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Abstract

We study the design of optimal incentives in sequential processes. To do so, we consider a

basic and fundamental model in which an agent initiates a value-creating sequential process

through costly investment with random success. If unsuccessful, the process stops. If successful,

a new agent thereafter faces a similar investment decision, and so forth. For any outcome of

the process, the total value is distributed among the agents using a reward rule. Reward rules

thus induce a game among the agents. By design, the reward rule may lead to an asymmetric

game, yet we are able to show equilibrium existence with optimal symmetric equilibria. We

characterize optimal reward rules that yield the highest possible welfare created by the process,

and the highest possible expected payoff for the initiator of the process. Our findings show that

simple reward rules invoking short-run incentives are sufficient to meet long-run objectives.
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1 Introduction

Economists and social scientists alike have long been concerned with the study of incentives. The

focal question of how taxes affect incentives to work has constantly been in the spotlight (e.g.,

Break, 1957), but attention has also long been paid to the study of incentives in diverse settings,

such as school work or marketing (e.g., Hurlock, 1925; Haring and Myers, 1953). A central impetus

was given decades ago to the formulation of mechanisms to induce team agents to make deci-

sions conforming to the organizational interest (e.g., Alchian and Demsetz, 1972; Groves, 1973),

with a special emphasis on the informational aspects of the problem (e.g., Holmström, 1982). But

the search for optimal incentives for collective intelligence is of increasing importance nowadays, as

global systems of communication, governance, trade, and transport grow rapidly in complexity (e.g.,

Mann and Helbing, 2017). Most of these global systems are sequential, as many other processes that

abound in nature. For instance, sequentiality is a pervasive feature of the organization of natural

and artificial systems (e.g., Corominas-Murtra et al., 2013) and it frequently appears in large scale

industrial manufacturing, clinical trials, decentralized computer networks, or decision making and

planning, among others (e.g., Azoulay, 2004; Antràs and Chor, 2013; Winter, 2006). Finally, min-

ing in blockchains, social mobilization, auction design or multi-level marketing have also recently

become popular instances of sequential processes (e.g., Pickard et al., 2011; Huberman et al., 2019;

Li et al., 2022).

The aim of this paper is to study successive incentives. That is, incentives in a sequential

process in which agents make concatenated decisions. To do so, we consider a stylized model in

which an agent (the initiator) initiates a value-creating sequential process with random success by

investing money (or effort). If the investment is unsuccessful the process stops; if it is successful the

process continues and a new agent faces a similar investment decision, and so on. The success rate

is common to all agents, and increasing in the investment, but bounded above too. That is, the

success of an investment is never fully guaranteed (even for arbitrary large amounts). The initiator

arrives with a value and each time the process is extended additional value is created. We assume

this value is the same each time (and thus normalize it to 1). Our aim is to explore optimal reward

rules that specify how the overall generated value in the process is distributed, for any realization

of agents (that is, for any situation where the last agent is unsuccessful and thus terminates the

process). As such, each reward rule induces a game among agents, who will invest strategically. Our

first result, Theorem 1, states that, for any choice of rule, there always exists an equilibrium for

such a game. This relies on the fact that the game exhibits an interesting feature: each agent’s best

response is bounded above, independently of the other agents’ actions. The bounds are nevertheless

individual and unboundedly increasing. In other words, there is no common bound for all agents’

best responses, and we can find equilibria with unbounded investments. The underlying rationale

is that the value created by earlier agents can be used to generate even larger incentives for later

agents (without imposing any particular structure on the success rate).
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Equilibria can also exhibit interesting features regarding the comparison of agents’ investment

decisions with the first-best investment (the one that maximizes the expected overall generated

value in the process). For instance, we show that, with a mild condition on the success rate, there

is an equilibrium in which every agent except the initiator invests more than the first-best amount,

whereas the initiator in any equilibrium invests less than the first-best amount.

Nevertheless, as mentioned above, our main research question is to obtain optimal rules to man-

age the successive incentives. We consider two natural optimality notions in our setting. On the one

hand, to induce investments yielding the highest possible overall expected value of the (sequential)

process. On the other hand, to induce investments yielding the highest possible expected payoff for

the initiator.

Regarding the first notion, our Theorem 2 shows that there is a unique investment profile

maximizing the overall expected welfare of the (sequential) process which can be supported in

equilibrium. Such a profile is constant, i.e., all agents invest the same amount. This leads to under-

investment compared to the first-best investment level. Multiple rules support that profile (in

equilibrium), but a canonical example is the rule in which the value created is split equally among

all successful agents. This equal-split rule has the practical advantage that it does not rely on

information about the success rate. Therefore, an external benevolent planner can use this rule

without knowledge of the success rate and still be sure to implement the unique socially optimal

investment profile in equilibrium.

Regarding the second notion of initiator optimality, our Theorem 3 shows that there is a unique

investment profile maximizing the expected payoff for the initiator. Such a profile is near-constant,

i.e., each agent in the process, except for the initiator, invests the same amount. The initiator

invests a higher amount. As with Theorem 2, multiple rules support that profile (in equilibrium).

But it contrast with that case, now all the supporting rules depend on the success rate. Now, as it

is common knowledge among the agents, the initiator can easily construct the appropriate rule for

implementation. A focal example is the reward rule imposing a specific fixed rate for all successful

agents, and leaving the rest for the initiator.

We also consider an extension of the model where agents’ investments are limited by the value

that is generated through the process itself. In other words, the entire value might not be used to

incentivize agents. A key aspect now for a supporting rule is that agents have to be rewarded a

positive amount even if they are unsuccessful (to finance their investment) and this amount must be

“set aside” for the agent going forward. This changes the socially optimal investment profile. More

precisely, our Theorem 4 shows that the initiator will now invest more than the rest of the agents,

who will all invest a (common) smaller amount (in contrast to the fully constant socially optimal

profile we obtained without budget constraints). Theorem 4 includes the program that determines

the optimal investment profile and presents a simple rule along the lines of the initiator optimal

rule, where now some resources are set aside for investments.
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Common to all our results on optimal equilibria is that they are implementable by simple rules:

the value generated by any successful agent is split between this agent and the initiator. This

is quite remarkable. By design we could have chosen reward rules with much more complicated

structures, treating agents asymmetrically. For instance, rules that incentivize agents via payments

conditional on reaching some future state (as in various types of bonus schemes). Such rules may

also support the optimal equilibria, yet we demonstrate that complexity is not needed to achieve

the long-run goals of incentivization.

The rest of the paper is organized as follows. We first conclude this introduction providing

the connections of our work with the existing literature. In Section 2, we set up the model and

main basic concepts we use throughout the paper. In Section 3, we begin our analysis of successive

incentives. We first show that the game induced by reward rules guarantees existence of equilibrium

and also emphasize some interesting features of those equilibria. We further provide a few structural

results that are key to our subsequent analysis of optimal reward rules. In Section 4 we obtain our

main results concerning socially optimal and initiator optimal equilibrium profiles and the reward

rules that supports them. In Section 5, we provide an extension of our analysis to deal with the

case in which agents have budget constraints that may limit their investment decisions. Finally,

Section 6 concludes. To ease exposition, we defer some of our proofs to an appendix.

Related literature Our work could be considered as part of the emerging literature on induc-

tion network interventions, which stimulate peer-to-peer interaction to create cascades in behavioral

diffusion, implicitly endorsing that secondary incentives can be more efficient and effective than pri-

mary incentives, at least in some contexts (e.g., Ballester et al., 2006; Valente, 2012; Galeotti et al.,

2020). Our analysis of optimal reward rules is actually reminiscent of the analysis in Galeotti et al.

(2021), who design and evaluate welfare-enhancing tax policy schemes in complex supply chains

consisting of primary and final good producers. In a similar vein, Bimpikis et al. (2019) consider a

model of competition among firms that produce a homogeneous good in a networked environment,

in which a bipartite graph determines which subset of markets a firm can supply to. Therein, the

social planner has different gains from intervening in different parts of the network. This is also the

case in Elliott et al. (2022), where they study novel equilibrium fragilities in the strategic formation

of large supply networks, along with new methods for analyzing them.

Our model could also be considered as a moral hazard optimal contracting problem, as pioneered

by Holmström (1982), but in a dynamic setting (e.g., Melumad et al., 1995; Mookherjee, 2006).

In such a setting, followers may shirk when effort is not observed by their predecessors. This

leads predecessors to monitor the effort exerted by their immediate followers.1 The final output of

the sequential process is determined by a production function, which is cumulative in the efforts

1Gershkov and Winter (2015) show that if the technology satisfies complementarity, peer monitoring substitutes
for the principal’s monitoring. Halac et al. (2022) further study the optimal monitoring of teams, together with the
scheme of performance-contingent rewards.
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of workers and managers at all levels (e.g., Qian, 1994). Within this framework, Winter (2006)

characterizes the mechanism to allocate rewards among agents so as to induce all of them to exert

effort in equilibrium at minimal cost to the principal. A crucial feature of such a mechanism is to

discriminate among agents depending on the degree their efforts are unobservable by their peers.2

But the closest contribution to our work is Hougaard et al. (2022). The focus of that paper

is to study the optimal management of evolving hierarchies by means of a similar (more specific)

model in which reward rules only allow for upward transfers in the hierarchy. They also obtained a

unique investment profile maximizing the overall expected value of the hierarchy, as well as multiple

optimal schemes with respect to the initiator’s payoff. Common to all those results is the prominent

role of constant investments for all agents following the initiator along the hierarchy. In that sense,

our results here provide robustness to some of the results in Hougaard et al. (2022). However, our

analysis here is much more general, considering sequential processes for which incentives can be

broadly defined, without restricting reward rules to impose only upward transfers. Specifically, this

results in an important difference between the game that is induced by the respective reward rules.

The game in Hougaard et al. (2022) has a particularly convenient structure being a supermodular

game,3 whereas the induced game in the present analysis is more complex.

We also connect to the literature dealing with resource allocation in the presence of a network

structure (e.g., Littlechild and Owen, 1973; Myerson, 1977; Megiddo, 1978; Hougaard et al., 2017;

Juarez et al., 2018; Hougaard, 2018). Within this literature, the structure of the network might be

exploited to define fair allocation among agents connected in the graph, and the minimal distance

to the root becomes crucial (as it represents the stand-alone option for the agents). Sometimes,

networks are just assumed to restrict cooperation. And, some other times, fairness requirements

are related directly to the hierarchical network structure.

We also relate to an emerging literature dealing with blockchains (e.g., Leshno and Strack, 2020;

Huberman et al., 2021; Prat and Walter, 2021). In Proof-of-Work protocols, such as Bitcoin, miners

compete to verify new blocks when extending the blockchain. The probability of winning the right

to verify a block is proportional to the miner’s computational power in the network. Thus, mining

is costly and the miner is rewarded by new Bitcoins (as well as transaction fees users pay). The

blockchain itself can therefore be construed as a dynamic process where miners invest costly efforts

(solving cryptographic puzzles) with random success. If successful, a value (the block reward) is

obtained. The way block rewards are paid out influences the incentives to mine. Our results can

shed light on the optimal design of rewards within consensus protocols such as Proof-of-Work.

2Winter (2004) analyzes the counterpart model with simultaneous decisions, also obtaining that the optimal
investment-inducing mechanism endorses discrimination among equals. Moriya and Yamashita (2020) and Halac et al.
(2021) consider related problems in which agents’ incentives to work depend on a hidden state of nature.

3A game is supermodular when the marginal value of a player’s action is increasing in the other players’ actions.
It is well known that for continuous and supermodular game with compact intervals for strategy spaces, agents have
increasing best-response functions and, thus, there always exists at least one Nash equilibrium in pure strategies (e.g.,
Topkis, 1979; Milgrom and Roberts, 1990).
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2 Preliminaries

Successive investment decisions are ubiquitous in society and come in many forms. A key aspect in

these decisions is that costly actions taken by some (economic) agents enable, or force, other agents

to take costly actions themselves. The purpose of the investments can either be to create additional

value or to mitigate harm. We shall focus on the former case, where predecessor groundwork is

essential for successor progress, and thus we endorse the principle that one “stands on the shoulders”

of others. This feature is often experienced in diverse settings. Our running examples will be the

case of new discoveries building on previous insights in R&D, as well as the case of investments

over time to maintain a value-generating resource (such as an ecosystem creating societal value)

but requiring regular costly pollution abatement to thrive. In either of those cases, the efficient

incentivization of agents’ investments in the process is a crucial aspect for the practical viability of

the process.

Formally, there is an initiator of a sequential process, agent 0, and an infinite set of potential

agents N = {1, 2, . . . }; let N0 ≡ {0} ∪ N. The initiator can add value by extending the process

through costly investment with random success. If unsuccessful, the process stops. If successful, a

new agent 1 thereafter faces a similar investment decision, and so forth. The initiator starts out

with a value and each time the process is successfully extended a new value is generated: we assume

this value to be the same each time and normalize it to 1.

An investment profile, in short a profile, is a collection of agents’ investments, i.e., x =

(x0, x1, . . . ), where xi ≥ 0 for every agent i. Let x>i ≡ (xi+1, xi+2, . . . ) and x≥i ≡ (xi, x>i). A

profile x is constant if x = (c, c, . . . ), near-constant if x≥1 is constant, and constant-tail if x≥i

is constant for some i. The set of profiles is X ≡ R
N0
≥0.

The higher the investment, the more likely the agent is successful in extending the process, but

there is always a risk of failure. Specifically, there is ε > 0 such that, with investment xi ≥ 0, agent

i successfully extends the process with probability p(xi) ∈ [0, 1 − ε] with p(0) = 0. The success

rate p : R≥0 → [0, 1− ε] is common to all agents and fixed throughout. Moreover, p is assumed to

be increasing, differentiable, and concave in the investment and increases steeply at zero, that is,

p′(xi) → ∞ as xi → 0. We also assume that p is such that the ratio p(·)
p′(·) is a convex function.4

The value of the process is shared among agents in order to incentivize investments. Formally,

a reward rule f , in short a rule, specifies how the value is distributed for any realization of agents.

In particular, for each k ∈ N0, agent i ∈ {0, . . . , k} is assigned f(i, k) ≥ 0 of the total generated

value, k + 1. Moreover, rules are balanced in the sense that f(0, k) + · · · + f(k, k) = k + 1. Let F

be the resulting set of rules. Formally,

F = {f : N0 × N0 → R≥0 such that f(0, k) + · · ·+ f(k, k) = k + 1 for each k ∈ N0}.
4This ratio is also defined in a different setting as the so-called fear of ruin (e.g., Aumann and Kurz, 1977).
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It is useful to represent rules in matrix form. To do so, we consider f(i, k) in column i = 0, 1, . . .

and row k ≥ i. In this way, the ith column is the potential “payoff stream” that agent i faces

when making her investment decision, whereas the k’th row represents the values allocated to the

successful agents {0, . . . , k − 1} and the unsuccessful agent k who terminates the process.5 This is

illustrated in Example 1.

Example 1 (Examples of rules). The canonical equal split solution shares the total value generated

by successful investment equally among all successful agents. This is represented by the rule fES

below. Agent i > 0 only receives a positive payoff once successful (row i + 1 and on). The equal

split rule is a distinguished member of a parametric family we dub fixed-fraction rules6 and denote

by fα. Here, all successful agents get a fixed fraction α ∈ [0, 1] with the residual value going to the

initiator. Clearly, fES = f1.

fES =



















1

2 0

2 1 0

2 1 1 0
...



















fα =



















1

2 0

3− α α 0

4− 2α α α 0
...



















We do not impose any structure on how the rewards change as the process is extended. In

particular, this allows to accommodate rules such as fJP , in which an ever-increasing “jackpot” is

awarded to the agent who is last to succeed in extending the process. Under such a rule, each agent

i wants to succeed but prefers i+ 1 to fail (however, they can only affect their own success).

fJP =



















1

2 0

1 2 0

1 0 3 0
...



















fα,γ =



















1

2− γ γ

3− α− γ α γ

4− 2α− γ α α γ
...



















This illustrates also the asymmetry between agents: as we get further into the process, new “payoff

streams” become available. For instance, comparing agents 0 and 1, we have f(0, 0) = 1 whereas

f(1, 1) ∈ [0, 2]; we have f(0, 1) ∈ [0, 2] but f(1, 2) ∈ [0, 3]. In this way, we can incentivize agent

1 to make investments that are not possible to incentivize for agent 0. Finally, fα,γ represents a

variation of the class of fixed-fraction rules where unsuccessful agents i > 0 receive positive payment

γ ∈ [0, 2]. ◦
5Note that the k’th row is realized with probability

∏k−1
i=0 p(xi)(1− p(xk)).

6See also Hougaard et al. (2022) and Gudmundsson et al. (2023).
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Given profile x, the expected investment is

I(x) ≡ x0 +

+∞
∑

j=1

j−1
∏

i=0

p(xi)xj .

As each realized agent adds value 1, the expected value of the process is

V(x) ≡ 1 +

+∞
∑

j=1

j−1
∏

i=0

p(xi).

As p is bounded, the expected value is bounded but the expected investments might not be so.7

When expected investments are bounded, we define the expected welfare as

W(x) ≡ V(x)− I(x).

Given a rule f , each agent i maximizes the expected payoff Ui(x≥i, f) ∈ R, which consists

of three parts: the amount f(i, i) ≥ 0 assigned if the investment is unsuccessful; the amount

Ri(x>i, f) ≥ 0 expected to be assigned if successful; the costly investment xi ≥ 0. That is,

Ui(x≥i, f) ≡ (1− p(xi))f(i, i) + p(xi)Ri(x>i, f)− xi,

where

Ri(x>i, f) ≡
+∞
∑

k=i+1

k−1
∏

j=i+1

p(xj)(1− p(xk))f(i, k).

For instance, R0(x>0, f) = (1− p(x1))f(0, 1) + p(x1)(1− p(x2))f(0, 2) + . . . .

As the rules are balanced, we obtain the following identity:

U0(x≥0, f) +
+∞
∑

j=1

j−1
∏

i=0

p(xi)Uj(x≥j , f) = W(x).

Each rule f therefore induces a game where the agents choose their investment levels strategi-

cally. In this game, the rule f and the success rate p are common knowledge, whereas an agent’s

investment cannot be observed by the remaining agents. Hence, later agents cannot condition their

choice on earlier investments.

Definition 1. A rule f is said to support the profile x whenever x is a Nash equilibrium in the

7Formally, as p(xi) ≤ 1 − ε, V(x) ≤ 1 + (1 − ε) + (1− ε)2 + · · · = 1/ε. On the other hand, when agent 0 invests
x0 = 1 and agent j > 0 invests xj = 1

(j+1)
∏

i<j p(xi)
, we have I(x) = 1 + 1/2 + 1/3 + . . . , which is the divergent

harmonic series.
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game induced by f . That is, for each agent i and investment yi ≥ 0,

Ui((xi, x>i), f) ≥ Ui((yi, x>i), f).

A profile x is an equilibrium profile if supported by some rule. ◦

For each xi ≥ 0, let g(xi) = p(xi)/p
′(xi). Recall that we assumed p to be such that g is convex.

For convenience, let g(0) ≡ limxi→0 p(xi)/p
′(xi) = 0. As p is concave, g(xi)/p(xi) = 1/p′(xi) is

increasing and p′(xi) · (xi − 0) < p(xi) − p(0). Thus, g(xi) > xi for each xi > 0. Lemma 1 follows

immediately from maximizing Ui(x≥i, f) with respect to xi.

Lemma 1. The following statements are equivalent:

• The rule f supports the profile x.

• For each agent i, if Ri(x>i, f) ≤ f(i, i), then xi = 0; otherwise, xi > 0 is such that

Ri(x>i, f)− f(i, i) =
g(xi)

p(xi)
.

By Lemma 1, the expected equilibrium payoff is Ui(x≥i, f) = f(i, i) + g(xi) − xi. That is to

say, g(xi) can be viewed as the gross (excluding investment xi) expected gain over f(i, i) for which

investing xi is optimal. Naturally, incentivizing higher investments requires higher returns; that is,

g is increasing. We take this one step further as g is convex: it is increasingly more expensive to

incentivize higher investments.8

Lemma 1 pertains to individual equilibrium payoffs. It will also be useful to have an aggregate

expression. For that purpose, let

V̂(x, f) ≡ f(0, 0) +

+∞
∑

j=1

j−1
∏

i=0

p(xi)f(j, j) +G(x),

where

G(x) ≡ g(x0) +
+∞
∑

j=1

j−1
∏

i=0

p(xi)g(xj).

Intuitively, G(x) can be viewed as the expected (aggregate) cost of incentivizing x. As, in general,

there might be both over- and underinvestment at a profile x for a given rule f , there is no systematic

8There is a parallel here to the different but related setting of risk-averse gambling. A risk-averse agent with utility
function u pays price xi for a lottery ticket that awards a prize with probability π. Then the minimal prize amount
g(xi) required for the agent to take part is such that (1−π)u(−xi)+πu(g(xi)−xi) = u(0). As u is concave, g must be
convex. In our setting, the agents are risk-neutral (corresponding to linear u) whereas the success rate (corresponding
to π) is concave.
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relation between V and V̂. However, in equilibrium, Lemma 2 shows that they are equal.9

Lemma 2. If the rule f supports the profile x, then V(x) = V̂(x, f). Hence, for each equilibrium

profile x, V(x)− 1 ≥ G(x).

Proof. As noted after Lemma 1, for each agent i,

Ui(x≥i, f) = f(i, i) + g(xi)− xi.

Aggregating over all agents,

U0(x≥0, f) +
+∞
∑

j=1

j−1
∏

i=0

p(xi)Uj(x≥j , f) = f(0, 0) + g(x0)− x0 +
+∞
∑

j=1

j−1
∏

i=0

p(xi)(f(j, j) + g(xj)− xj).

As noted, as the rules are balanced, the left-hand side is identical to W(x) = V(x) − I(x); the

right-hand side is, by definition, V̂(x, f) − I(x). The first part of the statement then follows. And

the second part then follows from f(0, 0) = 1 and f(j, j) ≥ 0:

V̂(x, f) = f(0, 0) +

+∞
∑

j=1

j−1
∏

i=0

p(xi)f(j, j) +G(x) ≥ 1 +G(x).

The following Remark 1 illustrates the implications of Lemma 2 for the particular case of

constant profiles.

Remark 1 (Supporting constant profiles). For a constant equilibrium profile, x̄ = (c, c, . . . ),

Lemma 2 reduces to p(c) ≥ g(c), as

V(x̄)− 1 =
p(c)

1− p(c)
≥ g(c)

1− p(c)
= G(x̄).

Indeed, p(c) ≥ g(c) turns out to be both necessary and sufficient. One can simply consider the rule

fα,γ , with α = 1 and γ = 1− g(c)
p(c) , to support x̄.10

3 Structural results

In this section, we address some fundamental ideas that set the stage for the ensuing analysis. First,

we deal with the essential aspect throughout the paper of equilibrium existence. In Subsection 3.1,

Theorem 1 shows that every rule f supports some investment profile x by invoking an existence

theorem due to Ma (1969). Second, we explore cost-effective investment profiles. In Subsection 3.2,

9The converse of Lemma 2 is not true. For instance, we may have V(x)− 1 ≥ G(x) and yet x cannot be supported
(see Example 6).

10Note that when p(c) = g(c), the rule reduces to fES.
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we show that a “flatter” profile is both cost effective and cheaper to incentivize. Specifically, let x

and x̄ = (x0, . . . , xk−1, c, c, . . . ) be such that V(x) = V(x̄); then I(x) > I(x̄) (Proposition 1) and

G(x) > G(x̄) (Proposition 2). These features will become crucial for our main results in Section 4.

3.1 Equilibrium existence

The domain of rules is extremely rich and different rules give rise to very different incentive struc-

tures. For instance, if we consider two of the rules from Example 1, we can observe that an agent’s

response to an increased investment by another (successor) agent might be qualitatively different.

More precisely, let i and j be such that j > i. Then, under fES, i’s optimal investment is unchanged,

whereas under fJP , it decreases. Hence, our induced game need not be supermodular.11

The asymmetry between the agents allows equilibrium investments to grow unboundedly, as

the value created by earlier agents can be used to generate even larger investment incentives for

later agents. That is to say, even though a successful investment always adds value 1, we can have

equilibrium investments exceeding 1—indeed, even though the expected value of the process in its

entirety is bounded (footnote 7), an agent may invest even more than that in equilibrium. We

return to this in Subsection 3.2 where we will find cases of overinvestment by everyone except the

initiator. While this does not immediately indicate a problem for equilibrium existence, it shows

that we cannot limit our search to bounded profiles (for instance, by 1 or even by V(x)), which at

first glance would appear natural. And, even more, the above raises the concern that some agents

might simply be always better off investing more, so there is no well-defined optimal investment.

Example 2 (Unbounded equilibrium investments). Let x be a profile supported by the rule f =

fJP as defined in Example 1. Consider agent i. By Lemma 1 and the design of f ,

g(xi)

p(xi)
= Ri(x>i, f)− f(i, i) = (1− p(xi+1))(i + 1).

By contradiction, suppose x is bounded by some B ≥ 0: that is, for each agent i, xi ≤ B. As g/p

is increasing, g(B)/p(B) ≥ g(xi)/p(xi). As p is increasing and bounded, p(xi+1) ≤ p(B) ≤ 1 − ε,

where ε > 0. Hence,

g(B)
p(B) ≥ g(xi)

p(xi)
≥ ε · (1 + i).

This is a contradiction as the left-hand side is finite whereas the right-hand side grows unboundedly

in i. ◦

Although Example 2 shows that there is no (common) upper bound on equilibrium investments,

we are still able to identify individual upper bounds. That is to say, for a given success rate p and

11As mentioned in the Introduction, this is in contrast with the model analyzed in Hougaard et al. (2022).
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agent i, there is a bound Bi ≥ 0 such that, at every equilibrium profile x, we have xi ≤ Bi. Even

though these bounds Bi are unboundedly increasing in i, each is still finite and the bounds can be

used as a stepping stone to show equilibrium existence.

Theorem 1. For each rule f , there exists a profile x such that f supports x.

Proof. As g/p is increasing, unbounded, and continuous, we can define Bi ≥ 0 through

g(Bi)

p(Bi)
= i+ 1 +

1

ε
.

Suppose that agent i is choosing the best response to what all other agents are investing. Then

by Lemma 1, and as f(i, i) ≥ 0,

g(xi)

p(xi)
= Ri(x>i, f)− f(i, i) ≤ Ri(x>i, f).

An upper bound on Ri(x>i, f) is all “past” value created by agents 0 through i (which is i+1) and

all “future” value created by i+ 1 and followers (which is V(x>i) < 1/ε; see footnote 7). Hence,

g(xi)

p(xi)
≤ i+ 1 +

1

ε
=

g(Bi)

p(Bi)
.

As g/p is increasing, it follows that xi ≤ Bi.

Let Xi ≡ [0, Bi] ⊂ R be the potential best responses for agent i. Let ui(x) ≡ Ui(x≥i, f) =

f(i, i) + p(xi)(Ri(x>i)− f(i, i))− xi. As p is concave in xi, ui is concave (and thus quasi-concave)

in xi. As both p and Ri are continuous in x, so is ui. Equilibrium existence now follows from Ma

(1969, Theorem 4), restated here with I ≡ N0 being the set of agents:

Let {Xi}i∈I be an indexed family, finite or infinite, of nonempty compact convex sets

each in a separated topological vector space. Let {ui}i∈I be a family of real-valued

continuous functions defined on X =
∏

j∈I Xj. If for each i ∈ I and for any fixed

x−i ∈
∏

j∈I
j 6=i

Xj ,

ui(xi, x−i) is a quasi-concave function of xi ∈ Xi, then there exists a point y ∈ X such

that for any i ∈ I,

ui(y) = max
zi∈Xi

ui(zi, y−i),
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where y−i is the projection of y in

∏

j∈I
j 6=i

Xj .

For our purposes, the point y is an equilibrium profile under f . This completes the proof.

A canonical class of rules are those in which an agent’s reward is affected by their own success

but not the success or failures of others. That is, f is such that f(i, i+1) = f(i, i+2) = . . . ; see for

instance fES in Example 1. For such rules, Ri(x>i, f) = f(i, i + 1) and Lemma 1 implies that i’s

investment is the same in every equilibrium. Moreover, even if this only applies to all agents i > 0

(compare fα,γ in Example 1), the conclusion extends also to agent 0 and therefore implies that

the equilibrium profile is unique. In Sections 4 and 5, we will design rules under various optimality

criteria; all of the rules that we identify will be as above, meaning that they guarantee unique

equilibrium investments.

3.2 Constant-tail profiles

Two optimality criteria that we will explore pertain to maximizing welfare (subject to equilibrium

constraints). Given the identity W(x) = V(x)− I(x), a necessary condition for such a maximizer x

will be that it minimizes investments I(·) for the particular level of value created V(x). Hence, as a

stepping stone towards identifying optimal rules and investments, we first ask the following: given

a profile x, is there a way to reduce investments I without affecting the value created V?

Our next result answers the previous question affirmatively. Specifically, it suggests to “flatten”

the tail of x at any point to create x̄ = (x0, . . . , xk−1, c, c, . . . ), where c ≥ 0 is chosen such that

V(x) = V(x̄). Proposition 1 states that this reduces the expected investments. The assumption that

p is concave is essential for this result.

Proposition 1 (Constant-tail profiles are cost effective). For each x ∈ X, each k ∈ N0, and each

x̄ = (x0, . . . , xk−1, c, c, . . . ) ∈ X such that V(x) = V(x̄), we have I(x) ≥ I(x̄).

Proof. Say first k = 0, which corresponds to x̄ = (c, c, . . . ). As p is concave,

p

(

I(x)

V(x)

)

= p

(

x0 + p(x0)x1 + p(x0)p(x1)x2 + . . .

1 + p(x0) + p(x0)p(x1) + . . .

)

≥ p(x0) + p(x0)p(x1) + p(x0)p(x1)p(x2) + . . .

1 + p(x0) + p(x0)p(x1) + . . .
=

V(x)− 1

V(x)
.

As V(x) = V(x̄),

p

(

I(x)

V(x)

)

≥ V(x̄)− 1

V(x̄)
= p(c).

13



As p is increasing, we have I(x)/V(x) ≥ c = I(x̄)/V(x̄). As V(x) = V(x̄), I(x) ≥ I(x̄).

Assume now the statement is correct up to some k ≥ 0. Consider the case k+1, so x0, . . . , xk =

x̄0, . . . , x̄k. If xi > 0 for all i ≤ k, by construction,12

V(x) = 1+p(x0)+ · · ·+p(x0) · · · p(xk)V(x>k) = 1+p(x̄0)+ · · ·+p(x̄0) · · · p(x̄k)V(x̄>k) = V(x̄).

Hence, V(x>k) = V(x̄>k). We can now reapply the argument above but with respect to the profiles

x>k and x̄>k to conclude that I(x>k) ≥ I(x̄>k). Analogous to the above,

I(x) = x0+p(x0)x1+· · ·+p(x0) · · · p(xk)I(x>k) ≥ x̄0+p(x̄0)x̄1+· · ·+p(x̄0) · · · p(x̄k)I(x̄>k) = I(x̄).

By induction, the argument extends to any k.

An immediate implication of Proposition 1 is that the profile that maximizes welfare (without

equilibrium constraints) is constant. For such profiles (c, c, . . . ), we have

W(c, c, . . . ) =
1− c

1− p(c)
,

which is positive and single-peaked (Lemma 3, Appendix) for c ≤ 1. We then label its unique

maximizer, the first-best investment, by cFB ∈ (0, 1). Maximizing the above with respect to c

yields that cFB is the unique c ∈ (0, 1) such that

W(c, c, . . . ) =
g(c)

p(c)
.

Remark 2 (First-best investments cannot be supported). As p is concave, g(c) > c, for all c > 0.

In particular, for c = cFB > 0,

g(c)

p(c)
=

1− c

1− p(c)
>

1− g(c)

1− p(c)
⇐⇒ g(c) > p(c).

It follows by Remark 1 that (cFB , cFB , . . . ) cannot be supported. ◦

Next, Example 3 makes two observations: first, the initiator never invests more than cFB in

equilibrium; second, there are equilibria in which everyone else invests more than cFB. The first

part is complementary to Theorem 1, which relied on individual, potentially fairly high bounds Bi

on equilibrium investments. Example 3 tightens the initiator’s bound to cFB. On the other hand,

the second part complements Example 2. To contrast, Example 2 identifies an equilibrium in which

12For ease of exposition, the proofs will henceforth restrict to the more challenging case of positive investments
and we omit the easier (yet largely analogous) case that some agents invest zero. Besides being obviously inefficient
(recall that p increases steeply at zero), zero investments are easier to address as the relevant sums become finite
and they require no new techniques. The results, nevertheless, should be understood as covering the full domain that
includes zero investments.
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all but a finite number of agents invest more than B, where the bound B may be arbitrarily high.

Example 3 considers the particular case B = cFB and shows that, with a mild condition on p, there

is an equilibrium in which all but the initiator invest more than B.

Example 3 (Equilibrium vs first-best investment). Given the two different observations, the exam-

ple is split in two parts. First, we show that the initiator never invests more than cFB in equilibrium.

Part I: Initiator bound. Let x be an equilibrium profile. By Lemma 2, V(x) − 1 ≥ G(x). By

construction, g(xi) ≥ xi. Thus,

G(x) = g(x0) +

+∞
∑

j=1

j−1
∏

i=0

p(xi)g(xj) ≥ g(x0) +

+∞
∑

j=1

j−1
∏

i=0

p(xi)xj = g(x0) + p(x0)I(x>0).

Hence, V(x)− 1 = p(x0)V(x>0) ≥ g(x0) + p(x0)I(x>0). Rearrange and use that cFB maximizes W:

g(x0)

p(x0)
≤ V(x>0)− I(x>0) = W(x>0) ≤ W(cFB, cFB , . . . ) =

g(cFB)

p(cFB)
.

As g/p is increasing, we have x0 ≤ cFB .

Part II: Equilibrium overinvestment. Let again f be the rule fJP defined in Example 1 and x be

an equilibrium under f . Recall from Example 2 that, for each agent i > 0,

g(xi)

p(xi)
= Ri(x>i, f)− f(i, i) = (1− p(xi+1))(i + 1).

Intuitively, if p is “close to zero”, then g(xi)/p(xi) ≈ i+1 whereas g(cFB)/p(cFB) = (1− cFB)/(1−
p(cFB)) ≈ 1. As g/p is increasing, we would then have that xi > cFB for each agent i > 0.

For a concrete example, set ε =
√
2/2, so p is bounded by 1−

√
2/2 ≈ 0.3. Then, for i > 0,

(1− p(xi+1))(i+ 1) > 2(1 − (1−
√
2/2)) =

√
2.

The inequality is strict as p is increasing. On the other hand,

g(cFB)

p(cFB)
=

1− cFB

1− p(cFB)
≤ 1

1− p(cFB)
<

1

1− (1−
√
2/2)

=
√
2.

Hence, xi > cFB for each agent i > 0. ◦

Although the first-best investment is a natural benchmark, our interest is primarily in equilib-

rium profiles. To that end, Remark 2 showed that the first-best investments cannot be supported.

Still, the conclusion of Proposition 1, that constant-tail profiles are cost effective, will remain very

useful if we can show that flattening the tail of an equilibrium profile results in a supportable pro-

file. Proposition 2 is a step in this direction: it shows that constant-tail profiles reduce the “cost of
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incentivizing” the profile. The proof parallels that of Proposition 1, but exploits that g is convex

rather than p concave.

Proposition 2 (Constant-tail profiles are cheaper to incentivize). For each x ∈ X, k ∈ N0, and

x̄ = (x0, . . . , xk−1, c, c, . . . ) ∈ X such that V(x) = V(x̄), we have G(x) ≥ G(x̄).

Proof. Say first k = 0, which corresponds to x̄ = (c, c, . . . ). By Proposition 1, I(x) ≥ I(x̄), where

I(x̄) = cV(x̄) = cV(x). Hence, c ≤ I(x)/V(x). As g is increasing, g(c) ≤ g (I(x)/V(x)). As g is

convex,

g

(

I(x)

V(x)

)

= g

(

x0 + p(x0)x1 + p(x0)p(x1)x2 + . . .

1 + p(x0) + p(x0)p(x1) + . . .

)

≤ g(x0) + p(x0)g(x1) + p(x0)p(x1)g(x2) + . . .

1 + p(x0) + p(x0)p(x1) . . .
.

Hence, as V(x) = V(x̄),

g(c) ≤ g

(

I(x)

V(x)

)

≤ G(x)

V(x̄)
=⇒ G(x̄) = V(x̄)g(c) ≤ G(x).

Assume now the statement is correct up to some k ≥ 0. Consider the case k+1, so x0, . . . , xk =

x̄0, . . . , x̄k. By construction,

V(x) = 1+p(x0)+ · · ·+p(x0) · · · p(xk)V(x>k) = 1+p(x̄0)+ · · ·+p(x̄0) · · · p(x̄k)V(x̄>k) = V(x̄).

Hence, V(x>k) = V(x̄>k). We can now reapply the argument above but with respect to the profiles

x>k and x̄>k to conclude that G(x>k) ≥ G(x̄>k). Analogous to the above,

G(x) = g(x0) + p(x0)g(x1) + · · · + p(x0) · · · p(xk)G(x>k)

≥ g(x̄0) + p(x̄0)g(x̄1) + · · · + p(x̄0) · · · p(x̄k)G(x̄>k) = G(x̄).

By induction, the argument extends to any k.

The assumption that g is convex is essential for Proposition 2 and the results that will follow.

If g is not convex, then there can be non-constant equilibrium profiles for which the associated

constant profile cannot be supported. Example 4 illustrates this point.

Example 4 (The case of g non-convex). Let p be a smoothed version of the function illustrated

in Figure 1. We first show that x = (3/4, 1/4, 1/4, . . . ) is supported by the rule f as defined in

Figure 1.

We first verify for agents i > 0. By Lemma 1, we should have g(xi)/p(xi) = Ri(x>i, f)−f(i, i) =

1/2. By definition, g(xi)/p(xi) = 1/p′(xi). As it is possible to smoothen p such that p′(1/4) = 2,

we obtain that xi = 1/4 indeed is optimal. Note also that p(x1) = p(x2) = · · · = 1/2.
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Figure 1: Success rate p with approximate slopes indicated above the lines.

For agent 0, on the other hand,

R0(x>0, f)− f(0, 0) = 1 + p(x1) · (1/2) + p(x1)p(x2) · (1/2) + · · · = 1 + 1/4 + 1/8 + · · · = 3/2.

Again, we can smooth p such that p′(3/4) = 2/3. Hence, we conclude that f supports x. Moreover,

V(x) = 1 + p(x0) + p(x0)p(x1) + · · · = 1 + 1 + 1/2 + 1/4 + · · · = 3.

The corresponding constant profile x̄ = (c, c, . . . ) is such that

V(c, c, . . . ) =
1

1− p(c)
= 3.

That is, p(c) = 2/3, so c = 5/12. Again, we can smooth p such that p′(c) < 1, which means

p(c) < g(c). By Remark 1, such a constant profile x̄ cannot be supported. ◦

4 Optimality

In this section, we focus on results that characterize the optimal investment profiles that can be

supported in equilibrium. In particular, we look for welfare maximizing and initiator maximizing

equilibrium profiles. The former objective is natural if we imagine the rule being designed by a

(benevolent) social planner, while the latter is natural if designed by a (payoff-maximizing) initiator.

4.1 Socially optimal equilibrium

We already know, from the structural results in Section 3.2, that flattening investment profiles

is welfare improving. As already noted, the first-best investment profile, cFB , is constant. Yet,

cFB cannot be supported in equilibrium (see Remark 2). The question is therefore whether there
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exists an equilibrium profile x∗ that maximizes W among all equilibrium profiles. Theorem 2 below

answers this affirmatively and further shows that such a profile is unique and can be supported by

the canonical equal split rule, fES.

Theorem 2. There exists a unique welfare-maximizing equilibrium profile. It is the constant profile

x∗ = (c∗, c∗, . . . ), where c∗ > 0 is such that g(c∗) = p(c∗). Moreover, x∗ is supported by fES.

Proof. Let x ∈ X be an equilibrium and let x̄ = (c, c, . . . ) ∈ X be such that V(x̄) = V(x).

By Proposition 1, I(x) ≥ I(x̄) and, thus, W(x) ≤ W(x̄). By Lemma 2, V(x) − 1 ≥ G(x). By

Proposition 2, G(x) ≥ G(x̄). Hence, V(x̄)− 1 ≥ G(x̄), or, equivalently,

p(c)

(1− p(c))
≥ g(c)

(1− p(c))
.

That is, p(c) ≥ g(c). Thus, by Remark 1, x̄ can also be supported. Hence, for the purpose of

maximizing welfare, it suffices to check constant profiles. For such profiles,

W(c, c, . . . ) =
1− c

1− p(c)
.

Now, such a function is single-peaked for c ∈ [0, 1] and maximized at cFB > c∗, where c∗ is such

that g(c∗) = p(c∗).13 Therefore, W(c, c, . . . ) is maximized at c∗ for c ∈ [0, c∗]. Finally, by Remark 1,

the equal split rule fES induces x∗ = (c∗, c∗, . . . ) as unique equilibrium.

Even though x∗ is uniquely determined, fES is not unique in supporting x∗, as shown below.

Example 5 (Multiplicity of optimal rules). For each |β| ≤ 1, let fβ ∈ F be defined as fES

everywhere, except for the following:

fβ(0, 2) = 2− βp(c), fβ(0, 3) = fβ(0, 4) = · · · = 2 + β(1− p(c))

fβ(1, 2) = 1 + βp(c), fβ(1, 3) = fβ(1, 4) = · · · = 1− β(1− p(c)).

With β = 0, we obtain fβ = fES. As |β| ≤ 1, fβ(i, j) ≥ 0 for all i and j. Moreover, as only

agents 0 and 1 are affected compared to fES and fβ(0, j) + fβ(1, j) = fES(0, j) + fES(1, j), fβ is

well-defined. For each of exposition, let p ≡ p(c). Then,

R0(x
∗
>0, f

β) = (1− p)f(0, 1) + p(1− p)f(0, 2) + p2(1− p)f(0, 3) + . . .

= (1− p) · 2 + p(1− p)(2− βp) + p2(1− p)(1 + p+ p2 + . . . )(2 + β(1− p))

= 2− 2p + 2p− 2p2 − βp2(1− p) + 2p2 + βp2(1− p) = 2 = R0(x
∗
>0, f

ES).

13See Lemma 3 in the Appendix for a formal proof.
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Similarly,

R1(x
∗, fβ) = (1− p)f(1, 2) + p(1− p)f(1, 3) + p2(1− p)f(1, 4) + . . .

= (1− p)(1 + βp) + p(1− p)(1 + p+ p2 + . . . )(1 − β(1− p))

= 1− p+ βp(1− p) + p− βp(1− p) = 1 = R1(x
∗, fES).

The other agents are unaffected by the change. Therefore, for each agent i, we have Ri(x
∗
>i, f

β) =

Ri(x
∗
>i, f

ES). As both x∗ and f(i, i), for each i, are unchanged, we have Ui(x
∗, fβ) = Ui(x

∗, fES) =

Ûi(x
∗
i , f

ES) = Ûi(x
∗
i , f

β). Thus, (x∗, fβ) is an equilibrium. ◦

In spite of what Example 5 shows, there are other aspects in which the equal split rule fES is

unique. First, it the only rule that supports x∗ in equilibrium for which no information about the

success rate p(·) is used. This seems particularly convenient for practical implementation because,

by choosing fES to implement the socially optimal profile x∗, an external benevolent planner can

be completely unaware of the actual success rate and still be sure to induce the right equilibrium

(as long as p(·) is known by the agents). Moreover, fES is also the only rule that supports x∗ for

which no agent experiences a decrease in payoff at some point in the process. To show this, take

any rule f ∈ F . Then,

R0(x
∗
>0, f) = (1− p)f(0, 1) + p(1− p)f(0, 2) + p2(1− p)f(0, 3) + . . .

≥ (1 + p+ p2 + . . . )(1− p)f(0, 1) = f(0, 1) = 2,

where the inequality is strict if f(0, i) > f(0, 1) for some i > 1. Once we have pinned down agent

0’s payoffs, we can turn to agent 1. We have

R1(x
∗, f) = (1− p)f(1, 2) + p(1− p)f(1, 3) + p2(1− p)f(1, 4) + . . .

≥ (1 + p+ p2 + . . . )(1− p)f(1, 2) = f(1, 2) = 3− f(0, 2) = 1,

where, again, the inequality is strict if f(1, i) > f(1, 2) for some i > 2. Proceeding this way, we find

that f = fES.

Finally, we note that common to all the rules that support x∗ is that f(i, i) = 0 for all i > 0.

Intuitively, rules for which f(i, i) > 0, for some i > 0, reduce the “budget” for incentivizing agents:

in this sense, f(i, i) can be viewed as “dead capital” that could have been used to incentivize the

creation of more value.

4.2 Initiator optimal equilibrium

We now turn to the other optimality criterion we consider, and ask whether there exists an equi-

librium profile that maximizes the initiator’s expected payoff U0, among all equilibrium profiles.
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Imagine, for instance, that the initiator is allowed to choose the rule ex ante to her own advantage,

setting the process in motion herself. Intuitively, one would expect that the initiator would choose

a rule for which the expected value of the subgame starting from agent 1 is maximized, and in-

deed, it turns out that initiator optimal profiles will have the form of near-constant profiles, i.e.,

(x0, c, c, . . . ) where all agents invest the same, except possibly the initiator herself.

We therefore need to examine the conditions under which near-constant profiles can be sup-

ported. Proposition 3 does exactly that. Notice, up front, that the condition is satisfied, for instance,

when x0 ≥ c.

Proposition 3 (Flattening to a near-constant profile can maintain equilibrium). Let x ∈ X with

x0 > 0 be an equilibrium profile and define c ≥ 0 and x̄ = (x0, c, c, . . . ) ∈ X such that V(x̄) = V(x).

Then, x̄ can be supported if and only if

g(c)

p(c)
− 2 ≤ g(x0)

p(x0)
.

Proof. Let x be an equilibrium profile with x0 > 0. By Lemma 6 in the Appendix, a generic

near-constant profile (x0, c, c, . . . ) can be supported if and only if

g(c)

p(c)
− 2 ≤ g(x0)

p(x0)
≤ 1− g(c)

1 − p(c)
.

Define now x̄ = (x0, c, c, . . . ) with c ≥ 0 such that V(x̄) = V(x). To complete the proof, it remains

to show that the upper bound is satisfied. That is, if x̄ = (x0, c, c, . . . ) is created on the basis of an

equilibrium profile x, then
g(x0)

p(x0)
≤ 1− g(c)

1− p(c)
.

To show that, note that, as x is an equilibrium profile, it follows from Lemma 2 that V(x)−1 ≥
G(x). By Proposition 2, G(x) ≥ G(x̄). Hence,

G(x̄) = g(x0) +
p(x0)g(c)

1− p(c)
≤ G(x) ≤ V(x)− 1 = V(x̄)− 1 =

p(x0)

1− p(c)
.

Thus,

g(x0) ≤
p(x0)(1− g(c))

1− p(c)
,

as desired.

If the inequality in the statement of Proposition 3 is not satisfied, then flattening an equilibrium

profile results in a profile that cannot be supported. Example 6 illustrates this point.
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Example 6 (Flattened equilibrium profile cannot be supported). Let the profile x be supported

by the rule f defined below. As f is symmetric for agents 2, 3, . . . , we have x2 = x3 = . . . , which

we use in the equilibrium condition for i ≥ 2 below.

f =





























1

2 0

0 3 0

0 2 2 0

0 2 1 2 0

0 2 1 1 2 0
...





























=⇒ g(xi)

p(xi)
= Ri(x>i, f)− f(i, i) =



















1− 2p(x1) for i = 0

3− p(x2) for i = 1

2− p(x2) for i ≥ 2

Let the success rate be given by14

p(x) =

√
x

1 +
√
x
.

This yields x2 ≈ .1777, x1 ≈ .3106, and x0 ≈ .0131. The near-constant profile x̄ = (x0, c, c, . . . ) with

V(x̄) = V(x) has c ≈ .2588. Then g(x0)/p(x0) ≈ .2842 < .3160 ≈ g(c)/p(c) − 2. By Proposition 3,

x̄ cannot be supported. ◦

We are now ready to state our third main result.

Theorem 3. There exists a unique initiator optimal equilibrium profile. It is the near-constant

profile x◦ = (x◦0, c
◦, c◦, . . . ), where c◦ and x◦0 are such that g′(c◦)(1− p(c◦)) = p′(c◦)(1− g(c◦)) and

g(x◦0)(1 − p(c◦)) = p(x◦0)(1− g(c◦)). Moreover, x◦ is supported by fα, with α = g(c◦)
p(c◦) .

Proof. Let x be an equilibrium profile. Then, the initiator’s payoff is 1 + g(x0)− x0. By definition,

g(0) = 0. By construction, g(x0) > x0 for x0 > 0. As g is convex, it follows that, among equilibrium

profiles, the initiator’s payoff is increasing in x0. Next, we argue that, for the purpose of maximizing

the initiator’s equilibrium payoff, it suffices to consider near-constant profiles (x0, c, c, . . . ) with

x0 ≥ c.

Let x be an arbitrary equilibrium profile and define x̄ = (x0, c, c, . . . ) with V(x̄) = V(x).

Moreover, let y be a constant profile such that V(x̄) = V(y). If x0 ≥ c, then, by Proposition 3, x̄

can be supported. If instead x0 < c, then y > x0, and by Proposition 3, y can be supported. In this

way, the initiator’s payoff is at least as high at the equilibrium profiles x̄ and y as at x. Hence, for

the purpose of maximizing the initiator’s equilibrium payoff, it suffices to consider profiles of the

form (x0, c, c, . . . ) with x0 ≥ c.

14Strictly speaking, p is not bounded by 1 − ε here. The function chosen here is relatively easy to work with, but
the same intuition would hold for instance for p̃(x) = (1− ε)p(x).
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By Lemma 6 in the appendix, a profile (x0, c, c, . . . ) with x0 ≥ c can be supported in equilibrium

if and only if

1

p′(x0)
=

g(x0)

p(x0)
≤ 1− g(c)

1− p(c)
.

As p is concave in x0, p
′ is decreasing and 1/p′ is increasing in x0. Therefore, we must have equality

at an initiator-optimal profile, as otherwise we could increase x0 and make the initiator better off.

Similarly, the right-hand side must be maximized with respect to c, as otherwise we could find a

different “continuation” c′ to support x′0 > x0 such that (x′0, c
′, c′, . . . ) could be made an equilibrium

under which the initiator is better off.

To conclude, let d be such that g(d) = 1. By Lemma 3 in the appendix, 1−g(c)
1−p(c) is single-peaked

on [0, d]. The maximizer c then satisfies

p′(c)(1 − g(c)) = g′(c)(1 − p(c)),

which is precisely the condition defining c◦. The level x◦0 then follows from

g(x◦0)

p(x◦0)
=

1− g(c◦)

1− p(c◦)
.

As in the case of the socially optimal equilibrium profile, the initiator optimal profile x◦ can

be supported by multiple rules: even multiple rules for which no agent experiences a decrease in

payoff at some point in the process (see also Hougaard et al., 2022). Common to all the supporting

rules is their dependence of the success rate. Yet, as p is common knowledge among the agents, the

initiator can easily construct the appropriate rule for implementation.

The example below illustrates the set of potential near-constant equilibrium profiles as well as

compare the socially, and initiator optimal profiles.

Example 7. (Illustration of Theorems 2 and 3). Consider the specific success rate

p(x) =

√
x

1 +
√
x
.

Figure 2 illustrates the set of near-constant equilibrium profiles as those under the red curve and

above the blue curve (in particular, notice that x̄, from Example 6 above, is below the blue curve

and hence cannot be supported). The red curve corresponds to the constraint V(x) − 1 ≥ G(x).

The blue curve corresponds to the constraint given in Proposition 3: The intersection between the

red and blue curve is at the value c such that g(c)
p(c) = 3− 2p(c).

The socially optimal profile c∗ is determined by the tangent between the red curve and the

highest level curve of W(x0, c, c, . . . ). In particular, we get x0 = c = c∗. As the initiator’s payoff is
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increasing in her own investment, x0, the initiator optimal profile x◦ is determined by the value of

c◦ that maximizes x0 on the red curve. Clearly, x◦0 > c◦.

x̄c∗c◦
c

x0

Figure 2: The set of equilibrium near-constant profiles (x0, c, c, . . . ) are above the blue and below

the red curve. The success rate is p(x) =
√
x

1+
√
x
.

5 Optimal rules with endogenous budget constraints

In the baseline model studied so far, agents are not budget constrained and can make arbitrar-

ily large investments. Indeed, as Example 2 showed, even equilibrium investments might not be

bounded. Yet, there may be situations where agents have limited access to funds. In this section,

we take this to its extreme and assume that the only funds that an agent has available for invest-

ment are the ones she has been awarded through the value-creating process. We model this through

the payments f(i, i), so positive values of f(i, i) now become essential as a budget limitation. That

is, xi ≤ f(i, i). And, as these funds are set aside for agent i throughout the process, in effect, we

restrict attention to rules such that f(i, i) ≤ f(i, j) for all i and j > i.

Now, the concepts defined in Section 2 naturally extend to this scenario. The profile x is a

self-financed equilibrium profile in the game induced by the rule f ∈ F if, for each agent i,

the investment xi ≤ f(i, i) ≤ f(i, j) maximizes Ui(x≥i, f) given the investment x≥i of those who

succeed i under f .

Revisiting Lemmas 1 and 2 for the case of self-financed equilibria, we first notice that now we

may have an equilibrium with corner solution xi = f(i, i) such that the first order condition is not

satisfied. In this case, i is “under-investing” given her expected payoff. That is, Ri(x>i, f)−f(i, i) ≥
g(xi)
p(xi)

. Thus, in a self-financed equilibrium, V(x) ≥ V̂(x, f). Moreover, as f(i, i) ≥ xi, we now have

V(x) ≥ V̂(x, f) ≥ 1 + p(x0)I(x>0) +G(x) ≥ I(x) +G(x).

In terms of socially optimal equilibria for our baseline model, Theorem 2 showed that supporting
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rules are designed to make all agents face identical investment decisions. But in the present case of

budget constraints, there is a significant difference between the initiator and the successive agents.

Regardless of the rule, the initiator can invest up to f(0, 0) = 1 by construction, while all other

agents will generally face a tighter budget constraint f(i, i) < 1. As such, we see that the socially

optimal self-financed equilibrium has a more similar structure to the initiator-optimal equilibrium

without budget constraints from Theorem 3 (which was a near-constant profile where the initiator

invests more).

Theorem 4. There exists a welfare-maximizing self-financed equilibrium profile. It is a near-

constant profile xs = (xs0, c
s, cs, . . . ) determined by the program

max
x0,c

W(x0, c, c . . . ) = 1− x0 +
p(x0)(1 − c)

1− p(c)
such that

g(x0)

p(x0)
=

1− c− g(c)

1− p(c)
,

Moreover, xs is supported by the rule fα,γ with α = g(cs)
p(cs) + cs and γ = cs.

Proof. We start showing that the search for welfare-maximizing self-financed equilibria can be

restricted to near-constant and constant profiles. Let x be a self-financed equilibrium under f . Let

c ≥ 0 and x̄ = (x0, c, c, . . . ) be such that V(x̄) = V(x). We now distinguish two cases, depending on

whether the initiator’s investment is above or below the (constant) investment all successors make

(in the near-constant profile).

Part 1: Suppose that x0 ≥ c. Then,

V(x̄) = V(x) ≥ V̂(x, f) ≥ 1 + p(x0)I(x>0) +G(x) ≥ 1 + p(x0)I(x̄>0) +G(x̄).

Equivalently,

1 +
p(x0)

1− p(c)
≥ 1 + p(x0) ·

c

1− p(c)
+ g(x0) +

p(x0)g(c)

1− p(c)
.

Hence,

g(x0)

p(x0)
≤ 1− g(c) − c

1− p(c)
.

By Lemma 6 in the appendix, x̄ can also be supported in a self-financed equilibrium.

By Proposition 1, I(x̄) ≤ I(x) and, thus, W(x̄) ≥ W(x).

Part 2: Suppose that x0 < c. Define now c̃ ≥ 0 and redefine x̄ ≡ (c̃, c̃, . . . ) such that, again,

V(x̄) = V(x) (that is, flatten the profile fully now). As V is monotonic, we have x0 < c̃ < c. By

Proposition 1, I(x̄) ≤ I(x). That is,

c̃+ p(c̃)I(x̄>0) ≤ x0 + p(x0)I(x>0).
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As x0 < c̃,

p(c̃)I(x̄>0) < p(x0)I(x>0).

It follows now that

V(x̄) = V(x) ≥ V̂(x, f) ≥ 1 + p(x0)I(x>0) +G(x) ≥ 1 + p(c̃)I(x̄>0) +G(x̄).

Equivalently,

1

1− p(c̃)
≥ 1 + p(c̃) · c̃

1− p(c̃)
+

g(c̃)

1− p(c̃)
.

Equivalently,

1 ≥ 1− p(c̃) + p(c̃)c̃+ g(c̃).

Rearranging,

g(c̃)

p(c̃)
≤ 1− c̃.

By Lemma 6 in the appendix, x̄ can also be supported in a self-financing equilibrium. By Proposi-

tion 1, I(x) ≥ I(x̄) and, thus, W(x) ≤ W(x̄).

Part 3: From Parts 1 and 2, we conclude that, for any self-financed equilibrium profile x, the

near-constant x̄ = (x0, c, c, . . . ) with V(x̄) = V(x) can also be supported in self-financed equilibrium

and is such thatW(x̄) ≥ W(x). That is to say, for the purpose of maximizing W, it suffices to restrict

to near-constant profiles. For x̄ = (x0, c, c, . . . ), we have

W(x̄) = 1− x0 +
p(x0)(1− c)

1− p(c)
,

which is precisely the objective function of the program. By Lemma 6 with γ = c, x̄ = (x0, c, c, . . . )

can be supported if and only if

g(c)

p(c)
+ c− 2 ≤ g(x0)

p(x0)
≤ 1− g(c) − c

1− p(c)
.

As g(c) ≥ 0, we have

1− c

1− p(c)
≥ 1− g(c) − c

1− p(c)
≥ g(x0)

p(x0)
.
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Now, differentiate W(x̄) with respect to x0:

p′(x0) ·
1− c

1− p(c)
− 1 = p′(x0) ·

(

1− c

1− p(c)
− 1

p′(x0)

)

= p′(x0) ·
(

1− c

1− p(c)
− g(x0)

p(x0)

)

≥ 0.

Hence, W(x̄) is non-decreasing in x0. As g(x0)/p(x0) is increasing in x0, it suffices to restrict to

profiles of the form x̄ = (x0, c, c, . . . ) such that g(x0)/p(x0) = (1 − g(c) − c)/(1 − p(c)). This is

precisely the constraint of the program.

The example below summarizes and compares optimal equilibrium profiles with, and without,

budget constraints.

Example 8. (Illustration of Theorem 4) Consider (again) the specific success rate

p(x) =

√
x

1 +
√
x
.

Compared to Figure 2, the corresponding dashed blue and red curves resulting from adding the

budget constraint xi ≤ f(i, i) are shown in Figure 3. It is clear that both curves become “steeper”

by adding the constraint, so the set of potential near-constant equilibria is effectively reduced. In

particular, we see that the social optimum is changed as c∗ can no longer be supported. We now

get that welfare is optimized at xs0 ≈ .0815 and cs ≈ .0724. So now, in the social optimum, the

initiator will invest strictly more than the other agents, as illustrated by adding the level curves of

W(x0, c, c, . . . ). Thus, note that, in both cases we have x0 ≥ c: it is simply inefficient for the initiator

to invest less than the other agents, even though such profiles can be supported in equilibrium.

c∗cs
c

x0

Figure 3: The set of equilibrium near-constant profiles (x0, c, c, . . . ) with budget constraints. Com-
paring socially optimal equilibrium profiles.
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6 Conclusions

We have studied in this paper the design of optimal incentives in sequential processes by means of

a stylized model of successive incentives. In our model, an initiator invests resources, for instance

to recruit a follower, who generates a value, and who can do the same afterwards to continue the

process. There exists a common success rate, which is increasing in the investment. Whenever a

follower is recruited, it generates a value. Reward rules specify how the generated value in each step

of the process is distributed, and thus induce a game among the agents. Our model is general enough

to permit a wide variety of reward rules, accommodating multiple options to design successive

incentives.

The main message we can take away from our results is that remarkably simple reward rules

suffice to induce optimal investment behavior. Such rules treat all agents identically, except possibly

for the initiator. While the designer of the reward rule has the option to construct very complicated

incentive structures that may involve rewards conditional on reaching future stages in the process

and treat agents very differently, this turns out to be unnecessary (albeit such rules may achieve

optimal incentives as well).

This conclusion echoes findings in contract theory where it has long been argued that real

world schemes are surprisingly uniform across a wide range of circumstances, and we observe

a prevalence of fairly simple contracts (e.g., Hart and Holmström, 1987; Chiappori and Salanié,

2003). The literature has also argued that simplicity may arise from a desire to offer a contract

that is robust to informational assumptions (e.g., Bergemann and Morris, 2005; Carroll, 2019).

And, more recently, that single contracts may be optimal in environments with adverse selection

and moral hazard when agents are risk-neutral and have limited liability (e.g., Gottlieb and Moreira,

2022).

To conclude, we also mention that our basic model is sufficiently general to allow for multiple

interpretations. For instance, we stress that our model can be interpreted as one in which agents

collaborate solving individual tasks sequentially. More precisely, each agent makes an effort (invests)

to (independently) solve a task and generates a reward if the task is successfully solved. The higher

the investment, the higher the probability of success (up to a certain common bound). And an

agent is granted the chance to solve the task if and only if all predecessors successfully solve their

own tasks. Then the issue is to design optimal contracts to allocate the rewards so that the overall

amount of rewards obtained is maximized, or so that the expected payoff of the initial agent is

maximized. This interpretation helps connect our results to recent contributions in the literature

on the design of optimal investment inducing mechanisms in teamwork (e.g., Bernstein and Winter,

2012; Winter, 2004, 2006; Halac et al., 2022).
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7 Appendix

Various versions of Lemma 3 are used throughout the analysis. For the first-best investment and

the socially optimal equilibrium, we use h(c) = c; for the initiator-optimal equilibrium, h(c) = g(c);

and for the socially optimal self-financed equilibrium, h(c) = g(c) + c. The corresponding value

d ≥ 0 is defined through h(d) = 1.

Lemma 3. Let d ≥ 0 and h : [0, d] → [0, 1] be differentiable, convex, and not identical to 1. Then

q(c) ≡ 1− h(c)

1− p(c)

is single-peaked on [0, d].

Proof. Upon differentiating,

q′(c) =
p′(c) · (1− h(c)) − h′(c) · (1− p(c))

(1− p(c))2
.

As p(c) < 1, q is increasing whenever p′(c) · (1− h(c))− h′(c) · (1− p(c)) > 0. Upon differentiating

this expression:

(

p′(c) · (1− h(c)) − h′(c) · (1− p(c))
)′

= p′′(c) · (1− h(c)) − p′(c)h′(c)− h′′(c) · (1− p(c)) + p′(c)h′(c)

= p′′(c) · (1− h(c)) − h′′(c) · (1− p(c)).

Here, p′′(c) < 0, h(c) ≤ 1, h′′(c) ≥ 0, and p(c) < 1, so the expression is negative (except possibly

at c = 0 or c = d, where it may equal zero). Hence, q is single-peaked on [0, d].

Lemma 4. For each equilibrium profile x such that x0 = 0, there is an equilibrium profile x̃ such

that x̃0 > x0 and W(x̃) > W(x).

Proof. Let f̃ ∈ F award everything to the initiator: for each j ≥ 0, f̃(0, j) = j. The associated

equilibrium investment profile is x̃ = (x̃0, 0, 0 . . . ). Hence, W(x̃) = 1 + p(x̃0) − x̃0. This is closely

related to the initiator’s optimization problem: the initiator chooses x̃0 to maximize p(x̃0) − x̃0.

Hence, we will have p′(x̃0) = 1, so x̃0 > 0 = x0 and W(x̃) > 1 = W(x).

Lemma 5. Let x = (x0, c, c, . . . ) and y = (y0, c, c, . . . ) be two equilibrium profiles, and λ ∈ [0, 1].

Then, λx+ (1− λ)y is an equilibrium profile.

Proof. Let x and y be two equilibrium profiles and fx and f y their corresponding supporting rules.

It suffices to consider x 6= y and λ ∈ (0, 1). Assume, without loss of generality, that x0 > y0. Fix

28



λ ∈ (0, 1) and define x̃ = λx+ (1 − λ)y, so x̃ = (x̃0, c, c, . . . ) with x0 > x̃0 > y0. Recall that
g(·)
p(·) is

increasing and define further

α =

g(x̃0)
p(x̃0)

− g(y0)
p(y0)

g(x0)
p(x0)

− g(y0)
p(y0)

∈ (0, 1)

and f̃ = αfx + (1− α)f y. That is, f̃(i, j) = αfx(i, j) + (1− α)f y(i, j). For each agent i > 0,

Ri(x̃, f̃)− f̃(i, i) = α(Ri(x, f
x)− fx(i, i)) + (1− α)(Ri(y, f

y)− f y(i, i)) =
g(c)

p(c)
.

That is, x̃i = c is optimal under f̃ . It remains to verify that x̃0 is optimal to agent 0. We have

R0(x̃, f̃) = αR0(x̃, f
x) + (1− α)R0(x̃, f

y).

By design, fx(0, 0) = f y(0, 0) = f̃(0, 0) = 1. Hence,

R0(x̃, f̃)− f̃(0, 0) = α(R0(x̃, f
x)− fx(0, 0)) + (1− α)(R0(x̃, f

y)− f y(0, 0)).

As fx and f y support x and y respectively, R0(x, f
x) − fx(0, 0) = g(x0)/p(x0) and R0(y, f

y) −
f y(0, 0) = g(y0)/p(y0). Hence, as desired,

R0(x̃, f̃)− f̃(0, 0) = α · g(x0)
p(x0)

+ (1− α) · g(y0)
p(y0)

=
g(x̃0)

p(x̃0)
.

Next, we turn to the characterization result. This can be understood as follows. Fix the invest-

ment c ≥ 0 for agents i > 0. In Part I of the proof, we show that there is a lower and an upper

bound, say x0 and y0, on agent 0’s investment for the profile to be supportable. In Part II, we

construct rules to support x = (x0, c, c, . . . ) and y = (y0, c, c, . . . ); by Lemma 5, all intermediate

x̃ = (x̃0, c, c, . . . ) can also be supported. The construction will be based on the following four types

of rules:

29



f1 =



















1

2− γ γ

3− α− γ α γ

4− 2α− γ α α γ
...



















f2 =



















1

α− γ 2− α+ γ

α− γ 2 1− α+ γ

α− γ 2 1 1− α+ γ
...



















f3 =



















1

2− γ γ

2− β − γ 1 + β γ

2− β − γ 1 1 + β γ
...



















f4 =























1

β 2− β

0 3− γ γ

0 3− β − γ 1 + β γ

0 3− β − γ 1 1 + β γ
...























ℓ R0(x, f
ℓ)− f ℓ(0, 0) Ri(x, f

ℓ)− f ℓ(i, i)

1
1− αp(c)

1− p(c)
− γ α− γ

2 α− 1− γ α− γ

3 1− βp(c)− γ 1 + β(1− p(c))− γ

4 β(1− p(c)) − 1 1 + β(1− p(c))− γ

Table 1: Expected returns from investment for each rule f ℓ. Agent i refers to i > 0.

Table 1 summarizes the expected returns from investment. Specifically, for agent 0 at f1 (using

that 1 + 2p+ 3p2 + · · · = 1/(1 − p)2), we have

R0(x, f
1)− f1(0, 0) =

1− αp(c)

1− p(c)
− γ.

In all other cases, we have f ℓ(i, i+ 2) = f ℓ(i, i+ 3) = . . . ; then

Ri(x, f
ℓ) = (1− p(c))f ℓ(i, i + 1) + p(c)f ℓ(i, i+ 2).

The parameters α and β will be set to meet the equilibrium conditions Ri(x, f)−f(i, i) = g(xi)/p(xi)
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for i > 0. This immediately gives α = g(c)/p(c) − γ for f1 and f2, whereas

1 + β(1− p(c))− γ =
g(c)

p(c)
=⇒ β =

g(c)

p(c)
− 1− g(c) − γ

1− p(c)
,

for f3 and f4. Hence, at this point we have designed the relevant rules and identified the parameter

values for which the equilibrium conditions are satisfied for all agents i > 0. In Part II of the proof,

it remains to check that agent 0 also optimizes accordingly and that the rules are well-defined (they

are balanced by construction, but we must verify that values are non-negative).

Lemma 6. Let x = (x0, c, c, . . . ) ∈ X with x0 > 0 and γ ≥ 0. Then there is f ∈ F such that

f(i, i) ≥ γ for each i ≥ 0, supporting x if and only if

g(c)

p(c)
+ γ − 2 ≤ g(x0)

p(x0)
≤ 1− g(c) − γ

1− p(c)
.

Proof. Part I: =⇒ Let x = (x0, c, c, . . . ) be an equilibrium such that x0 > 0 and f be its

supporting rule such that f(i, i) ≥ γ for each i ≥ 0. We aim to show that the two inequalities hold.

As f(i, i) ≥ γ,

V̂(x, f) = f(0, 0) + p(x0)f(1, 1) + p(x0)p(c)f(2, 2) + · · · + g(x0) + p(x0)g(c) + p(x0)p(c)g(c) + . . .

≥ f(0, 0) + p(x0)f(1, 1) + g(x0) + p(x0)(g(c) + p(c)γ)(1 + p(c) + p2(c) + . . . )

= 1 + p(x0)f(1, 1) + g(x0) + p(x0)(g(c) + p(c)γ)V(c, c, . . . ).

As f supports x, by Lemma 2, V̂(x, f) ≤ V(x) = 1 + p(x0)V(c, c, . . . ). Hence,

p(x0)f(1, 1) + g(x0) + p(x0)(g(c) + p(c)γ)V(c, c, . . . ) ≤ p(x0)V(c, c, . . . ).

Rearrange, divide by p(x0), and use that V(c, c, . . . ) = 1/(1 − p(c)) and f(1, 1) ≥ γ:

g(x0)

p(x0)
≤ (1− g(c) − p(c)γ)V(c, c, . . . )− f(1, 1) =

1− g(c) − p(c)γ

1− p(c)
− f(1, 1) ≤ 1− g(c) − γ

1− p(c)
.

For the second inequality, multiply the penultimate g(x0)/p(x0) ≤ ((1 − g(c) − p(c)γ)/(1 −
p(c))− f(1, 1) by −(1− p(c)) < 0 to flip the inequality:

−(1− p(c)) · g(x0)
p(x0)

≥ (1− p(c))f(1, 1) + g(c) + p(c)γ − 1

⇐⇒ p(c) · g(x0)
p(x0)

≥ (1− p(c))f(1, 1) + g(c) + p(c)γ − 1 +
g(x0)

p(x0)
.

For the final term, the equilibrium condition asserts that g(x0)/p(x0) = R0(x, f) − f(0, 0). By

construction, R0(x, f) = (1−p(c))f(0, 1)+p(c)(1−p(c))f(0, 2)+ · · · ≥ (1−p(c))f(0, 1), f(0, 0) = 1,
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and f(0, 1) + f(1, 1) = 2. Hence,

g(x0)

p(x0)
= R0(x, f)− f(0, 0) ≥ 1− 2p(c) − (1− p(c))f(1, 1).

Using this expression for the final term above, we have

p(c) · g(x0)
p(x0)

≥ g(c) + p(c)γ − 2p(c).

Divide by p(c) to obtain the desired inequality.

Part II: ⇐= Let γ ≥ 0 and x̃ = (x̃0, c, c, . . . ) with x̃0 > 0 satisfy the inequalities of the

statement. Then 1 − g(c) − γ > 0. We will show that x̃ is an equilibrium profile. Given c, the two

inequalities provide bounds on agent 0’s investment: the lower bound is x0 such that g(x0)/p(x0) =

max{g(c)/p(c) + γ − 2, 0}; the upper is y0 such that g(y0)/p(y0) = (1− g(c)− γ)/(1− p(c)). Given

that g(·)/p(·) is increasing, we have x0 ≤ x̃0 ≤ y0. In what follows, we construct rules to support

x = (x0, c, c, . . . ) and y = (y0, c, c, . . . ); by Lemma 5, x̃ is supported by a combination of these

rules. We refer to Table 1 for a summary of the expected investment returns Ri(x, f
ℓ) − f ℓ(i, i).

Recall that we have identified the parameter values α and β for which the equilibrium conditions

are satisfied for all agents i > 0; it remains to check that also agent 0 optimizes at x0 and that

f(i, j) ≥ 0 everywhere.

Below, we consider the two natural cases corresponding to the bounds (Upper and Lower),

which then are further subdivided in two parts each (Left and Right) depending on whether

g(c) ≤ p(c). In terms of Figure 3, Upper refers to the red dashed curve and Lower to the blue

dashed curve (and horizontal axis); Left refers to the left-most portion of the graph left of the

dashed vertical line at c∗.

Upper: Suppose that

g(x0)

p(x0)
=

1− g(c) − γ

1− p(c)
.

We further subdivide in two cases.

Upper left: Suppose that g(c)/p(c) + γ ≤ 1.

In this case, use the rule f1 with parameter α = g(c)/p(c) + γ. As α ∈ [0, 1], the rule is

well-defined. Moreover, as desired, agent 0’s equilibrium condition is satisfied:

R0(x, f
1)− f1(0, 0) =

1− αp(c)

1− p(c)
− γ =

1− g(c)− γ

1− p(c)
=

g(x0)

p(x0)
.

Upper right: Suppose that g(c)/p(c) + γ ≥ 1. In this case, use the rule f3 with
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parameter

β =
g(c)

p(c)
− 1− g(c) − γ

1− p(c)
=

g(c)

p(c)
− g(x0)

p(x0)
.

Note that

g(c)

p(c)
− 1− g(c) − γ

1− p(c)
=

g(c)/p(c) − g(c) − 1 + g(c) + γ

1− p(c)
=

g(c)/p(c) + γ − 1

1− p(c)
.

Hence, β ≥ 0. The second underlying assumption maintained throughout the proof is

that

g(x0)

p(x0)
≥ g(c)

p(c)
+ γ − 2,

so β ≤ 2− γ ≤ 2 and the rule is well-defined. Then

R0(x, f
3)− f3(0, 0) = 1− βp(c) − γ = 1− p(c) ·

(

g(c)

p(c)
− 1− g(c) − γ

1− p(c)

)

− γ

=
1− g(c) − γ

1− p(c)
=

g(x0)

p(x0)
.

Hence, as desired, agent 0’s equilibrium condition is satisfied.

Lower: Suppose that

g(x0)

p(x0)
= max

{

g(c)

p(c)
+ γ − 2, 0

}

.

We further subdivide in two cases.

Lower right: Suppose that g(c)/p(c) + γ ≥ 1. In essence, we will address two cases

at once here: if g(c)/p(c) + γ ≤ 2, then x0 = 0; if g(c)/p(c) + γ ≥ 2, then g(x0)/p(x0) =

g(c)/p(c) + γ − 2 ≥ 0. Follow the case Upper right with the same β but the rule f4.

By the underlying condition g(c)/p(c) + γ − 2 ≤ (1− g(c)− γ)/(1 − p(c)), we have

β =
g(c)

p(c)
− 1− g(c) − γ

1− p(c)
≤ 2− γ ⇐⇒ f4(1, 1) = 2− β ≥ γ.

Moreover,

R0(x, f
4)−f4(0, 0) = β(1−p(c))−1 =

g(c)

p(c)
−g(c)− (1−g(c)−γ)−1 =

g(c)

p(c)
+γ−2.

It is again clear that, if g(c)/p(c) + γ ≥ 2, then agent 0’s equilibrium condition is

satisfied.
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In the other possible case, g(c)/p(c) + γ < 2, we have set x0 = 0 and the above is

negative. Although the first-order condition does not bind for agent 0, it is still correct

that x0 = 0 is optimal as the expected return is negative.

Lower left: Suppose that g(c)/p(c) + γ ≤ 1. In this case, x0 = 0. Use the rule

f2 with parameter α = g(c)/p(c) + γ ≤ 1. Hence, α − γ = g(c)/p(c) ≥ 0. Then

R0(x, f
2)− f2(0, 0) ≤ 0. As in Lower right, agent 0’s first-order condition no longer

binds but it is indeed optimal to set x0 = 0.

As noted at the start of Part II, it now follows from Lemma 5 that x̃ is an equilibrium

profile.
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Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006): “Who’s who in networks. Wanted:

The key player,” Econometrica, 74, 1403–1417.

Bergemann, D. and S. Morris (2005): “Robust mechanism design,” Econometrica, 1771–1813.

Bernstein, S. and E. Winter (2012): “Contracting with heterogeneous externalities,” American

Economic Journal: Microeconomics, 4, 50–76.
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