

v(1, θ)
(6)

−D(H,θ)
v(1,θ)

captures the “cost” to agents for invest at L1 on θ, −D(H, θ), relative to
the designer’s benefit from having agents invest, v(1, θ). By a standard marginal
reasoning, it is optimal for the agent to only have agents invest on the states with
the lowest ratios. Since xH

L orders states in decreasing order of their ratios −D(H,θ)
v(1,θ)

,

12As the designer’s payoff is monotone in investment, I avoid stating the “downwards obedi-
ence” constraint, i.e., concerning deviating from not investing to investing, here.
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this translates into having agents invest if and only if xH
L (θ) ≥ xH

L , where

xH
L ≡ min

{
x ∈ Θ :

∫
θ:xH

L (θ)≥x

D(H, θ)f(θ)dθ ≥ 0

}
(7)

Theorem 1. Under an optimal public information structure, all agents invest on all states
with xH

L (θ) ≥ xH
L , and all agents do not invest on all states with xH

L (θ) < xH
L .

Theorem 1 shows that where hype plays a role in the public information design
problem is in determining the relative cost of inducing investment on each state,
i.e., the ratio −D(H,θ)

v(1,θ)
. By doing so, hype determines the ordering in (6), and so

which states the designer optimally induces investment on. Notably, the order-
ing can vary non-monotonically from changes in hype, resulting in non-monotone
changes in agents’ behaviour under an optimal information structure. An excep-
tion to this is when D(A, θ) and v(1, θ) are non-decreasing in θ (for all A ∈ [0, 1]).
Here, an increase in H monotonically decreases the threshold state xH

L (θ), and so
increases the set of states on which agents invest.

Corollary 1. Suppose that for all A ∈ [0, 1], D(A, θ) and v(1, θ) are non-decreasing in θ.
Then, an increase in hype H increases the subset of states on which agents invest under an
optimal information structure.

4 Implementation

I now study the general problem, focusing on simplifying the designer’s problem
here. I first show that agents behaviours in the monotone introspective equilibrium
of any information structure can be fully described by a smaller class of leader-
follower outcomes, the introspective equilibrium analogue to outcomes in the stan-
dard information design setting (Bergemann and Morris, 2016). I then fully charac-
terise the leader-follower outcomes implementable by some information structure
in Theorem 2, and discuss the connection to existing work.

Leader-follower outcomes Given an information structure S , call an agent who
observes a signal s ∈ S a leader if he invests at the start of the introspection process,
i.e., αS,H,1(s) = 1. Meanwhile, call an agent a follower if he invests only after enough
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rounds of introspection, i.e., there exists a 1 < k < ∞ such that αS,H,k(s) = 1 if and
only if k ≥ k.

Every information structure with a monotone introspective equilibrium under
H ∈ [0, 1] implements a distribution over leaders, followers on each state. Formally,
let AS,H(µ) ≡ (AS,H

L (µ), AS,H
F (µ)) denote the measurable map defined by

µ 7→ (µ({s ∈ S : αS,H,1(s) = 1})︸ ︷︷ ︸
≡AS,H

L (µ)

, µ({s ∈ S : αS,H,1(s) = 0 < 1 = αS,H(s)})︸ ︷︷ ︸
≡AS,H

F (µ)

) (8)

Here, AS,H(µ) associates, to each signal distribution µ, the masses of leaders and
followers induced under S. The set of all feasible pairs is given by

A ≡ {(AL, AF ) ∈ [0, 1]2 : AL + AF ≤ 1}

Notice then that S implements a measurable mapping σ : Θ → ∆(A) via13

σ(W |θ) ≡ π((AS,H)−1(W )|θ), ∀θ ∈ Θ, ∀W ∈ B(A) (9)

This leads us to the following definition.

Definition 2. Call σ : Θ → ∆(A) a leader-follower outcome, and say that it is H-
implementable if there exists an information structure S such that (9) holds.

Leader-follower outcomes capture the minimal information required to describe
agents’ introspective equilibrium behaviour under some information structure,
and are useful for two main reasons. First, they are also easy to work with. In par-
ticular, the set of implementable leader-follower outcomes are fully characterised
by a small set of linear obedience constraints (Theorem 2). Second, they are sufficient
to fully describe the designer’s payoff, given by

V (σ) =

∫
Θ

∫
A
v(AL + AF , θ)dσ(AL, AF |θ)f(θ)dθ (10)

Implementation I now characterise implementable leader-follower outcomes, be-
ginning with the relevant incentive constraints for agents in different roles.

Definition 3. Given H ∈ [0, 1], say that a leader-follower outcome σ satisfies
13That is, σ(·|θ) is the pushforward (measure) of π(·|θ) onto A through AS,h.
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1. Leader obedience if∫
Θ

∫
A
ALD(H, θ)dσ(AL, AF |θ)f(θ)dθ ≥ 0 and (11)∫

Θ

∫
A
ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ ≥ 0 (12)

2. Follower obedience if∫
Θ

∫
A

(∫ AL+AF

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ ≥ 0 (13)

3. Downwards Obedience if∫
Θ

∫
A
(1− AL − AF )D(H, θ)dσ(AL, AF |θ)f(θ)dθ < 0 (14)∫

Θ

∫
A
(1− AL − AF )D(AL + AF , θ)dσ(AL, AF |θ)f(θ)dθ < 0 (15)

Further say that σ is upper obedient (under H) if it satisfies leader and follower obedience,
and obedient (under H) if it is upper obedient and satisfies downwards obedience.

Given an information structure S which H-implements a leader-follower out-
come σ, equations (11) and (12) are obtained by aggregating agents’ expected pay-
offs from investing at L1 and L2, respectively, across all signals on which they are
a leader, and so must be positive. Equation (13) is (approximately) equal to that
obtained from aggregating agents’ payoffs from investing at the lowest level in
which they invest, across all signals under which they are a follower, and so must
be positive. Finally, (14) and (15) is obtained by aggregating agents’ payoffs from
investing across all signals under which they do not invest, and so are all negative.

By the above, a necessary condition for σ to be H-implementable is for it to
be obedient. Theorem 2 below establishes that the converse also holds. Let T :

A → [0, 1] denote the map defined via T (AL, AF ) ≡ AL + AF for all (AL, AF ) ∈ A.
Call a measurable map p : Θ → ∆[0, 1] an outcome, where p(A|θ) captures the
probability of having afraction A of agents who invest on a state. Further say that
p is implemented by a leader-follower outcome σ, written as p = pσ, if

p(W̃ |θ) ≡ σ(T−1(W̃ )|θ), ∀θ ∈ Θ, W̃ ∈ B([0, 1])
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In terms of describing the aggregate investment of agents, leader-follower outcomes
which implement the same outcome are identical. Theorem 2 then states that the
outcome implemented by any obedient leader-follower outcome is approximately
the outcome of an implementable leader-follower outcome.

Theorem 2. Take any leader-follower outcome σ and any H ∈ [0, 1].

1. If σ is H-implementable, then it is obedient under H .

2. If σ is obedient under h, then there exists a sequence of H-implementable leader-
follower outcomes (σn)∞n=1 such that (pσn)∞n=1 converges to pσ.

The proof of sufficiency is constructive. I sketch the rough idea here, relegat-
ing details to Appendix B. Take an obedient leader-follower outcome σ under H .
When state θ is realized, draw (AL, AF ) with probability σ(AL, AF |θ). Then, rec-
ommendations to invest are sent out to agents as follows.

First, a random mass of AL agents observe a direct recommendation to be a
leader, i.e., to invest at all levels L1+. Conditional on AL being drawn, the agent is
a leader with probability AL. Thus, her (unconditional) payoff from investing at L1
on state θ is ALD(H, θ). Aggregating over all draws of (AL, θ) yields (11), which is
positive, so the agent invests at L1. Since all leaders invest at L1, any such agent’s
payoff from investing at L2 on state θ is (at least) ALD(AL, θ). Aggregating over all
draws of (AL, θ) yields (12), and so the agent invests at L2 (and above).

Next, a random mass of AF other agents is drawn. Each agent observes a pri-
vate recommendation to invest at Lk+ as a follower, where k > 1. ks are dis-
tributed such that conditional on observing k, an agent “knows” that leaders in-
vest, but holds (approximately) uniform beliefs over the mass of other followers
i ∈ [0, AF ] having observed a signal k′ < k, i.e., that have already begun investing.
Thus, the agent’s payoff from investing at Lk conditional on pair ((AL, AF ), θ) is (at
least)

∫ AL+AF

AL
D(i, θ)di. Aggregating over all pairs yields (13), so the agent obeys

the recommendation to invest at Lk (and above).
Finally, the last 1−AL−AF agents observe “nothing”, i.e., are recommended not

to invest. Any such agent’s expected payoff from investing at L1 (L2+) is at most
equal to the LHS of equation (14) (equation (15)). So, the agent does not invest.

Notice that if downwards obedience is violated, then under the information
structure constructed above, agents may invest when recommended not to in-
vest. If so, one may construct another information structure which prescribes
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such agents to instead invest. Hence, for the purpose of identifying optimal leader-
follower outcomes, downwards obedience can be ignored.

Corollary 2. Take any upper obedient leader-follower outcome σ. Then, there exists an
obedient leader-follower outcome σ̃ that the designer weakly prefers over σ.

Connecting Theorem 2 to the literature Bergemann and Morris (2016) show that
outcomes implementable when the designer can freely select the equilibrium, i.e.,
those which are partially implementable, are characterised by obedience. There, an
agent must be willing to follow her action recommendation, assuming other agents
simultaneously obey theirs. A related (but different) requirement applies to leaders
and non-investing agents. If a leader-follower outcome is implementable, then (i)
a leader must prefer to invest given all other leaders invest, and (ii) a non-investing
agent must prefer not to invest given all other leaders and followers invest.

Next, Morris et al. (2022a) and Morris et al. (2022b) show that for outcomes
implementable under smallest equilibrium selection (adversarial selection under
monotone preferences), one replaces “upwards” obedience, i.e., involving devi-
ating from investing to not, with sequential obedience.14 With symmetric agents,
agents must prefer to invest under (approximately) uniform beliefs over the mass
of other agents investing. A related (but different) requirement applies here to
followers: followers must be prefer to invest given (i) uniform beliefs over other
followers investing, and (ii) also anticipating all leaders to invest.

Hence, introspective obedience is, in general, not equivalent to simply impos-
ing both standard and/or sequential obedience. The distinction arises as introspec-
tive obedience (also) accounts for how leaders’ investments motivate followers to
invest, but not the other way around. Furthermore, there is the additional require-
ment for leaders to be willing to invest given the level of hype H .

However, there are two special cases where the concepts effectively coincide.
First, when hype is sufficiently low, Theorem 3 later shows that a follower-only
outcome is optimal. Provided hype is low so (14) holds if (15) holds, a follower-
only outcome is implementable if and only if follower-obedience (which is then
sequential obedience) and (15) (which is downwards obedience) holds. Hence, im-

14Morris et al. (2022a) focus on a finite agent setting. Morris et al. (2022b), like me, considers a
continuum agent setting. The class of information structures described in this paper draws heavy
inspiration from those constructed in Morris et al. (2022a).
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plementable leader-follower outcomes and adversarial equilibrium implementable
outcomes coincide. Second, when hype is sufficiently high, Theorem 3 later shows
that a leader-only outcome where agents strictly prefer not to invest on all states
on which they do not invest is optimal. Provided hype is high so (11) holds if (12)
holds, such a leader-only outcome is implementable if and only if L2 leader obe-
dience in (12) (which is then the standard obedience constraint for investing) and
(15) (which is downwards obedience) holds. Hence, the relevant implementable
leader-follower outcomes and partially implementable outcomes coincide.

5 Information Design

By Theorem 2 and Corollary 2, for a given H ∈ [0, 1], the designer solves

max
σ:σ is upper obedient under H

∫
Θ

∫
A
v(AL + AF , θ)dσ(AL, AF |θ)f(θ)dθ

Call any leader-follower outcome that solves this problem optimal. Label the de-
signer’s first-best payoff, i.e., where agents always invest, as V FB ≡

∫
Θ
v(1, θ)f(θ)dθ.

To draw a tighter connection to the analysis for public information, Section
5.1 begins by imposing an additional assumption to guarantee the existence of an
optimal leader-follower which perfectly coordinates agents’ investments. Section
5.2 then provides necessary and sufficient conditions for single-stage outcomes to
be optimal. Section 5.3 characterises an optimal leader-follower outcome when
agents payoffs have a threshold property and the comparative statics on hype.

5.1 Perfect coordination

Denote the threshold aggregate action under which agents switch from preferring
not to invest to preferring to invest by A(θ). That is, A(θ) ≡ sup{A ∈ [0, 1] :

D(A, θ) ≤ 0} if the set is non-empty, and A(θ) = 0 otherwise.

Assumption 1. For all θ ∈ Θ, v(A, θ) is convex on [0, A(θ)]

Assumption 1 has the following key implication.15

15A related result is obtained in Morris et al. (2022a), who shows that with sufficiently symmetric
agents and smallest equilibrium selection, an asymmetric version of Assumption 1 implies the
designer to optimally perfectly coordinate agents’ investments.
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Lemma 2. Suppose that Assumption 1 holds. Then, there exists an optimal leader-follower
outcome σ∗ that satisfies perfect coordination: for all states θ ∈ Θ, if (AL, AF ) ∈ supp(σ∗(·|θ)),
then either AL + AF = 0 (no agents invest), or AL + AF = 1 (all agents invest).

The intuition behind Lemma 2 is as follows. First, suppose the designer’s and
agent’s payoffs are aligned on ((AL, AF ), θ), so D(AL + AF , θ) ≥ 0 holds. Then,
increasing AF to 1− AL benefits the designer, while maintaining followers’ incen-
tives to invest. Next, suppose the designer’s and agent’s payoffs are misaligned,
so D(AL + AF , θ) < 0 holds. Then, the supermodularity of agents’ payoffs and
Assumption 1 implies that, respectively, the agents’ and designer’s payoffs are
convex in A ∈ [0, A(θ)]. Hence, a mean-preserving spread of AL + AF over the
perfectly coordinated pairs ((0, 0), θ), ((AL, 1), θ) and ((A(θ), 1 − A(θ)), θ) benefits
the designer, while maintaining agents’ investment incentive.

Lemma 2 reduces the designer’s problem to choosing, for each state θ ∈ Θ, (i)
the probability of all agents investing q(θ) ∈ [0, 1], and (ii) conditional on agents in-
vesting, the distribution over leaders investing σC(·|θ) ∈ ∆([0, 1]), where σC(AL|θ)
is the probability of having AL leaders and 1−AL followers invest. Abusing termi-
nology, I simply refer to the pair (q, σC) ≡ {(q(θ), σC(·|θ))}θ∈Θ as a (perfectly coor-
dinated) leader-follower outcome moving forward, such that the designer solves.

max
q,σC

∫
Θ

v(1, θ)q(θ)f(θ)dθ (16)

s.t.
∫
Θ

∫ 1

0

ALD(H, θ)dσC(AL|θ)q(θ)f(θ)dθ ≥ 0 (17)

and
∫
Θ

∫ 1

0

ALD(AL, θ)dσC(AL|θ)q(θ)f(θ)dθ ≥ 0 (18)

and
∫
Θ

∫ 1

0

(∫ 1

AL

D(i, θ)di

)
dσC(AL|θ)q(θ)f(θ)dθ ≥ 0 (19)

where (17) - (19) are the leader and follower obedience constraints respectively.

5.2 Single-role benchmarks

I begin by considering the designer’s payoff under the benchmark case(s) where
the designer assigns all agents who invest to the same role on each state, and pro-
vide necessary and sufficient conditions for such cases to be optimal.
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Leader-only outcome Call a leader-follower outcome (q, σC) leader-only if σC =

σL, where σL assigns a mass of one to AL = 1 on all states θ ∈ Θ, i.e., assigns all
agents to the role of a leader. These are important as they are precisely the out-
comes implemented by public information structures, and optimal in the extreme
case where the designer’s preferred equilibrium is selected (which coincides with
having H = 1). It then follows that Theorem 1 in Section 3 characterises agents’
investment behaviours under an optimal leader-only outcome (qHL , σL), where

qHL (θ) ≡

1, xH
L (θ) ≥ xH

L

0, xH
L (θ) < xH

L

Follower-only outcome Call a leader-follower outcome (q, σC) follower-only if σC =

σF , where σF assigns a mass of one to AL = 0 on all states θ ∈ Θ, i.e., assigns all
agents to the role of a follower. These are important as they are precisely the out-
comes implemented by “fully-private” information structures, where all agents
possess uniform uncertainty about the mass of other agents investing when de-
ciding whether to begin investing, and are optimal in the extreme case where the
adversarial equilibrium is selected (which coincides with having H = 0). Here,
the designer faces the problem of maximizing (16) subject to the single follower-
obedience constraint in (19). Thus, following the intuition of the leader-only case,
by ordering states xF : Θ → Θ as follows

xF (θ) < xF (θ
′) ⇐⇒

−
∫ 1

0
D(i, θ′)di

v(1, θ′)
≤

−
∫ 1

0
D(i, θ)di

v(1, θ)
(20)

and letting

xF ≡ min

{
x ∈ Θ :

∫
θ:xF (θ)≥x

∫ 1

0

D(i, θ)dif(θ)dθ ≥ 0

}
An optimal follower-only outcome (qF , σF ) is defined by

qF (θ) ≡

1, xF (θ) ≥ xF

0, xF (θ) < xF
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Optimality of leader-only and follower-only outcomes Define

H ≡ sup{H : F ({θ : D(H, θ) = D(0, θ)}) = 1}

H∗ ≡ sup{H : F ({θ : D(H, θ) = D(0, θ) and xF (θ) ≥ xF}|xF (θ) ≥ xF ) = 1}

H
∗ ≡ inf

{
H :

∫
Θ
v(1, θ)qHL (θ)f(θ)dθ < V FB, and

F ({θ : D(H, θ) = D(1, θ) and xH
L (θ) ≥ xH

L }|xH
L (θ) ≥ xH

L ) = 1

}
H ≡ min{H : F ({θ : D(H, θ) = D(1, θ)} = 1}

where 0 ≤ H ≤ H∗ ≤ H
∗ ≤ H ≤ 1. H captures the largest level of hype under

which inducing agents to invest at L1 (as a leader) is harder than inducing agents
to invest as a follower. H∗ has a similar interpretation, but restricted to the sup-
port of the optimal follower-only outcome. Meanwhile, H and H

∗
have a similar

interpretation to their smaller counterparts, but with respect to the smallest level
of hype under which inducing investment from a follower is harder than a leader.

Given the preceding definitions, it is intuitive that a follower-only outcome is
optimal if H ≤ H , a leader-only outcome is optimal if H ≥ H , and neither of the
two are optimal for intermediate H . Theorem 3 below confirms this to be true.

Theorem 3. Suppose that Assumption 1 holds, and
∫
Θ
v(1, θ)qF (θ)f(θ)dθ < V FB. Then,

1. If H ≤ H , then the follower-only outcome is optimal

2. If H ≥ H , then the leader-only outcome is optimal

3. If H ∈ (H∗, H
∗
), then any optimal leader-follower outcome is neither a follower-only

or leader-only outcome.

Theorem 3 illustrates how changes in hype affect the type of information offered
by the designer. By increasing H , the designer moves from using a “fully private”
follower-only outcome, i.e., where agents are uniformly uncertain about when oth-
ers invest, to a hybrid outcome where leaders and followers have different private
information, to a leader-only outcome which is implementable by a public infor-
mation structure. Perhaps notably, the conditions under which extremes of fully
private and public information are only optimal are often very stringent. For in-
stance, in the case of Figure 1, a follower-only outcome is optimal if and only if
H = 0, while a leader-only outcome is optimal if and only if she can induce all
agents to invest with probability one.
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V ∗(H)

Payoff under σH
L

Payoff under σF

Figure 1: The designer’s payoff under (i) an optimal leader-follower outcome V ∗(H), (ii) an
optimal leader-only outcome and (iii) an optimal follower-only outcome, when F is uniform on
[0, 1], D(A, θ) = −2 + 9

4 IA≥max{1− 5
4 θ,0}

and v(A, θ) = IA≥max{1− 5
4 θ,0}

.

5.3 Threshold Games

I now specialize the analysis to the class of threshold games, captured by Assump-
tion 2 below, to sharpen the understanding of how hype affects the designer’s
provision of information.

Assumption 2. For all θ ∈ Θ, D(A, θ) is constant in A ∈ [0, A(θ)).

Threshold games capture a general funding setting (e.g. Section 2.3). Agents de-
cide whether to invest into a project. θ captures the agents’ common uncertainty
about project fundamentals. Launching the project requires enough investment:
A ≥ A(θ). An agent who invests always incurs an cost of D(0, θ) < 0. Meanwhile,
an agent earns a non-negative yield when the project is successfully funded, which
can be increasing in A due to positive network effects. These span several games
of interest in the literature, one example being the regime change game below.

Example 1. Suppose there exists c > 0, and upper semi-continuous functions A : Θ →
[0, 1], B : Θ → (c,∞), W : Θ → (0,∞), so that

D(A, θ) ≡

B(θ)− c, A ≥ A(θ)

−c, A < A(θ)
, v(A, θ) ≡

W (θ), A ≥ A(θ)

0, A < A(θ)

This captures a canonical regime change setting (e.g. Morris and Shin, 2003), studied
recently in Goldstein and Huang (2016), Li et al. (2023), Inostroza and Pavan (2023) and
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Taneva and Mathevet (2023). Here, W (θ) > 0 captures the idea that the designer strictly
prefers for the regime to be maintained (A ≥ A(θ)).

I will now characterise an optimal leader-follower outcome in this environment. I
show this in two steps: first constructing an upper bound on the designer’s payoff
across all games using an efficiency argument, and then constructing an upper
obedient leader-follower outcome which achieves the upper bound.

An upper bound Given Lemma 2, a relaxation of the designer’s problem in-
volves optimizing over leader-follower outcomes subject to ensuring that the joint
incentives of leaders and followers to begin investing is weakly positive, i.e.,

max
(q,σC)

∫
Θ

v(1, θ)q(θ)f(θ)dθ

s.t.
∫
Θ

∫ 1

0

(
ALD(H, θ) +

∫ 1

AL

D(i, θ)di︸ ︷︷ ︸
Benefit to AL leaders and 1−AL followers investing on state θ (X)

)
dσC(AL|θ)f(θ)dθ ≥ 0

Observe that for all θ ∈ Θ, term (X) is maximized at AL = H . That is, conditional
on having all agents invest, it is always efficient to have a fraction of H leaders. If
so, then by substituting σC(·|θ) = δH into the expression above, it follows that the
relaxed problem reduces to the public information design problem described by
equations (4) - (5) in Section 3, replacing D(H, θ) with HD(H, θ) +

∫ 1

H
D(i, θ)di in

the constraint (5). In turn, reordering states in a similar manner, having all agents
invest only on states with a high enough order solves the relaxed problem.

Lemma 3. Given H ∈ [0, 1], let xH : Θ → Θ denote the order over states such that

xH(θ) < xH(θ′) ⇐⇒
−(HD(H, θ′) +

∫ 1
H D(i, θ′)di)

v(1, θ′)
≤

−(HD(H, θ) +
∫ 1
H D(i, θ)di)

v(1, θ)
(21)

and define

xH ≡ min

{
x ∈ Θ :

∫
θ:xH(θ)≥x

(
HD(H, θ) +

∫ 1

H

D(i, θ)di

)
f(θ)dθ︸ ︷︷ ︸

≡D(x)

≥ 0

}
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Then, an upper bound on the designer’s payoff under an optimal leader follower outcome is

V (H) ≡
∫
θ:xH(θ)≥xH

v(1, θ)f(θ)dθ

Achieving the upper bound Denote the set of states on which leaders prefer to
invest by Θ

H ≡ {θ : D(H, θ) ≥ 0}. Notice that under a solution to the relaxed
problem, all agents invest on all states θ ∈ Θ

H
. Meanwhile, for all states θ ∈ Θ\ΘH

,

HD(H, θ) +

∫ 1

H

D(i, θ)di = A(θ)D(0, θ) +

∫ 1

A(θ)

D(i, θ)di

Hence, the total benefit to agents from investing is

D(xH) =

∫
Θ

H
HD(H, θ)f(θ)dθ︸ ︷︷ ︸

(a) Leaders’ benefit from investing at L1:≥0

+

∫
θ:xH(θ)≥xH

(∫ 1

max{H,A(θ)}
D(i, θ)di

)
f(θ)dθ︸ ︷︷ ︸

(b) Followers’ benefit from investing:≥0

+

∫
θ∈Θ\ΘH

:xH(θ)≥xH

A(θ)D(0, θ)f(θ)dθ︸ ︷︷ ︸
Cost of investing (c):≤0

(22)

To construct an optimal leader-follower outcome which mimics agents’ behaviours
under the solution to the relaxed problem, one must “split” the cost of investment
(c) among leaders and followers in a way that satisfies upper introspective obedi-
ence. I now show that this can be done. Define

xH ≡ min

{
x ∈ [xH , 1]\xH(Θ

H
) :

∫
Θ

H HD(H, θ)f(θ)dθ

+
∫
θ/∈ΘH

:xH(θ)∈[x,1]A(θ)D(0, θ)f(θ)dθ
≥ 0

}

and let (qH , σH
C ) be defined by

qH(θ) =

1, xH(θ) ≥ xH

0, xH(θ) < xH
, σH

C (·|θ) ≡


δH , θ ∈ Θ

H

δA(θ), xH(θ) ∈ [xH , 1]\xH(Θ
H
)

δ0, xH(θ) ∈ [0, xH ]\xH(Θ
H
)

(23)
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Then, observe that under (qH , σH
C ),∫

θ∈ΘH
HD(H, θ)f(θ)dθ +

∫
θ/∈ΘH

:xH(θ)∈[xH ,1]
A(θ)D(0, θ)f(θ)dθ ≥ 0︸ ︷︷ ︸

Leader obedience under (qH , σH
C ) from investing at L1 (equation (17))

(24)

∫
θ∈ΘH

∫ 1

H
D(i, θ)dif(θ)dθ +

∫
θ/∈ΘH

:xH(θ)∈[xH ,xH ]

(
A(θ)D(0, θ) +

∫ 1

A(θ)
D(i, θ)di

)
f(θ)dθ ≥ 0︸ ︷︷ ︸

Follower obedience under (qH , σH
C ) (equation (19))

(25)

It can also be verified that the second line of leader-obedience under (qH , σH
C ),

i.e., equation (18), is positive. Hence, (qH , σH
C ) satisfies upper-obedience, and so

the designer achieves the upper bound. In particular, the optimal leader-follower
outcome, after reordering states, has a simple cut-off structure.

Theorem 4. Suppose that Assumptions 1 - 2 hold. Then, (qH , σH
C ) defined in (23) is an

optimal leader-follower outcome, under which for all states θ ∈ Θ,

1. All agents invest on θ if xH(θ) ≥ xH

2. No agents invest on θ if xH(θ) < xH

Remark 2. Following the construction above, one finds that for “upper” threshold games,
i.e., where for all θ ∈ Θ, D(A, θ) is constant in A ∈ [A(θ), 1], (i) the upper bound V (H)

can also be achieved, and (ii) all agents invest under an optimal leader-follower outcome on
states satisfying xH(θ) ≥ xH . These include the class of games in Example 1.

Comparative Statics Theorem 4 pinpoints exactly where hype H affects the op-
timal disclosure of information. By changing the cost of inducing investment from
leaders, changes in H affect the change in the efficient composition of leaders and
followers to induce investment on a state (which is to have H leaders and 1 − H

followers). This changes the relative cost of inducing investment across states, i.e.,
the ranking in (21), which then leads to a change in the subset of states on which
agents invest under an optimal information structure.

The above has two implications. First, unless a leader-only outcome is opti-
mal, the ordering in (21) may not be the same as the ordering over states under
an optimal public information structure (equation (7)). Hence, a designer who has
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access to private information induces investment across different states than that
with public information. Second, as the ordering in (21) can be non-monotone in
H , changes in hype can lead to non-monotone affects on agents’ aggregate invest-
ment. Thus, to deliver monotone comparative statics in hype, I impose a further
monotonicity assumption on payoffs to avoid this possibility.

Assumption 3. For all A ∈ [0, 1], D(A, θ) and v(1, θ) are non-decreasing in θ.

Under Assumption 3, the ordering over states xH coincides with the value of the
state itself (see Figure 2). Hence, letting

θH ≡ minΘ
H
, θ

H ≡ xH , θH ≡ xH ,

It follows that 0 ≤ θH ≤ θ
H ≤ θH ≤ 1, and so the optimal leader-follower outcome

(qH , σH
C ) can be written as

qH(θ) =

1, θ ≥ θH

0, θ < θH
, σH

C (·|θ) ≡


δH , θ ∈ [θH , 1]

δA(θ),, θ ∈ [θ
H
, θH)

δ0, θ ∈ [0, θ
H
)

(26)

Corollary 3 below states how changes in hype affect (qH , σH
C ).

Corollary 3. Suppose that Assumptions 1 - 3. Then, under the optimal leader-follower
outcome (qH , σH

C ), an increase in hype H

1. Weakly increases the set of states on which agents invest.

2. Weakly increases the mass of leaders who invest on all states.

As Claim 1 is easily verified, I focus on Claim 2. An increase in H decreases the up-
per threshold θH , and so increases the set Θ

H
= [θH , 1]. This increases the “budget”

allocated to leaders (term (a) in (22)), and so allows more of the cost of investment
(term (c)) to be allocated to leaders. As such, the middle threshold θ

H
falls. Finally,

the lower threshold θH falls by Claim 1. Hence, by (26), the mass of leaders in-
duced on any state then increases either from 0 to A(θ), or from A(θ) to H ≥ A(θ).
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H

AH
L (θ) +AH

F (θ)
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L (θ)
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(a) Low hype (H)

AL/AF

θ

1

1θH̃ θ
H̃ θH̃

H
H̃

θH

↑ mass of leaders

↑ total investment

AH̃
L (θ) +AH̃

F (θ)

AH̃
L (θ)

AH
L (θ)

A(θ)

(b) High hype (H̃ > H)

Figure 2: AH
L (θ) and AH

F (θ) are the mass of leaders and followers, respectively, drawn on state θ
under the optimal leader-follower outcome σH

M , in the regime change game of Figure 1.

6 Extensions

The main analysis of Sections 4 and 5 extended the public information benchmark
of Section 3 by providing the designer with greater flexibility over information
structures. This section considers a complementary pursuit: limiting the designer
to public information, but enriching the environment studied. I provide a sum-
mary of key insights here, leaving additional details to the Online Appendix.

6.1 Endogenizing Hype

I first consider when the level is hype is endogenously determined by the designer.
There are two possibilities. First, suppose that the designer only chooses the pub-
lic information structure. However, conditional on the public signal s realized, the
level of hype is H(q(s)), where H(·) is exogenously determined, and q(s) ∈ ∆(Θ) is
agents’ first-order belief given s. This is the case of indirect hype generation. It cap-
tures, in reduced form, a third-party generating hype in response to information
disclosed. Given (s, q(s)), agents then play the monotone introspective equilibrium
under hype H(q(s)).

Second, suppose that the designer commits to both a public information struc-
ture, and the level of hype H conditional on the realized signal. The cost of gen-
erating hype H is C(H), where C(·) is strictly increasing and satisfies C(0) = 0.
This is the case of direct hype generation, which captures an environment where the
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designer has much control over payoff-irrelevant factors.
Both cases are solved through a similar approach. First, one identifies the set of

beliefs under which all agents invest, conditional on the level of hype (in the direct
case, this is determined optimally by the designer). Then, one finds that it is suf-
ficient to optimize over collective information structures, comprising of a random-
ization over (i) a “collective” component supported on beliefs under which agents
invest, and (ii) a fully informative component which fully discloses the state, on
which no agents invest (and in the direct case, the designer generates no hype).

I offer two insights to this problem. First, I provide sufficient conditions under
which there exists an optimal “upper censorship” information structure in either
case. That is, the collective component comprises of a single belief involving all
high enough states, which is identified via an “efficiency argument” as in Section
3. In the indirect case, this holds when (i) the designer’s payoff and agents’ pay-
offs are monotone in states and H(q) is non-decreasing with respect to first-order
stochastic dominance in beliefs q, and (ii) agents’ payoff is concave in the aggregate
action and linear in the state, and H(q) is concave in beliefs. In the direct case, this
holds when (i) the designer’s payoff and agents’ payoffs are monotone in states,
and (ii) the agents’ payoff is concave in actions and linear in the state and the cost
of generating hype C(H) is convex in H .

Second, the extent of control the designer has over hype can affect the multiplic-
ity of optimal signals. For example, suppose an agent’s payoff is strictly concave in
the aggregate action and linear in the state, and (i) in the indirect case, hype H(q) is
concave in beliefs, or (ii) in the direct case, the cost of generating hype C(H) is con-
vex in H . Then, there exists an collective information structure which pools agents’
signals which induce investment. Whether such a pooling property is necessary for
optimality differs across cases. In the indirect case, all optimal information struc-
tures have the pooling property. In contrast, in the direct case, there always exists
an optimal information structure which is pairwise, i.e., where the support of any
belief under which agents invest contains at most two states.

6.2 The Bandwagon Effect of Hype

Next, I consider the environment of Inostroza and Pavan (2023), by allowing agents
to receive private information which cannot be manipulated.
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Suppose that after the state θ and public signal s are drawn, each agent observes
a private signal t ∈ T ⊂ R. Private signals are independently drawn across agents
according to ρ(·|θ) ∈ ∆(T ), which has full support and is log-supermodular in
(t, θ). I assume throughout that Assumption 2 holds, v(A, θ) = 0 holds for all A ∈
[0, A(θ)], and that the designer cannot elicit agents’ private signals. The definition
of a monotone introspective equilibrium is extended such that agents’ strategies
now depend both on public and private signals observed.

Allowing for private information does not qualitatively affect optimal infor-
mation disclosure, regardless of the level of hype. Similar to no private infor-
mation, there exists an optimal “upper censorship” information structure which
pools agents’ recommendations to invest, while fully disclosing states on which
(all) agents do not invest. Additionally, the states on which agents invest/do not
invest can be identified via an efficiency argument analogous to Section 3.

Meanwhile, private information affect the mechanics behind how investment
is achieved. As agents can now be asymmetric prior to investment, unless hype is
sufficiently high, the designer’s optimal information structure will induce a mix of
leaders (with higher private signals) and followers (with lower private signals).

Additionally, the designer benefits from an increase in hype, not only by raising
leaders’ incentives to invest, but also through the corresponding bandwagon effect
on agents. To see this, taking any (public) signal realized s, notice that the smallest
type of agent which invests at L1 is

tH(s) ≡ min{t ∈ T :

∫
Θ

D(H, θ)ρ(t|θ)dπ(θ|s) ≥ 0}

which is decreasing in H . That is, agents previously too pessimistic to invest early,
due to their private information, are now “won over” by the increase in hype.
Such agents now mimic their higher-signal counterparts, and invest earlier in the
introspection process. In doing so, they provide greater assurance to all other fol-
lowers to invest, leading to a further bandwagoning effect where all followers have
stronger incentives to invest. The designer capitalizes on this by then pooling more
states into agents’ (public) recommendation to invest.

Note that the bandwagon effect identified here is distinct to that for informa-
tional cascades (Bikhchandani et al., 1992, Banerjee, 1992). In those models, se-
quentially arriving agents, who observe prior agents actions, mimic prior agents’
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behaviour under the belief that prior agents are collectively more informed then
the agent himself. Here, the bandwagon effect arises due to the agent’s greater
optimism about coordinating her investments with others, driven by higher hype.

6.3 Uncertainty about Hype

Finally, I consider when the designer must commit to an information structure in
advance of the realization of hype (which may be uncertain). Formally, suppose
now that the designer first chooses the public information structure S. After the
signal and state are drawn, a level of hype H ∈ [0, 1] is drawn according to a
distribution G(·|θ) ∈ ∆[0, 1] with strictly positive density g(·|θ) > 0. Agents then
play the monotone introspective equilibrium corresponding to H .

My main observation is that under public information, “equilibrium uncer-
tainty” reduces to “individual uncertainty”. Recall by Section 3 that under public
information, agents monotone introspective equilibrium behaviours only depend
on hype H , and first-order beliefs. Thus, if H is known, then the designer’s prob-
lem is isomorphic to a single-agent problem, where the designer’s payoff from the
agent investing and not investing are v(1, θ) and v(0, θ) respectively, and the agent
invests if and only if given signal s,

∫
Θ
D(H, θ)dπ(θ|s) ≥ 0 holds.16 Likewise, when

H is “privately” observed by agents, then the designer’s problem is isomorphic to
the problem of persuading a single-agent with non-elicitable private information.

The preceding connection allows one to use results from the rich Bayesian Per-
suasion literature (Kamenica and Gentzkow, 2011) to study the problem with equi-
librium uncertainty. Here, a key question that can be addressed using existing
tools is of the assortative properties of an optimal information structure. That is,
connecting the values of H drawn under which agents invest, to the state θ. To
do so, following Kolotilin (2018), the designer’s problem is (also) isomorphic to a
single-agent problem without private information, where the agent’s “action” is
H ∈ [0, 1], and the designer’s and agent’s payoffs on (H, θ) are, respectively,

V (H, θ) ≡
∫ 1

H

v(1, θ)g(H ′|θ)dH ′, U(H, θ) ≡
∫ 1

H

D(H ′, θ)g(H ′|θ)dH ′

Under certain parametric restrictions, the problem above can be addressed using

16Thus, Theorem 1 characterises the optimal information structure for the single-agent game.
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existing results. First, when G is state-independent and D(A, θ) is linear in θ, so the
agent’s optimal action only depends on the posterior mean (e.g., Gentzkow and
Kamenica, 2016, Dworczak and Martini, 2019, Kolotilin et al., 2022). Second, when
D is smooth in (A, θ), and D(0, θ) ≤ 0 ≤ D(1, θ) holds, so the agent’s optimal action
is pinned down by a first-order condition (Kolotilin, 2018, Kolotilin et al., 2023).17 I
illustrate this observation with a simple example.

Example 2. Suppose D(A, θ) = A − θ and v(A, θ) = A (e.g. the investment game of
Bergemann and Morris (2016)), F and G(·|θ) = G(·) have full support and densities f

and g respectively, and g is log-concave. Then, a lower-censorship information structure is
optimal (Theorem 2, Kolotilin et al., 2022). Thus, under an optimal information structure,
an agent invests if and only if (i) the state favours investment enough, i.e., is not too
large, and (ii) the realized level of hype is high enough. Hence, there is a (weak) positive
assortment between maximum adversariality and the state.

Appendix A: Further Details

Every Monotone Introspective Equilibrium is a Bayes-Nash equilibrium

Theorem 5. For all information structures S and levels of hype h ∈ [0, 1], if αS,h is a
monotone introspective equilibrium of S, then it is a Bayes-Nash equilibrium of S

Proof of Theorem 5 Take any information structure S, and suppose that αS,h is a
monotone introspective equilibrium of S . Fix any signal observed s ∈ S. I focus on
the case where αS,h(s) = 1, noting that the case with αS,h(s) = 0 is proven similarly.
Since the agent invests in the introspective equilibrium, there exists a k ≥ 2 such
that for all k ≥ k, αS,h,k(s) = 1. That is,∫

∆(S)×Θ

D(A(αS,h,k−1|µ), θ)dπ(µ, θ|s) ≥ 0

Now, notice that (D(A(αS,h,k−1|µ), θ))k≥k is a sequence of measurable functions de-
fined on ∆(S) × Θ, which converges monotonically point-wise to D(A(αS,h|µ), θ),
and is bounded above and below by the integrable functions D(1, θ) and D(0, θ)

17For a multi-agent application of the first-order approach, see Smolin and Yamashita (2023).
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respectively. Thus, by the Dominated Convergence Theorem,∫
∆(S)×Θ

D(A(αS,h|µ), θ)dπ(µ, θ|s) = lim
k→∞

∫
∆(S)×Θ

D(A(αS,h,k−1|µ), θ)dπ(µ, θ|s) ≥ 0

and so, αS,h(s) = 1 is a best-response for the agent observing signal s.

Lemma 4 (Contagion Lemma). Take any information structure S, level of hype h, and
any k > 1. If every agent who invests at Lk− 1 also invests at Lk, i.e., the following holds

αS,h,k−1(s) = 1 ⇒ αS,h,k(s) = 1, ∀s ∈ S (27)

then the sequence (αS,h,k′)k′≥k is (point-wise) non-decreasing in k′.

Proof of Lemma 4 I will prove that (27) implies the following claim (which yields
the Lemma): for all k′ ≥ k and s ∈ S, αS,h,k′−1(s) = 1 implies αS,h,k′(s) = 1. I
proceed by induction. The base case for k′ = k holds by (27). Meanwhile, suppose
that the induction hypothesis holds for all k̃ < k′ for some k′ > k. Take any agent
and signal s ∈ S, and suppose that αS,h,k′−1(s) = 1. Then, since αS,h,k′−2(s) ≤
αS,h,k′−1(s) for all signals s ∈ S, D(A(αS,h,k′−2|µ), θ) ≤ D(A(αS,h,k′−1|µ), θ) holds.
Hence,∫

∆(S)×Θ

D(A(αS,h,k′−1|µ), θ)dπ(µ, θ|s) ≥
∫
∆(S)×Θ

D(A(αS,h,k′−2|µ), θ)dπ(µ, θ|s) ≥ 0

Thus, agent i invests at Lk′ under s, so the induction hypothesis holds.

Appendix B: Main Text Proofs

Sections B1 and B2 prove the sufficiency and necessity components, respectively,
of Theorem 2. Section B3 contains the remainder of the proofs.

B1: Proof of Sufficiency: Theorem 2

Let σ denote the leader-follower outcome associated with the full disclosure in-
formation structure, i.e., such that σ(·|θ) = δ(1,0) whenever D(H, θ) ≥ 0, and
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σ(·|θ) = δ(0,0) whenever D(H, θ) < 0. Since
∫
Θ
D(0, θ)f(θ)dθ > 0, σ satisfies in-

trospective obedience strictly, i.e., where the associated inequalities are all strict.
Now, given a leader-follower outcome σ, define σϵ ≡ (1 − ϵ)σ + ϵσ for all

ϵ ∈ (0, 1]. Notice that if σ satisfies introspective obedience, then σϵ satisfies in-
trospective obedience strictly. Our main goal is to prove the following.

Lemma 5. Take any leader-follower outcome σ which satisfies introspective obedience un-
der H . Then, for all ϵ̃ ∈ (0, 1], there exists a H-implementable outcome σ̃ under which
pσ̃ = pσϵ .

Before proving Lemma 5, let me discuss how it can be applied to prove sufficiency.
Taking any leader-follower outcome σ which satisfies Bayes-plausibility introspec-
tive obedience, consider the sequence (σ1/n)∞n=1 and (σ̃1/n)∞n=1. Since pσ1/n = pσ̃ for
all n ≥ 1, and limn→∞ pσ1/n = pσ by construction of σ1/n and the properties of the
push-forward, limn→∞ pσ̃1/n = pσ holds. This yields Claim 2 in Theorem 2.

Proof of Lemma 5 Take any leader-follower outcome σ which satisfies introspec-
tive obedience, and any ϵ̃ > 0. Throughout, I write σ rather than σϵ̃ to simplify
exposition. I break the proof into four parts. Part I establishes two useful obser-
vations. Part II constructs the candidate information structure for the problem.
Part III proves several properties of agents’ strategies under the candidate infor-
mation structure. Part IV applies the results of Parts I-III, to prove that there exists
a monotone introspective equilibrium under the candidate information structure
constructed, and the corresponding outcome implemented is equal to pσ.

Part I: Preliminary Definitions Given an ϵ ∈ (0, ϵ̃), let σ̃ be defined by setting
σ̃(·|θ) = σ for all θ ∈ Θ\Θ, while σ̃(·|θ) =

σ(·|θ)−ϵδ(0,1)
1−ϵ

for all θ ∈ Θ, where ϵ > 0

sufficiently small such that all Leader-obedience and Downwards-obedience con-
straints continue to hold under σ̃: this is possible as all constraints are assumed to
be strict. There are two properties of σ̃ relevant to the task:
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Property 1. For each n ∈ N, define

D̃n((AL, AF ), θ) ≡
1

n

[
(⌈nAL⌉ − nAL)D(AL, θ) +

⌊n(AF+AL)⌋−1∑
i=⌈nAL⌉

D(
i

n
, θ)

+ [n(AF + AL)− ⌊n(AF + AL)⌋D(
⌊n(AF + AL)⌋

n
, θ)

]
where the first term does not appear if AL = 0, and the last term does not appear if AL +

AF = 1. Then, there exists a sufficiently large N ≥ 1 such that∫
Θ

∫
A
D̃N((AL, AF ), θ)dσ̃(AL, AF |θ)f(θ)dθ > 0 (28)

Proof. Fixing a triple ((AL, AF ), θ), notice that Ii∈[AL,AL+AF ]D(i, θ) is piecewise-monotone.
Therefore, it is Riemann-integrable, such that its integral over [0, 1] can be approx-
imated by functions of the form of D̃n((AL, AF ), θ), i.e.,∫ AF

0

D(AL + i, θ)di =

∫ 1

0

I[AL,AL+AF ]D(i, θ)di = lim
n→∞

D̃n((AL, AF ), θ)

Combined with the fact that∫
Θ

∫
A

∫ Af

0

D(AL+i, θ)didσ̃(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
A

∫ Af

0

D(AL+i, θ)didσ(AL, AF |θ)f(θ)dθ > 0

and, by the Dominated convergence theorem,

lim
n→∞

∫
Θ

∫
A
D̃n((AL, AF ), θ)dσ̃(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
A

∫ Af

0

D(AL+i, θ)didσ̃(AL, AF |θ)f(θ)dθ

there must then exist N ≥ 1 large enough such that (28) holds.

Property 2. There exists η ∈ (0, 1) sufficiently small such that

ϵ

N − 1

∫
Θ

D(0, θ)f(θ)dFθ + η

∫
Θ\Θ

D(0, θ)f(θ)dθ ≥ 0 (29)
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and

∫
Θ

∫
A

1

N

[ (1− η)−⌈NAL⌉(⌈NAL⌉ −NAL)D(AL, θ)

+
∑⌊N(AF+AL)⌋−1

i=⌈NAL⌉ (1− η)−i−1D( i
N , θ)

+(1− η)−⌊N(AF+AL)⌋−1[N(AF +AL)− ⌊N(AF +AL)⌋]D( ⌊N(AF+AL)⌋
N , θ)

]
dσ̃(AL, AF |θ)f(θ)dθ ≥ 0

(30)

Proof. Follows from Property 1 and the fact that
∫
Θ
D(0, θ)f(θ)dθ > 0 holds.

Part 2: Constructing the information structure Consider the information struc-
ture S with S = Z+ ∪ {∞}, and π(·|θ) obtained from the following procedure

1. Step 1: Draw (AL, AF ) according to σ(·|θ)

2. Step 2: Independently, draw a z ∈ Z+ with probability η(1 − η)z, and y ∈
{0, 1} with probability ϵ.

3. Step 3a: If θ ∈ Θ, (AL, AF ) = (1, 0) and y = 1, then draw µ1 ∈ ∆(S), where

µ1(s) ≡

 1
N−1

, s ∈ {1, ..., N − 1}

0, otherwise

4. Step 3b: If θ /∈ Θ, and either (AL, AF ) ̸= (1, 0) or y ̸= 1, then draw µ(z,AL,AF ) ∈
∆(S), where

µ(z,AL,AF )(s) ≡



AL, s = 0

⌈NAL⌉
N

− AL, s = ⌈NAL⌉+ z

1
N
, ⌈NAL⌉+ z < s ≤ ⌊N(AL + AF )⌋+ z

AL + AF − ⌊N(AL+AF )⌋
N

, s = ⌊N(AL + AF )⌋+ z + 1

1− AL − AF , s = ∞

0, otherwise

Observe that by the construction above, conditional on drawing (AL, AF ), the mea-
sure of agents who observe s < ∞ is, with probability one, AL + AF . Hence, let-
ting p̃ denote the outcome which describes agents’ state-wise behaviours whenever
they invest if and only if they observe a signal s < ∞, p̃ = pσ.
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Part 3: Properties of the information structure To prove that p̃ is indeed the
outcome implemented by S, I first prove five properties about S.

Claim 1: An agent invest at all levels under signal s = 0

Proof. Consider when an agent observes s = 0. By Part 2, conditional on (AL, AF )

being drawn on state θ, an agent has probability of (1− ϵ)AL of observing 0 (which
coincides with the mass of other agents who have observed the same signal ) if
θ ∈ Θ and (AL, AF ) = (1, 0), and AL if θ /∈ Θ. Thus, the unconditional payoff of
the agent from investing at L1 is simply the LHS of (11) under σ̃, which is positive.
Furthermore, provided that (at least) a measure of AL other agents are investing
at L1 whenever an agent observes a signal of 0, the unconditional payoff of the
agent from investing at L2 is at least (12) under σ̃, which is positive. From here, a
straightforward induction argument implies that all agents who observe a signal
of 0 invest at all levels

Claim 2: An agent invests at all levels under signals s ∈ {1, ...,N − 1}

Proof. Take any signal s ∈ {1, ..., N −1}. Conditional on (AL, AF ) drawn on state θ,
Part 2 implies that on any state θ ∈ Θ, the agent observes signal s with probability
of at least ϵ

N−1
, i.e., when y = 1 is drawn. Meanwhile, if θ /∈ Θ, the probability that

signal s = 0 is observed is at most η. Hence, the agent’s unconditional expected
payoff from investing at any level is at least (29), which is positive. Therefore, any
such agent invests at all levels.

Claim 3: All agents do not invest at all levels under signal ∞.

Proof. I prove this by inducting on k. Consider the base case of k = 1. Fix (AL, AF )

drawn on state θ. By Part 2, the probability that the agent observes s = ∞ is exactly
(1 − ϵ)(1 − AL − AF ) if θ ∈ Θ and (AL, AF ) = (1, 0), and (1 − AL − AF ) if θ /∈ Θ.
Therefore, the agent’s unconditional payoff from investing at L1 is (14) under σ̃,
which is strictly negative, so the agent does not invest at L1. Now, suppose that
the induction hypothesis is true for all levels k′ < k for some k ≥ 2. Consider the
agent’s incentive to invest at level k. By the induction hypothesis, the upper bound
on the measure of agents who invest at Lk-1 conditional on (AL, AF ) being drawn
exactly 1−AL−AF . Consequently, the agent’s unconditional payoff from investing

37



at Lk is at most the LHS of (15) under σ̃, which is strictly negative. Hence, the agent
does not invest at Lk, which proves the induction hypothesis.

Claim 4: For all signals s ∈ {1,2,3, ...,} observed, all agents take action 1 at all
levels greater than or equal to s.

Proof. I prove the claim by induction on s ∈ {1, 2, ..., }. Claim 2 implies that the
base case, i.e., for s ≤ N − 1 holds. Now, suppose that the induction hypothesis
holds for all s < k for some k ≥ N . Fix s = k being observed by an agent when
((AL, AF ), θ) and z ∈ Z+ is drawn. Then, a mass of at least max{k−z−1

N
, AL} other

agents must have observed a signal strictly smaller k, and so are investing at Lk-1.
Hence, the agent’s payoff from investment is (at least) D(max{k−z−1

N
, AL}, θ).

Consider then the probability of observing k when ((AL, AF ), θ) is drawn. If z =

k− ⌈N(AL +AF )⌉ is drawn, then the agent observes k with probability 1
N
(N(AL +

AF ) − ⌈N(AL + AF )⌉). If k − ⌈N(AL + AF )⌉ < z < k − ⌈NAL⌉, then the agent
observes k with probability 1

N
. Finally, if z = k−⌈NAL⌉, then the agent observes k

with probability 1
N
(⌈NAL⌉ − AL). Thus, conditional on ((AL, AF ), θ) being drawn,

the agent’s unconditional payoff from investing is

(1− ϵ)

N

[ η(1− η)k−⌈N(AL+AF )⌉(⌈NAL⌉ −NAL)D(AL, θ)

+
∑k−⌊N(AL+AF )⌋

z=k−⌈NAL⌉−1 (1− η)zD(n−z−1
N , θ)

+(1− η)k−⌈N(AL+AF )⌉[N(AF +AL)− ⌊N(AF +AL)⌋]D( ⌊N(AF+AL)⌋
N , θ)

]

=
(1− ϵ)η(1− η)k

N

[ (1− η)−⌈NAL⌉(⌈NAL⌉ −NAL)D(AL, θ)

+
∑⌊N(AF+AL)⌋−1

i=⌈NAL⌉ (1− η)−i−1D( i
N , θ)

+(1− η)−⌊N(AF+AL)⌋−1[N(AF +AL)− ⌊N(AF +AL)⌋]D( ⌊N(AF+AL)⌋
N , θ)

]

Integrating over all triples ((AL, AF ), θ) then yields (30), which is positive. There-
fore, the agent invests at Lk upon observing k. From here, noticing that the induc-
tion hypothesis implies at least k − z − 1 agents invest at Lk′ − 1 for all k′ ≥ k, the
agent invests at all levels k′ ≥ k upon observing k.

Claim 5: If an agent invests at L1 under some N ≤ s < ∞, then for all such
signals, the agent invests at all levels L1+.

Proof. First, following the logic of Claim 4, observe that an agent’s payoff from
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investing at L1 under a signal N ≤ s < ∞,

(1− ϵ)
η(1− η)s

N

∫
Θ

∫
A

[ (1− η)−⌈NAL⌉(⌈NAL⌉ −NAL)D(h, θ)

+
∑⌊N(AF+AL)⌋−1

i=⌈NAL⌉ (1− η)−i−1D(h, θ)

+(1− η)−⌊N(AF+AL)⌋−1[N(AF +AL)− ⌊N(AF +AL)⌋]D(h, θ)

]
dσ̃(AL, AF |θ)f(θ)dθ

(31)

Now, suppose that an agent invests at L1 under one such signal, so (31) is positive.
Notice that the sign of (31) does not depend on s, so agents must be investing at
L1 under all signals N ≤ s < ∞. Combined with Claims 1-4, this implies an agent
invests if and only if he observes s < ∞.

Next, consider an agent’s investment decision at L2 upon observing some s ∈
{N,N + 1, ..., } drawn. Since the agent anticipates a mass of AL + AF investing
when (AL, AF ) is drawn, the agent’s unconditional expected payoff from investing
at L2 is given by

(1− ϵ)
η(1− η)s

N

∫
Θ

∫
A

[ (1− η)−⌈NAL⌉(⌈NAL⌉ −NAL)D(AL +AF , θ)

+
∑⌊N(AF+AL)⌋−1

i=⌈NAL⌉ (1− η)−i−1D(AL +AF , θ)

+(1− η)−⌊N(AF+AL)⌋−1[N(AF +AL)− ⌊N(AF +AL)⌋]D(AL +AF , θ)

]
dσ̃(AL, AF |θ)f(θ)dθ

≥ (1− ϵ)
η(1− η)s

N

∫
Θ

∫
A

[ (1− η)−⌈NAL⌉(⌈NAL⌉ −NAL)D(AL, θ)

+
∑⌊N(AF+AL)⌋−1

i=⌈NAL⌉ (1− η)−i−1D( i
N
, θ)

+(1− η)−⌊N(AF+AL)⌋−1[N(AF +AL)− ⌊N(AF +AL)⌋]D(
⌊N(AF+AL)⌋

N
, θ)

]
dσ̃(AL, AF |θ)f(θ)dθ ≥ 0

Hence, the agent invests at L2. A straightforward induction argument then im-
plies any such agent invests at all levels 2+.

Part 4: Proving Lemma 5 I now prove that the information structure constructed
in Part 2, S , has a monotone introspective equilibrium, and in the monotone intro-
spective equilibrium, an agent invests if and only if s < ∞. As noted at the end of
Part 2, this would imply that p̃ = pσ, so Lemma 5 holds.

Here, there are two possibilities. First, suppose that there exists s ≥ N who
invests at L1. By Claims 1, 2 and 5, all agents s < ∞ invest at all levels, and all
agents s = ∞ do not invest at all levels. Further notice that agents’ best-responses
are non-decreasing, so the behaviour described above is indeed a monotone intro-
spective equilibrium of S.

Next, suppose that for all s ≥ N , the agent does not invest at L1. By Claims
1-5, an agent invests at L1 if and only if s ≤ N − 1, and all such agents invest at
L2 (and at all higher levels). Hence, by Lemma 4, S has a monotone introspective
equilibrium. Applying Claims 1-5 then implies that in such an equilibrium, an
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agent invests if and only if s < ∞.

B2: Proof of Necessity: Theorem 2

Take any H-implementable leader-follower outcome σ, and let S be any informa-
tion structure which implements it, where the index of the largest monotone intro-
spective equilibrium subject to the upper bound H is denoted by h.

Leader obedience Let S1 ≡ {s ∈ S : αS,h,1(s) = 1}. Then,∫
Θ

∫
A
ALD(H, θ)dσ(AL, AF |θ)f(θ)dθ ≥

∫
Θ

∫
A
ALD(h, θ)dσ(AL, AF |θ)f(θ)dθ

=

∫
Θ

∫
∆(S)

µ({s ∈ S : αS,h,1(s) = 1})D(h, θ)dπ(µ|θ)f(θ)dθ

=

∫
Θ

∫
∆(S)

∫
S1

D(h, θ)dµ(s)dπ(µ|θ)f(θ)dθ

=

∫
S1

∫
∆(S)×Θ

D(h, θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by (2)

dπS(s) ≥ 0

Meanwhile,∫
Θ

∫
A
ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
∆(S)

µ({s ∈ S : αS,h,1(s) = 1})D(AS,h,1(µ), θ)dπ(µ|θ)f(θ)dθ

=

∫
Θ

∫
∆(S)

∫
S1

D(AS,h,1(µ), θ)dµ(s)dπ(µ|θ)f(θ)dθ

=

∫
S1

∫
∆(S)×Θ

D(AS,h,1(µ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by (3)

dπS(s) ≥ 0

Hence, σ satisfies leader obedience.
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Follower obedience For each k > 1, defining Sk ≡ {s ∈ S : αS,h,k(s) = 1 > 0 =

αS,h,k−1(s)}, and notice that

∫ AS,h
L (µ)+AS,h

F (µ)

AS,h
L (µ)

D(i, θ)di =
∞∑
k=2

∫ A(αS,h,k|µ)

A(αS,h,k−1|µ)
D(i, θ)di

≥
∞∑
k=2

A(αS,h,k−1|µ)D(A(αS,h,k−1|µ), θ)

=
∞∑
k=2

∫
Sk

D(A(αS,h,k−1|µ), θ)dµ(s)

Therefore,

∫
Θ

∫
A

(∫ AL+AF

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
∆(S)

∫ AS,h
L (µ)+AS,h

F (µ)

AS,h
L (µ)

D(i, θ)didπ(µ|θ)f(θ)dθ

≥
∫
Θ

∫
∆(S)

∞∑
k=2

∫
Sk

D(A(αS,h,k−1|µ), θ)dµ(s)dπ(µ|θ)f(θ)dθ

≥
∞∑
k=2

∫
Sk

(∫
∆(S)×Θ

D(A(αS,h,k−1|µ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by (3)

)
dπS(s) ≥ 0

where the change in order of summation/integrals in line 3 follows from Fubini’s
Theorem,18 so Follower obedience holds.

Downwards obedience Take any signal s ∈ S under which αS,h(s) = 0. As
D(A, θ) is non-decreasing in A for each θ, and AS,h,k

L (µ)+AS,h,k
F (µ) is non-decreasing

in k for each µ, (D(AS,h,k
L (µ) + AS,h,k

F (µ), θ))k≥2 is a sequence of (π(·|s)-measurable)
functions on ∆(S) × Θ that converges monotonically point-wise to D(AS,h

L (µ) +

AS,h
F (µ), θ), and is bounded above and below by the integrable functions D(1, θ)

and D(0, θ) respectively. Hence, by the Dominated Convergence Theorem,∫
∆(S)×Θ

D(AS,h
L (µ) + AS,h

F (µ), θ)dπ(µ, θ|s)

= lim
k→∞

∫
∆(S)×Θ

D(AS,h,k
L (µ) + AS,h,k

F (µ), θ)dπ(µ, θ|s) ≤ 0

18Whenever I swap the order moving forward, I am appealing to Fubini’s Theorem.
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Meanwhile, at k = 1, having αS,h,1(µ) = 0 implies
∫
∆(S)×Θ

D(h, θ)dπ(µ, θ|s) < 0.
Hence, defining S3 ≡ {s ∈ S : αS,h(s) = 0} and noting that 1−AS,h

L (µ)−AS,h
F (µ) =∫

S3 dµ(s),∫
Θ

∫
A
(1− AL − AF )D(h, θ)dσ(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
∆(S)

∫
S3

dµ(s)D(h, θ)dπ(µ|θ)f(θ)dθ

=

∫
S3

(∫
∆(S)×Θ

D(h, θ)dπ(µ, θ|s)
)
dπS(s) ≤ 0

while∫
Θ

∫
A
(1−AL −AF )D(AL +AF , θ)dσ(AL, AF |θ)f(θ)dθ =

∫
Θ

∫
∆(S)

∫
S3

D(AS,h
L (µ) +AS,h

F (µ), θ)dµ(s)dπ(µ|θ)f(θ)dθ

=

∫
S3

(∫
∆(S)×Θ

D(AS,h
L (µ) +AS,h

F (µ), θ)dπ(µ, θ|s)
)
dπS(s) ≥ 0

Hence, σ satisfies Downwards-obedience.

B3: Other Proofs

Proof of Lemma 1 Follows from in-text discussion.

Proof of Theorem 1 To ease notation, I assume states are ordered such that θ ≥ θ′

if and only if −D(H,θ)
v(1,θ)

≤ −D(H,θ′)
v(1,θ′)

. Furthermore, I assume the designer cannot induce
all agents to invest on all states (for otherwise the claim holds trivially), which
implies

∫ θ

θH
D(H, θ)f(θ)dθ = 0.

Now, observe that the designer’s problem can be reformulated as the primal
linear programming problem: choose a measurable function q : Θ → R+ to solve

max
q

∫
Θ

v(1, θ)q(θ)f(θ)dθ

s.t.
∫
Θ

D(H, θ)q(θ)f(θ)dθ ≥ 0 and ∀θ ∈ Θ, q(θ) ≤ 1

The above admits the following dual problem: choose a λ ≥ 0 and a measurable
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function ϕ : Θ → R+ to solve

min
λ,ϕ

∫
Θ

ϕ(θ)f(θ)dθ

s.t. v(1, θ) + λD(H, θ) ≤ ϕ(θ), ∀θ ∈ Θ

Given this, consider the primal-dual pair (q∗, (λ∗, ϕ∗)) defined as follows

q∗(θ) ≡

1, θ ≥ θH

0, θ < θH
, λ∗ ≡ −D(H, θH)

v(1, θH)
, ϕ∗(θ) ≡ max{0, v(1, θ) + λ∗D(H, θ)}

where q∗ captures agents’ behaviours under the information structure described
in Theorem 1. By definition, q∗ is feasible for the primal problem and (λ∗, ϕ∗) is
feasible for the dual problem. Further note that v(1, θ) + λ∗D(H, θ) ≥ 0 if and only
if −D(H,θ)

v(1,θ)
≤ λ∗ ≡ −D(H,θH)

v(1,θH)
, which holds if and only if θ ≥ θ∗. Hence,

∫
Θ

ϕ∗(θ)f(θ)dθ︸ ︷︷ ︸
Value of dual objective under (λ∗, ϕ∗)

=

∫ θ

θH
v(1, θ)f(θ)dθ︸ ︷︷ ︸

Value of primal objective under q∗

+λ∗
∫ θ

θH
D(H, θ)f(θ)dθ︸ ︷︷ ︸

=0

and so by the Weak Duality Theorem, q∗ solves the primal problem.

Proof of Corollary 1 Follows from in-text discussion.

Proof of Corollary 2 Take any leader-follower outcome σ satisfying upper intro-
spective obedience under H . Let

R1 ≡ {((AL, AF ), θ) : D(AL + AF , θ) ≥ 0}

R2 ≡ {((AL, AF ), θ) : ((AL, AF ), θ) /∈ R1 and D(h, θ) ≥ 0}

and define, for each θ ∈ Θ, the transport map T̃θ : A → A as follows:

T̃θ(AL, AF ) ≡


(AL, 1− AL), AL + AF < 1 and ((AL, AF ), θ) ∈ R1

(1, 0), AL + AF < 1 and ((AL, AF ), θ) ∈ R2

(AL, AF ), otherwise
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Now, let σ̃ be defined as the leader-follower outcome under which σ̃(·|θ) is the
push-forward of σ(·|θ) through T̃θ for all θ ∈ Θ. It is easily verified that pσ̃ first-
order stochastically dominates pσ per state, so the designer weakly prefers σ̃ over
σ. To see that σ̃ satisfies introspective obedience, for leader obedience,

∫
Θ

∫
A
ALD(H, θ)dσ̃(AL, AF |θ)f(θ)dθ =

[ ∫
Θ

∫
AALD(H, θ)dσ(AL, AF |θ)f(θ)dθ

+
∫
R2

(1−AL)D(H, θ)dσ(AL, AF |θ)f(θ)dθ

]
≥

∫
Θ

∫
A
ALD(H, θ)dσ(AL, AF |θ)f(θ)dθ ≥ 0

and∫
Θ

∫
A
ALD(AL, θ)dσ̃(AL, AF |θ)f(θ)dθ =

[ ∫
A×Θ\R2

ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ
+
∫
R2

D(1, θ)dσ(AL, AF |θ)f(θ)dθ

]

≥
[ ∫

A×Θ\R2
ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ

+
∫
R2

ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ

]
≥ 0

Meanwhile, for follower obedience

∫
Θ

∫
A

∫ AF

0
D(AL + i, θ)didσ̃(AL, AF |θ)f(θ)dθ =

[ ∫
A×Θ\R1

∫ AF

0 D(AL + i, θ)didσ(AL, AF |θ)f(θ)dθ
+
∫
R1

∫ 1−AL

0 D(AL + i, θ)didσ(AL, AF |θ)f(θ)dθ

]

≥

[ ∫
A×Θ\R1

∫ AF

0 D(AL + i, θ)didσ(AL, AF |θ)f(θ)dθ
+
∫
R1

∫ AF

0 D(AL + i, θ)didσ(AL, AF |θ)f(θ)dθ

]

=

∫
Θ

∫
A

∫ AF

0
D(AL + i, θ)didσ(AL, AF |θ)f(θ)dθ ≥ 0

Finally, because, for each state θ, the transport map(s) T̃θ move mass off pairs
(AL, AF ) under which either D(H, θ) ≥ 0 or D(AL +AF , θ) ≥ 0 hold, it follows that
(14) and (15) both continue to hold under θ̃, i.e., downwards obedience holds.

Proof of Lemma 2 Take any leader-follower outcome σ satisfying upper intro-
spective obedience under H . Following the proof of Corollary 2, I assume, without
loss of generality, that for all θ ∈ Θ, if (AL, AF ) ∈ supp(σ(·|θ)) and AL+AF ∈ (0, 1),
then D(H, θ) < 0 and D(AL + AF , θ) < 0 both hold. Define the measurable set of
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such pairs for each state as

X(θ) ≡ {(AL, AF ) : AL + AF ∈ (0, 1), D(H, θ) < 0, D(AL + AF , θ) < 0}

By the convexity of
∫ AL+x

AL
D(i, θ)di in x, observe

∫
Θ

∫
X(θ)

(∫ AL+AF

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ ≤

∫
Θ

∫
X(θ)

AF

A(θ)−AL

(∫ A(θ)

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

≤
∫
Θ

∫
X(θ)

AF

A(θ)−AL

(∫ 1

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

+

∫
Θ

∫
X(θ)

(
1−

AF

A(θ)−AL

)
AL

A(θ)

(∫ 1

A(θ)
D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

while

∫
Θ

∫
X(θ)

ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ ≤
∫
Θ

∫
X(θ)

( AFAL
A(θ)−AL

D(AL, θ)

+

[
1− AF

A(θ)−AL

]
AL
A(θ)

A(θ)D(A(θ), θ)

)
dσ(AL, AF |θ)f(θ)dθ

Now, consider the leader-follower outcome σ̃ defined as follows: for all θ ∈ Θ,
σ̃(·|θ) ≡ Kθ ◦ σ(·|θ), where Kθ : A → ∆(A) is defined as follows:

1. For all (AL, AF ) ∈ X(θ), Kθ(·|AL, AF ) has its mass concetrated on the pairs
(0, 0), (A(θ), 1− A(θ)), (AL, 1− AL), and assigns probabilities as follows:

Kθ(0, 0|AL, AF ) =

[
1− AF

A(θ)−AL

][
1− AL

A(θ)

]
︸ ︷︷ ︸

≡κ((AL,AF ),θ)

,

Kθ(AL, 1−AL|AL, AF ) =
AF

A(θ)−AL
, Kθ(A(θ), 1−A(θ)|AL, AF ) =

[
1− AF

A(θ)−AL

]
AL

A(θ)

where if AL = A(θ), then Kθ(AL, 1− AL|AL, AF = 1− κ((AL, AF ), θ).

2. If (AL, AF ) /∈ X(θ), then Kθ(·|AL, AF ) = δ(AL,AF ).

Clearly, σ̃ satisfies perfect coordination, while

V (σ̃) = V (σ) +

∫
Θ

∫
X(θ)

(
κ((AL, AF ), θ)v(0, θ) + (1− κ((AL, AF ), θ))v(1, θ)

−v(AL +AF , θ)

)
dσ(AL, AF |θ)f(θ)dθ

≥ V (σ) +

∫
Θ

∫
X(θ)

(
κ((AL, AF ), θ)v(0, θ) + (1− κ((AL, AF ), θ))v(A(θ), θ)

−v(AL +AF , θ)

)
dσ(AL, AF |θ)f(θ)dθ

≥ V (σ)
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where the last inequality follows from the fact that v(A, θ) is convex on [0, A(θ)] by
Assumption 1, and that (1 − κ((AL, AF ), θ))A(θ) = AL + AF . Hence, the designer
prefers σ̃ over σ.

Thus, to complete the proof of Lemma 2, it must be proven that σ̃ satisfies upper
introspective obedience. For leader obedience,

∫
Θ

∫
A
ALD(H, θ)dσ̃(AL, AF |θ)f(θ)dθ =

 ∫
Θ

∫
A ALD(H, θ)dσ(AL, AF |θ)f(θ)dθ

+
∫
Θ

∫
X(θ)

(
ALAF

A(θ)−AL
+

[
1− AF

A(θ)−AL

]
AL
A(θ)

A(θ)−AL

)
dσ(AL, AF |θ)f(θ)dθ


=

∫
Θ

∫
A
ALD(H, θ)dσ(AL, AF |θ)f(θ)dθ ≥ 0

and

∫
Θ

∫
A
ALD(AL, θ)dσ̃(AL, AF |θ)f(θ)dθ =



∫
Θ

∫
A ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ

+
∫
Θ

∫
X(θ)


AFAL

A(θ)−AL
D(AL, θ)

+

[
1− AF

A(θ)−AL

]
AL
A(θ)

A(θ)D(A(θ), θ)

−ALD(AL, θ)

 dσ(AL, AF |θ)f(θ)dθ


≥

∫
Θ

∫
A
ALD(AL, θ)dσ(AL, AF |θ)f(θ)dθ ≥ 0

For follower obedience,

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσ̃(AL, AF |θ)f(θ)dθ =



∫
Θ

∫
A

(∫ 1
AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

+
∫
Θ

∫
X(θ)

AF
A(θ)−AL

(∫ 1
AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

+
∫
Θ

∫
X(θ)

(
1− AF

A(θ)−AL

)
AL
A(θ)

(∫ 1
A(θ) D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

−
∫
Θ

∫
X(θ)

(∫AL+AF
AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ


≥

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ ≥ 0

Thus, σ̃ satisfies upper introspective obedience.

Proof of Theorem 3 I split the proof into three parts.

Part 1 Suppose that H ≤ H . Let T : A → A denote the transport map which
pools the mass of all (AL, AF ) onto (0, 1) if AL + AF = 1, and leaves it untouched
otherwise. Take any leader-follower outcome σ satisfying upper introspective obe-
dience under H , and let σ̃ be defined as the leader-follower outcome where σ̃(·|θ)
is the push-forward of σ(·|θ) through T for all θ ∈ Θ. Clearly, σ̃ implements the
same outcome as σ, so the designer is indifferent between σ and σ̃. Meanwhile, to
see that σ̃ satisfies upper introspective obedience (which, since σ̃ is a follower-only
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outcome, requires showing that follower-obedience holds), observe that

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσ̃(AL, AF |θ)f(θ)dθ =


∫
Θ

∫
A

(∫ 1
AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

+
∫
Θ

∫
A

(∫ AL

0 D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ



≥


∫
Θ

∫
A

(∫ 1
AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ

+

∫
Θ

∫
A
ALD(0, θ)dσ(AL, AF |θ)f(θ)dθ︸ ︷︷ ︸

Leader obedience under σ


≥

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσ(AL, AF |θ)f(θ)dθ ≥ 0

This proves Part 1.

Part 2 Suppose that H ≥ H . Here, consider the transport map T : A → A which
pools the mass of all (AL, AF ) with AL + AF = 1 onto (1, 0), and otherwise leaves
it at (0, 0). Taking any leader-follower outcome σ satisfying upper introspective
obedience and letting σ̃ be defined such that σ̃(·|θ) is the push-forward of σ(·|θ)
through T for all θ ∈ Θ, an analogous argument to Part 1 implies σ̃ satisfies upper
introspective obedience and the designer is indifferent between σ and σ̃. That σ̃ is
a leader-only outcome then yields the claim.

Part 3 First, suppose H > H∗. I prove that σF cannot be optimal for the designer.
To begin, notice that

{θ : xF (θ) ≥ xF} = Θ ∪ {θ : θ /∈ Θ and xF (θ) ≥ xF}︸ ︷︷ ︸
≡Θ

Now, let

Θ
H ≡ {θ : D(H, θ) > D(0, θ) and xF (θ) ≥ xF}

and take any ϵ, δ ∈ (0, 1) sufficiently small such that

ϵ

∫
Θ

∫ H

0

D(i, θ)dif(θ)dθ︸ ︷︷ ︸
>0

+δ

∫
Θ

∫ H

0

D(i, θ)dif(θ)dθ︸ ︷︷ ︸
<0

= 0
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By upper semi-continuity of D(A, θ), for all θ ∈ Θ
H

,
∫ H

0
D(i, θ)di < HD(H, θ), so

ϵ

∫
Θ

HD(H, θ)f(θ)dθ + δ

∫
Θ

HD(H, θ)f(θ)dθ > 0

and thus, there must exist a κ > 0 such that

ϵ

∫
Θ

HD(H, θ)f(θ)dθ + δ

∫
Θ

HD(H, θ)f(θ)dθ + κ

∫
Θ\(Θ∪Θ)

D(H, θ)f(θ)dθ ≥ 0

Now, consider the leader-follower outcome σ̃ defined as follows: for all θ ∈ Θ,
σ̃(·|θ) ≡ Kθ ◦ σ(·|θ), where Kθ : A → ∆(A) is defined as follows:

1. For all θ ∈ Θ and (AL, AF ) = (0, 1), Kθ(·|AL, AF ) has its mass concentrated on
the pairs (0, 1), (H, 1−H), and assigns probabilities as follows: Kθ(0, 1|AL, AF ) =

1− ϵ and Kθ(H, 1−H|AL, AF ) = ϵ

2. For all θ ∈ Θ and (AL, AF ) = (0, 1), Kθ(·|AL, AF ) has its mass concentrated on
the pairs (0, 1), (H, 1−H), and assigns probabilities as follows: Kθ(0, 1|AL, AF ) =

1− δ and Kθ(H, 1−H|AL, AF ) = δ

3. For all θ ∈ Θ\(Θ ∪ Θ) and (AL, AF ) = (0, 0), Kθ(·|AL, AF ) has its mass
concentrated on the pairs (0, 0), (1, 0), and assigns probabilities as follows:
Kθ(0, 0|AL, AF ) = 1− κ and Kθ(1, 0|AL, AF ) = κ

4. For all other triples ((AL, AF ), θ), let Kθ(·|AL, AF ) ≡ δ(AL,AF ).

By construction, under σ̃, all agents invest on all states in {θ : xF (θ) ≥ xF}, and
with probability κ > 0 on all other states. Hence, the designer strictly prefers σ̃

than σF . Finally,

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσ̃(AL, AF |θ)f(θ)dθ =


∫
Θ

∫
A

(∫ 1
AL

D(i, θ)di

)
dσF (AL, AF |θ)f(θ)dθ

−
(
ϵ
∫
Θ

∫ H
0 D(i, θ)dif(θ)dθ + δ

∫
Θ

∫ H
0 D(i, θ)dif(θ)dθ

)


=

∫
Θ

∫
A

(∫ 1

AL

D(i, θ)di

)
dσF (AL, AF |θ)f(θ)dθ ≥ 0
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So σ̃F satisfies follower obedience. Meanwhile,

∫
Θ

∫
A
ALD(H, θ)dσ̃(AL, AF |θ)f(θ)dθ =


ϵ
∫
ΘHD(H, θ)f(θ)dθ

+δ
∫
ΘHD(H, θ)f(θ)dθ

+κ
∫
Θ\(Θ∪Θ)D(H, θ)f(θ)dθ


≥

∫
Θ

∫
A
ALD(H, θ)dσF (AL, AF |θ)f(θ)dθ ≥ 0

and

∫
Θ

∫
A
ALD(AL, θ)dσ̃(AL, AF |θ)f(θ)dθ =


ϵ
∫
ΘHD(H, θ)f(θ)dθ

+δ
∫
ΘHD(H, θ)f(θ)dθ

+κ
∫
Θ\(Θ∪Θ)D(H, θ)f(θ)dθ


≥

∫
Θ

∫
A
ALD(AL, θ)dσF (AL, AF |θ)f(θ)dθ ≥ 0

Hence, σ̃F satisfies upper introspective obedience. Thus, σF cannot be optimal for
the designer.

To prove that H < H
∗

implies σH
L , one follows a similar schema to the above,

but instead by marginally switching the spread over leaders and followers of σH
L

from (1, 0) to (1− ϵ, ϵ) for small ϵ > 0 on a subset of states (with D(H, θ) < D(1, θ)).
I omit repeating the argument for brevity.

Proof of Lemma 3 Follows from in-text discussion.

Proof of Corollary 3 Follows from in-text discussion.
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