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Abstract

Many studies have shown that consumers, before deciding whether to purchase a

new product or service, draw inferences from the choices of other consumers and actively

acquire information from other sources. We propose a novel model that integrates two

learning processes: observational learning and active learning. Building upon the classic

observational learning framework, this model allows each consumer to make dynamic

choices of information acquisition. We first analyze consumers’ learning behavior in the

presence of a given price, and then we endogenize the seller’s dynamic pricing strategy

in response to the two learning processes of consumers. We show that a forward-looking

seller may find it optimal to sacrifice short-term profits by setting a higher price to induce

active learning, thereby improving the information transmitted through observational

learning and ultimately gaining higher expected future profits. We also investigate con-

sumers’ learning behavior, the seller’s dynamic pricing strategy, and long-run market

learning outcomes when the speed of information acquisition increases with sales.

Keywords: observational learning; information acquisition; dynamic pricing; word of

mouth
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1 Introduction

When new products and services are introduced to the market, both consumers and sellers

may experience uncertainty regarding the product’s fit and its value for consumers. Vari-

ous approaches exist for consumers to gather information about new products before mak-

ing a purchase decision. Empirical research has consistently shown that consumers often

learn through the observation of others’ choices or by consulting popularity metrics, such

as total/monthly sales and best-seller badges, in a Bayesian-rational manner (see a survey

by Sorensen et al. (2017)). Another complementary approach for acquiring information in-

volves investing time and effort in processes such as reading professional reviews and cri-

tiques, examining product manuals, or engaging in showrooming (Eliashberg and Shugan,

1997; Reddy et al., 1998; Chen and Xie, 2005; Bar-Isaac and Shelegia, 2023). The literature

refers to the process of drawing quality cues from others’ actions as “observational learn-

ing” (Banerjee, 1992; Bikhchandani et al., 1992), and we will use the term “active learning”

to denote the costly information acquisition process. This paper focuses on markets where

both observational learning and active learning play significant roles in shaping consumer

purchase decisions.1

Given these insights into consumer behavior, one might ask: How should a seller dynam-

ically price in such markets? Considering consumers’ option to engage in costly information

acquisition, price plays a dual role: extracting rent from purchases and serving as an incen-

tive tool to manipulate consumers’ active learning behavior. Furthermore, choosing a price

not only influences the active learning of current consumers but also has an intertemporal

impact on the information acquisition and purchase decisions of all future consumers due to

information externalities through observational learning. The main objective of this paper

1See Online Appendix B for a motivating example. By exploiting an exogenous shock that alters consumers’
search conditions, the example provides suggestive evidence that sales information influences consumers’
purchase decisions, and search also plays a role. Consumers tend to rely more on observational learning when
the opportunity cost of search is high, and more on their own search when the informativeness of predecessors’
decisions is low.
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is to provide a novel framework that integrates observational learning and active learning

and, based on this framework, to examine a monopolist seller’s dynamic pricing strategy in

markets with both learning processes.

We first introduce the benchmark model to characterize consumers’ two learning pro-

cesses when they face an exogenously given fixed price. The model builds upon the classic

observational learning framework, where each consumer infers private information owned

by previous consumers by observing their actions. While the standard assumption in the

literature is that each consumer has a private signal about the state of the world, we allow

consumers to dynamically decide on information acquisition under a Poisson signal struc-

ture in a continuous-time setting. With an exogenous price, the herd behavior described

in the classic literature arises immediately, starting with the second consumer. This occurs

because, when each consumer can endogenously choose the optimal time to learn, the sec-

ond consumer lacks the incentive to acquire more information than that inferred from the

first consumer through observational learning. This holds true for all future consumers as

well. As a result, a herd emerges immediately, with a strictly positive probability of being

incorrect.

We then endogenize the price consumers face, focusing particularly on the dynamic pric-

ing strategy of a monopolist seller. The seller shares the same prior belief as consumers about

how well the product fits their needs. Like new consumers, the seller observes the purchase

decisions of previous consumers and updates its belief accordingly. The seller can dynam-

ically adjust the price, and past prices are observable to every new consumer entering the

market. In this game, prices play two roles for the seller. First, for each period, a price ex-

tracts rent from the current consumer. Second, a price influences the current consumer’s

active learning behavior, thereby affecting the beliefs of future consumers through observa-

tional learning and the expected future profits of the seller. In any period, inducing active

learning allows for charging a higher price compared to inducing a direct purchase, but it

comes with the risk of consumers receiving bad news or not receiving any good news. Thus,
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whether the seller prefers to choose a price that induces active learning is not obvious. To

highlight the intertemporal effect of pricing, we compare the optimal dynamic pricing strat-

egy of a forward-looking seller, who is concerned about future profits, with that of a myopic

seller, who focuses on current profits. One of our key findings is that a forward-looking

seller is more inclined to charge higher prices to induce consumers to engage in active learn-

ing. Though this approach sacrifices immediate payoffs for the seller, the increased learning

reveals more information about the product to later consumers, ultimately benefiting the

seller in the long run.

The tractability of the model allows us to compare the probability of an incorrect herd

in different settings (e.g., conclusive bad news and conclusive good news environments,

exogenous and endogenous pricing). Our findings suggest that endogenous pricing has

a double-edged effect on market learning outcomes: in the long run, the market correctly

identifies high-value products but may fail to eliminate low-value products. However, the

negative impact of endogenous pricing on market learning outcomes can be mitigated if

active learning involves taking the time to learn from various forms of word-of-mouth com-

munication, such as user reviews. Consider, as product sales increase, new consumers can

receive informative feedback more quickly from the product users. To formalize this idea,

we consider an extension in which the speed of information acquisition increases with sales

and find that in this case, the market will eventually achieve complete learning.

The paper unfolds as follows. Section 2 summarizes the related literature. Section 3

describes the framework of the two learning processes and analyzes consumers’ learning

behavior in the presence of a given price. Section 4 examines endogenous dynamic pricing

by the seller and its impacts on market learning outcomes. Section 5 considers the case where

the news arrival rate grows with the number of purchases. Finally, Section 6 discusses and

concludes the paper. Proofs are deferred to the appendix, and additional model analysis and

extensions can be found in the online appendix.
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2 Literature Review

Our model builds on the standard observational learning framework introduced by Baner-

jee (1992) and Bikhchandani et al. (1992). In this framework, Bayesian agents with private

information about the state of the world arrive sequentially at the market and can observe

the decisions made by their predecessors. The standard observational learning papers as-

sume that private information is costless and exogenous. A few papers have considered the

endogenous choice of information acquisition by consumers. For example, Hendricks et al.

(2012) examine a scenario where each consumer observes the aggregate purchases of pre-

decessors and decides whether to pay a cost for a private signal (i.e., search). They assume

that consumers must search before making a purchase. Mueller-Frank and Pai (2016) study

a setting in which agents view the actions taken by predecessors and acquire information

about finite samples of predecessors’ actions and payoffs. The model by Ali (2018) nests the

standard observation learning framework and assumes that each agent chooses whether to

acquire a costly signal and how informative the signal is. Our paper differs from the three

papers mentioned above in two ways. First, we utilize Poisson learning in continuous time

to model endogenous information acquisition. This approach builds upon the strategic ex-

perimentation literature (Bolton and Harris, 1999; Keller et al., 2005; Keller and Rady, 2010,

2015) and allows us to tractably characterize belief evolution and the probability of an in-

correct herd. Second, and more importantly, we study the seller’s dynamic pricing strategy,

which can yield rich managerial implications.

Starting with Welch (1992), there is research that explores firms’ pricing strategies in the

presence of observational learning. The pricing considered in Welch (1992) is static. Caminal

and Vives (1996) were the first to examine dynamic pricing by firms in a two-period model.

In their model, second-period consumers update their beliefs about two competing prod-

ucts based on the products’ market shares in the previous period. Bose et al. (2006) study

dynamic pricing by a monopolist in the standard observational learning setting, and Bose

5



Paper Observational
Learning

Active
Learning

Dynamic
Pricing

Banerjee (1992) ✓
Bikhchandani et al. (1992) ✓

Hendricks et al. (2012) ✓ ✓
Mueller-Frank and Pai (2016) ✓ ✓

Ali (2018) ✓ ✓
Caminal and Vives (1996) ✓ ✓

Bose et al. (2006, 2008) ✓ ✓
This paper ✓ ✓ ✓

Table I: Related Literature: Differences in the Topics Covered

et al. (2008) further provide a full characterization of the dynamic pricing policy for the case

with binary signals. Differing from them, we allow consumers to actively acquire informa-

tion about the product alongside observational learning, enriching the strategic interaction

between the seller and consumers. To the best of our knowledge, this paper is the first to

combine observational learning, active learning, and dynamic pricing. Table I summarizes

the differences between this paper and the most closely related research.

Finally, in terms of marketing applications, many papers have examined how firms de-

sign or manipulate information to influence consumers’ information acquisition. For exam-

ple, Mayzlin and Shin (2011) study how firms’ advertising content choice affects consumers’

search decisions. Branco et al. (2016) investigate the optimal amount of information firms

provide to maximize the likelihood of purchase. Jerath and Ren (2021) explore firms’ strate-

gic choices in providing favorable and unfavorable information. While their marketing con-

texts and focused research questions prevent a direct comparison with this paper, the biggest

difference is that we consider the informational externality among consumers, together with

consumers’ endogenous information acquisition and firm pricing. This paper offers new in-

sights into markets where observational learning appears to be important, such as markets

that provide sales information, bestseller lists, and popularity rankings.
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3 Benchmark: Two Learning Processes with Exogenous Price

We first present a benchmark model that integrates observational learning and active learn-

ing. To model observational learning, we follow the standard setting where consumers ar-

rive at the market sequentially, and each consumer observes the decisions of all predecessors

(Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000). For active learning, we

employ the Poisson learning framework, which is widely used in the literature on experi-

mentation and learning (see a survey by Hörner and Skrzypacz (2017)).

3.1 Model Setting

Consider a newly introduced product in the market, sold at an exogenous price p. The prod-

uct can possibly offer two values to consumers, corresponding to two states of the world. In

the high state (denoted by H), the value of the product is v (v > 0). In the low state (denoted

by L), the value of the product is, without loss of generality, normalized to zero. An infinite

sequence of consumers with homogeneous preferences, indexed as n = {1, 2, . . . }, enters the

market, one in each period. Every consumer is interested in making a once-for-all purchase.

The true state is initially unknown to all consumers, and they share a common prior belief

where the probability of the state being H is π0, and the probability of the state being L is

1 − π0. Opting not to purchase the product results in zero utility, while the expected utility

from buying depends on the consumer’s belief about the state of the world.

Before making a purchase decision, consumers try to learn about the true state. Their

learning journey consists of two phases: initially, each consumer observes the purchase de-

cisions of all predecessors (observational learning); subsequently, they decide how long to

search for information from an information source without observing the search actions and

outcomes of others (active learning). We employ the Poisson learning framework in a con-

tinuous time setting to model the active learning process, during which consumers have the

option at each time point to either continue learning, stop learning and make a purchase, or
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stop learning and exit the market. The cost of learning follows a linear function of time: ct,

where c represents the cost per unit of time.

Information Source The market has an information source that sends signals to consumers

according to a Poisson process with an exogenous arrival rate of λ. We assume that the in-

formation source is biased, either it sends Poisson signals only in state L, in which case a

signal conclusively reveals that the true state is L and the signal is called conclusive bad

news (breakdown news); or it sends Poisson signals only in state H, in which case a signal

conclusively reveals that the true state is H and thus is called conclusive good news (break-

through news).2 For different product categories, market information may be dominated

by breakdown news or breakthrough news. For example, when a new high-tech product

or medical innovation is introduced to the market, potential consumers may wait to see if

any serious adverse events occur before adopting the product. In a different market, such as

low-budget independent films, the media only covers films that win awards at film festivals,

and consumers typically watch the films only after hearing about the breakthrough news.3

As the steps and techniques for solving the model are similar in both the conclusive bad

news and conclusive good news settings, we focus on addressing the conclusive bad news

scenario in the paper (i.e., the Poisson signal arrival rate is λ if the state is L and zero if the

state is H). Detailed analysis and proofs for the case of conclusive good news are provided in

Online Appendix A. Any discrepancies in market learning outcomes between the two news

environments will be highlighted in the paper. We will now proceed to solve the model

using backward induction, starting with active learning

2It is technically equivalent to assume that an information source sends two types of signals: a relatively
weak signal that occurs in both states and a rare, sufficiently strong signal that occurs in only one state. When a
strong signal arrives, it conclusively reveals its corresponding state, causing a jump in consumers’ belief. In the
absence of a strong signal, the weak signals continuously arrive, which leads to a continuous belief updating
based on Bayes’ rule.

3A number of papers on learning focus on Poisson processes with conclusive news (Keller et al., 2005; Keller
and Rady, 2015; Che and Mierendorff, 2019). When there are different sources sending both breakthroughs and
breakdowns, consumers never update their beliefs in the absence of news. Che and Mierendorff (2019) discuss
a setting where agents can optimally allocate attention across two Poisson information sources that generate
opposite conclusive news.
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3.2 Active Learning

Assume that after observational learning, a consumer’s belief that the state is H is updated

to π. This π serves as the prior belief at the beginning of the active learning process. We will

now analyze the evolution of belief during active learning.

Evolution of belief In the market with conclusive bad news, the consumer’s belief that the

state is H jumps from π to 0 upon the arrival of a signal. In the absence of a signal, the belief

is continuously updated in the direction towards 1. To see this, let x be the time of the first

arrival of the signal. At any t, the updated belief πt is:

πt = Pr(H | x > t) =
π

π + (1 − π)e−λt . (1)

It is clear that in the absence of a signal, belief updating is continuous, with the con-

sumer’s belief increasing over time, indicating that “no news” is indeed “good news.” Next,

we present the optimal stopping rule in the active learning process.

Optimal stopping rule Intuitively, if a consumer has initiated active learning, opting out

in the absence of a signal is not optimal. This is because, in the absence of bad news, the

consumer’s belief will increase over time. The consumer will cease learning in two scenarios:

when bad news arrives (leading the consumer to opt out of the market), or when the belief is

updated to a sufficiently high level that further learning is no longer worthwhile (leading the

consumer to buy immediately). By solving the dynamic optimization problem, our results,

summarized in the following proposition, confirm this intuition.

PROPOSITION 1 In the active learning process, the optimal stopping rule for consumers is:

when a signal arrives, stop acquiring information and leave the market without buying; if no signal

arrives, continue to acquire information until a stopping time t∗ at which the belief reaches a stopping

boundary πt∗ = 1 − c
λp , and then buy the product.
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See the appendix for the proof. We find that t∗ is the single crossing point when the

instantaneous benefit of learning is equal to the instantaneous cost of learning, satisfying

the following equation:

Benefit of Learning︷ ︸︸ ︷
λξ(1 − πt∗)︸ ︷︷ ︸

Probability
of signal

× p︸︷︷︸
Benefit:

Avoid Bad Product

=

Cost of Learning︷︸︸︷
cξ. (2)

The left-hand side represents the marginal benefit of learning, which arises from the pos-

sibility that bad news arrives with conclusive evidence, preventing the consumer from pay-

ing p for a zero-value product. The right-hand side represents the marginal cost of learning,

the unit cost c. News arrives with probability λ(1 − πt) in the next instant. The consumer’s

belief increases as the learning process continues, and thus the expected probability of re-

ceiving news in the next instant decreases. As a result, the marginal benefit of learning

decreases over time until it equals the marginal cost. Rearranging Equation (2) yields the

optimal stopping time t∗ such that πt∗ = 1− c
λp . In Online Appendix A, we follow the same

steps to solve for the optimal stopping rule in a market with conclusive good news. Similar

to Proposition 1, a consumer terminates the learning process either upon signal arrival or

when the belief reaches a stopping boundary.

Thus far, we have derived the optimal stopping rule, assuming that a consumer has ini-

tiated active learning. To ensure that active learning occurs, the marginal benefit of learning

needs to be higher than the marginal cost of learning at the beginning of the learning process

(or, the updated belief at the stopping point must be higher than the prior belief):

π < 1 − c
λp

. (3)

Denoting 1 − c
λp by lB

2 , we have π < lB
2 . Additionally, the condition that a consumer’s

expected utility from active learning exceeds the utility of opting out directly must be met.

Let x denote the arrival time of the first signal. We have the following:

10



π(v − p − t∗c) + (1 − π)[e−λt∗(−p − t∗c)− c(1 − e−λt∗)E(x | x < t∗, L)] ≥ 0, (4)

where

E(x | x < t∗, L) =
1
λ
− e−λt∗

1 − e−λt∗ t∗.

The left-hand side of Inequality (4) represents the expected utility from engaging in active

learning. When the true state is H (with probability π), the consumer learns until t∗ and

buys the product. When the true state is L (with probability 1− π), the consumer either opts

out after receiving bad news before t∗ or buys the product if no bad news arrives before t∗.

Substituting the expression for πt∗ and simplifying the condition, we get:

π ≥ c
λ(v − p) + c ln πc

(1−π)(λp−c)
. (5)

The equation uniquely determines the threshold of π. To facilitate exposition, let lB
1 de-

note the threshold derived from Inequality (5), and thus we must have π ≥ lB
1 . If lB

1 ≥ lB
2 ,

the active learning region is empty, meaning that the consumer will either opt out directly

or buy the product directly. When lB
1 < lB

2 , the following lemma summarizes the inactive

learning region and active learning region given belief π:

LEMMA 1 In a market with conclusive bad news, given product price p, learning cost c and belief

π that the state is H after observational learning, a consumer will buy the product directly if π ≥ lB
2 ;

will engage in active learning if lB
1 ≤ π < lB

2 ; will opt out directly if π < lB
1 .

Online Appendix A presents the counterpart results when the market is driven by con-

clusive good news. The figure below illustrates the active and inactive learning regions in

the two different news environments.
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Figure I: Active and Inactive Learning Regions in Bad and Good News Environments

3.3 Observational Learning

After studying the active learning of individual consumers, this section focuses on observa-

tional learning and examines the long-run market learning outcomes. We first define a few

concepts that will appear repeatedly in our analysis: public belief, herd, and complete learning.

First, we refer to the updated belief based on past consumers’ purchase decisions as the pub-

lic belief, which is a sufficient statistic summarizing all the information revealed by the pur-

chase history. Second, a herd is defined as action convergence, meaning that all consumers

take the same action from a certain point. If a herd forms on ”purchase” (”no purchase”)

in state L (H), we classify it as an incorrect herd. Finally, complete learning means that the

public belief converges to the truth. Both herd and complete learning characterize the long-run

learning outcomes.

Let us start with the first consumer. Suppose the market’s common prior belief π0 is

such that the first consumer engages in active learning. If the state is H, the probability of

purchase is one because a signal will never arrive; if the state is L, the probability of purchase

is the probability of no signal arriving before t∗:

Pr(x > t∗ | L, π0) = e−λt∗ =
π0c

(1 − π0)(λp − c)
. (6)

Then, the second consumer observes the first consumer’s decision. Let h = 1 denote that

all consumers in history have purchased, and h = 0 denote that at least one consumer in the

past chose not to purchase. If the first consumer did not purchase the product, the second

consumer easily infers that the first consumer must have received bad news. The second
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consumer’s belief, π1, is updated to zero after observational learning:

πh=0
1 = 0. (7)

Subsequently, all consumers will know that the true state of the world is L, and they will

all opt out of the market. If the first consumer purchased the product, the second consumer’s

belief after observational learning becomes:

πh=1
1 = Pr(H | h = 1, π0) =

π0

π0 + (1 − π0)e−λt∗ . (8)

Substitute Equation (6) into Equation (8), we can get πh=1
1 = 1 − c

λp . Recall that with

this belief, the second consumer will buy the product directly without active learning (from

Lemma 1). The same goes for the third consumer, the fourth consumer, and so on. There

will be no more active learning by individuals, which implies that a herd arises as early as

from the second consumer. If the common prior belief π0 is so low or so high that the first

consumer chooses not to engage in active learning, subsequent consumers will do the same,

which also implies that a herd arises immediately. Moreover, consumers may herd on the

wrong action. In Online Appendix A, we show that the same result is obtained in a market

driven by conclusive good news. The following theorem summarizes this finding:

PROPOSITION 2 For a sequence of consumers with homogeneous preferences, when each con-

sumer is given the option to endogenously optimize information acquisition from an information

source, a herd arises immediately after the first consumer. With strictly positive probability, con-

sumers herd on the wrong action (i.e., an incorrect herd).

The finding of an immediate herd is novel compared to the results of the standard obser-

vational learning model. When consumers can make the endogenous choice of information

acquisition, the first person follows the optimal stopping rule, searching for information

until the marginal benefit of learning equals the marginal cost of learning. The informa-
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tion acquired by the first consumer is transmitted to later consumers through observational

learning. As consumer preferences are homogeneous, each consumer faces the same infor-

mation acquisition problem, and thus later consumers have no incentive to acquire more

information than what the first consumer has already obtained.

In terms of learning outcomes, when the true state is H and consumers’ prior belief is

sufficiently low (lies in the “opt out” region of Figure I), or when the true state is L and

consumers’ prior belief is sufficiently high (lies in the “buy directly” region of Figure I),

all consumers make the incorrect purchase decision because of the lack of learning. Given

that the first consumer engages in active learning, an incorrect herd may occur when, in

cases where the true state is H (L), no conclusive good (bad) news arrives before the optimal

stopping time. The probabilities of an incorrect herd under different true states of the world

and information environments are summarized in Table II.

Truth
Env. Conclusive Bad News Conclusive Good News

H
If π0 < lB

1 , Pr = 1
If π0 ≥ lB

1 , Pr = 0

If π0 < lG
1 , Pr = 1

If lG
1 ≤ π0 < lG

2 , Pr = (1−π0)c
π0(λ(v−p)−c)

If π0 ≥ lG
2 , Pr = 0

L
If π0 < lB

1 , Pr = 0
If lB

1 ≤ π0 < lB
2 , Pr = π0c

(1−π0)(λp−c)
If π0 ≥ lB

2 , Pr = 1

If π0 < lG
2 , Pr = 0

If π0 ≥ lG
2 , Pr = 1

Table II: The Probability of an Incorrect Herd with Exogenous Price

4 Dynamic Pricing with Two Learning Processes

In response to the two consumer learning processes analyzed in the previous section, sell-

ers can strategically employ dynamic pricing to influence the learning incentives and, ulti-

mately, the purchase decisions. In this section, we explore a seller’s optimal dynamic pricing

strategy to leverage consumer learning for its profit.
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We maintain the benchmark model’s settings regarding consumers and introduce a mo-

nopolistic seller operating infinitely over periods n = 1, 2, . . . , discounting future profits

with a discount factor of β ∈ [0, 1). The marginal cost of production is normalized to zero.

The value of the seller’s product to consumers can take on two values, and neither the seller

nor consumers know the true value. The seller shares the same prior belief as consumers that

the probability of the value being H is π0. At the beginning of each period, the seller chooses

the price pn, n = 1, 2, . . . . The seller aims to maximize its profit: Π({pn}) = ∑∞
n=1 βn−1pnDn,

where Dn ∈ {0, 1} is a dummy that indicates whether the n-th consumer purchases (Dn = 1)

or not (Dn = 0). In the observation learning phase, consumers can observe the prices set by

the seller in previous periods. Similar to the benchmark model, our main analysis focuses

on the conclusive bad news case, and a detailed analysis of the conclusive good news case

is presented in Online Appendix A.

To begin our analysis, we first characterize several properties of the equilibrium prices.

Apparently, in order to incentivize consumers to engage in active learning or make direct

purchases instead of leaving the market without buying, a price ceiling exists. This price

ceiling represents the price at which consumers expect zero payoff. For any consumer with

a prior belief π, let p̄(π) denote the price ceiling, we have

LEMMA 2 p̄(π) is continuous and increasing in the prior belief π with p̄(0) = 0 and p̄(1) = v.

When p = p̄(π), the consumer’s expected surplus is zero.

A detailed proof is provided in the appendix. A simple explanation is that, as can be

clearly seen from Figure I, when consumers hold higher prior beliefs, they are more likely

to make direct purchases or engage in active learning rather than opting out. Therefore,

compared to a consumer with a lower prior belief, the seller can extract more expected sur-

plus from a consumer with a higher prior belief by charging a higher price until the two

consumers face the same tradeoff. Next, we characterize the optimal actions of consumers

under different prices in the following lemma.
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LEMMA 3 For a consumer with a prior belief π ∈ (0, 1), let p̃(π) = c
λ(1−π)

. If p̃(π) ≥ p̄(π),

the consumer will not engage in active learning: she buys directly when p ≤ p̄(π) and opts out

directly when p > p̄(π). If p̃(π) < p̄(π), we have

1. When p ≤ p̃(π), the consumer makes a purchase directly. The posterior belief remains π.

2. When p̃(π) < p ≤ p̄(π), the consumer engages in active learning. If no conclusive bad news

arrives, the consumer’s belief gradually increases, and when the posterior belief reaches 1− c
λp ,

the consumer makes a purchase.

3. When p > p̄(π), the consumer opts out directly. The posterior belief remains π.

This lemma is, in fact, an alternative presentation of Lemma 1, with a focus on varying

prices instead of prior beliefs, and its proof is immediate from Lemma 1. The condition un-

der which the consumer prefers active learning to buying directly is shown in Equation (3).

After rearranging the equation, we can find p̃(π) = c
λ(1−π)

is the cutoff point.4 Intuitively,

the benefits of active learning as opposed to buying directly come from the possibility of

discovering that the product is not worth buying. At a lower price, the gain from avoiding a

wrong purchase is smaller, and therefore the consumer has a stronger incentive to purchase

directly without active learning. When p ≤ p̃(π), the price is low enough to not incentivize

learning, and the posterior belief remains unchanged. We hereafter refer to such a price as

a learning-deterring price. When p̃(π) < p ≤ p̄(π), the consumer engages in active learning,

and we hereafter refer to price in this region as a learning-inducing price. In the learning

region, a higher price leads to a longer learning time. Figure II depicts the three possible

pricing regions when p̃(π) < p̄(π) and consumers’ actions in these regions.

4Note that p̄ represents two different thresholds, corresponding to two scenarios: one is when p̃ < p̄, p̄
corresponds to lB

1 in Figure I, which is the point where consumers are indifferent between engaging in active
learning and opting out. The other scenario is when p̃ ≥ p̄, and in this case, there are only two regions: buying
directly and opting out. p̄ is the threshold between them and thus equal to πv. For ease of exposition, we use
p̄ to denote the price ceiling in both cases.
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Figure II: Pricing Regions

Now, suppose that the prices are set in a manner that encourages early consumers to en-

gage in learning. In this scenario, late consumers’ prior beliefs will increase in the absence

of bad news, which creates an opportunity for the seller to charge higher prices as indicated

by Lemma 2. Therefore, it is interesting to explore how the seller can strategically employ

dynamic pricing to leverage the intertemporal externalities among consumers. Moving for-

ward, we will formally study the seller’s optimal pricing strategy, with a particular focus on

comparing the optimal pricing between myopic and forward-looking sellers.

4.1 A Myopic Seller’s Pricing Problem

First, we consider the problem of a myopic seller with β = 0 who is essentially solving the

static pricing problem in each period independently. Without loss of generality, we analyze

the pricing problem of the seller in the first period. Proposition 1 shows that consumer 1 will

stop active learning and buy the product when the posterior belief reaches π1 = 1 − c
λp1

,

where p1 is the first-period price. As the belief updating process is mean-preserving, the

probability that the consumer will eventually buy after learning is π0
π1

= π0
1− c

λp1
. Thus, the

seller’s optimization problem at t = 1 is

max
p1

Π1(p1) =


π0

1− c
λp1

p1 if p1 > p̃(π0),

p1 if p1 ≤ p̃(π0),
(9)

subject to

p1 ∈ [min { p̄(π0), p̃(π0)} , p̄(π0)] , (10)
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where p̃(π0) = c
λ(1−π0)

is the highest price at which the consumer prefers direct purchase

over active learning, as defined in Lemma 3. It is never optimal for a seller to charge a price

higher than p̄(π0), which yields zero profit, or to charge a price below min { p̄(π0), p̃(π0)},

as raising the price to the threshold will still result in a direct purchase by the consumer.

The first-order condition of (9) is

∂Π1(p1)

∂p1
=

π0(1 − 2c
λp1

)

(1 − c
λp1

)2 , (11)

which is negative when p1 < 2c
λ and positive when p1 > 2c

λ . This implies that the profit

function is U-shaped on p1, with the turning point at p1 = 2c
λ where the posterior belief

reaches 1
2 .

In the subsequent periods, the seller faces the same optimization problem as in the first

period, except that consumers’ prior beliefs might be different due to belief updating after

observational learning. The following proposition summarizes the seller’s optimal pricing

policy, and the proof can be found in the appendix.

PROPOSITION 3 (MYOPIC SELLER) For a myopic seller with β = 0, the optimal pricing

policy is as follows:

1. When p̃(π0) ≥ p̄(π0), the seller sets the price at p̄(π0) for each period. All consumers buy

directly without active learning.

2. When p̃(π0) < min
{

p̄(π0),
π0

1− c
λ p̄(π0)

p̄(π0)

}
, the seller sets pn = p̄(πn−1) for consumer n

with a prior belief πn−1 (n = 1, 2, . . . ). If no bad news ever arrives, each consumer n engages

in active learning until their posterior belief reaches πn = 1 − c
λpn

. When the first bad news

arrives, the public belief becomes zero, and all consumers exit the market without making a

purchase.

3. When π0
1− c

λ p̄(π0)
p̄(π0) ≤ p̃(π0) < p̄(π0), the seller sets the price at p̃(π0) for each period. All

consumers buy directly without active learning.
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In cases 1 and 3 of Proposition 3, the seller optimally sets a price in the first period to

induce the first consumer to make a direct purchase without active learning. As a result,

the public belief remains constant, and the seller will continue to set the same price in all

future periods. When the seller’s optimal strategy in the first period is to encourage active

learning, we find that the learning-inducing pricing policy remains optimal in subsequent

periods, as stated in case 2 of the proposition. In this scenario, in the absence of bad news,

the public belief monotonically increases over time.

4.2 A Forward-Looking Seller’s Pricing Problem

How does the seller’s optimal dynamic pricing strategy change when the seller takes future

profits into account? To answer this question, we analyze the case in which the seller is

forward-looking with β ∈ (0, 1) and compare the results with those from the myopic seller

case.

Again, if consumer n with prior belief πn−1 engages in active learning at price pn, the

consumer will stop learning when her posterior belief reaches πn = 1 − c
λpn

. As the be-

lief updating process is mean-preserving, we can calculate the probability of purchase after

active learning for each consumer n = 1, 2, . . . as follows:

For consumer 1, Pr =
π0

πh=1
1

,

For consumer 2, Pr =
π0

πh=1
1

×
πh=1

1

πh=1
2

=
π0

πh=1
2

,

. . .

For consumer n, Pr =
π0

πh=1
1

×
πh=1

1

πh=1
2

× · · · ×
πh=1

n−1

πh=1
n

=
π0

πh=1
n

,

where the superscript h = 1 denotes that all previous consumers have purchased in history.
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Therefore, the expected profit Πn from period n is

Πn(pn|πh=1
n−1) =


π0

1− c
λpn

pn if pn > p̃(πh=1
n−1),

pn if pn ≤ p̃(πh=1
n−1),

(12)

And the dynamic pricing problem that the seller faces at the beginning of the game is:

max
{pn}

Π({pn}) =
∞

∑
n=1

βn−1Πn(pn|πh=1
n−1), (13)

subject to

πh=1
n =


1 − c

λpn
if pn > p̃(πh=1

n−1),

πh=1
n−1 if pn ≤ p̃(πh=1

n−1),
(14)

pn ∈
[
min

{
p̄(πh=1

n−1), p̃(πh=1
n−1)

}
, p̄(πh=1

n−1)
]

, (15)

where (14) describes the belief evolution process under the condition that bad news has not

yet arrived. If pn > p̃(πh=1
n−1), consumer n engages in active learning and thus πh=1

n > πh=1
n−1.

If pn ≤ p̃(πh=1
n−1), consumer n finds it optimal to either make a direct purchase or opt out,

rather than engaging in active learning, and therefore πh=1
n = πh=1

n−1.

Equation (12) shows that the profit obtained in each period depends solely on the price

charged during that period. For each period, if the upper bound of the price range is higher,

the seller can potentially earn a higher profit. Hence, a forward-looking seller may choose

early-period prices strategically to manipulate public beliefs and thereby influence price

ranges in subsequent periods. After analyzing all cases, we summarize our findings in the

following proposition.

PROPOSITION 4 (FORWARD-LOOKING SELLER) For a forward-looking seller with

β ∈ (0, 1), we have

1. When π0
1− c

λ p̄(π0)
p̄(π0) ≤ p̃(π0) < p̄(π0), unlike the myopic seller, the forward-looking seller
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may find it optimal to set price p1 ∈ ( p̃(π0), p̄(π0)] to incentivize the first consumer to choose

active learning, and the optimal prices in all subsequent periods are also learning-inducing.

The higher the β, the more likely the seller is to do so.

2. In all other cases, the optimal pricing policy for a forward-looking seller is the same as for a

myopic seller.

A detailed proof of Proposition 4 is provided in the appendix. We find that for a forward-

looking seller, similar to a myopic seller, the optimal pricing policy will either be consistently

learning-deterring, under which all consumers make a purchase directly in equilibrium, or

consistently learning-inducing, under which all consumers engage in active learning in equi-

librium. Due to the analytical complexity, we do not provide a closed-form expression for

the parameter regions in which each strategy is chosen. However, we can demonstrate that

under certain parameter conditions, the forward-looking seller finds it optimal to induce

learning while the myopic seller finds it optimal to deter learning. The intuition for the

difference in pricing strategies between the two types of sellers is as follows.

In this model, the seller’s profit is constrained by the possibility of consumers choosing

active learning over direct purchases. This constraint is reflected in two potential pricing

strategies: the seller has to lower the price to encourage direct purchases or, when encourag-

ing direct purchases is too costly, increase the price to a level where consumers slightly prefer

active learning over opting out. In the second case, the price should not be set too high, as

it needs to compensate for the learning cost. In short, profit per period is influenced by con-

sumer learning incentives. Due to informational externalities across consumers over time, a

forward-looking seller can potentially manipulate early learning dynamics to influence fu-

ture consumers’ learning incentives and, thus, future profits. While inducing learning by

early consumers hurts early profits, it creates a more informative public belief (either 0 or a

higher belief), which decreases the marginal gain and the duration of active learning for later

consumers. A lower marginal gain from active learning implies that the seller can charge a
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higher price while still being able to induce direct purchases, and a shorter learning time

implies lower compensation for the total learning cost. In both scenarios, the seller earns a

higher expected profit from a more informative public belief. We find similar intuitions and

results in the context of conclusive good news, as analyzed in Online Appendix A.

In terms of market learning outcomes, shifting from a learning-deterring strategy to a

learning-inducing strategy reduces the probability of an incorrect herd. Therefore, under

certain parameter conditions, a forward-looking seller can improve the learning results and

thus consumer welfare compared to a myopic seller. The following corollary summarizes

the probability of an incorrect herd with respect to different pricing strategies.

COROLLARY 1 (LEARNING OUTCOMES) When the seller employs the learning-deterring

pricing strategy, an incorrect herd occurs only when the true state is L, with probability 1. When the

seller employs the learning-inducing pricing strategy, it reduces the likelihood of an incorrect herd,

yet complete learning cannot be achieved. The public belief converges to π̄ =
λv+

√
λv(λv−4c)
2λv in the

long run. An incorrect herd occurs only when the true state is L, with probability π0
1−π0

1−π̄
π̄ .

The proof is available in the appendix. When the true state is H, there can be no incorrect

herd as the seller will never set prices too high to drive away consumers. When the equilib-

rium pricing strategy is learning-deterring, all consumers buy the product directly, and thus

an incorrect herd definitely occurs if the true state is L. When the equilibrium pricing strat-

egy is learning-inducing, a herd does not occur immediately after t = 1 as in the benchmark

model. However, complete learning is also not achieved. The reason is that, given all past

consumers have made purchases, the public belief gradually increases. Nevertheless, con-

sumers will eventually learn for an arbitrarily short time, and the public belief is bounded

above. An upper bound on the public belief exists because, with a sufficiently high prior

belief, the seller cannot set a price to induce consumers to choose active learning over direct

purchase (Inequality (3) cannot hold). Therefore, the public belief is bounded, leading to a

positive probability of an incorrect herd in the long run.
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In the conclusive good news setting, the learning outcomes remain the same when the

true state is H because the seller can ensure that all consumers purchase the product. When

the true state is L and the optimal pricing strategy is learning-deterring, the result that an

incorrect herd must emerge still applies. The difference compared to the conclusive bad

news setting occurs when the true state is L and the pricing strategy is learning-inducing. In

the case of conclusive good news, when a consumer engages in active learning, the consumer

will only make a purchase if good news arrives; otherwise, the consumer exits the market,

resulting in a lower public belief. In the absence of good news, the public belief decreases,

and the cost of inducing learning becomes higher for the seller. The seller will eventually

adopt the learning-deterring pricing strategy if the public belief becomes low enough. As

a result, when the true state is L, under the seller’s optimal pricing policy, early consumers

may engage in active learning but make no purchases in the absence of news. From a certain

point onwards, all consumers purchase the product directly without active learning due to

the lowered price. A detailed analysis is provided in Online Appendix A. We summarize

the probabilities of an incorrect herd in the two news environments in Table III.

Truth
Env. Conclusive Bad News Conclusive Good News

H Pr = 0 Pr = 0

L
Define π̄ =

λv+
√

λv(λv−4c)
2λv

With active learning, Pr = π0
1−π0

1−π̄
π̄

Without active learning, Pr = 1

Pr = 1

Table III: The Probability of an Incorrect Herd with Endogenous Pricing

A Numerical Example We provide a numerical example to illustrate how a forward-looking

seller may behave differently from a myopic seller in equilibrium. In Figure III, the left panel

illustrates the dynamics of single-period profits for both forward-looking and myopic sell-

ers, and the right panel displays the dynamics of the posterior belief of each period. With the

specified parameters, the optimal strategy for the myopic seller (represented by the dashed
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Figure III: Comparison of forward-looking and myopic sellers (π0 = 0.3, c = 1, v = 5, λ = 1)

orange curve) is to deter learning. As a result, the expected profit remains constant across all

periods, and the posterior belief remains unchanged. In contrast, the forward-looking seller

(represented by the solid blue curve) finds it optimal to sacrifice early profits at t = 1, 2 in ex-

change for greater gains in later periods, as shown in the left panel. This strategy leads to an

increase in the posterior belief and a reduced likelihood of an incorrect herd compared to the

myopic seller’s case. In line with Corollary 1, the public belief converges to 5+
√

5
10 ≈ 0.724.

5 Increasing News Arrival Rate Over Time

In the previous sections, the information source for Poisson learning is considered static and

unaffected by past consumers’ behavior, resulting in a fixed speed of information acquisi-

tion for all consumers. However, when active learning involves reading detailed customer

reviews or consulting past users about the product, it is reasonable to expect that the likeli-

hood of users sharing their experiences will increase as more and more consumers purchase

the product, allowing future consumers to learn about the product more rapidly. In this

section, we incorporate a dynamic information source that is affected by sales. To capture

the dynamics, we specify the signal arrival rate as f (λ, N), where λ is a fixed rate, and N
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denotes the total number of consumers who have bought the product in the past. In cases

of no previous purchases, f (λ, 0) = λ. We assume fN > 0, indicating that news about the

product arrives more quickly as sales increase.

5.1 Exogenous Price

We first analyze in detail consumers’ learning dynamics in the presence of a given price. To

focus on non-trivial cases, let us assume that the parameters fall within the region where

the first consumer engages in active learning. If the first consumer chooses not to buy the

product, the true state L is perfectly revealed, leading to subsequent consumers exiting the

market without making a purchase. If the first consumer buys the product, the public belief

is updated to

πh=1
1 = 1 − c

λp
.

And the signal arrival rate increases to f (λ, 1). As f (λ, 1) > f (λ, 0) = λ, it follows that

1 − c
f (λ,1)p > 1 − c

λp . Recall the condition on the belief that guarantees active learning, as

stated in Lemma 1. We can infer that the second consumer will also engage in active learning

due to the increased signal arrival rate. Following this, if the second consumer does not buy

the product, the true state L is revealed. If the second consumer buys the product, the public

belief is updated to

πh=1
2 = Pr(H | h = 1, πh=1

1 ) =
πh=1

1

πh=1
1 + (1 − πh=1

1 )Pr(X > t∗ | L, πh=1
1 )

.

After simplifying the equation, we obtain that πh=1
2 = 1− c

f (λ,1)p , which is also the poste-

rior belief of the second consumer. Afterward, the third consumer will conduct active learn-

ing because the marginal benefit of learning becomes f (λ, 2)(1 − (1 − c
f (λ,1)p ))p according

to Equation (2) and it is higher than the marginal cost c. And so on and so forth, the learning

dynamics continue in the same pattern.
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In terms of market learning outcomes, an incorrect herd occurs only when the true state

is H and the prior belief is sufficiently low that no active learning takes place from the first

consumer onwards, which is essentially a cold-start problem for marketers. When the true

state is L, an incorrect herd cannot form because, after some consumers purchase the prod-

uct, the signal arrival rate increases, shifting the public belief into the active learning region

(both lB
2 and lG

2 in Figure I increase as the signal arrival rate increases). From a certain point

onwards, consumers all engage in active learning until someone receives bad news. There-

fore, the public belief will almost surely converge to the truth (i.e., complete learning).

With conclusive good news, the above-mentioned results also apply. Furthermore, an

incorrect herd occurs if the true state is H and the first consumer engages in active learning

but does not receive the good news. In such a scenario, the first consumer opts out, and an

immediate herd on “no purchase” occurs due to the unchanged news arrival rate.

5.2 Endogenous Dynamic Pricing

Next, we follow the same procedures as in Section 4 to analyze the seller’s optimal pricing

strategy when pricing is endogenous, considering both myopic and forward-looking seller

scenarios. In line with previous notations, for a given history of N purchases, p̄(π, N) de-

notes the highest price that keeps the current consumer with a prior belief π from opting out,

and p̃(π, N) = c
f (λ,N)(1−π)

denotes the price that makes the consumer indifferent between

direct purchase and active learning. The following proposition summarizes our findings.

PROPOSITION 5 (PRICING WITH AN INCREASING NEWS ARRIVAL RATE)

In any period when the consumer holds a prior belief π and N previous consumers have purchased

the product, we have

1. A myopic seller follows the same optimal pricing policy as outlined in Proposition 3, except that

the news arrival rate changes to f (λ, N).
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2. When π
1− c

f (λ,N) p̄(π,N)
p̄(π, N) ≤ p̃(π, N) < p̄(π, N), a myopic seller charges p = p̃(π, N) to

deter learning, whereas a forward-looking seller with β ∈ (0, 1) may find it optimal to set a

higher price p ∈ ( p̃(π, N), p̄(π, N)] to induce learning.

3. In all other cases, the optimal pricing policy for a forward-looking seller is the same as for a

myopic seller.

The proof is provided in the appendix. For a myopic seller, the pricing decisions are made

independently for each period. Therefore, the increase in the news arrival rate does not

change the optimization problem qualitatively. The seller follows the same pricing policy,

adjusting it based on the corresponding news arrival rate. One point to note is that the equi-

librium price cannot always be learning-deterring. This is because the learning-deterring

price p̃(π) decreases as the news arrival rate increases. Thus, the equilibrium price must

induce active learning from some point, whether the seller is myopic or forward-looking.

Moreover, we discover a result consistent with Proposition 4: a forward-looking seller

may choose to induce learning when a myopic seller chooses to deter learning. In the ab-

sence of bad news, all consumers eventually make purchases. This implies that the news

arrival rate in period n is independent of the previous pricing strategy, whether learning-

deterring or learning-inducing. As early pricing decisions do not impact future news arrival

rates, the previous logic still holds, i.e., the forward-looking seller may choose to induce

learning in early periods, which entails sacrificing early profits but ultimately benefits from

a more informative public belief in future periods.

In terms of market learning outcomes, when the seller can dynamically set the product’s

price, complete learning always occurs. An incorrect herd arises when consumers cease

learning and/or when belief updating is bounded. Based on the analysis in Section 4, in

both H and L states and across both conclusive good news and conclusive bad news envi-

ronments, as long as no conclusive bad news arrives, consumers will always make purchases

in the long run under endogenous pricing. Therefore, as sales increase, the news arrival rate
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will rise to a level at which no price can incentivize consumers to choose direct purchase

over active learning, ultimately resulting in complete learning.5 The following table and

corollary summarize the learning outcomes for all cases discussed in this section.

Pricing Truth
Env. Conclusive Bad News Conclusive Good News

Exogenous H
If π0 < lB

1 , Pr = 1
If π0 ≥ lB

1 , Pr = 0

If π0 < lG
1 , Pr = 1

If lG
1 ≤ π0 < lG

2 , Pr = (1−π0)c
π0(λ(v−p)−c)

If π0 ≥ lG
2 , Pr = 0

L Pr = 0 Pr = 0

Endogenous H Pr = 0 Pr = 0
L Pr = 0 Pr = 0

Table IV: The Probability of an Incorrect Herd with an Increasing News Arrival Rate

COROLLARY 2 (LEARNING OUTCOMES) In a market with an increasing and unbounded

news arrival rate, at a given price, a low-value product will inevitably be identified and eliminated in

the long run; however, there remains a strictly positive probability of incorrectly eliminating a high-

value product from the market. When endogenous pricing is employed, the market achieves complete

learning, ensuring that all products are correctly identified in the long run.

6 Discussion and Conclusion

Learning plays a crucial role in various markets, particularly in the context of new products

and services. Consumers often acquire information by observing others’ choices or by ac-

tively seeking detailed product information. This paper introduces a model that integrates

consumers’ two learning processes and explores firms’ pricing strategies in this context. We

first examine the market outcomes when the product price is exogenous and the amount of

information in the market remains constant. Depending on the prior belief upon the product

5As the news arrival rate approaches infinity, consumers are instantaneously informed about the product’s
true value. This situation mirrors real-world scenarios where aggregate reviews, such as five-star ratings, can
accurately reflect the product’s value when the volume of reviews is sufficiently high.

28



launch, one of the following scenarios occurs: either all consumers make a purchase directly,

all consumers opt out directly, or the first consumer engages in active learning while all sub-

sequent consumers simply follow the first consumer’s choice. In any case, a herd begins no

later than the second consumer, and the public belief is no longer updated thereafter.

When endogenizing the product price, we consider a situation where the seller is un-

certain about the new product’s fit to consumers’ needs. Over time, the seller updates its

belief in response to consumers’ purchasing decisions and adjusts the price dynamically. In

equilibrium, all consumers opting out due to a low prior belief wouldn’t occur, as the seller

can simply lower the price to ensure the product gets sold. However, whether or not the

seller prefers to choose a price that induces active learning is not straightforward. Interest-

ingly, encouraging early consumers to engage in active learning has a positive intertemporal

effect on future expected profits. Therefore, a forward-looking seller may find it optimal to

sacrifice early profits to induce learning and enhance future gains.

Overall, endogenous pricing has a double-edged effect on long-run market learning out-

comes. Given that conclusive news has not arrived, the public belief will either gradually

increase (in the case of conclusive bad news) or gradually decrease (in the case of conclu-

sive good news). As the public belief increases, regardless of whether equilibrium prices

encourage or discourage learning, all consumers will purchase the product. As the public

belief decreases, the seller will, at a certain point, begin to deter learning and offer lower

prices to induce all future consumers to make direct purchases. Therefore, in the absence of

conclusive news, consumers herd on ”purchase” in the long run. This implies that if the true

state is H (L), endogenous pricing enhances (worsens) the market’s learning outcomes.

The negative impact of endogenous pricing on long-run market learning outcomes can

be mitigated when the availability of information in the market increases with sales. As

discussed earlier, consumers herd on ‘’purchase” in the long run under endogenous pricing.

The accumulated purchases result in an increasing news arrival rate. Ultimately, it becomes

infeasible for the seller to use price to induce consumers to choose direct purchase over
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active learning, and therefore, complete learning is achieved.

Our theoretical insights can yield practical implications for addressing real-world busi-

ness challenges, such as the cold-start problem encountered when launching a new product.

A straightforward solution to the cold-start problem is to lower the initial price with the aim

of expediting sales in order to create a herd among later consumers, or to enhance word-of-

mouth, potentially building a positive reputation. However, this simple solution overlooks

the active role of consumers in seeking information. Based on our analysis, considering

consumers’ active learning option, sellers can achieve higher profits through a more strate-

gic pricing approach. Specifically, sellers should initially set a higher price to induce more

learning among early consumers, rather than charging a low price that encourages direct

purchases. Although inducing learning comes with the risk of consumers discovering bad

news in the process, it is expected to be more effective in the long run.

Finally, there are some limitations of this paper that should be acknowledged. To make

the model tractable and closely linked to the literature, we adopt the standard framework for

observational learning in which consumers enter the market one by one in sequence. One

might be concerned that this framework has limited applicability, as markets characterized

by consumers making decisions sequentially are not prevalent. To partially address this con-

cern, Online Appendix C presents an extension where N consumers enter the market in each

period. The results of this extension are consistent with those of the main model, suggesting

that the key insights of the main model are applicable to the mass product market. However,

we acknowledge that while the new assumption of N consumers per period relaxes the limi-

tations of sequential decision making, for observational learning to work, consumers need to

be informed about the size of the target market and the total sales realized in each period. If

consumers are unaware of the market size, or if obtaining sales information is difficult, it be-

comes challenging for consumers to draw quality cues from observing others. In such cases,

active learning might be the sole channel for consumers to acquire information, simplifying

this model to a standard static game with pricing and costly information acquisition.
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Appendix: Proofs

[PROOF OF PROPOSITION 1] To derive the optimal stopping rule, we first characterize

the consumer’s value function. Define the belief πt = Pr(H | X > t) as the state variable.

At every point in time, the consumer chooses to continue learning, buying the product, or

leaving the market without buying. Let wt denote the instantaneous value of continuing

learning at time t. The value function is expressed as follows:

Vt = max{wt, πtv − p, 0}. (16)

Note that wt defines the expected continuation payoff with the optimal state-contingent

action taken in the next instant based on information at time t. By waiting for a ξ length of

time, the expected probability of bad news arrival is (1 − πt)(1 − e−λξ). If bad news arrives,

the consumer will leave the market without buying. Otherwise, the consumer faces the same

problem in the next instant. We have,

wt = lim
ξ→0+

(1 − πt)(1 − e−λξ)0 + (1 − (1 − πt)(1 − e−λξ))Vt+ξ − cξ, (17)

where

Vt+ξ = max{wt+ξ , πt+ξv − p, 0},

and

πt+ξ =
πt

πt + (1 − πt)e−λξ
.

The problem has a nice single crossing property, which allows us to pin down the optimal

stopping time.

LEMMA 4 The value function satisfies a single crossing condition: for a time t such that wt =

πtv − p, we have wτ < πτv − p for all τ > t.

This single crossing property implies that, from time zero to the single crossing point,
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the expected benefit of learning is consistently higher than the expected benefit of buying.

Beyond this point, buying strictly dominates learning. In order to prove the single crossing

property, we introduce four additional lemmas.

LEMMA 5 wt is continuous in t

Proof: It is immediately obtained from Equation (17).

■

LEMMA 6 lim
t→∞

πtv − p > lim
t→∞

wt.

Proof: It is easy to show that lim
t→∞

πt = 1 from Equation (1). And ∀ t, we have

wt ≤ lim
ξ→0

(v − p)− cξ.

Hence,

lim
t→∞

(πtv − p − wt) = v − p − lim
t→∞

wt > 0.

■

LEMMA 7 When wt > πtv − p for some t > 0, then there exists some ϵ > 0, such that wt is

continuously differentiable on the interval (t − ϵ, t + ϵ), and ẇt = (1 − πt)λwt + c.

Proof: As wt > πtv − p, we have

wt = lim
ξ→0

(1 − λξ(1 − πt))(wt + ξẇt)− cξ.

Therefore,

lim
ξ→0

λξ(1 − πt)wt = lim
ξ→0

ξẇt(1 − λξ(1 − πt))− cξ.

We get,

ẇt = λ(1 − πt)wt + c.
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■

LEMMA 8 When wt < πtv − p for some t > 0, then there exists some ϵ > 0, such that wt is

continuously differentiable on the interval (t − ϵ, t + ϵ), and ẇt = π̇tv

Proof: As wt < πtv − p, we have

wt = lim
ξ→0

(1 − λξ(1 − πt))(πtv + π̇tξv − p)− cξ.

Therefore,

ẇt = lim
ξ→0

λξπ̇t(πtv + π̇tξv − p) + (1 − λξ(1 − πt))π̇tv + (1 − λξ(1 − πt)) ˙̇πtξv.

After simplifying it, we obtain

ẇt = π̇tv.

■

Finally, we prove Lemma 4 by contradiction. Recall that the lemma is: for a t such that

wt = πtv − p, we have wτ < πτv − p for all τ > t.

Proof: Suppose wt = πtv − p and ∃ l′ > t such that wl′ ≥ πl′v − p. Because of Lemma

5, we can define a l = sup{l > l′ : wl ≥ πlv − p}. By Lemma 6, it is straightforward that

l < ∞. We also define l = max{t, in f {l < l′ : wl ≥ πlv − p}}. Then l ≤ l, and wl ≥ πlv − p

for all l ∈ [l, l]. Moreover, we know ∃ ϵ such that for l ∈ (l − ϵ, l) and l ∈ (l, l + ϵ), we have

wl < πlv − p. By applying Lemma 7, we get two limits Λl and Λl.

π̇l = λπl(1 − πl),

Λl = lim
l→l−

(ẇl −
d
dl
(πlv − p)) = λ(1 − πl)(πlv − p) + c − λπl(1 − πl)v,

Λl = lim
l→l

+
(ẇl −

d
dl
(πlv − p)) = λ(1 − πl)(πlv − p) + c − λπl(1 − πl)v.
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We should have Λl ≥ 0 and Λl ≤ 0. Hence, the two equations need to be satisfied:

c ≥ λ(1 − πl)p,

c ≤ λ(1 − πl)p.

Because πl is monotonically increasing in l, πl ≥ πl. The two equations cannot be sat-

isfied at the same time unless l = l = l∗. To rule out l∗, we know that ∀l ∈ (t, t + ϵ),

wl < πlv − p, and moreover, ẇl = ˙(πlv − p) according to Lemma 8. Therefore, it is impos-

sible that l∗ > t exists where wl∗ = πl∗v − p.

■

We will proceed to prove Proposition 1. The single crossing condition in Lemma 4 implies

that the optimal stopping time t∗ is when:

ωt = πtv − p

= lim
ξ→0+

(1 − (1 − πt)(1 − e−λξ))(πt+ξv − p)− cξ

= lim
ξ→0+

(πtv − (1 − (1 − πt)(1 − e−λξ))p)− cξ

= lim
ξ→0+

(πtv − (1 − λξ(1 − πt))p)− cξ.

Rearrange the equation, we can get

Benefit of Learning︷ ︸︸ ︷
λξ(1 − πt)︸ ︷︷ ︸

Probability
of signal

× p︸︷︷︸
Benefit:

Avoid Bad Product

=

Cost of Learning︷︸︸︷
cξ.

Finally, we have the optimal stopping condition πt∗ = 1 − c
λp .

■
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[PROOF OF LEMMA 2] The proof is analogous to proving that lB
1 in the benchmark model

(which appears in Lemma 1 and Figure I) is increasing in p. Although we do not provide

a closed-form expression for lB
1 due to its complexity, we can use implicit differentiation by

taking the total derivatives of both sides of Equation (5) to prove that lB
1 is increasing in p.

In this proof, we will show another method that does not require finding the expression for

the price ceiling.

At any moment, when a consumer holds belief π and faces price p, the consumer has

three options. First, the consumer can simply opt out and receive zero payoff. Second,

the consumer can buy the product directly (denoted by the subscript BD) and receive an

expected payoff of WBD(π, p) = πv − p. Third, the consumer can engage in active learning

until the next instant (denoted by the subscript AL). From Proposition 1, we know that once

the consumer starts active learning, she will keep learning until bad news arrives or until

her belief reaches πt∗(p) = 1 − c
λp .

Let C(π, πt∗(p)) denote the expected cost of the whole active learning process (from the

prior belief π to the arrival of bad news or to the posterior belief πt∗). As the belief up-

dating process is mean-preserving, the probability that the consumer will eventually make

a purchase is π
πt∗ (p) , and therefore, the expected return from learning is πv − π

πt∗ (p) p. The

expected payoff from active learning is then WAL(π, p) = πv − πp
πt∗ (p) − C(π, πt∗(p)), and

the overall expected payoff to the consumer is W(π, p) = max{0, WBD(π, p), WAL(π, p)}.

As both WBD(π, p) and WAL(π, p) are continuous in π and p, W(π, p) is also continuous in

π and p everywhere. Next, we will show that W(π, p) is decreasing in p.

Consider two prices p > p′. For any π, it is obvious that WBD(π, p) < WBD(π, p′). And

for WAL(π, p), we have:

WAL(π, p) < πv − πp′

πt∗(p)
− C(π, πt∗(p)) ≤ πv − πp′

πt∗(p′)
− C(π, πt∗(p′)) ≡ WAL(π, p′).

The second inequality holds because πt∗(p′) is the optimal stopping belief of active learn-
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ing under p′. Hence, we know that W(π, p) = max{0, WBD(π, p), WAL(π, p)} is strictly de-

creasing in p. As W(π, p) is both continuous and decreasing in p, if W(π, p) > 0, the seller

can always charge a higher price until W(π, p̄(π)) = 0, where p̄(π) is the price ceiling that

extracts all the surplus from the consumer.

Finally, we also need to prove that p̄(π) is increasing in π. Consider any two differ-

ent prior beliefs, π > π′, and the corresponding price ceilings p̄(π) and p̄(π′). If with

a prior belief π′ and price p̄(π′), the consumer buys directly or engages in active learn-

ing until πt∗( p̄(π′)). And if πt∗( p̄(π′)) < π, then when with a prior belief π and price

p̄(π′), the consumer can at least buy directly and gains an expected payoff that is higher

than W(π′, p̄(π′)). In the case where πt∗( p̄(π′)) ≥ π, then when with a prior belief π and

price p̄(π′), the consumer can at least engages in active learning utill πt∗( p̄(π′)). By doing

so, the consumer obtains the same expected gain but saves the learning cost from π′ to π.

Therefore, we have W(π′, p̄(π′)) < W(π, p̄(π′)). From the above analysis, we know that

W(π, p̄(π)) = W(π′, p̄(π′)) = 0. Assume that p̄(π) < p̄(π′), we get the following:

0 = W(π, p̄(π)) > W(π, p̄(π′)) > W(π′, p̄(π′)) = 0,

and this is a contradiction. Therefore, p̄(π) > p̄(π′) must hold, i.e., p̄(π) is increasing in π.

■

[PROOF OF PROPOSITION 3] When π0 ≥ 1
2 , p̃(π0) =

c
λ(1−π0)

≥ 2c
λ , and therefore over

the entire range of p1 in Condition (10), ∂Π1(p1)
∂p1

> 0. If p̃(π0) < p̄(π0), it is optimal for

the seller to set p1 = p̄(π0) > p̃(π0). The first consumer will engage in active learning at

the chosen price. From Lemma 3, if p̃(π0) ≥ p̄(π0), it is also optimal for the seller to set

p1 = p̄(π0). The first consumer will buy directly.

When π0 < 1
2 and p̃(π0) < p̄(π0), the seller will compare the profit of selling at p̄(π0)

(i.e., Π1( p̄(π0)) =
π0

1− c
λ p̄(π0)

p̄(π0)) with the profit of letting the consumer buy directly without
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learning (i.e., Π1( p̃(π0)) =
c

λ(1−π0)
) and choose the more profitable price. Whether the first

consumer actively learns or directly buys depends on the chosen price. If p̃(π0) ≥ p̄(π0),

the seller chooses p1 = p̄(π0), and the first consumer will buy directly.

If consumer 1 engages in active learning and makes a purchase, her posterior belief

conditional on no bad news arriving, πh=1
1 = 1 − c

λ p̄(π0)
must exceed 1

2 . This is because
∂Π1(p1)

∂p1
< 0 when p1 is such that posterior belief π1 ≤ 1

2 . Otherwise, it is optimal for the

seller to decrease p1 until p̃(π0) to prevent learning (i.e., learning-deterring). Subsequently,

for any consumer n ≥ 2, it is always optimal for the seller to set a price at pn = p̄(πh=1
n−1),

and p̄(πh=1
n−1) > p̃(πh=1

n−1), which implies that all the subsequent consumers induce active

learning. To see the latter, note that

πh=1
n = 1 − c

λ p̄(πh=1
n−1)

. (18)

Rearranging (18), we have

πh=1
n−1 =

c
λ(1 − πh=1

n )
= p̃(πh=1

n ) > p̃(πh=1
n−1). (19)

Apparently, the last inequality holds when n = 1 as πh=1
1 > π0. And by induction, it

holds for all n > 1. Therefore, we find that p̄(πh=1
n ) > p̃(πh=1

n ), which implies that there

will be active learning for all subsequent consumers conditional on no bad news arriving.

■

[PROOF OF PROPOSITION 4] We break down this proposition into three parts and

prove each of them. First, only in the region where π0
1− c

λ p̄(π0)
p̄(π0) ≤ p̄(π0), the forward-

looking seller may behave differently from the myopic seller by charging a learning-inducing

price. Second, the greater β is, the more likely the forward-looking seller is to induce learn-

ing. Third, in the learning-inducing scheme, the seller consistently induces learning in all

subsequent periods. Below, we prove the three parts separately.
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Part 1: The forward-looking seller may induce active learning. First, if the parameters

fall into the region where a myopic seller chooses p1 = p̄(π0) to induce the first consumer

to actively learn (case 1 of Proposition 3), the posterior belief in the absence of bad news

must exceed 1
2 . And for all the subsequent consumers, we have πh=1

n > 1
2 , ∀n > 1. There-

fore, p̃(πh=1
n−1) = c

λ(1−πh=1
n−1)

> 2c
λ , ∀n > 1. Hence, for all n > 1 periods,

∂Πn(pn|πh=1
n−1)

∂pn
=

π0(1− 2c
λpn )

(1− c
λpn )

2 > 0, and thus the optimal price plan that maximizes the static profit of each period

is: pn = p̄(πh=1
n−1). When the seller is forward-looking, as p̄(π) is increasing in π, charging

p1 = p̄(π0) at t = 1 not only yields the highest static profit but also generates the highest

possible posterior belief πh=1
1 , which benefits all future periods. Following the same logic,

the forward-looking seller will consistently find it optimal to set prices pn = p̄(πn−1) in all

periods. Therefore, in this case, the forward-looking seller employs the same pricing strat-

egy as that of the myopic seller.

Second, if the parameters fall into the region where p̃(π0) ≥ p̄(π0) (case 2 of Proposition

3), for any price p1, consumer 1 either buys directly or opts out. Hence, the public belief

will not evolve under any price p1, and therefore early prices have no intertemporal effect

on later profits. In this case, the forward-looking seller’s optimal pricing strategy remains

the same as that of the myopic seller. In all subsequent periods, the seller must charge the

highest price that induces consumers to buy directly, pn = p̄(π0), and none of the consumers

engage in active learning.

Third, when π0
1− c

λ p̄(π0)
p̄(π0) ≤ p̃(π0) < p̄(π0) (case 3 of Proposition 3), the forward-

looking seller may behave differently from the myopic seller. It might be optimal for the

forward-looking seller to charge p1 > p̃(π0) at t = 1 to induce active learning by con-

sumer 1. By doing so, the seller sacrifices the static payoff at t = 1, but gains by increasing

consumer 2’s prior belief to πh=1
1 (p1) =

π0
1− c

λp1
, allowing for a higher price at t = 2 and be-

yond. It is worth noting that, in the absence of bad news arrival, after the first time when

the public belief surpasses 1
2 , the static profit of a single period becomes monotonically in-

creasing in price. Therefore, in all subsequent periods, the seller will optimally set prices at
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pn = p̄(πn−1), leading to active learning by all subsequent consumers.

Part 2: Greater β, more likely to induce learning. In this part, we demonstrate that the

incentive to induce active learning strengthens with a higher β. We begin by proving the

following lemma.

LEMMA 9 For any increasing sequence {an}, if there exists x > 0, such that ∑∞
n=1 xnan ≥ 0 and

finite. Then for any y > x, ∑∞
n=1 ynan ≥ ∑∞

n=1 xnan.

Proof. When a1 ≥ 0, as {an} is an increasing sequence, all elements are positive. As y > x,

it is trivial that ∑∞
n=1 ynan ≥ ∑∞

n=1 xnan. When a1 < 0, there must exist a turning point n̂,

such that an < 0 if and only if n ≤ n̂.

We prove this by contradiction. Let X = ∑∞
n=1 xnan and Y = ∑∞

n=1 ynan. Assume that

there exists an y > x such that Y < X. As y > x

Y − X
y − x

= a1 +
y2 − x2

y − x
a2 +

y3 − x3

y − x
a3 + · · · < 0. (20)

As X ≥ 0 and y > x > 0,
Y−X
y−x −X

x
y < 0. Thus, we have

Y−X
y−x − X

x

y
= a2 +

y2 − x2

y − x
a3 +

y3 − x3

y − x
a4 + · · · < 0. (21)

If n̂ = 1, all terms in (21) are positive. We find a contradiction. If n̂ > 1, as a1 < 0, X ≥ 0,

and y > x > 0, we have

Y−X
y−x −X

x
y − X

x2 +
a1
x

y
= a3 +

y2 − x2

y − x
a4 +

y3 − x3

y − x
a5 + · · · < 0. (22)

If n̂ = 2, all terms in (22) are positive. We find a contradiction. If n̂ > 2, by induction, we
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have

1
yn

Y − X
y − x

−
n̂

∑
i=1

X
yixn̂+1−i +

n̂

∑
i=2

(
n̂−i+1

∑
j=1

ai−1

yjxn̂−i+2−j

)
= an̂+1 +

y2 − x2

y − x
an̂+2 +

y3 − x3

y − x
an̂+3 + · · · < 0.

(23)

As all terms on the right-hand side of (23) are positive, the sum cannot be negative, leading

to a contradiction.

■

When π0
1− c

λ p̄(π0)
p̄(π0) ≤ p̃(π0) < p̄(π0), a myopic seller would charge pn = p̃(π0) in

all periods, and the expected payoff remains the same across all periods, Πn( p̃(π0)|π0) =

p̃(π0). For any β1 < β2, if it is optimal under β1 to induce active learning, denote the

optimal prices in the absence of bad news by {pn,β∗1
}. The corresponding posterior beliefs

are denoted by {πh=1
n,β∗1

}. The equilibrium profit of a seller with β1 is:

Π∗({pn,β∗1
}|β1) =

∞

∑
n=1

βn−1
1

π0

1 − c
λpn,β∗1

pn,β∗1
. (24)

It must exceed the profit under the myopic seller’s pricing. Let ∆n = π0
1− c

λpn,β∗1

pn,β∗1
− p̃(π0),

we have

Π∗({pn,β∗1
}|β1)− Π(pn = p̃(π0)|β1) =

∞

∑
n=1

βn−1
1 ∆n ≥ 0 (25)

As the expected one-period profit is increasing, ∆n is increasing in n, and there exists a

threshold n̂, such that ∆n < 0 when n < n̂, and ∆n ≥ 0 when n ≥ n̂. Now, we consider

a seller with β2, who values the future more than the seller with β1. For the β2 seller, by

Lemma 9, if it uses the same pricing strategy, {pn,β∗1
}, as the β1 seller, it also gains a higher

profit than statically optimal prices pn = p̃(π0). That is,

Π({pn,β∗1
}|β2)− Π(pn = p̃(π0)|β1) =

∞

∑
n=1

βn−1
2 ∆n >

∞

∑
n=1

βn−1
1 ∆n ≥ 0. (26)
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Moreover, note that {pn,β∗1
} may not be the optimal prices for the β2 seller. The equilibrium

profit for the β2 seller must be weakly greater than the profit under {pn,β∗1
}. Thus, we have

Π∗({pn,β∗2}|β2) ≥ Π({pn,β∗1
}|β2) > Π({pn,β∗1

}|β1) ≥ Π(pn = p̃(π0)|β1). (27)

Therefore, a consumer with a higher β has a stronger incentive to induce active learning.

Part 3: Learning-inducing in all subsequent periods. We continue to show that if the

seller induces learning in the first period, it is optimal for the seller to choose learning-

inducing prices in all subsequent periods. First, if the seller can set a learning-inducing

price at t = 1, from Lemma 3, we must have p̄(π0) > p̃(π0) =
c

λ(1−π0)
. p̄(π0) is determined

by (5). Recall that (5) states

π ≥ c
λ(v − p) + c ln πc

(1−π)(λp−c)
. (28)

It is easy to verify that the RHS is strictly increasing in p. Therefore, p̄ is the highest price

to make (5) binding. If p̄(π0) > p̃(π0), substituting p by p̃(π0) and π by π0 in (5), the

inequality must have slack. That is,

π0 >
c

λv − c
1−π0

. (29)

It simplifies to λvπ0(1 − π0)− c > 0. When v ≤ 4c
λ , there is no solution for (29). It implies

that for any prior belief π0, p̄(π0) ≤ p̃(π0), and thus, there cannot be an initial learning-

inducing price. When v > 4c
λ , the solution is π0 ∈ (

λv−
√

λv(λv−4c)
2λv , λv+

√
λv(λv−4c)
2λv ). Hence,

we conclude that the prior belief π0 must lie within this region.

If the seller induces learning at t = 1, conditional on the first consumer’s purchase (with

no bad news arriving), the prior belief is πh=1
1 > π0. There are two cases: πh=1

1 ≥ 1
2 , or

πh=1
1 < 1

2 .
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1. If πh=1
1 > 1

2 , following (11) in the analysis of Proposition 3, it is even optimal for the

myopic seller to set a learning-inducing price p2 = p̄(πh=1
1 ). As the forward-looking

seller also gains from a more informative posterior belief, it sets the highest possible

learning-inducing price, p2 = p̄(πh=1
1 ).

2. If πh=1
1 ≤ 1

2 , assume that it is optimal for the seller to deter learning from t = 2 onward.

That is, p2 = p̃(πh=1
1 ). However, this is dominated by charging a uniform price at

p = p̃(π0) from t = 1 onward. The probability that no bad news arrives is π0
πh=1

1
;

otherwise, the first consumer receives bad news, and all the subsequent consumers do

not buy. Hence, the expected profit from t = 2 onward is

π0

πh=1
1

c
λ(1 − πh=1

1 )
.

However, this is lower than the profit gained if the seller charges p = p̃(π0) from t = 1

onward, which equals c
λ(1−π0)

. To see it, note that

π0

πh=1
1

c
λ(1 − πh=1

1 )
≥ c

λ(1 − π0)
⇐⇒ π0(1 − π0) ≥ πh=1

1 (1 − πh=1
1 ).

It cannot be true as π0 < πh=1
1 ≤ 1

2 .

Inductively, if πh=1
1 < 1

2 , following the same argument, we know that whether πh=1
2 ≥ 1

2

or πh=1
2 < 1

2 , the seller still induces learning at t = 3, and this strategy continues in all future

periods. The above analysis also suggests that if it is optimal for the seller to induce learning,

the public belief sequence will eventually exceed 1
2 . Otherwise, it will be dominated by

deterring learning from t = 1.

Finally, we need to show that when the seller charges learning-inducing prices, the public

belief will never exceed the region where p̄(π) > p̃(π). We prove it by showing that the

belief updating process under p = p̄(π) is a contraction. With a slight abuse of notation,

for any prior belief π ∈ (
λv−

√
λv(λv−4c)
2λv , λv+

√
λv(λv−4c)
2λv ) (the region where p̄(π) > p̃(π)), let
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the posterior belief conditional on no bad news arriving under p = p̄(π) be π′. Under the

learning-inducing regime, we have

π′ = 1 − c
p̄(π)

, (30)

where p̄(π) is determined by the binding inequality (5). Rearranging (30), we have λ p̄(π) =

c
1−λ′ . Substituting it into the binding inequality (5), we get

λv − c
1 − π′ + c ln

π

1 − π
+ c ln

1 − π′

π′ =
c
π

. (31)

Equation (31) determines a mapping from π to π′. We denote it as π′ = f (π). Take full

derivative with respect to π and π′, we have

f ′(π) =
dπ′

dπ
=

π′(1 − π′)2

π2(1 − π)
. (32)

It is easy to see that f ′(π) < 1 when 1 > π′ > π > 1
2 . By the mean value Theorem, f (π)

is a contraction over (1
2 , 1). By the Banach fixed-point theorem, f (π) has unique fixed point

π̄, such that starting from any π0, the sequence πn = f (πn−1) converges to π̄ as n → ∞. To

find the convergence limit π̄, note that at the fixed point, π̄ = f (π̄). Thus, we have

π̄ =
c

λv − λ p̄(π̄) + c ln π̄c
(1−π̄)(λ p̄(π̄)−c)

. (33)

It has a unique root, π̄ =
λv+

√
λv(λv−4c)
2λv over (1

2 , 1), which happens to be the upper-bound

of the region where p̄(π) > p̃(π). Therefore, we show that as n increases, πh=1
n will al-

ways fall into the region where the seller finds it optimal to induce active learning, and

limn→∞ πh=1
n = π̄ ≡ λv+

√
λv(λv−4c)
2λv .

■
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[PROOF OF COROLLARY 1] The proof of Proposition 4 already derives the limit of con-

vergence of public belief, π̄ =
λv+

√
λv(λv−4c)
2λv . We proceed to derive the probability of an

incorrect herd.

First, when the seller deters learning from t = 1, there is no active learning, and the

public belief remains to be π0. As all consumers purchase under the learning-deterring

scheme, an incorrect herd occurs with probability 1 when the true state is L, and it occurs

with probability 0 when the true state is H.

Second, when the seller uses the learning-inducing strategy, from Proposition 4, all con-

sumers engage in active learning and the public belief converges to π̄. When the true state

is H, conclusive bad news never arrives, and the seller will always set prices that make con-

sumers purchase after learning, eliminating the possibility of an incorrect herd. An incorrect

herd can only occur when the true state is L. The probability of no bad signal arriving during

the learning process of all consumers, which leads to the public belief converging to π̄, by

Bayes rule, is

Pr(h = 1) =
π0

π̄
= Pr(H) + Pr(L)Pr(h = 1|L) = π0 + (1 − π0)Pr(h = 1|L). (34)

Thus, we obtain Pr(h = 1|L) = π0
1−π0

1−π̄
π̄ , which is the probability of an incorrect herd

conditional on state L.

■

[PROOF OF PROPOSITION 5] For a myopic seller with β = 0, in any period with a prior

belief π and news arrival rate f (λ, N), the seller only sets a price that optimizes current

profits. Thus, the optimal pricing strategy aligns with the results of the main model with a

fixed news arrival rate, simply replacing λ with f (λ, N).

When p̃(π, N) ≥ p̄(π, N), the seller cannot induce learning by any price. The consumer

either buys directly or opts out. Therefore, a forward-looking seller also chooses to deter
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learning. When p̃(π, N) < π
1− c

f (λ,N) p̄(π,N)
p̄(π, N), both the myopic seller and the forward-

looking seller charge p = p̄(π, N), which is the highest price that induces learning. Thus,

the only non-trivial case lies in the region where π
1− c

f (λ,N) p̄(π,N)
p̄(π, N) ≤ p̃(π, N) < p̄(π, N).

For a forward-looking seller with β ∈ (0, 1), the seller optimizes the sum of the expected

future payoffs. At period n, if all consumers have made a purchase in the history (h = 1),

the public belief is updated to πh=1
n−1, and the news arrival rate becomes f (λ, n − 1). If not all

previous consumers have purchased (h = 0), the consumer infers that the product is of type

L and consequently rejects any positive price. The optimization problem for the seller is

max
{pn}

Π({pn}) =
∞

∑
n=1

βn−1Πn(pn|πh=1
n−1), (35)

subject to

Πn(pn|πh=1
n−1) =


π0

1− c
f (λ,n−1)pn

pn if pn > p̃(πh=1
n−1, n − 1),

pn if pn ≤ p̃(πh=1
n−1, n − 1),

(36)

πh=1
n =


1 − c

λpn
if pn > p̃(πh=1

n−1, n − 1),

πh=1
n−1 if pn ≤ p̃(πh=1

n−1, n − 1),
(37)

pn ∈
[
min

{
p̄(πh=1

n−1, n − 1), p̃(πh=1
n−1, n − 1)

}
, p̄(πh=1

n−1, n − 1)
]

, (38)

Note that this is analogous to the main model, except for replacing λ with f (λ, n − 1).

Conditional on no bad signal arriving in the history (h = 1), the evolution of f (λ, n) is

deterministic. Therefore, switching from learning-deterring to learning-inducing at time t

will not affect f (λ, n) in any period n > t but will only increase the public belief πh=1
n in all

subsequent periods. Therefore, it is sufficient for us to show that Πn(pn|πh=1
n−1) is increasing

in πh=1
n−1 for any f (λ, n − 1). Assume that in any period n, the public belief (when h = 1) is

πh=1
n−1 under the optimal strategy of the myopic seller. If the forward-looking seller induces

learning in a previous period, the public belief is π̃h=1
n−1 ≥ πh=1

n−1. There are two cases:
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1. If for the myopic seller, it is optimal to set a learning-deterring price pn = p̃(πh=1
n−1, n −

1). Then, a forward-looking seller can at least set the price pn = p̃(π̃h=1
n−1, n − 1). As

p̃(π, n) is strictly increasing in π, the profit will be strictly higher.

2. If for the myopic seller, it is optimal to set a learning-inducing price pn = p̄(πh=1
n−1, n −

1). Then, for the forward-looking seller, if p̄(πh=1
n−1, n − 1) < p̃(π̃h=1

n−1, n − 1), the seller

can set the price at p̃(π̃h=1
n−1, n − 1), ensuring sales to all consumers at a higher price.

Thus, the profit is strictly higher. If p̄(πh=1
n−1, n − 1) ≥ p̃(π̃h=1

n−1, n − 1), the seller can at

least set the same price of p̄(πh=1
n−1, n− 1) and guarantee the same profit. This is feasible

as p̄(π, n) is increasing in π.

Summarizing the above two cases, we show that Πn(pn|πh=1
n−1) is increasing in πh=1

n−1 for any

f (λ, n − 1), implying that the seller benefits from generating a more dispersed public belief

in later periods. Therefore, the seller may find it optimal to sacrifice early profits by charging

a higher price to induce learning.

■

50


	Introduction
	Literature Review
	Benchmark: Two Learning Processes with Exogenous Price
	Model Setting
	Active Learning
	Observational Learning

	Dynamic Pricing with Two Learning Processes
	A Myopic Seller's Pricing Problem
	A Forward-Looking Seller's Pricing Problem

	Increasing News Arrival Rate Over Time
	Exogenous Price
	Endogenous Dynamic Pricing

	Discussion and Conclusion



