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Abstract

This paper investigates how endogenous rigidities inhibit efficient physical capital reallocation.

We focus on the role of contract duration - a classic example of an adjustment rigidity. We argue

that when agents choose to sign longer contracts in booms when asset markets are thin, they

generate a contracting externality which further reduces available capacity and amplifies market

thinness. This causes equilibrium contracts to be inefficiently long in booms and inhibits the

adjustment of these markets to productivity shocks. We show evidence for these mechanisms in

the market for containership leasing contracts. We provide a framework that captures the details

of the market and illustrates the tradeoffs conceptually. Overall, the results have implications

for policies in this industry like shipping subsidies, as well as the fragility of the supply-chain

to shocks.
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1 Introduction

Capital (mis)allocation plays a crucial role in determining aggregate productivity across countries,

industries, and in booms and busts, as illustrated by an expansive literature. This literature empha-

sizes the role of dynamic inputs which are difficult to adjust in inhibiting reallocation. A primary

implication is that what appears to be misallocation may actually be efficient after accounting for

exogenous adjustment costs and rigidities.1

In this paper we argue that these capital adjustment rigidities may be endogenous and that

this can lead to inefficiency and misallocation. We focus on decentralized leasing markets for

physical capital assets (like ships and aircraft). These markets are often highly cyclical. Adjustment

rigidities in the form of term contracts prevent immediate reallocation of capital after a productivity

shock.

In these industries contract duration may be an endogenous choice and can increase with market

thinness as it becomes harder to find trading partners. Therefore, in a boom when the market for

capital assets becomes thin, firms secure capacity by signing longer contracts. This produces an

externality where even fewer assets are available. In equilibrium, this behavior generates an ineffi-

ciency where in booms firms sign contracts that are too long and the market is too thin, leading to

an inefficiently low level of reallocation and inhibiting the adjustment of these markets to aggregate

shocks.

Overall, we answer the questions: what are the effects of endogeneous rigidities in booms and

busts, and what are the implications for capital misallocation as well as policy? Our empirical

setting is the global market for leased containerships.2 Here charterers (companies like COSCO

who then transact with downstream exporters) lease ships from shipowners. Unlike many firm-to-

firm markets where individual contracts and other key data are often confidential (which has limited

research progress), in our setting we have a rich dataset of contracts and allocations, including the

1See e.g. Asker et al. (2014). Earlier papers argue that capital is often inefficiently allocated, motivated by dispersion
in the cross-section of the marginal revenue product of capital (Restuccia and Rogerson, 2008; Hsieh and Klenow,
2009).

2In the Appendix we show similar patterns for bulk shipping, another market where detailed contract data are available.
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exact location and amount of cargo that each ship is carrying. As well as being an excellent example

of a decentralized leasing market with fluctuations, this industry is also important in its own right

and has taken on recent prominence as a central part of the supply chain. For example, although the

focus of our analysis is on an earlier boom-bust period, during the Covid shock contract durations

increased substantially.

We begin by documenting several facts about this industry using the raw data. We focus on the

period 2005-2015: the year 2005 is the first time that systematic satellite data are available on ship

positions, while after 2015 there was consolidation of the industry into alliances; during 2005-2015

period the global market was unconcentrated. Furthermore, in this period we observe fluctuations

in market conditions.

First, we show that contract duration is cyclical and lengthens dramatically during booms, con-

sistent with market participants locking in extra capacity when the market is thin. Matches formed

under these contracts stretch long after the shipping industry bust in 2009. Second, we show that

dispersion in capacity utilization — a proxy for productivity dispersion — is counter-cyclical. In

particular, it is highest shortly after the market crashes when there are many long-term contracts

signed in the boom that persist into the bust. Over time, reallocation — defined as moving a ship

to a new route and schedule (where it might be better utilized) — also increases counter-cyclically

and the market slowly adjusts.

Third, we perform a contract-level analysis to show in more detail how adjustment rigidities in

the form of contract duration connect with these aggregate patterns. We show that contracts inhibit

quick reallocation to shocks: the start of a contract is associated with a large jump in the probability

a ship is reallocated to a new route. We also provide cross-sectional evidence about the determinants

of contract duration and show that longer contracts are associated with thinner regional markets

within a time period, as well as better ex-ante matches. Finally, we explore how misallocation in the

leasing market can spill over to other parts of the supply chain through ‘blank sailings’, instances

when a ship misses a scheduled stop, which can cause disruptions to downstream exporters and

importers.

Based on these facts, we develop a model of the market. The model is dynamic and charterers
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(demand) need to search and match with ship-owners (supply) in order to lease ships which they

then allocate to scheduled routes for their downstream exporters. Charterers enter the market and

are heterogeneous in their valuation of a match, as well as a probability that their value for a match

will expire in each period. Ships are homogeneous. In boom times there is higher entry rate of

charterers. Upon meeting a particular ship, agents choose a contract length to maximize the total

surplus of a match, given their types and the aggregate state. Longer contracts avoid agents having

to search again (which may then result in agents not being matched) but may cause lock-in if the

match value expires before the end of the contract. After signing a contract, prices are determined

via Nash bargaining and the ship and exporter are removed from the market for the duration of the

match.

In our framework, it is an empirical question about whether contracts will be too long compared

to the socially optimal level, and also whether contracts will get longer in a boom. Inefficiency may

arise because agents do not fully internalize the contracting externality they create on the rest of a

market when they sign a long contract.

In this draft we have not yet completed the estimation of the model, but we highlight its qual-

itative implications using numerical simulations. First, we explore how the decentralized contract

length may differ from the optimal contract length (retaining search frictions) and how this varies

in booms and busts. Second, we simulate a market crash (like we see in the data in 2009) and show

how the industry would evolve moving from endogenous rigidities, to fixed rigidities (where the

contract length is exogenously fixed), to the optimal contract. We argue that endogenous rigidities

are essential for understanding the patterns of productivity dispersion in the data, amongst other

things.

Finally, we evaluate the benefits of large-scale industrial policies in this industry that aim to

construct more ships. Failing to account for endogenous rigidities may under-value the benefits of

these subsidies. This is because adding ship capacity has an extra effect: it reduces the contract

duration of existing ships endogenously towards the social optimum, leading to even more capacity

available on the market.
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Contributions We make three main contributions in this paper. The first is new descriptive evi-

dence of how endogenous rigidities affect reallocation and other outcomes in a decentralized capital

market. The market for leased containerships is a type of firm-to-firm market, but these kinds of

markets have typically been difficult to study. This is because key objects like contracts between

firms, as well as allocations of capital within and across firms at the level of granularity of a par-

ticular piece of physical capital, are typically secret. The containership industry, as well as other

similar markets like bulk shipping, provide an exception to this rule: we observe a relatively large

sample of contracts between firms. Furthermore, due to the spatial nature of the ‘capital allocation’

— adding a particular ship to a route — we can leverage port call data to observe the universe of

allocations in this industry.

The second contribution is a new empirical framework that incorporates endogenous rigidities

into a search and matching model with booms and busts. A key difference from previous work

is that we embed a choice of how long to match for into these models. Standard applications

of search and matching models are in labor economics where at most one-sided commitment is

possible: firms can commit to a contract but employees cannot be forced to work and can quit

employment at any time. As a result, although the expected duration of a match enters indirectly

into agents’ decisions, it cannot be directly contracted over.3 Physical capital markets involve

agreements between two firms, and so can operate quite differently with two-sided commitment

and explicit agreements over duration.

The third contribution is a new set of results that showcase the consequences of endogenous

rigidities in capital markets. One group of results relates to understanding patterns in the macro-

productivity literature that are present in more aggregated data. Specifically, we observe counter-

cyclical productivity dispersion in our data, consistent with broader patterns over a wide range

of industries (Kehrig, 2015). From the point of view of a ‘Schumpeterian’ theory of creative de-

struction this fact is puzzling: one would expect low productivity arrangements to be destroyed

in recessions leading to pro-cyclical productivity dispersion. We show that endogenous rigidities

provide a novel explanation for observed counter-cyclical productivity dispersion. Simpler models

3Rather, contracts must be carefully designed to retain workers with one-sided commitment in mind e.g. (Balke and
Lamadon, 2022).
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involving fixed rigidities or an optimal contract either fail to match the transitional dynamics of

productivity dispersion, or the level of counter-cyclical dispersion.

The second group of results relates to policy implications for the industry, such as the billions of

dollars spent on industrial policies subsidising shipbuilding and shipping. If extra ships are added

to the market, we show there can be an extra benefit to increased capacity, in the form of reduced

equilibrium rigidities, which improves allocations of the existing capital.

1.1 Related literature

This paper is related to four strands of literature. The first is a set of papers about the inner workings

of decentralized asset markets. As well as those already discussed, some of these papers highlight

the role of search frictions, transaction costs, and market thinness in determining efficient alloca-

tions e.g. Gavazza (2011a), Gavazza (2011b), Gavazza (2016). Other papers show the central role

of capital reallocation in determining efficient allocations e.g. Lanteri and Rampini (2023). In this

paper we combine elements of these papers while adding the additional consideration of contract

duration, and our results hinge on how all the elements interact in equilibrium with booms and

busts.

The second strand is the literature that investigates how contract duration, and more broadly

relationships, are affected by market thinness and transaction costs. Hubbard (2001) shows that

trucks who operate in thinner markets sign longer contracts. MacKay (2022) estimates an em-

pirical auction framework where agents choose contract duration in the presence of transaction

costs. Darmouni et al. (2023) quantifies the insurance value of quantity contracts in the presence

of trading frictions in the context of the pulp and paper industry. We build on the idea that contract

duration is a choice and influenced by market conditions and other factors, with a focus on how

these forces interact in equilibrium. For instance, in our framework, contract length is influenced

by the market, but equilibrium market thinness is also determined by aggregating these individual

contract duration choices.

In terms of the equilibrium effects of organizational form, Harris and Nguyen (2023) explore
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the effects of relationships in the trucking industry. They show that relationships can increase

equilibrium market thinness to a level that is not necessarily socially optimal. Our results are com-

plementary to this work, but our focus is instead on the effects of a different organizational form:

term contracts where match duration is a choice that is made when the contracts are signed. The

key difference is that such term contracts involve two-sided commitment over time; relationships

are effectively zero-sided commitments. As a consequence, amongst other things, contracts can

lead to lock-in ex-post, and long contracts formed in a boom can persist well into a bust inhibiting

productive reallocation.

The third strand is the literature that studies shipping markets. These papers include Kalouptsidi

(2014), Kalouptsidi (2018), Jeon (2018), Ganapati et al. (2023), amongst others. We build on many

of the institutional details described in these papers in our analysis.

Finally, this paper is related to the broader literature in industrial organization that studies

search-and-matching markets, particularly in the transportation sector. Recent examples include

Fréchette et al. (2019), Brancaccio et al. (2020), Buchholz (2021), Gaineddenova (2022), Castillo

(2023), Yang (2023), Rosaia (2023), and Brancaccio et al. (2023). While many of these papers

are centered on markets like taxis or bulk shipping, where a match typically involves a single trip

of a specific duration, in our market matches last longer with container ships operating on regular

schedules involving many trips. As a result, choices about match duration are first-order.

2 Industry and data

2.1 Container shipping industry

Our analysis focuses on the global container shipping industry, which account for the majority of

world trade in goods.4 Container ships can be thought of as the ‘buses of the ocean’, typically

4UNCTAD, 2021. Review of Maritime Transport 2021, United Nations Publications, New York. See https://un
ctad.org/system/files/official-document/rmt2021_en_0.pdf
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Figure 1: Container Shipping Industry Structure

(a) Container Ship’s Course Visualization (b) Value Chain

Note: Panel (a): This shows a geographical map of a ship in our data performing its scheduled stops. Here, the ship
has the following schedule: Antwerp - Bremerhaven - Muuga - Helsinki - Kotka - Antwerp. Note that the ship uses
the Kiel canal through Denmark. Panel (b): One component not pictured (but mentioned in the text) is that charterers
can also own ships. These ships are not available on the leasing market, but can be allocated to the fixed schedules
downstream.

operating on fixed schedules where they pass through a designated set of ports.5 At each port a

ship drops off and picks up a portion of its containerized cargo. Figure 1a demonstrates a map with

the route for one of the container ships in our sample.

The value chain of the maritime shipping industry is visualized in Figure 1b. Cargo owners (or

exporters) are the enterprises that use maritime transport providers and other suppliers of services

to import/export their cargo. Container ships are operated by liner companies that specialize in

the transport of containerized goods across the world (for example, COSCO). About half of the

container ships in the world are owned by these liner companies; these “owner-operated ships"

are rarely leased out to other companies, and form the core of the fleet of liner companies. The

remaining container ships are owned by shipping companies (who we refer to as “shipowners")

that do not themselves provide container shipping services, but instead specialize in leasing out

these ships to the liner companies.

5This is in contrast to the dry bulk shipping industry, where ships operate more like taxi cabs and make voyage decisions
on a trip-by-trip basis, often travelling without any cargo at all or in “ballast" (Brancaccio et al., 2020).
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These ships are leased out to liner companies using time-charter contracts that range from a

few months to over five years in length, and specify a fixed day-rate that the liner company (or the

“charterer") pays the shipowner. It is this leasing market that we focus on in this paper. Unlike

other chartering methods, time charters do not specify the ship’s routes or ports of call, providing

the charterer with the flexibility to choose these based on cargo requirements. Ships are available

for lease globally, and the transit time for relocating a ship to various international regions typically

ranges from 20 to 45 days. For example, the standard transit time for ocean freight from the USA

to Singapore is approximately 15 to 25 days, whereas shipping from China to the UK generally

takes between 35 and 45 days.6

Search frictions The market for leasing containerships on time charters is decentralized, and no

widely used central platform for connecting charterers (carriers) and shipowners currently exists.

Both sides of the market employ specialized brokers, such as Bertling, Clarksons and Maersk

Broker, to assist with the chartering process, with commission fees typically ranging from 1.25%-

1.5%.7 The fact that firms commonly hire brokers is itself indicative of the presence of search

frictions.

The decentralized nature of the market makes it challenging for any one firm to keep track of

all of the information on potential matches. Much of the relevant information is shared via emails,

which means that shipping companies have to collate and process information from a large number

of emails.8 As one manager in the industry observed: “Many shipping companies face e-mail

overload - literally hundreds or thousands of e-mails each day. Failing to catch key operational

information or an urgent e-mail from a broker can have a toll on a business."9

In response to these challenges, some firms have now developed software which parses through

6See https://www.maersk.com/logistics-explained/transportation-and-freight/202
3/09/27/sea-freight-guide

7For example, in 2013, Seaspan (a shipowner) reported paying a commission fee of 1.25% to brokers on its time-
charters to MSC. See https://www.seaspancorp.com/wp-content/uploads/2014/10/SSW_201
3_Annual_Report_20-F.pdf.

8This is not unique to the container shipping leasing market: Brancaccio et al. (2023) discuss how brokers in the dry
bulk industry report receiving many thousands of emails every day.

9Source: https://thedigitalship.com/news/maritime-software/item/3133-email-parse
r-for-charterers
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these emails and provides more structured information to shipping companies and brokers in ex-

change for subscription fees. There have also been recent attempts to develop centralized platforms

to connect owners and charterers, but none that has as yet succeeded in commanding wide usage.

Moreover, such efforts to develop platforms have largely focused on dry and wet bulk chartering,

with only a handful of startups that have targeted container ship chartering.10

One reason why it may be challenging to find a match is that the market is quite unconcentrated

and fragmented, with a large number of agents searching on both sides of the market. For example,

in our study period 2005-2015, the HHI for charterers is 415, and for ship-owners who lease out

their ships the HHI is 136.11 Note that since 2015 — outside the period of our study — many

charterers have consolidated into alliances. So, in order to focus on a period during which the

market structure was relatively constant, we limit the scope of our analysis to the pre-2015 period.12

2.2 Data

We use two main data sources. The first is data on containership time-charter contracts from Clark-

son’s. We provide more details about the dataset construction, and how we merge contracts with

shipping movement data, in Appendix A.1. Our full dataset of contracts includes over 16,000 time-

charter contracts; for the period of 2005 - 2015, which is the main focus of our analysis (since that

is the period for which we have detailed ship movement data), we observe around 4,109 contracts.

Table 1 provides descriptive statistics on the duration of the contracts, rates, age of the ships con-

tracted, capacity utilization, probability of reallocation, and aggregate indexes for observations in

2005-2015.

The other key dataset we utilize in our analysis is port call data for 2005-2015 time period

provided by Lloyd’s List Intelligence. This dataset provides information on the universe of port

calls, including the dates of arrival and sailing, and the locations of the ports visited on each port

10See https://www.pwc.com/gr/en/industries/Chartering_marketplaces.pdf.
11Here, we compute market shares by the total ship capacity in dead-weight-tonnes in the leasing market.
12Note that there did exist alliances in the 2005-2015 period, but these were relatively rare. Re-computing the HHI for

the charterers based on alliances only increases the index to 611 from 415. As a result, we abstract away from these
alliances or market power considerations in our analysis.
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Table 1: Summary statistics for leasing contracts for 2005-2015

Variable Obs Mean Std. dev. Min Max

Duration (months) 4,109 10.74 14.3 0.17 180.0
Rate ($/day) 4,103 10,397 6,620 2,400 59,950
Ship age (years) 4,057 8.9 6.09 0 36
Capacity utilization 906,857 0.53 0.24 0 1
Number of port calls 1,655,140

call. For a subset of port calls, we also observe information on the ship’s “draught", or the the

vertical distance between the waterline and the bottom of the hull. Draught data is valuable as it

allows us to infer how much cargo the ship is carrying, since a ship that is carrying more cargo will

sink deeper into the water (causing its draught to increase). We explain exactly how we construct

utilization from draught data in Appendix A.2.

In order to merge port calls with fixtures data, we use information from Vessel Finder website

that allows us to match ship names with IMO numbers. A total of 1,655,140 port call observations

are used in this paper, with 299,903 of them matched with contracts data (3,546 unique contracts

are matched to the port call data).

2.3 Measuring reallocations and productivity

Reallocations We use the port call data to identify when a ship reallocates from one itinerary

to another. This is in general a challenging problem, since we do not directly observe shipping

itineraries in our raw data. Instead, what we observe are repeated sequences of port calls. We

therefore identify reallocations as large deviations across space from old port call sequences to a

new set of port call sequences. We describe the algorithm for constructing reallocations in Ap-

pendix A.3.

Productivity The production function in this market is relatively simple. Containerships are the

sole input, and this maps to an output equal to a total amount of cargo transported per time unit.

Charterers are differentiated by heterogeneous productivity, which is exogenous and can change
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over time. Note that — as is typically the case when measuring productivity — we do not observe

productivity directly in the data. However, more productive charterers will choose to transport

more cargo per trip, after controlling for ship heterogeneity; therefore, capacity utilization moves

one-to-one with productivity. As a result, in the descriptive evidence, we proxy for dispersion in

productivity by considering the corresponding observed dispersion in residualized capacity utiliza-

tion. Later when we estimate the model we also recover the productivity process directly.

The above method of measuring productivity dispersion is consistent with the way that practi-

tioners view productivity in the industry e.g., Adland et al. (2018). It is also consistent with prior

economics literature on measuring productivity in other transport markets e.g. Gavazza (2011b)

who uses a similar measure and conceptual ‘production function’ in the market for aircraft.

3 Descriptive evidence

In this section, we describe some of the key empirical patterns that underlie our analysis.

Observation 1: New contract duration increases in booms, leading to substan-

tial contract overhang after a market crash.

Figure 2a shows how the average duration of newly signed leasing contracts changes over time.

In the same figure, we also illustrate the time series evolution of the containership timecharter

rate index (which reflects changes in aggregate demand).13 As we can see, firms sign significantly

longer contracts during booms. This effect was especially pronounced during the boom in container

ship markets during the mid-2000s, when the average duration of newly signed contracts increased

from less than 10 months to more than 24 months at the peak of the boom. More recently, during

the upsurge in container shipping demand after the Covid-19 pandemic, there was a similar increase

in the duration of newly signed contracts mirroring the rise in container freight rates, as illustrated

in Appendix Figure 7.
13The containership timecharter rate index is a measure of industry container freight rates published by Clarksons.
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A consequence of this is that there may be an overhang of contracts left over from the boom,

long after the boom has evaporated. This contract overhang is strikingly illustrated by Figure 2b,

which compares the average duration of newly signed contracts (at each point in time) against the

average duration of existing contracts (i.e., contracts that are still active). Following the economic

crisis between 2008 - 2009, which led to a sharp decline in containership freight rates, new contracts

signed were much shorter in length (less than 10 months on average after 2009). However, the

average duration of existing contracts remained high, as the longer contracts signed during the

boom continued to persist long after the boom ended.

Overall, the patterns in Figure 2a and Figure 2b suggest that the lengthening of contracts caused

by boom-bust cycles may inhibit subsequent reallocation of container ships which are locked into

longer contracts. As a result, we next discuss patterns around reallocation and productivity disper-

sion.

Observation 2: Reallocation, and dispersion in capacity utilization, are counter-

cyclical.

Counter-cyclical dispersion in capacity utilization As previously mentioned, we proxy for pro-

ductivity dispersion using dispersion in ship capacity utilization, residualized by ship type. We then

consider how this measure changes across the business cycle in Figure 2c.

Before discussing the results, note that it is primarily dispersion in capacity utilization that we

are interested in, and not average capacity utilization. This is because changes in average utilization

over time confound changes in productivity with aggregate demand shifts. As a result, there are at

least two possibilities that could explain differences in average capacity utilization across periods:

(i) there are alternative matches that exist where ships could produce more output, but they are not

allocated to them (which is suggestive of misallocation) (ii) in that period all matches have equally

low capacity utilization due to a low demand shock. By contrast, dispersion within a time period

in capacity utilization indicates that there are more productive matches available, but ships are not

matched to them, which is a necessary condition for misallocation.
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Figure 2: Industry evolution over the business cycle

(a) Average contract duration and time-charter index (b) Average duration: new vs. existing contracts

(c) Dispersion in residualized capacity utilization (a proxy
for productivity dispersion) (d) Probability of reallocation per month

Note: Panel (c): Plots dispersion in residualized utilization across ships every month, where residualized utilization is
obtained by regressing utilization on ship fixed effects and a time trend. Panel (d): plots the residualized probability
of reallocation each month over time. We obtain this by regressing our reallocation measure on ship fixed effects and
an aggregate time trend, and then calculate the residualized probability of reallocation for each ship, which we then
aggregate across ships for each year-month.
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Figure 2c illustrates that dispersion in capacity utilization (measured by the the standard devi-

ation in utilization across ships) appears to be significantly counter-cyclical, and rises significantly

after the financial crisis.14

Counter-cyclical capital reallocation Figure 2d shows how the share of container ships reallo-

cated each month changes over time. We find that capital reallocation follows a counter-cyclical

pattern. In particular, after the financial crisis in 2009, and the associated downturn in global

shipping markets, the share of ships that reallocate to more distant trade routes increased by al-

most one-third. Appendix Figure 9 corroborates this finding by illustrating that there is a negative

correlation between the probability of reallocation and the time-charter rate index (our proxy for

aggregate demand in this market).

These empirical patterns are consistent with the previously discussed patterns around counter-

cyclical dispersion in capacity utilization. In a bust, there is an increase in the dispersion in produc-

tivity (and profitability) between different trade routes, and thus more opportunities for profitable

reallocation. Overall our descriptive analysis suggests that container ships do, on the whole, re-

spond to these changing incentives by reallocating more often during economic downturns.

Observation 3: Contract rigidities inhibit reallocation.

The overhang of contracts in Figure 2b may have negative consequences for efficiency in the pres-

ence of contractual rigidities. In the containership leasing market, contracts typically specify a

fixed per-day rate received by the shipowner. Since these contracts feature two-sided commitment,

shipowners have little incentive to re-negotiate lengthy contracts signed at the peak of the boom

(typically at high prices). As such, contract overhang may lead to ships being locked into specific

relationships, inhibiting reallocation.

To examine the relationship between contracting and reallocation, we look at how the prob-

14We see the same counter-cyclical pattern if we instead measure dispersion using the difference between the 10th and
90th percentile of utilization.
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Figure 3: Contract-level analysis

(a) Contract rigidities inhibit reallocation
(share of ships reallocated/month; residualized) (b) Capacity utilization (residualized) over the contract

(c) Longer contracts are associated with thinner markets

(1) (2) (3) (4)
Log(duration) Log(duration) Log(duration) Log(duration)

Log(# ships nearby, same type) -0.12∗∗∗ -0.17∗∗∗

(0.031) (0.030)

Log(# ships nearby, all types) -0.15∗∗∗ -0.21∗∗∗

(0.033) (0.032)

Log(time charter index) 0.98∗∗∗ 0.98∗∗∗

(0.031) (0.031)

1[mid-size ship] 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗

(0.033) (0.034) (0.033) (0.033)

1[large-size ship] 0.44∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.48∗∗∗

(0.039) (0.039) (0.038) (0.038)

Year fixed effects Yes Yes No No
Observations 3,531 3,531 3,531 3,531
Adjusted R2 0.243 0.242 0.250 0.248

Note: Panel(a): The figure plots the share of container ships reallocated every month at different in a 4 year window
around the month when the ship was reallocated, after controlling for ship fixed effects and a time trend. Panel (b):
The figure plots the residualized utilization for ships, for each month in a 2 year window around the month when a
new contract is signed. We do so separately for contracts that are 12 - 24 months in duration (dashed blue line), and
contracts that are longer than 24 months (solid red line). The residualized utilization is obtained for each ship-month
observation by regressing utilization on ship fixed effects, year fixed effects, and the time-charter rate and bunker
rate (to capture aggregate changes in demand and costs), and obtaining the residuals. Panel (c): Standard errors in
parentheses, * (p<0.10), ** (p<0.05), *** (p<0.01).
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ability that a ship is reallocated to a different geographical route changes over the lifetime of a

contract. If contracts did not inhibit reallocations, one would expect reallocations to happen more

or less independently of which stage of the contract the ship happens to be in. Figure 3a shows,

however, that the probability of reallocation jumps towards the start of the contract (controlling for

ship fixed effects and a time trend). Once the ship is a few months into the contract, the probability

of reallocation decreases significantly.

Ships are therefore mostly reallocated at the start of a contract, and rarely afterwards (until they

begin another new contract). Thus the lengthening of contracts during the boom limits the extent

to which ships reallocate in response to changing profitability of operating in different regions,

which may lead to inefficiency in how ships are allocated. This contributes to the counter-cyclical

dispersion in capacity utilization that we observe in the industry: indeed we find that during busts,

there is increased dispersion in capacity utilization among ships under longer contracts, compared

to ships under shorter contracts (see Appendix Figure 12).

Observation 4: Firms sign longer contracts when (i) the market is thinner,

and (ii) there is higher ex-ante match quality.

How do firms choose their contract length in the micro-data? We present descriptive evidence for

two key considerations: longer contracts are associated with thinner markets, and longer contracts

are associated with high ex-ante match quality. These considerations need to be weighed against

the possibility of lock-in which would favor a shorter contract duration, where conditions change

and one party to the contract would prefer to break up the match.

Market thinness We present results for how market thinness is associated with contract duration

in Table 3c. We focus on isolating this relationship in the cross-section, controlling for time-

varying factors that might also affect contract duration (for example, the match value might be

systematically higher in booms, causing agents to sign longer contracts for reasons other than thin

markets). In order to construct a market thinness measure we need to take a stand on how to define
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a market. To do so we exploit that it is costly to move a ship long distances, and that charterer

needs are relatively time-specific. We therefore define the relevant market for each contract as the

number of unique ships that were within 5000 kilometers of the first port call on the contract, and

were in this radius within 15 days on either side of the date the contract began.15

This measure proxies for market thinness by tracing out different regions across the earth, with

geographically isolated markets (such as the west coast of Australia) producing lower measures

than trading hubs (for example, ships located in a radius around Singapore). We also consider two

versions of the market thinness variable, one where we count all ships nearby in time and space, and

one where we subset to only ships of the same type as the ship that was eventually under contract,

reflecting that charterers may require a specific ship type and so direct their search. In order to

construct ship type we split ships into three bins based on their capacity (measured in twenty-feet

equivalent or TEU).

Overall, the results across the four specification in Table 3c show that thinner markets (with

fewer nearby ships) are associated with longer contracts. As well as being statistically significant,

the results are also economically significant: moving from the 1% quantile to the 99% quantile of

market thinness results in about a 35% increase in contract duration. This increase in duration is

robust across specifications. Although this number is relatively large, note that the effects of market

thinness may be even larger across the cycle compared to within a time period, which is the primary

focus of the paper and the modeling exercise. This is because the thinness of the regional markets

is highly correlated across booms and busts.16

15The distance of 5000 kilometers is approximately the distance from the west coast to the east coast of the US. One
limitation of this measure of market thickness is that we would like to also look at ships that were not just travelling
in this market, but also were close to the end of their contract. Unfortunately our data, which only contain a subset
of the total contracts, do not allow for this. Nevertheless, as we argue in the text, this measure is likely to still be a
good relative proxy for thin and more geographically isolated markets, versus thicker markets.

16Table 3c also illustrates that larger ships tend to operate under longer contracts. This is in part because larger ships
often operate on longer shipping routes across more distant ports. In addition, the market for larger markets is thinner,
creating an incentive for charterers to sign longer contracts for such ships (for fear of not being able to match with
them in the future). Consistent with this, we observe that increases in contract durations induced by booms (which
we observe for all types of ships) are most pronounced for larger ships. These results, though not included in the
present draft, are available upon request.
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Match quality Figure 3b shows that match quality tends to be higher for longer contracts: aver-

age utilization over the first 12 months is higher for ships that are signed under contracts that are 24

months or longer in length, compared to those with contracts shorter than 24 months. This suggests

that higher-value charterers select into longer contracts.

Observation 5: Periods with high dispersion in capacity utilization are associ-

ated with more blank sailings, a key cause of supply chain fragility.

So far the descriptive evidence we have presented is about the effects of endogenous rigidities on

the containership leasing market. However, as previously illustrated in Figure 1b, the containership

leasing market is connected to downstream exporters and so inefficiencies in this market may have

follow-on effects to other parts of the supply chain.

Concretely, in this setting, we investigate how matches with low capacity utilization affect blank

sailings. Blank sailings are occasions when a ship skips a port on its fixed schedule. ‘Blanking’ a

port — as it is known in the industry — can be highly disruptive to downstream exporters. One par-

ticular example is that many importers use lean manufacturing processes, where inventory costs are

minimized through careful scheduling of inputs that arrive ‘just-in-time’ for production. Here, ship-

ment reliability is critical; even infrequent blank sailings can have high-magnitude consequences.

We identify blank sailings using our port call data using an algorithm detailed in Appendix A.4.

We plot the probability of a blank sailing in Appendix Figure 10. Blank sailings spiked in periods

like 2010-2011, where there is a high degree of dispersion in capacity utilization in the market.

Appendix Figure 11 shows that periods with higher capacity utilization dispersion feature a higher

probability of blank sailings. These patterns are consistent with anecdotal evidence from market

participants, who state that blank sailings are used by charterers to reduce costs on low-demand

routes.17

17See, for example: https://www.gcllog.com/post/what-are-blank-sailings-and-why-are
-they-becoming-more-common
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4 Model

In this section, we describe a simple dynamic model of the container-ship leasing industry that

illustrates the relationship between boom-and-bust cycles, market thinness, and contract duration.

4.1 Setup

Time is discrete and denoted by t. There are two types of agents in our model, shipowners and char-

terers. All agents are forward-looking and have discount factor β . We assume that each shipowner

owns a single ship, and treat ships and shipowners interchangeably from here onward.18 There are

n homogeneous container ships. The per-period cost of operating a ship is c: this includes bunker

fuel costs, labor costs and port charges.

Shipowners lease out ships to charterers, who use them to transport container goods across

global shipping markets. Each charterer is distinguished by their type x = {v,η} ∈ X . v is the

per-period value to the charterer of leasing the ship, while η is the probability that the value will

survive to the next period (equalling 0 otherwise). Let vx and ηx refer to the v and η of a charterer

of type x. The set of possible types X is discrete. Without loss of generality, we assume that the

lowest possible vx exceeds c (since any charterer with a valuation lower than the cost would have

no reason to enter).

Timing In each period, the timing is as follows:

1. Entry of charterers: ex,t charterers of type x enter the market. Each charterer’s type x is

realized when they enter the market, cannot change over time, and is publicly observable.

2. Search and matching: Available charterers search for ships. Searching charterers and ships

are randomly matched.

18In 2015, the largest 25 shipowners only owned 41% of all chartered container ships (Clarksons, 2015). Thus
shipowner market power is unlikely to be a first-order issue.
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3. Contract duration and price: If agents are matched, they choose both how long to match for

(the contract length), and a fixed price paid by the charterer to the ship.19 The ship and the

charterer choose the contract duration to maximize their joint surplus from matching. Prices

are then determined by Nash bargaining where δ ∈ [0,1] is the Nash bargaining weight of the

ship.

4. Contract expiry and charterer exit: At the end of the period, any past contracts that were due

to end in period t expire, and the ships and charterers in those contracts become available to

match in the next period. The valuations of all charterers are updated: among all existing

charterers of type x, the valuation remains at vx with probability ηx (“alive" charterers). Any

charterer whose valuation turns to 0 and who is not currently under contract will exit the

market.

Search and matching Matching takes place in a single global market.20 The mass of available

charterers of each type x equals acharterer
x,t , so the total mass of available charterers equals acharterer

t =

∑x acharterer
x,t . The mass of available ships equals aship

t . We use a matching function to characterize

the outcome of the matching process. The number of successful matches equals m(acharterer
t ,aship

t ),

where m is increasing in both of its arguments.

We assume there are constant returns to matching, consistent with prior literature (for example,

Brancaccio et al., 2020). Let θt = aship
t /acharterer

t denote the market thinness (the ratio of searching

ships to searching charterers). Under the assumption of constant returns, the probability of finding

a match is a function only of θt . Let these probabilities equal qcharterer
t (for charterers) and qship

t

(for ships).

19This assumption is consistent with the fact that in practice, at the time of contract, the parties agree to a daily charter
rate that is fixed over the duration of the contract.

20This is motivated by our finding that ships are often reallocated large distances (exceeding 1000 km) at the beginning
of a new contract, suggesting that the set of possible matches is not necessarily constrained by the current location
of the ship.
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4.2 Contract choice

When a charterer is matched to a ship, they choose the duration of the contract, τ , to maximize their

joint surplus, and then Nash bargain over the price. In the event of disagreement, both the charterer

and ship wait until the next period, when they may enter the pool of searching agents. Note that it

is individually rational for both ships and charterers to choose the contract duration that maximizes

the surplus of a match. This is because Nash bargaining implies perfectly transferable utility, and

also the contract duration choice does not affect the outside options of the agents. Therefore,

maximizing total match surplus leads both sides of the match to be maximally well-off once this

surplus is split via Nash bargaining.

Choice of contract duration Let Sx,t,τ denote the total lifetime surplus (or the match surplus)

from a τ-period contract agreed between a ship and type-x charterer in period t. We describe this

object in more detail below. At the time when agents match, they also receive an idiosyncratic

shock to the value of signing a τ-period contract, ετ , which is drawn from an i.i.d type-1 extreme

value distribution with scale parameter σ . We are dispensing with ship-specific and charterer-

specific information, but the ετ are idiosyncratic to each particular match, as well as to each contract

length.The contract duration is chosen to maximize the realized total surplus. Denote Wx,t as the

ex-ante surplus (the expected value of the surplus before the ετ are drawn):

Wx,t = Eε

[
max

τ∈{1,2,...,τmax}
{Sx,t,τ + ετ}

]
(1)

where τmax is the maximum possible contract duration. Let Px,t,τ denote the probability that a

matched type-x charterer chooses a contract of length τ:

Px,t,τ =
exp(Sx,t,τ/σ)

∑τ ′ exp(Sx,t,τ ′/σ)
(2)

Match surplus We now define the match surplus in terms of the value functions of searching

agents. Later we describe how these value functions can be derived. Let U ship
t denote the value

of a ship that will search for a charterer in period t. Likewise, let Ucharterer
x,t denote the value of a

22



charterer of type x that will search for a ship in period t. The match surplus Sx,t,τ is the joint value

to the charterer and ship from a τ-period contract, minus the sum of their outside options (i.e., the

sum of their respective values from being unmatched):

Sx,t,τ =
τ−1

∑
k=0

β
k(ηk

x vx − c)+β
τEtU

ship
t+τ +β

τ
η

τ
x EtUcharterer

x,t+τ︸ ︷︷ ︸
Value of match

−
(

βEtU
ship
t+1 +βηxEtUcharterer

x,t+1

)
︸ ︷︷ ︸

Outside options

(3)

To explain how we arrive at the above equation, note that the outside options of the ship and

the charterer are to wait till the next period, and attempt to match again. The present value of that

outside option equals βEtU
ship
t+1 for ships and βηxEtUcharterer

x,t+1 for type-x charterers. (A charterer

will only search next period if they retain a positive valuation, which happens with probability ηx,

which is why their effective discount factor is βηx.)

The value of the match consists of three components. The first term, ∑
τ−1
k=0 β k(ηk

x vx − c), is the

discounted sum of the expected per-period surplus generated by the match over the length of the

contract (τ). Recall that the charterer’s probability of retaining a positive valuation next period is

ηx, so the expected benefit to the charterer from operating the ship k periods from today is ηk
x vx.

Once the contract expires, the ship and charterer become unmatched again; the expected value of

being unmatched τ periods from now, discounted back to today, equals β τEtU
ship
t+τ for ships and

β τητ
x EtUcharterer

x,t+τ for type-x charterers.

Value of searching agents We now describe the value of searching ships and charterers. A

searching charterer of type x in period t will find a match with probability qcharterer
t , in which case

they will split surplus via Nash bargaining. Otherwise they will wait until the next period. Their

value can therefore be written as:21

Ucharterer
x,t = qcharterer

t

(
(1−δ )Wx,t +βηEtUcharterer

x,t+1

)
︸ ︷︷ ︸

(Expected) payoff if matched

+(1−qcharterer
t ) βηEtUcharterer

x,t+1︸ ︷︷ ︸
Payoff if not matched

(4)

21We prove that the expected match payoff can be written in this form in Appendix B.
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A searching ship finds a match with probability qship
t . Conditional on finding a match, it matches

with a type-x charterer with probability equal to the share of type x charterers as a fraction of total

available charterers: hx,t = acharterer
x,t /acharterer

t . Thus, the value of a searching ship can be written

as:

U ship
t = qship

t ∑
x

hx,t

(
δWx,t +βEtU

ship
t+1

)
︸ ︷︷ ︸

(Expected) payoff if match type-x charterer

+(1−qship
t ) βEtU

ship
t+1︸ ︷︷ ︸

Payoff if not matched

(5)

4.3 States and transitions

States The detailed industry state in period t, st , consists of both the distribution of searching

agents, and the distribution of current matches. Each agent takes the industry state as given.

As discussed above, the mass of charterers available to match in period t is acharterer
x,t : this

includes charterers who just entered, as well as existing charterers whose contracts have expired

and who still have positive value vx. The mass of ships available to match in period t equals aship
x,t .

Each current match can be described by (i) the charterer’s type x (ii) the number of periods

left on the contract τ (iii) whether or not the charterer retains a positive valuation. Let mcontract
x,t,τ

denote the mass of agents matches of type x with τ periods remaining, regardless of whether or

not the charterer’s valuation is positive or not (“contract" matches). Let malive
x,t,τ denote the mass

of contracted matches of type x with τ periods remaining where the charterer’s valuation remains

positive (“alive" matches).

The distribution of current matches can therefore by described fully by mcontract
x,t and malive

x,t

which correspond to vectors of the current “contract" matches and “alive" matches respectively:

mcontract
x,t = (mcontract

x,t,1 ,mcontract
x,t,2 , ...,mcontract

x,t,τ , ...,mcontract
x,t,τmax

) (6)

malive
x,t = (malive

x,t,1 ,m
alive
x,t,2 , ...,m

alive
x,t,τ , ...,m

alive
x,t,τmax

) (7)
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Transitions At the start of each period, ex,t charterers of type x enter the market, and join the

pool of “alive" charterers from previous periods who are available to match (either because their

contracts just expired, or because they were unable to find a match last period). The mass of

searching charterers of type x therefore equals:

acharterer
x,t = ηx(1−qcharterer

t )acharterer
x,t−1 +ηxmalive

x,t−1,1︸ ︷︷ ︸
Alive unmatched charterers

+ ex,t︸︷︷︸
Entering charterers

(8)

where malive
x,t−1,1 is the mass of charterers of type x who had 1 period left on their contract in period

t − 1 (and whose contracts therefore just expired), while (1− qcharterer
t )acharterer

x,t−1 is the mass of

searching charterers last period who were unable to find a match.

All ships that are not currently under a contract are available to match, and therefore the mass

of searching ships equals:

aship
t = n−

(
∑
x

τmax

∑
k=1

mcontract
x,t,k

)
(9)

Finally, to update the distribution of current matches (mcontract
x,t and malive

x,t ), we add any new

matches and count down all existing contracts by 1 period at the end of each period.

4.4 Equilibrium

For this draft of the paper, we consider a steady-state equilibrium, where all agents view the in-

dustry state st as fixed when choosing contract duration and price.22 A steady state equilibrium is

characterized by a mass of searching agents (acharterer
x , aship

x ), a distribution of contract and alive

matches, (mcontract
x , malive

x ), contract duration choice probabilities, and prices, such that the follow-

ing conditions are satisfied:

1. Agents optimally choose contract duration, according to equations (1)-(5).

22In a future version of the paper, we will incorporate state transitions as well as agents’ beliefs about future states.

25



2. Equilibrium prices are determined by Nash bargaining.

3. The mass of searching agents and charterers and the distribution of current matches follow

the transition processes described in Section 4.3.

4.5 Discussion

We now discuss some of the key properties of the model, and comment on modelling assumptions.

Our model builds on standard search and matching frameworks that have been widely used to

study the role of search frictions (Hosios, 1990), but allows agents to endogenously choose the

duration of their contracts. The model highlights how agents’ choices of how long to match for re-

spond to search frictions, and these choices in turn dynamically affect market thickness and result

in endogenous rigidities. During a boom, when the charterer entry rate is higher (represented by an

increase in ex,t), there are many more searching charterers than ships. Charterers and ships that are

matched during a boom have a unilateral incentive to match for longer, to guard against the possibil-

ity that the charterer may be left without a match in future periods. However, these longer contracts

endogenously result in a thinner market and lead to lock-in, where some relationships persist due

to contractual rigidities, despite having low match value. We further explore these channels and the

misallocation caused by endogenous contractual rigidities in counter-factual simulations described

in Section 6.

We currently abstract away from contract extensions: once a contract between a given charterer

and ship expires, the charterer and ship both enter the pool of searching agents on both sides of the

market, and have to find a match again. The majority of leasing contracts during the study period

are not extended, suggesting this is not a first-order concern. Nevertheless, in a future version of the

paper, we plan to incorporate contract extensions into the model, by allowing the ship and charterer

to decide (at the time the contract is due to expire) whether to extend the contract for another period.

In practice, once a charterer has leased a ship under a time-charter contract, they integrate

this ship into their existing fleet of owned and leased ships, and determine which trading route to
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allocate the ship to, as well as the schedule of stops the ship will make. They then provide shipping

services to downstream exporters, competing with other charterers (carriers). We do not explicitly

model these choices or the interaction between charterers and downstream exporters, since the

focus of our model is on explaining the contract duration choices in the upstream leasing market.

Instead, we capture these in a reduced-form manner in our model, by allowing heterogeneity across

charterers in their per-period value (v), the probability of survival (η), and the entry rate e, and

allowing these to depend on market conditions. For instance, an increase in downstream shipping

demand in a particular geographic region can be translated within our model into an increase in v

and e for charterers that specialize in those regions.

5 Estimation [in progress]

Estimation for this paper is still in progress. For the counterfactuals we therefore present numerical

exercises using the model to illustrate the main economic forces at work in the paper. In the

numerical simulations below, we assume the urn-ball matching function (Petrongolo and Pissarides,

2001), which implies the following match probabilities:

qship
t (θt) = min{1− exp(−α/θt),1,1/θt} (10)

qcharterer
t (θt) = min{θt(1− exp(−α/θt)),1,θt} (11)

where α is a parameter capturing the efficiency of the matching process: the higher α is, the lower

matching frictions are.
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6 Counterfactuals [in progress]

6.1 Decentralized equilibrium versus a constrained social planner

We begin by documenting how the decentralized equilibrium contract length changes with the

business cycle in our model and the implications for misallocation. We compare the results to a

constrained social planner, who still faces search frictions but is able to coordinate firms to set a

contract length that optimally maximizes the total output of the market. In this market total output

is defined as: [# alive matches]× v− [# contracts]× c.

We present the results in Figure 4. Across these subplots, we show results for different values

of the bargaining parameter δ as well as different values of the charterer entry rate e. The charterer

entry rate e indexes whether the market is in a boom or a bust, with higher values corresponding

to a boom where there are many searching charterers for the fixed number of ships. We chose

the minimum of the charter entry rate on the graphs to align with the probability that a ship will

be unemployed in a bust in the data. In this industry, a bust still features a high number of ships

under contract (on the order of 90%). All the results in this figure are constructed at a steady state

equilibrium, so we are abstracting away from transitions between booms and busts, amongst other

things.23

Decentralized contract duration In the left panel of Figure 4 we plot the decentralized contract

duration for three different bargaining parameters. We choose the value δ = 0.2, where the char-

terers have more bargaining power, a value of δ = 0.8 where ship-owners have more bargaining

power, and an in-between case where δ = 0.5. In all three cases the decentralized contract length

increases in the boom. The lengthening of contracts is most pronounced for smaller values of δ

(when charterers have more bargaining power). The intuition behind these results is as follows:

during a boom, the charterer is less likely to be able to find another match in the near future, and

so will prefer a longer contract over a shorter one. Provided that the charterer has some bargaining

23Note that we intend to incorporate transitions into the model — as well as agents’ expectations over these transitions
— in a future draft of the paper both in these counterfactuals and in the estimated model.
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Figure 4: Comparing the decentralized equilibrium versus the constrained optimum
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(c) Misallocation

Note: To compute these graphs we assume that the market is in a steady state that could correspond to a ’boom’
steady state, where there are many charterers who need a ship and e is high, or a ’bust’ steady state, where there are
fewer charterers. The optimal duration counterfactuals retains search frictions but solves for the contract length that
maximizes total output of the market as a whole.

power, they will be able to induce the shipowner to agree to sign a longer contract by providing

them a higher share of the surplus from matching, in exchange for giving up the option of re-

matching in future periods.24 Although it is not pictured nor supported by the empirical data, note

that the model can also accommodate contract duration decreasing in booms by giving ship-owners

all the bargaining power at δ = 1. In other words, whether contract duration is pro-cyclical or

counter-cyclical could go either way in our theoretical model and is an empirical question with the

data pointing to a pro-cyclical relationship.

Optimal contract duration In the center panel of Figure 4 we plot the optimal contract duration

from the point of view of a constrained social planner. That is, this is a social planner who still faces

search frictions but can coordinate an industry-wide contract length. To construct this figure we

iterate over all possible contract durations, compute the equilibrium total output for each selection,

24This is why the lengthening of contracts during booms is most pronounced if δ is high: the shipowner knows that
if they refuse the contract, they are highly likely to find a match next period: but because they only have limited
bargaining power, they will only get part of the surplus from any future short contracts, whereas they can lock in a
bigger share of the surplus from signing a longer contract today.
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and then choose the contract duration with the corresponding highest total output.

Here the optimal contract length is actually counter-cyclical and decreases in the boom. The

intuition is as follows. In choosing the optimal contract length the planner faces a tradeoff. On

one hand, if contracts are too long then there may be lock-in of matches that have expired but

are still under contract. These contracted ships could be reallocated to “alive” charterers who are

unmatched. On the other hand, if contracts are too short, ships who are matched to charterers who

are “alive” at the end of the period will need to search again. But searching involves frictions where

they risk being unmatched; ex-post they would rather have remained under contract. This tradeoff

is somewhat similar to the individual decision that agents will make when choosing the optimal

contract length. The key difference is that the planner internalizes equilibrium effects since they

are maximizing total output.

With the above trade-off in mind, consider the market in "bust" where the number of searching

agents on both sides of the model is more balanced (i.e. lower values of e).25 In this case, the

probability a ship will successfully match with a charterer if it chooses to search is relatively low;

this provides incentives to the planner to sign a longer-contract and the optimal contract is around

3-4 months in the Figure.

Why does the optimal contract get shorter in the boom (as e increases)? As the market moves

to a boom, it becomes unbalanced with more searching charterers than ships. Therefore, the prob-

ability that an unmatched ship will match with a charterer in the search process increases. This

implies that the contracting externality from long contracts also increases; it is better to thicken the

search market and allow for ships to rematch with a high-probability with “alive” matches than to

risk lock-in with a longer contract.

Misallocation In the right panel of Figure 4 we plot misallocation, defined as the percentage

change in total output moving from the decentralized solution to the optimal contract length. Con-

25We have solved this model for values of e lower than the minimum on the graphs, which corresponds to a more
unbalanced market with so few charterers searching that the unemployment rate for ships falls far below its empirical
minimum. In this case, consistent with the logic in this section, we see a symmetric contract length decrease to the
middle panel.
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sistent with the degree of the contracting externality increasing in booms, misallocation rises ini-

tially and contracts get shorter. Eventually, the optimal contract reaches its minimum length (1

period), where all ships are available to match in every period. At this bound, the percentage

misallocation decreases between the two markets as e continues to increase.

6.2 Responsiveness to aggregate shocks

We next consider the model’s predictions for how the market will transition after an aggregate shock

in Figure 5. We focus on an immediate and long-term aggregate shock to demand that causes the

market to switch from a boom to a bust. Here we decrease both the entry rate of charterers e as

well as the probability that a match remains alive η . We compare three scenarios, moving from

endogenous contract duration, to a fixed duration, to the optimal contract length, and evaluate the

effects on productivity dispersion and misallocation.

Transitions with endogenous rigidities Our benchmark model has an endogenous choice of

contract length and we plot the results in the dark blue line on Figure 5. In panel (a) we can see that

this generates a ‘contract overhang’ similar to what we see in the actual market following the 2009

bust in Figure 2b. That is, as soon as the aggregate shock occurs, new contracts immediately fall,

but the average duration contract remaining in the market (which both includes these new contracts

as well as existing contracts that were signed before the shock) falls more slowly. In hindsight,

from the perspective of the bust, these contracts are too long.

In panel (b) we can see the corresponding effects on productivity dispersion, which is computed

as the standard deviation of the distribution of “alive” matches vs “dead” matches under contract.

The adjustment of the market to this shock is slow-moving under endogenous rigidities, driven by

the contract overhand pictured in panel (a). Productivity dispersion rises quickly due to lock-in of

bad matches, caused by the persistence of long-duration contracts. This corresponds directly to the

observed empirical patterns (Figure 2c), where dispersion in the marginal product of capital rises

sharply after the 2009 crash. Over time, as these longer contracts expire and the ships can re-match

on shorter contracts, productivity dispersion falls.
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Figure 5: Effect of endogenous rigidities on transitions to aggregate shocks
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In panel (c) we plot the corresponding misallocation. We define misallocation as the percent-

age change in output compared to the scenario with the optimal contract length that maximizes

market-level output. The transition period, under endogenous rigidities, is a major contributor to

misallocation. Over time, the market self-corrects and reduces this misallocation by reducing the

contract duration. In other words, although agents’ may not be entirely aligned with the objectives

of a social planner, they do sometimes face similar incentives — lock-in of a bad match is both

socially and privately costly.

Transitions with fixed rigidities We next consider the case with fixed rigidities. For the fixed

contract length we need to take a stand on what duration to choose here; we choose a contract

length of 5 months since in this numerical example that is the optimal contract length in a bust, and

close to the endogenous choice in a bust. Since the fixed contract length is closer to the socially

optimum length both in booms — which is due to our choice of which ‘fixed’ rigidity contract to

analyze — the productivity dispersion in booms is much lower in panel (b) than under endogenous

rigidities. One element that is not affected by the specific choice of fixed length is that there is

no ‘contract overhang’. Therefore, the market does not exhibit a temporary spike in productivity

dispersion after the shock; rather, this is a permanent change. In terms of misallocation, note that

there is still some which occurs shortly after the shock; this is because the optimal contract length
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is not a fixed length. Rather, the optimal contract is countercyclical and shorter in the booms.

Transitions with the optimal contract The optimal contract duration is relatively short and

countercyclical. Therefore, productivity dispersion is lower both before, during, and after, the

aggregate shock.

6.3 Policy implications: evaluating shipping subsidies

Finally, we illustrate the implications of endogenous rigidities for evaluating shipping subsidies.

The scale of these shipping subsidies is enormous, with China alone estimated to subsidise its

domestic shipbuilding industry by $11 billion per year between 2006-2013 (Jia Barwick et al.,

2021); many countries also subsidise shipowners and shipping companies (International Transport

Forum, 2019). Therefore, an important question is the extent to which this spending translates into

market benefits once the ships are built. If rigidities are fixed then an extra ship may in principle not

generate much change in total output once it is added to the market. This is due to cannibalization

effects: some of the observed cargo that this new ship is carrying may just be reallocated from

existing ships. However, when rigidities are endogenous, there is an additional effect that may

improve the efficacy of subsidies. Here, an additional ship thickens the market, causing agents to

endogenously respond in equilibrium by signing shorter contracts. This then creates an additional

positive contracting externality, and to the extent that booms are associated with particularly thin

markets for ships, this effect may be the largest in the booms.

We show a numerical example of these effects in Figure 6. Here we consider the benefits of

increasing the number of ships by 10% at different points in the business cycle (indexed by the

charterer entry rate e). Due to time to build, which is a key feature of the shipbuilding industry (e.g.

(Kalouptsidi, 2014)), an immediate 10% increase in the number of ships is infeasible. Instead,

the interpretation of this counterfactual is that ships are long-lived assets in a market shaped by

frequent cycles. As a result, the lifetime value of a ship is determined in part by these booms

and busts whenever it arrives in the cycle. Furthermore, these results also connect directly with

subsidies that prevent exit of ships, since these kinds of policies are not subject to time-to-build.
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Figure 6: Effects of subsidies that increase the number of ships in the market
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Note: In this figure we increase the number of ships by 10% at different values of e, which index whether the market
is in a bust or a boom, with higher rates corresponding to a boom. The gray area corresponds to the increase in total
output in the market at equilibrium contract duration before the 10% increase in ships. The blue area corresponds to
the extra increase in the total output of the market allowing for contracts to vary endogenously with market thinness.

Finally, for simplicity, in this particular numerical example we are setting a bargaining parameter

δ = 0, the baseline number of ships as n = 10, and the probability that a match does not expire

η = 0.9. We emphasize that these numbers are chosen for illustrative purposes only and may

change when we estimate the model.

In Figure 6, a low charterer entry rate corresponds to a bust. Here, we see that the increase

in total output from increasing the number of ships by 10% is less than 5%. The reason is due to

cannibalization - not every match for this new ship is an extra match for the market; some of these

matches are just reallocated from existing ships. These qualitative effects are similar in a bust both

keeping the contract length fixed at the level before the 10% increase, and allowing the contract

length to change endogenously after the extra ships are added.

As the market moves towards a boom and e increases, the corresponding contract length in-

creases and may move further from the efficient benchmark, as previously discussed in Figure 4.

Therefore, the positive externalities from extra ships that arise due to thickening the market may

also increase. In this numerical simulation, for some values of e, these externalities are relatively

large. In the most extreme case, we observe increases in total output that are greater than 10%,
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which is the increase in total output from adding an extra ship absent any cannibalization effects.

For example, at e = 1.05, adding a single extra ship generates an increase in total output equivalent

to the average output of around 1.75 ships when contract length is endogenous.
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A Appendix

A.1 Data construction

The data includes a number of key contract details, most notably the charterer name, charter period

(or duration), and the contracted charter rate (in $/day). For some contracts, we also observe the

“delivery location", which is the location where the ship is transferred from the shipowner to the

charterer. The contract data also includes information on ship characteristics, such as vessel type,

name, twenty-foot equivalent unit (TEU), deadweight tonnage (dwt tonnes), year of construction);

we complement this ship-level information with a comprehensive dataset of container ships col-

lected from Vessel Finder, which notably includes the International Maritime Organization (IMO)

number for each ship.

Certain contract records retrieved from Clarkson’s database lacked precise chartering duration.

However, these records typically included approximate chartering data ranges, such as “20-40 days"

and “5-7 months". To facilitate the empirical analysis, we computed two measures of contract

duration: mean values (e.g., 6 months for “5-7 months") and the maximum period (e.g., 7 months

for “5-7 months" or the period until the new contract for the ship starts, whichever comes first). Our

baseline analysis is carried out using the maximum period of each contract as the contract duration;

all our results, however, are robust to using the other measure instead.

In addition, Clarkson’s Shipping Intelligence Network provides aggregate indexes such as con-

tainership time-charter rate index, China Containerized Freight Index (CCFI), Singapore bunker

prices ($/Tonne), and the volume of containership contracting (TEU).26 Table 1 provides descrip-

tive statistics on the duration of the contracts, rates, age of the ships contracted, and aggregate

indexes.

26The containership time-charter rate index and China Containerized Freight Index (CCFI) are two separate (albeit
highly correlated) measures of container freight rates. Bunker prices are useful as they are indicative of the fuel costs
incurred by container ships.
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A.2 Measuring utilization

To measure utilization, we exploit the fact that for many port calls, we observe the draught of the

ship, which is indicative of how much cargo the ship is carrying. We then define utilization as the

percentage of the ship’s capacity that is used for carrying cargo; if this number is low, it suggests

the ship is not being fully utilized. While we do not directly observe this in the data, we can infer

utilization from draught data, as we describe below.

A ship that is sailing without cargo is commonly known as sailing "in ballast". In practical

terms, a ship is considered to be sailing in ballast if its draught is less than a specified threshold

value known as the "ballast draught" (HB). In maritime engineering literature, a weight of 0.55 is

employed to establish the ballast draught (Heiland et al., 2022). Following this literature, we define

the ballast draught (HB) as 55% of the ship’s scantling draught (HS). The scantling draught, also

referred to as the design draught, represents the ship’s draught when fully loaded and is a constant

value since the ship is constructed to operate at this specific draught. While we don’t observe

design draught, we proxy for it by choosing the observed maximum draught for the specific ship in

the data. We then compute utilization, defined as the percentage of the ship’s capacity that is being

utilized on a specific voyage, using the following formula:

Utilization = (HA −HB)/(HS −HB) (12)

where HA is the draught reported in the port call data. Note that later in the analysis we always

control for ship heterogeneity when using this measure, in order to ensure that the measure is

comparable across vessels. Finally, this measure of utilization only captures the intensive margin

(i.e., how full the ship is, conditional on being non-idle). We separately measure the extensive

margin of utilization by using the port call data to identify idle ships.
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A.3 Measuring reallocations

Depending on the particular itinerary a container ship is operating on, they may travel very long

distances and stop at a large number of ports while remaining within a fixed schedule.27

We therefore develop an algorithm for identifying when a ship is reallocated. The idea behind

the algorithm is that if a container ship is reallocated, it is likely to stop at a new set of ports

compared to those that were on its original itinerary. Thus, when we observe a ship visit a new port

that it has not visited in recent months, we can infer that the ship has been spatially reallocated.

To be sure, sometimes a container ship may visit a new port that involves a minimal deviation

from its existing itinerary.28 These are unlikely to be true reallocations of the ship, and instead may

simply represent extra voyages the operator of the ship has decided to make while largely sticking

to their original route. Thus, in order to not classify such minor deviations as reallocations, we also

require that the new port that is visited be a sufficiently large distance away from any of the existing

ports that the ship visited.

We now describe the algorithm we use to formalize this idea. For every port call, we calculate

the minimum distance between coordinates of the current port call and all the other port calls in

the last 6 months. The metric is assigned a value of 0 if the vessel has made a prior call at that

port within the preceding 6 months. Conversely, when the port represents a new visit, the metric

assumes a positive value, with its magnitude increasing proportionally as the port’s distance from

the current location grows, indicating a more significant alteration to the voyage schedule.

To rule out “false positives" caused by minor deviations from a set route, we classify the ship as

having reallocated in a given time period only if the minimum distance metric exceeds a threshold

value of 1,000 km. This threshold is large enough such that it would be very costly for a ship to

temporarily deviate from an existing route by such a large distance; thus, we are more likely to pick

up “true reallocations" where the ship’s itinerary is substantially changed. We found this algorithm

27For example, one container ship in the data was observed to first stop at several ports in New Zealand, make its way
up to North America (stopping at several Canadian and American ports), then travel to Western Europe, then return
back to New Zealand (stopping in Colombia along the way). This sequence was repeated several times.

28An example of this would be a ship that is on an itinerary involving regular round-trips between Tokyo and Singapore,
which at some point decides to make a stop at Manila along the way.
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to work well in practice; the episodes it identifies as reallocations match well with what appear in

the data to be true reallocations.29

A.4 Measuring blank sailings

Blank sailings, instances where a ship omits a scheduled port call, are critical in understanding mar-

itime shipping patterns and efficiencies. We develop an algorithm to identify these blank sailings,

providing insights into operational practices.

We begin with defining a ship’s routine, identified as a sequence of regularly visited ports.

For instance, a ship might routinely travel from port A to B, and then from B to C. We classify

a sequence as a routine if it has been consistently repeated at least six times in both the past and

future, establishing a clear pattern of regularity. In this process, we also introduce a variable to

capture deviations from the routine, such as when a ship travels directly from A to C, skipping the

usual stop at B.

After establishing the routines, the algorithm flags a blank sailing when it detects a skipped

port. To ensure that this skip is not a mere anomaly but part of a broader pattern, the algorithm

scrutinizes the ship’s itinerary. It checks whether, in the three months before or after the skipped

port, the ship maintained a routine corresponding to this route. Further, to distinguish blank sailings

from regular variations in the route, the algorithm limits these occurrences to a maximum of two

times in either the past or future. This restriction ensures that identified blank sailings are not

simply routine alterations but deviations from the schedule warranting attention.

B Additional proofs and results

Details on match payoff in Equation 4 Here we provide more detail that the charterer’s expected

match payoff is (1− δ )Wx,t + βηEtUcharterer
x,t+1 . To see why, note that the charterer’s payoff to a

29We recognize that the choice of 1000 km as a threshold is somewhat arbitrary. Our results on reallocation are robust
to other ways to measure reallocation, such as the average distance by which the ship was reallocated when it visited a
new port. In our future draft, we plan to carry out more extensive robustness analysis related to reallocation measures.
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τ-duration contract, once this contract duration has been chosen and under Nash bargaining, is:

Πcharterer
t = (1− δ )(Sx,t,τ + ετ)+βηEtUcharterer

x,t+1 . Denote zx,t,τ = Sx,t,τ + ετ . Then, the charterer’s

expected match payoff (before matching has taken place and the ετ have been drawn) is:

Ezx,t,τ [(1−δ )zx,t,τ +βηEtUcharterer
x,t+1 ] = (1−δ )Ezx,t,τ zx,t,τ +βηEtUcharterer

x,t+1 (13)

= (1−δ )Wx,t +βηEtUcharterer
x,t+1 (14)

which proves the result. A similar result can be derived for the ship’s expected match payoff.

C Additional figures

Figure 7: Average contract duration and time-charter index (in logs), 1999 - 2022
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Figure 8: Average contract duration for bulk time-charters and Baltic Dry Index, 2001 - 2016

Figure 9: Reallocation (residualized) against the time-charter rate

Note: We regress our reallocation measure on ship fixed effects and an aggregate time trend, and obtained the residu-
alized probability of reallocation for each ship, which we then aggregate across ships for each year-month. The figure
shows a bin-scatter plot of the residualized share of container ships globally that were reallocated to a different route
(vertical axis), against the containership time charter rate (horizontal axis).
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Figure 10: Probability of blank sailings over the business cycle, residualized

Note: We plot the residualized probability of blank sailing at any given year-month, with the residuals obtained from a
regression of each port call’s indicator for blank sailing on ship’s age, TEU and the area of operation.

Figure 11: Probability of blank sailings (residualized) against dispersion in residualized capacity uti-
lization (a proxy for productivity dispersion)

Note: This shows a bin-scatter plot of the residualized probability of blank sailing against standard deviation of residu-
alized utilization across ships every month. The residualized probability of blank sailing is obtained from the residuals
of a regression of each port call’s indicator for blank sailing on ship’s age, TEU and the area of operation. Residualized
utilization is obtained by regressing utilization on ship fixed effects and a time trend.
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Figure 12: Difference in dispersion in residualized capacity utilization (a proxy for productivity dis-
persion), between ships under longer and shorter contracts

Note: This shows a bin-scatter plot of the difference in dispersion in residualized capacity utilization, between ships
under longer and shorter contracts. Residualized utilization is obtained by regressing utilization on ship fixed effects
and a time trend. We separately calculate the standard deviation in residualized capacity utilization across ships under
longer contracts (where the contract was signed at least 12 months prior) and those under shorter contracts (where the
contract was signed within the last 12 months). We then calculate the difference between the two: a positive value
means there is greater dispersion in capacity utilization across ships under longer contracts than ships under shorter
contracts.
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