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1 Introduction

In many economic environments, a sender provides information to several receivers but

can match with at most one of these. On labor markets, workers apply to several potential

employers but accept only one job offer. Governments who seek a private company to

extract a natural resource typically provide information and solicit offers from several

companies before assigning the exploitation rights to one of these. Entrepreneurs pitch

their business ideas to different potential investors but often require only a single investor

to fund their company.

In this paper, we study optimal information design for a sender who seeks to persuade

competing receivers. In our model, a sender chooses an information structure which

provides receivers with some information about an underlying state of the world. Upon

observing the information, receivers can make an offer to the sender. The sender can

then accept one of these offers or remain unmatched.

As our main result, we provide a condition – which we call competitiveness – under

which public information design is optimal and the sender does not benefit from being

able to commit to an acceptance decision ex-ante. We prove our result constructively and

characterize the optimal public experiment and the associated equilibrium. In particular,

finding an optimal experiment boils down to solving a linear program.

In practice, public information design may benefit a sender due to the following two

robustness properties. First, under public information design the sender does not need to

worry about the exchange of informative cheap-talk messages between receivers, which

is a potential caveat under private information design. Second, with public information

design, the players play a game under symmetric information so that out-of-equilibrium

beliefs – and potential issues of equilibrium selection – are of no concern.

Similarly, the sequential rationality of the sender’s acceptance decision may viewed as

a desirable robustness property. In particular, it requires less commitment power on the

sender’s side. Informational commitment can fully substitute for decision commitment

in competitive environments.

Our environment captures a generalized first-price auction as the receivers make of-

fers to the sender which they need to fulfill in case the sender picks them. Our model

generalizes the standard first-price auction in that we do not impose a restriction to

quasilinear preferences and moreover allow preferences to depend arbitrarily on the state

of the world, capturing both cases of independent and correlated values. Moreover, we

impose no restrictions on the set of offers which the receivers can make. This allows us

to capture both multidimensional offers as well as situations in which the set of offers is

very small, for instance, because the sender and the winning receiver negotiate the terms
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of the contract later on.

The key condition of competitiveness requires that for each public belief regarding

the state of the world, any offer by any sender can be matched in terms of the sender’s

expected value by some offer from some other receiver. Under this condition, there exist

equilibria in which the receivers are price-takers. If they lower the quality of their offer,

they lose the auction with certainty.

Our paper therefore contributes to the literature on information design in first-price

auctions. Following the seminal contribution of Milgrom and Weber (1982), Bergemann

and Pesendorfer (2007) study the optimal design of information and auction rules if the

bidders’ values are independent and each bidder can only receive information about their

own value. They show that it is optimal to induce asymmetric distributions over the

bidders’ valuations. Thus, as Myerson (1981) suggests, discriminating auctions rules are

optimal. Bergemann, Brooks and Morris (2017) consider fully general forms of informa-

tion design in the context of a standard first-price auction. In their Theorem 2, they

show that the auctioneer’s optimal payoff can be achieved through a public information

structure and an efficient outcome of the auction. We consider a much more general

environment and show that their result extends to all competitive environments.

In two seminal contributions, Kamenica and Gentzkow (2011) and Rayo and Segal

(2010) consider situations in which a sender communicates with a single receiver.1 A

growing literature on information design analyzes situations in which the sender com-

municates with a group of receivers (Bergemann and Morris, 2013, 2016; Taneva, 2019;

Mathevet, Perego and Taneva, 2020). The characterization of optimal information de-

sign is challenging in general. Some contributions – such as Alonso and Camara (2016)

focus on public experiments in a voting context. Under unanimity voting, Bardhi and

Guo (2018) show that public and private persuasion coincide. For other voting rules,

they focus on experiments that generate conditionally independent signals. Arieli and

Babichenko (2019) show that private information design outperforms public informa-

tion design in a context where receivers make independent, binary decisions. In their

context, private and public information design may only be equivalent if receivers are

homogeneous. We contribute to this literature by showing that public information design

performs as well as private information design in our setting with competing receivers.

We add the analysis regarding the role of decision commitment which naturally arises in

our setting.

The remainder of this paper is organized as follows. In Section 2, we introduce our

model. In Section 3, we state the main result. Section 4 shows how we arrive at this

result and Section 5 concludes.

1Kolotilin (2018) studies this setup using a linear programming approach, as we do in this paper.
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2 Model

2.1 Environment

There is one sender and a finite set I = {1, . . . , n} of receivers with n ≥ 2. The sender

can match with at most one receiver. Prior to the matching, each receiver i makes an

offer ai ∈ Ai that influences the sender’s value from matching with receiver i. We denote

a receiver’s decision not to offer a match by a0 ∈ Ai. The sender can also decide to

remain unmatched which we also denote by a0. The match payoffs of the sender and

the receivers depend also on an unknown state of the world ω ∈ Ω and are given by the

functions

u : Ω× A→ R and vi : Ω× A→ R,

where A ≡ ∪ni=1Ai ∪ {a0} is the set of possible outcomes of the matching. The payoff of

any unmatched player is zero, i.e., for all ω ∈ Ω, u(ω, a0) = 0 and vi(ω, a) = 0 for a 6∈ Ai
or a = a0. Finally, we assume Ω and Ai to be finite sets for all i ∈ I.

2.2 Information Structure

All players share a common prior p ∈ int(∆Ω) regarding the state of the world. The

sender can generate additional information about ω by selecting a Blackwell experiment

σ = (S, µ) where S is a set of signal realizations with the product structure S = S0 ×
S1 × · · · × Sn and µ : Ω→ ∆S assigns to each state ω a conditional distribution over S.

The sender only observes the signal realization s0 ∈ S0 and receiver i observes only the

signal realization si ∈ Si. We assume all sets S0, S1,. . . , Sn to be finite but sufficiently

large. We denote the set of all such Blackwell experiments by Σ. An experiment is public

if it provides the same information to the sender and all receivers, or – formally – if for

any s ∈ S, each element si of s is a sufficient statistic of the whole vector s.

2.3 Base Game

For a given experiment σ = (S, µ), the players play the following Bayesian game:

t=0: A signal realization s ∈ S realizes.

t=1: Each receiver i observes si ∈ Si and chooses an offer ai ∈ Ai.

t=2: The sender observes s0 ∈ S0 and the vector of offers a ∈ A ≡ ×ni=1Ai. The sender

selects one of the offers or chooses a0.
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We denote a strategy and a belief of receiver i be αi : Si → ∆Ai and ρi : Si →
∆(Ω × S−i). A strategy and a belief of the sender are given by β : S0 ×A → ∆A and

ρ0 : S0 ×A→ ∆(Ω× S−0). The sender’s strategy β needs to satisfy the restriction that

supp(β(s0, a)) ∈ {a0} ∪ a, i.e., the sender can only accept offers that have been made.

We denote by B the set of all strategies of the sender that satisfy this constraint. We

use the equilibrium concept of (weak) perfect Bayesian equilibrium (PBE).2 We denote

by E∗(σ) the set of all PBEs for a given information structure σ, with a generic element

ε∗ = ((α1, . . . , αn, β), (ρ0, . . . , ρn)).

2.4 Benchmark: Decision Commitment

As a benchmark, we also consider the setting in which the sender’s strategy β is fixed and

commonly known before the receivers make an offer. For a given information structure σ

and a fixed strategy β, the receivers play the following game under decision commitment :

t=0: A signal realization s ∈ S realizes.

t=1: Each receiver i observes si ∈ Si and chooses an offer ai ∈ Ai.

t=2: An outcome is chosen according to the strategy β.

We denote the set of all PBEs of the game under decision commitment for the infor-

mation structure σ and the sender strategy β by E∗∗(σ, β). As the game is static,

this set coincides with the set of all Bayes Nash equilibria of the game.3 Let ε∗∗ =

((α1, . . . , αn), (ρ1, . . . , ρn)) be a generic element of E∗∗(σ, β).

2.5 Sender’s Information Design Problem

The sender’s information design problem is to choose an experiment σ which maximizes

the sender’s expected payoff across all possible PBEs under σ. Denote the probability

of a vector of receiver offers a = (a1, . . . , an) for the vector of receiver signal realizations

s−0 = (s1, . . . , sn) by α(a|s−0) ≡
∏n

i=1 αi(ai|si). We can then formally define the sender’s

optimal expected payoff as

U∗ ≡ sup
σ∈Σ

sup
ε∗∈E∗(σ)

∑
ω∈Ω

∑
s∈S

∑
a∈A

p(ω)µ(s|ω)α(a|s−0)
∑
a∈A

β(a|s0, a)u(ω, a).

Thus, we assume that for a given experiment σ, the players coordinate on a sender-

optimal equilibrium in the set E∗(σ). We thereby follow the standard approach in the

2For a formal definition, see Definition 9.C.3 in Mas-Colell, Whinston and Green (1995).
3For a formal definition, see Definition 8.E.1 in Mas-Colell et al. (1995).
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literature on information design (Bergemann and Morris, 2013, 2016; Taneva, 2019).4 We

say that an experiment σ is optimal if the sender attains the optimal payoff U∗ under σ

for some equilibrium in E∗(σ).

An upper bound of the sender’s optimal payoff U∗ can be derived from the benchmark

with decision commitment. If the sender can ex-ante commit not only to an experiment

σ but also to a strategy β, the sender can attain at most a payoff of

U∗∗ ≡ sup
σ∈Σ, β∈B

sup
ε∗∗∈E∗∗(σ,β)

∑
ω∈Ω

∑
s∈S

∑
a∈A

p(ω)µ(s|ω)α(a|s−0)
∑
a∈A

β(a|s0, a)u(ω, a).

Of particular interest is the situation in which the optimal payoff U∗ coincides with its

upper bound U∗∗.5 In this case, the sender does not gain from committing ex-ante to

some strategy β.

Definition 1. Decision commitment has no value for the sender if U∗ = U∗∗.

2.6 Competitiveness

We now define a key condition on the environment to which we refer to as competitiveness.

To this purpose, let ι : A→ I ∪ {0} be the function which assigns each outcome in A to

the matched receiver, i.e., we have ι(a) = i ⇐⇒ a ∈ Ai for a 6= a0 and ι(a0) = 0 where

we define v0 : A×∆Ω→ R by v(·, ·) = 0 to simplify notation.

Definition 2. The environment is competitive if for each a ∈ A and q ∈ ∆Ω with∑
ω∈Ω

q(ω)vι(a)(ω, a) ≥ 0

there is a competing offer a′ ∈ A such that (i) ι(a) 6= ι(a′) and (ii) for all a′′ ∈ Aι(a) with∑
ω∈Ω

q(ω)vι(a)(ω, a) <
∑
ω∈Ω

q(ω)vι(a)(ω, a
′′) and

∑
ω∈Ω

q(ω)u(ω, a) >
∑
ω∈Ω

q(ω)u(ω, a′′)

it holds that ∑
ω∈Ω

q(ω)u(ω, a′′) ≤
∑
ω∈Ω

q(ω)u(ω, a′) ≤
∑
ω∈Ω

q(ω)u(ω, a).

Imagine a receiver i who conditional on acceptance of his offer a updates his posterior

regarding the state ω to q. Suppose further that receiver i prefers making the offer a to

4Information design under alternative equilibrium selection criteria is studied in Mathevet et al.
(2020).

5Formally, U∗ ≤ U∗∗ follows from the observation that ((α′1, . . . , α
′
n, β

′), (ρ′0, . . . , ρ
′
n)) ∈ E∗(σ) =⇒

((α′1, . . . , α
′
n), (ρ′1, . . . , ρ

′
n)) ∈ E∗∗(σ, β′).
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not making any offer at the posterior q. Let receiver i now consider to make another offer

a′′ which receiver i would prefer over a at the posterior q. In a competitive environment,

there is another offer a′ made by a different receiver j 6= i which the sender prefers at the

posterior q over any such offer a′′ by receiver i that would hurt the sender at q. Thus, –

provided that receiver j offers a′ – the sender does not accept the offer a′′ by receiver i.

In line with the analogy of competitive markets, receiver i would lose all “demand” if he

were to deviate to an offer that is worse for the sender. In the next section, we show that

the condition of competitiveness is satisfied in many natural applications of the model.

2.7 Applications

Note that the base game of our model shares an important element of the standard

first-price auction in that the receivers fulfill their own offer as the winning bidder in the

first-price auction pays their own bid. However, our model can capture situations in which

the receivers can only make very coarse offers – for instance due to a lack of commitment

– or can make multidimensional offers. Moreover, we allow for a wide set of preferences,

subject to the condition of competitiveness. In the following, we describe three specific

applications of our model, as well as the role of the condition of competitiveness in each

of them.

Labor market platforms Consider n firms who may hire a worker. The worker can

either be a good or a bad fit for each firm. If the worker is a good fit, hiring the worker

generates a payoff of gi > 0 for firm i. Hiring a bad fit leads to a negative payoff of

−`i < 0 for firm i. Not hiring the worker gives a payoff of zero. Independently of the

quality of the fit, the worker has a utility of ui > 0 from being hired at firm i and a

utility of zero from remaining unemployed. A labor market platform, such as Linkedin or

Upwork, can provide the firms with information about the match values captured by the

state ω ∈ ×ni=1{gi,−`i}. The platform seeks to attract more workers to the platform and

therefore maximizes the expected payoff of the worker. After observing the information,

each firm i decides whether to offer a job to the worker, ai = a1
i , or not ai = a0.

Note that this environment is competitive. As the worker always weakly prefers to re-

ceive an offer from some firm, the only deviation a′′ which could satisfy
∑

ω∈Ω q(ω)u(ω, a) >∑
ω∈Ω q(ω)u(ω, a′′) is a′′ = a0. However, at this deviation the firm’s payoff is zero. Thus,

condition (ii) in Definition 2 is void and the environment is competitive.

Exploitation of a natural resource Consider n firms who are interested in exploiting

a natural resource. A government can grant one of these firms the right to exploit the

resource. Firms’ offers consist of a financial payment t to the government as well as
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commitments for environmental protection e. Each firm i’s payoff depends on the offer

ai = (ti, ei) and the state of the world ω which may capture the richness of the reservoir,

the costs of exploiting it, as well as the expenses needed to protect the environment.

The government can provide information about the state by conducting test drills or

commissioning studies regarding the environmental impact of exploiting the resource.

Note that the environment is competitive if it is symmetric, i.e., all firms have access

to symmetric sets of offers Ai = (a1
i , . . . , a

K
i ) and the government’s payoff is symmetric

with respect to the firms’ offers: u(ω, aki ) = u(ω, akj ) for all i, j and k. In this case, a

competing offer is belief-independent and matches the original offer, i.e., c(aki ) = akj such

that the conditions of Definition 2 are trivially satisfied.

Entrepreneurial financing Consider an entrepreneur who seeks an investment from

one of n potential investors to develop a product. The gross payoff from developing the

product depends on the product’s quality which is initially unknown and captured by

the state ω. The entrepreneur can generate information by developing a prototype of

the product. After being presented with the prototype, investors make offers to the en-

trepreneur which specify financial aspects – such as debt and equity – as well as aspects

of authority – such as board representation and voting rights. The environment is com-

petitive if the investor can offer the entrepreneur a buyout at price p. For any other offer

a, a competing offer c(a, q) is then given by a buyout offer where the price p is set equal

to the certainty equivalent of the offer a.6

3 Result

We can now present our result.

Theorem 1. If the environment is competitive, there is a public experiment which is

optimal and decision commitment has no value for the sender.

Under the condition of competitiveness, the sender can rely on public information

provision. Apart from the advantage of being able to focus on a smaller set of experiments,

there are two more benefits. First, the sender does not have to worry about the exchange

of cheap-talk messages between receivers. Second, with public experiments, the players

play a game under symmetric information. Thus, the equilibrium notion does not hinge

on out-of-equilibrium beliefs.

The condition of competitiveness also implies that the sender does not gain from

commitment to an acceptance decision. Thus, commitment to an information structure

6As we assume all sets Ai to be finite, we require that the price p can be chosen from a sufficiently
fine grid on R.
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substitutes decision commitment. In first-price auctions with asymmetric bidders and

an exogenous information structure, it is well-known that the auctioneer benefits from

discriminating between bidders (Myerson, 1981). Such discrimination clearly requires

commitment power at the decision stage as a non-maximal bid may win. As our environ-

ment includes the first-price auction with asymmetric bidders as a special case, we can

deduce that information commitment again alleviates the need for commitment at the

decision stage.

We prove our result constructively and characterize the optimal public experiment

and the associated equilibrium. To this purpose, we find the optimal outcome rule –

a mapping from the set of states Ω to distributions over the set of offers A – as the

solution to a linear program. We then show how to implement this outcome with a

public experiment.

4 Optimal experiment and equilibrium

We prove the result in two steps. First, we establish an upper bound on the sender’s

payoff in the game with decision commitment. This upper bound is the value of a

linear programme. In a second step, we provide a public experiment and an PBE for

this experiment in the game without commitment decision commitment under which the

sender’s expected payoff attains the upper bound. This demonstrates that the given

public experiment is optimal among all experiments and that the sender does not gain

from being able to commit to her strategy in the beginning of the game.

4.1 An Upper Payoff Bound

In this subsection, we derive an upper bound on the sender’s payoff in the game with

decision commitment. To this purpose, it is helpful to define an outcome rule by the

mapping λ : Ω → ∆A which assigns to each state ω ∈ Ω a conditional distribution over

matching outcomes. Note that any given combination of an experiment σ and strategies

for all players induces an outcome rule

λ(a|ω) =
∑
s∈S

∑
a∈A

µ(s|ω)α(a|s−0)β(a|s0, a).

As the payoffs of all players depend only on the state and the matching outcome, an

outcome rule captures all payoff relevant information from the ex-ante perspective. We

denote by Λ the set of all outcome rules.
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Lemma 1. The sender’s optimal expected payoff in the game with decision commitment

U∗∗ is bounded from above by

U∗∗∗ ≡ max
λ∈Λ

∑
ω∈Ω

∑
a∈A

p(ω)λ(a|ω)u(ω, a) s.t.
∑
ω∈Ω

p(ω)λ(a|ω)vι(a)(ω, a) ≥ 0, ∀a ∈ A.

Proof. Fix an information structure σ, a strategy of the sender β, and an equilibrium in

the game with decision commitment ε∗∗ ∈ E∗∗(σ, β). Let λ be the induced conditional

distributions over accepted offers. Take some offer a ∈ A such that λ(a|ω) > 0 for some

ω ∈ Ω. Thus, receiver ι(a) = i has some signal realization si which is send with strictly

positive probability after which the receiver offers a with strictly positive probability, i.e.,

αi(a|si) > 0. As receiver i can guarantee a payoff of zero by not making any offer, i.e.,

by choosing a0 ∈ Ai, the receiver’s expected payoff from offering a needs to be weakly

positive. Thus,∑
ω∈Ω

∑
s−i∈S−i

ρi(ω, s−i|si)
∑

a−i∈A−i

∏
j 6=i

αj(aj|sj)β(a|s0, (a, a−i))vi(ω, a) ≥ 0 (1)

In any equilibrium, the belief of receiver i is determined by Bayes’ rule as

ρi(ω, s−i|si) =
p(ω)µ(si, s−i|ω)∑

ω∈Ω

∑
s−i∈S−i

p(ω)µ(si, s−i|ω)
. (2)

The conditions (1) and (2) imply∑
ω∈Ω

∑
s−i∈S−i

p(ω)µ(si, s−i|ω)
∑

a−i∈A−i

∏
j 6=i

αj(aj|sj)β(a|s0, (a, a−i))vi(ω, a) ≥ 0

As β(a|s0, a) = 0 if a 6∈ a, it follows that∑
ω∈Ω

∑
s−i∈S−i

p(ω)µ(si, s−i|ω)
∑
a∈A

α(a|s−0)β(a|s0, a)vi(ω, a) ≥ 0.

We can now note that this inequality holds across all s′i ∈ Si, as either αi(a|s′i) > 0 for

which the argument above applies, or αi(a|s′i) = 0, such that β(a|s0, a) = 0 as a 6∈ a.
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Thus, ∑
s′i∈Si

∑
ω∈Ω

∑
s−i∈S−i

p(ω)µ(s′i, s−i|ω)
∑
a∈A

α(a|(s′i, s−(0,i)))β(a|s0, a)vi(ω, a) ≥ 0

⇐⇒
∑
ω∈Ω

∑
s∈S

p(ω)µ(s|ω)
∑
a∈A

α(a|(s−(0))β(a|s0, a)vi(ω, a) ≥ 0

⇐⇒
∑
ω∈Ω

p(ω)λ(a|ω)vi(ω, a) ≥ 0.

It follows that the last inequality needs to hold in any mapping λ which is induced by

some experiment and an associated equilibrium in the game with decision commitment.

Thus, U∗∗ ≤ U∗∗∗.

4.2 Attaining the upper bound with a public experiment

We now provide a public experiment and an associated PBE of the game in which the

sender attains the upper payoff bound of U∗∗∗ if the environment is competitive. Clearly,

this requires to implement an outcome rule λ which solves the linear program in Lemma 1.

We start by constructing the public experiment. Say that the offer a ∈ A is in the

support of the outcome rule λ – denoted by supp(λ) – if λ(a|ω) > 0 for some ω ∈ Ω.

Fix some solution λ∗ to the linear program in Lemma 1. We can now define the public

experiment σ∗ = (S∗, µ∗) by

S∗ ≡ {a ∈ A : ∃a ∈ supp(λ∗) s.t. a = a1n+1}

where 1n+1 = (1, . . . , 1) ∈ Rn+1, and µ∗ : Ω→ ∆S∗ with

µ∗(a1n+1|ω) = λ∗(a|ω), ∀(a, ω) ∈ supp(λ∗)× Ω.

In the next step, we define beliefs and strategies for all players which constitute a

PBE under σ∗. Under the public experiment σ∗, the players know the signal realizations

of all other players. Thus, they only need to form a belief regarding the state ω ∈ Ω.

Following the signal realization s∗ = a1n+1, Bayes’ rule implies that all players have the

belief

q∗(·|a) ≡ p(·)λ∗(a|·)∑
ω p(ω)λ∗(a|ω)

.

To specify the receivers’ strategies, we define a mapping which assigns to each pair of an

offer a and a belief q a competing offer a′ as defined in Definition 2. In particular, let

the mapping c : {(a, q) ∈ A ×∆Ω :
∑

ω∈Ω q(ω)vι(a)(ω, a) ≥ 0} → A satisfy the following

two conditions. First, for each pair (a, q) in the domain of c we have ι(c(a, q)) 6= ι(a).
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Second, if D(a) 6= ∅ for

D(a) ≡
{
a′′ ∈ Aι(a) :

∑
ω∈Ω

q(ω)vι(a)(ω, a) <
∑
ω∈Ω

q(ω)vι(a)(ω, a
′′),∑

ω∈Ω

q(ω)u(ω, a) >
∑
ω∈Ω

q(ω)u(ω, a′′)
}
,

then ∑
ω∈Ω

q(ω)u(ω, a′′) ≤
∑
ω∈Ω

q(ω)u(ω, c(a, q)) ≤
∑
ω∈Ω

q(ω)u(ω, a),

and if D(a) = ∅, then c(a, q) = a0. By definition, such a mapping c exists in a competitive

environment. Let the strategy of receiver i be given by

α∗i (a) =


δa if a ∈ Ai,

δc(a,q∗(a)) if c(a, q∗(a)) ∈ Ai,

δa0 otherwise.

Finally, let the sender’s strategy satisfy

β∗(a, a) ∈ ∆{arg max
x∈a

∑
ω∈Ω

q∗(ω|a)u(ω, x)}

with the restrictions that

β∗(a, a) =


δa if a ∈ arg maxx∈a

∑
ω∈Ω q

∗(ω|a)u(ω, x),

δc(a,q∗(a)) if a 6∈ arg maxx∈a
∑

ω∈Ω q
∗(ω|a)u(ω, x)

and c(a, q∗(a)) ∈ arg maxx∈a
∑

ω∈Ω q
∗(ω|a)u(ω, x).

Lemma 2. Given the experiment σ∗, the strategy combination (α∗1, . . . , α
∗
n, β

∗) and the

beliefs ρ∗i = {q∗(a)}a∈supp(λ∗) for all i = 0, 1, . . . , n constitute a PBE and induce the

optimal outcome rule λ∗, thereby generating the optimal expected payoff U∗ = U∗∗∗ for

the sender.

Proof. We want to prove that (α∗1, . . . , α
∗
n, β

∗) and the beliefs ρ∗i = {q∗(a)}a∈supp(λ∗) for all

i = 0, 1, . . . , n constitute a PBE. Note that the information structure σ∗ clearly induces

the beliefs {ρ∗i }i∈I∪{0} by Bayes’ rule. Moreover, the sender’s strategy β∗ is obviously

sequentially rational given the common belief as it puts for all signal realizations and

offer profiles full mass on those offers that are maximizing the sender’s expected payoff

at the joint belief.

Fix a signal realization s∗ = a1n+1. Suppose at first that a 6= a0 and a ∈ Ai. Note
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that the expected payoff of receiver i from offering a is weakly positive by the constraint

of the linear program in Lemma 1. Thus, receiver i does not benefit from offering a0

instead of a. Consider now the possibility for the receiver to make a different offer a′′.

This deviation can only be profitable if it is accepted with strictly positive probability.

Given that some other receiver offers c(a, q∗(a)), the sender only accepts the other offer

if the sender strictly prefers a′′ to c(a, q∗(a)) at the belief q∗(a). The deviation to a′′ can

therefore only be strictly profitable if∑
ω∈Ω

q∗(ω|a)vi(ω, a) <
∑
ω∈Ω

q∗(ω|a)vi(ω, a
′′)

and ∑
ω∈Ω

q∗(ω|a)u(ω, a′′) >
∑
ω∈Ω

q∗(ω|a)u(ω, c(a, q∗(a)))

which contradicts the definition of c. Thus, receiver i has no profitable deviation.

Next, consider receiver k with k 6= i for a 6= a0 or k ∈ I for a = a0. This receiver makes

a payoff of zero as her offer – c(a, q∗(a)) for k = ι(c(a, q∗(a))) and a0 for k 6= ι(c(a, q∗(a)))

– is never accepted. Any strictly profitable deviation a′ ∈ Ak for receiver k needs to be

accepted by the sender, i.e.,∑
ω∈Ω

q∗(ω|a)u(ω, a′) >
∑
ω∈Ω

q∗(ω|a)u(ω, a)

and needs to induce a strictly positive profit to receiver k, i.e.,∑
ω∈Ω

q∗(ω|a)vk(ω, a
′) > 0.

Toward a deviation, suppose that such a strictly profitable deviation exists. Then we can

define a new outcome rule λ′ given by λ′(a|ω) = 0, λ′(a′|ω) = λ∗(a′|ω) + λ∗(a|ω), and

λ′(a′′|ω) = λ∗(a′′|ω) for a′′ ∈ A \ {a, a′}, for all ω ∈ Ω. The outcome rule λ′ obviously

satisfies the constraints of the linear program in Lemma 1 for a and a′′ ∈ A \ {a, a′}. It

also satisfies the constraint for a′ as∑
ω∈Ω

p(ω)λ′(a′|ω)vk(ω, a
′) =

∑
ω∈Ω

p(ω)λ∗(a′|ω)vk(ω, a
′) +

∑
ω∈Ω

p(ω)λ∗(a|ω)vk(ω, a
′)

where the first term on the right-hand side is weakly positive by feasibility of λ∗, and the

second term satisfies∑
ω∈Ω

p(ω)λ∗(a|ω)vk(ω, a
′) =

∑
ω∈Ω

p(ω)λ∗(a′|ω)
∑
ω∈Ω

q∗(ω|a)vk(ω, a
′) > 0.
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Moreover, the expected payoff of the sender under λ′ is∑
ω∈Ω

∑
a′′∈A

p(ω)λ′(a′′|ω)u(ω, a′′)

=
∑

a′′∈A\{a,a′}

∑
ω∈Ω

p(ω)λ∗(a′′|ω)u(ω, a) +
∑
ω∈Ω

p(ω)(λ∗(a|ω) + λ∗(a′|ω))u(ω, a′)

=
∑
ω∈Ω

∑
a′′∈A

p(ω)λ∗(a′′|ω)u(ω, a) +
∑
ω∈Ω

p(ω)λ∗(a|ω)(u(ω, a′)− u(ω, a))

where the second term in the last line is strictly positive as∑
ω∈Ω

p(ω)λ∗(a|ω)(u(ω, a′)− u(ω, a))

=
∑
ω∈Ω

p(ω)λ∗(a′|ω)
{∑
ω∈Ω

q∗(ω|a)u(ω, a′)−
∑
ω∈Ω

q∗(ω|a)u(ω, a)
}
> 0

by our initial assumptions regarding a′. Thus, λ∗ is not a solution to the linear program,

which gives us a contradiction. Therefore, no strictly profitable deviation a′ exists.

It is now straightforward to show that the combination of σ∗ and the equilibrium

above induces the outcome rule λ∗ and therefore the expected payoff U∗ ∗ ∗.

5 Concluding remark

Theorem 1 is not a revelation principle as some suboptimal outcome rules may be only

implementable with non-public experiments. To see this, reconsider the example of a

labor market platform in Section 2.7. Suppose that there are two firms and two possible

states of the world, i.e., Ω = {(g, g), (−1,−1)}, which describe the firms’ payoffs from

hiring the worker in this state. Suppose that both states are equally likely, i.e., p(g, g) =

0.5, and that g ∈ (0, 1). Suppose that the worker’s payoff from being hired by the two

firms are u1 = 1 and u2 = 10. As both firms have identical payoffs, the worker only tries

to persuade firm 2 to make an offer. In particular, an optimal public experiment is given

by a public recommendation to either hire the worker (H) or not hiring the worker (N)

where the positive recommendation H is sent with certainty in state ω = (g, g) and with

probability g in state ω = (−1,−1).

Suppose now that the labor market platform wants to maximize the probability of

the worker being hired by firm 1. Under a public experiment, the worker can never be

hired by firm 1 as firm 2 is willing to hire whenever firm 1 is willing and the worker

always prefers firm 2. However, if the platform shows the outcome of the optimal public

experiment only to firm 1, firm 1 is willing to make an offer after the recommendation

14



H whereas firm 2 refrains from making an offer as the expected payoff from hiring is

0.5g + 0.5(−1) < 0. Thus, the platform can effectively exclude firm 2 from the market

and ensure that the worker is only hired by firm 1.
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