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Abstract

Among the many challenges that poses the digital economy in the protection
of competition, practitioners and academics have become increasingly concerned
about the role of acquisitions by the main players of the sector: Alphabet, Apple,
Meta, Amazon and Microsoft (often grouped under the label Big Tech). In partic-
ular, higher levels of concentration on this market can affect innovation. While the
theoretical mechanisms explaining the effects of acquisitions on innovation in the
digital sector are now relatively well understood, empirical evidence remains scarce.

This paper contributes to filling in the gap by looking into the fate that awaits
patent-protected technologies acquired by Big Tech. We create a dataset of all
public big tech acquisitions since 1996. For each of these acquisitions, we collect
information on the acquired intellectual property. Our focus on patent data allows
us to track the development steps of a technology as it moves across firms. Because
‘prior art’ is included in a patent by citations to previous patents, the evolution of
the number of forward citations to acquired technologies around the time of acqui-
sition can be used to study the impact of acquisition on the development of these
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technologies. We find that improvements made by Big Tech to acquired technolo-
gies slow down after acquisition, and that this cannot be associated with a ‘normal’
trend in the development of an acquired technology.
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1 Introduction

One of the most notable transformations of our economy over the last 30 years is its
move towards digitalization. Google (Alphabet), Apple, Facebook (Meta), Amazon and
Microsoft (which are often grouped under the label Big Tech) supported that transfor-
mation by bringing more and more social and economic activities to the online world.
From almost non-existent in the early 2000s, these companies now represent the most
valuable brands worldwide.

Being the primary gateways through which people use the Internet places Big Tech
in a position of dominance in digital markets. In order to maintain quality services at
reasonable prices, regulators and competition authorities must ensure that other market
players can still enter digital markets and compete with these dominant firms. Among
the many challenges that poses the digital economy in that regard (e.g. strong network
effects, multi-sidedness, data-driven economies of scope, etc.), the role of mergers and
acquisitions (M&A) by Big Tech is increasingly considered.1 In an interview on CNBC,
Tim Cook (2019), Apple’s CEO, highlighted the very high rate at which the platform
acquires start-ups: “We acquire everything that we need that can fit and has a strategic purpose
to it. And so we acquire a company on average, every two to three weeks.”. Despite the very
high rate at which Big Tech acquires smaller firms, very few of these acquisitions are
reviewed by a competition authority2 and, up to date, only one of them has ever been
blocked (CMA 2021). This can first be explained by the fact that most of these trans-
actions do not meet the turnover-based notification thresholds to be subject to review
by a competition authority. Second, competition authorities are in charge of control-
ling a market that is becoming more complex and opaque every day, and over which
platforms have an advantage in terms of access to information thanks to the data they
collect on their users (Parker, Petropoulos, and Van Alstyne 2021).

The first concern about digital M&As is that they can lead to a loss in consumer
welfare due to enhanced market power. In a static environment, economic theory pre-
dicts that, by relaxing a competitive pressure, horizontal mergers necessarily lead to
higher prices. But their effect on innovation (and thus on future prices and products
quality) is also key and it can be used as an argument in the “balance of harm” approach
of competition authorities. As such, three different dimensions of innovation can be

1See for instance Argentesi et al. 2021; Crémer, Montjoye, and Schweitzer 2019; “Stigler Report” 2019.
2More than 97% of acquisitions in the technology sector have reportedly never been subject to scrutiny

by a competition authority (Kwoka and Valletti 2020).
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considered: innovation by the acquired start-up, by the acquirer’s competitors and by
the acquirer itself.

The start-up innovative effort can first be impacted through the possibility of buy-
out. In case it does not manage to bring its project to the market, a start-up might want
to secure the outside option of being acquired by a bigger firm. To do so, the start-up
would distort its portfolio of projects towards the interests of the platform such as to
maximize the probability of being acquired and the expected acquisition rents (Bryan
and Hovenkamp 2020b, Moraga-González, Motchenkova, and Dijk 2021). This leads
to less radical innovation and lower quality (Cabral 2018, Katz 2021) but it may also
stimulate the innovation effort (Motta and Peitz 2021). Furthermore, digital platforms
may engage in exclusionary practices, for instance by reducing interoperability with
the startup’s product or by imitating its main features and this threat will drive startups
away from the platforms’ core market (Motta and Peitz 2021, Shelegia and Motta 2021).

Digital M&A might also impact innovation by the acquirer’s competitors, actual
or potential. Innovation by actual competitors might be hindered when startups that
could have enabled them to catch up technologically are bought by the leading platform
(Bryan and Hovenkamp 2020a). Empirically, the effect of digital M&A on innovation
by competitors of the merging entity has been tackled in a recent study by Affeldt and
Kesler 2021. These authors study Big Tech acquisitions in the Google Play Store. They
find that, after the acquisition of an app by a tech giant, competing apps are less likely to
be invented or updated and developers shift their innovation effort to non-competing
apps.

In this paper, we focus on the effect of digital M&A on innovation by the merging
entity itself. The total innovation effect resulting from the acquisition of a start-up by
a large digital platform is the combination of both positive and negative effects. Posi-
tive effects include the capacity of the acquisition to solve the "appropriability" prob-
lem of innovators who are not able to internalize all the knowledge spillovers to non-
innovating firms (e.g. through imitation), which reduces their incentives to innovate
in the first place (Shapiro 2011). A merger increases appropriability since the pioneer-
ing firm now also benefits from these positive externalities reaching the other merging
party (Federico, Langus, and Valletti 2018). Next, when a merger leads to an increase
in margins, the acquiring firm faces higher incentives to innovate in order to expand
demand (Bourreau, Jullien, and Lefouili 2021). In addition, by merging, companies
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are pooling complementary skills and assets together. For instance, while the start-up
might have the flexibility and reactivity to contribute innovative ideas, a large plat-
form might be better equipped to exploit the full potential of the innovation (Crémer,
Montjoye, and Schweitzer 2019). The start-up might also not have the resources to
bring the project to the market, in which case acquisition can foster innovation if the
platform has an incentive to develop it (Motta and Peitz 2021, Fumagalli, Motta, and
Tarantino 2020). The main driver of the negative effects of M&A on innovation is their
impact on the market structure. Innovation is a competitive tool through which a firm
can steal business from its competitors. By merging, previously competing firms in-
ternalise these business stealing effects, which thus reduces their incentives to innovate
(Federico, Langus, and Valletti 2018; Federico, Morton, and Shapiro 2020; Motta and
Tarantino 2016). A second mechanism through which M&A can deter innovation by
the merging entity is the effect on the output. Innovation allows a firm to increase its
margins by setting higher prices. But, in the absence of efficiency gains, M&A lead to
a decrease in the merging firms’ output. As a result, there is less to gain from margin-
enhancing innovation (Bourreau, Jullien, and Lefouili 2021). Finally, incumbents might
use acquisitions as a way to get rid of start-ups that represent potential competition be-
cause they are developing substitute products to their own (Cunningham, Ederer, and
Ma 2021, Fumagalli, Motta, and Tarantino 2020). Cunningham, Ederer, and Ma 2021
document that, in the pharmaceutical industry, big pharma acquires startups develop-
ing drug projects competing with their own and terminate the startup’s project after
acquisition i.e. the acquisition kills the innovation.

In practice, the EU and US reviewing agencies consider the potential innovative
benefits of a merger in the context of “efficiencies” (Esteva Mosso 2018). For instance,
in TomTom/Tele Atlas, the European Commission recognised that the merger between
a navigation systems provider and a digital maps developer would allow to deliver “bet-
ter maps – faster” (“TomTom/Tele Atlas” 2008). These efficiencies would thus translate
into the acquired technology being further developed after acquisition. In the digital
context, the literature has so far adopted two main approaches to track development
activity after a big tech acquisition: i. whether the company website reveals that the
acquired product is still being supplied, maintained or upgraded (Gautier and Lamesch
2021) and, ii. in the specific case where the acquired product is a mobile application,
whether it is still undergoing functional updates (Affeldt and Kesler 2021). According
to these studies, 50% to 60% of products are discontinued after a big tech acquisition.
However, a project discontinuation does not mean that the acquired technology is no
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longer used, as it could continue to exist under a new brand name or be integrated in a
new product. Little is known about the development of technologies after acquisition
and this paper intends to fill in this gap.

To assess the impact of big tech acquisitions on innovation, and instead of track-
ing project-level development activities, this paper focuses on the projects’ innovative
part, which is protected by patents. By tracking patents as they move across firms, we
are able to identify whether the technology is still being developed after acquisition.
More specifically, the patent system is such that, when some inventor builds on an ex-
isting technology, they must cite the patent protecting that technology. This implies
that the development of a technology is materialized by citations that are made to the
patents protecting it. The number of citations made by the acquirer itself thus reflects
the intentions of the acquirer towards this technology; a technology that it wants to
develop will receive more citations than a technology that is destined to stagnate. Us-
ing the time series nature of our data, we develop a methodology to isolate the effect
of acquisition on Big Tech citations to acquired patents from the effect of (observed or
unobserved) time trends. First, life-cycle and business-cycle trends in the evolution of
Big Tech citations are captured by controlling for the patent age and the date at which
the citation was made. By means of a propensity score weighting design, we then com-
pare the remaining time trends in Big Tech citations to acquired patents with respect to
comparable non-acquired patents. Our empirical analysis shows that, after acquisition,
the developments made by Big Tech to acquired technologies slow down. However,
this trend in the acquired technology development is not observed among other firms
than their acquirer; these firms cite Big Tech-acquired patents steadily around acquisi-
tion. On this basis, we conclude that the improvement potential of the technology has
not been exhausted after acquisition, so ‘technology maturity’ is unlikely to explain Big
Tech’s declining interest for the development of acquired technologies.

In Section 2, we describe the main features of Big Tech acquired technologies (2.1)
and the construction of our working datasets (2.2). Sections 3 discusses our empirical
strategy to take out the effect of endogenous factors from the evolution of Big Tech’s
citations to acquired patents around the time of acquisition. Our baseline results are
presented in Section 4.1, while Section 4.2 proposes some additional analyses to try and
interpret these results. Section 5 concludes.
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2 Empirical Methodology

For our analysis, we construct a sample of patents filed by a company later acquired by
Big Tech. Our objective is to track the patented technology after its acquisition by a
tech giant. We also construct a sample of comparable patents but that have not been
acquired. In this section, we describe the data collection and the construction of the
working datasets.

2.1 Data and Variables

2.1.1 Big Tech acquisitions

We first create a dataset of firm’s acquisitions by Alphabet, Amazon, Apple, Meta and
Microsoft based on the Standard & Poor’s CapIQ database.3 We retrieve information
on the identities of the acquired firms and on the dates at which their acquisitions were
announced and closed. Then, we use the OECD patent statistics, built on the PAT-
STAT database, to match acquired firms with intellectual property; we obtain a sample
of all published patents filed by a Big Tech-acquired firm to the European Patent Of-
fice (EPO), the US Patent and Trademarks Office (USPTO) or through the Patent
Cooperation Treaty (PCT).4

Among all 707 public big tech acquisitions closed between January 1996 and January
2021, we identify 275 firms that own at least one patent (or that have filed at least one
patent application) before being acquired. Table 1 presents the steps in the construc-
tion of the working dataset. Since we identify technology developments by tracking
patents as they move across firms, we will restrict our analysis to those 275 acquisitions
associated with patent-protected technologies.

3Let us note that acquisitions of very small firms might not be covered by the CapIQ database.
4Patents published under the target’s name after acquisition are considered as published by the acquirer.

5



Table 1: Number of Big Tech acquired firms

Firms acquired by Big Tech
btw. 1996 and 2021 (CapIQ data)

Acquired firms with at least one
published patent (OECD data)

Acquired firms with at least one
patent filed pre-acquisition

Amazon 92 40 29
Apple 93 51 49
Facebook 86 26 23
Google 229 89 78
Microsoft 207 103 96

TOTAL 707 309 275

Note: This table illustrates the steps that are taken to select, among all Big Tech-acquired firms, those that
have patented a technology.

2.1.2 Patent data

We collect information on the patents acquired by Big Tech through the acquisition
of the company that filed these patents. Patents are included in our database irrespective
of whether they are further granted by the patent office to which they were filed. They
are identified based on their application number.

To control for potential trends in the technology development over a patent’s life, we
retrieve information on the patent age (based on its publication date) for all published
patents filed at the EPO, PCT and USPTO.5 For granted USPTO patents, we also
observe the following information on the patent’s technological and economic value:
patent scope, family size, grant lag, number of claims, generality, originality, and radi-
calness. Based on these 7 indicators, we construct a patent quality index. The definitions
of these variables and the reasoning behind their inclusion in the quality index are pre-
sented in Appendix I. All these variables are normalized such as to be centered in 0,
with higher values associated with higher quality levels, and their average defines the
composite quality index. This means that a patent associated with a positive quality
index can be considered as more valuable than average, and a patent associated with a
negative quality index can be considered as less valuable than average. As could be ex-
pected, we observe that Big Tech-acquired patents are more valuable than the average
patent (see Appendix II). As an alternative to this quality index, we will use one vector
that captures as much as possible of the variation in the data along the seven indica-
tors of a patent’s value. More specifically, we intend to approximate our 7-D quality
space by a linear combination of all 7 (normalized) indicators along which the spread of
patents is maximised. This vector is computed using a principal components analysis,

5Information is available for patents published from 1978 onwards.
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as described in Appendix III .

2.1.3 Citations data

The use and the further development of a patented technology can be proxied by the
forward citations received by the patent. Because ‘prior art’ is included in a patent by
citations to previous patents, forward citations by the acquiring firm to the acquired
technology reflect whether the technology is being further improved by its acquirer.

To retrieve that information from the OECD database,6 we use the application iden-
tifiers of all patents containing a citation to a patent filed by a Big Tech-acquired firm.
Patents cited by their acquirer can then be identified by matching these application
identifiers to the filing firms. In addition, we can estimate the date at which each citing
patent was filed; 18 months before publication for EPO and PCT patents, and 9 months
before publication for USPTO patents. 7 On this basis, we can derive the number of
citations received by a given patent at a monthly level. Let us note that, while citing
patents information is available for EPO and PCT patents irrespective of whether they
are further granted, it is only available for USPTO granted patents. Because the cita-
tions data is available until July 2021, and to avoid biases due to some citing US patents
not yet being granted by that time (and hence not observed), we end our study period
55 months before the data collection, in December 2016. This buffer period is defined
based on the observation that 90% of US patents are granted within 55 months of their
application.8

In our study, we use patent citations as a proxy for the innovation effort in a given
technology field. Because all previous knowledge used in an innovation has to be cited
in the patents protecting this innovation, if a technology stops being developed, one
should observe fewer citations to the patents protecting this technology. On the con-
trary, a technology that is further developed will be cited in many subsequent patents.
Information about patents citations is therefore very useful to study Big Tech’s acquisi-

6The OECD Citations Database covers all citations present in EPO and PCT patent documents published
from 1978 onwards and all citations made in USPTO patent grants from 1976.

7We do not directly observe a patent filing date. The legal requirement for the patent office to publish a
patent application is 18 months from the filing. This 18-month limit is respected for, respectively, 100% and
95% of all EU and US patent applications (Tegernsee 2012), and 97% of all PCT patents are published within
two weeks of this limit (WIPO 2022). While this is a minimum delay for EPO and PCT patents, earlier
publication is often observed at the USPTO: half of US patent applications are published within 9 months
after they were filed (Martin 2015).

8Author’s calculations based on the ’grant lag’ from the OECD Patent Quality Indicators database, July
2021.
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tion strategies, because it allows to infer the use that is made of an acquired technology
in subsequent innovation. More specifically, we can capture the improvements that
are made by an acquirer to an acquired technology based on the number of acquirer’s
citations to the patents protecting that technology.

Of course, using patent data to identify changes in the acquired technology de-
velopment suffers from an important limitation; it only accounts for patent-protected
technologies. Some innovations might not have been patented, for instance because
they are simply not patentable (Belleflamme and Peitz 2015), or due to a low probabil-
ity of imitation and/or high costs of patenting (e.g. hiring patent specialists to prepare
the application, paying the filing administrative costs and the renewal fees). However,
patent data allows us to capture most significant Big Tech acquisitions, as 70 out of the
100 biggest acquired firms (i.e. with a total funding above $2.5 million)9 had patented
some invention and hence are included in the patent database.

Information on the number of forward citations made to a given patent also suffers
from some biases. Companies might have strategic reasons not to cite a patent. For
instance, fewer citations would be made by firms aiming to gather patents for defensive
or cross-licensing purposes (Abrams, Akcigit, and Grennan 2013; Jaffe, Trajtenberg, and
Henderson 1993; Lampe 2012). This should not be a problem in our analysis as we do not
only consider citations made by the applicant, but also those added by the examiner.
Citations data might also be noisy (Gambardella, Harhoff, and Verspagen 2008) due
to differences between applicants (Rysman and Simcoe 2008; Sampat 2010) and across
industries (Lerner, Sorensen, and Strömberg 2011; Rysman and Simcoe 2008). For
our analysis, we focus on the digital sector, so cross-industry heterogeneity should not
affect our results. Our study of the evolution of citations made by Big Tech is also
little affected, since we consider the same five applicants over time. Another potential
source of bias is that the citations count might include irrelevant references as patent
applicants have an incentive to cite as many references as possible; if a reference the
applicant knew about is forgotten, a court may rule the patent to be unenforceable in
infringement proceedings (Allison and Lemley 1998; Kuhn, Younge, and Marco 2020).
But the resulting measurement error has been shown to be mainly problematic for the
study of citation patterns over time (Kuhn, Younge, and Marco 2020; Marco 2007), so
this can be accounted for in our analysis by controlling for the date at which a given
citation is observed.

9Funding data is retrieved from Crunchbase.
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2.1.4 Summary statistics

In the end, for each patent in our database, we can identify the acquirer, the timing
of acquisition (announced date and closed date), the patent’s age, the patent’s quality,
and the number of forward citations made every month to this patent. We construct a
dataset containing all patents belonging to one of the 275 Big Tech-acquired firms, and
we select those firms that have published, pre-acquisition, at least one patent further
cited by their acquirer; approximately 900 acquired patents are never cited by the ac-
quirer. We end up with a working sample of 187 firms, i.e. 187 patent portfolios. Table 2
presents summary statistics of these data samples at the patent portfolio level. On aver-
age, portfolios that are cited by their acquirer are more likely to have been published at
the USPTO10 than portfolios that contain no patents cited by their acquirer.

Table 2: Big Tech acquired patents portfolios

Firm size
($mm)

Portfolio size
(patents #)

Patent age at
acquisition

High quality
patents

US-published
patents

Count Mean SD Mean SD Mean SD % %

Big Tech acquired portfolios

AMZN 29 399 448 26 78 4,73 5,40 74% 64%
APPL 49 187 243 71 221 4,00 2,39 67% 66%
FCBK 23 7.476 10.994 14 38 3,73 4,13 43% 52%
GOOG 78 1.282 2.544 48 252 4,29 3,42 80% 61%
MSFT 96 1.972 5.585 27 83 3,61 2,80 62% 59%

TOTAL 275 1.384 4.132 40 172 4,01 3,41 70% 62%

Big Tech acquired portfolios
cited by their acquirer

AMZN 15 326 295 18 27 3,31 2,25 74% 70%
APPL 36 215 256 95 254 4,55 2,70 79% 88%
FCBK 10 11.139 12.697 27 56 3,96 3,64 45% 81%
GOOG 52 1.412 2.838 70 307 3,94 2,24 84% 84%
MSFT 74 2.336 6.071 34 93 4,01 2,84 65% 79%

TOTAL 187 1.664 4.639 54 206 4,03 2,64 75% 82%

Notes: This table provides summary statistics on Big Tech-acquired patents portfolios. High quality patents
are defined as those associated with a quality index superior to the median quality index.

2.2 Working sample

10Based on a probit regression at the 1% level.

9



2.2.1 Acquired and non-acquired patents

We consider patents that are acquired by a tech giant and that receive at least one for-
ward citation (further simply referred to as ‘acquired patents’). If citations are made by
the same citing patent to cited patents belonging to a same patent family, we keep the
cited patent with the earliest publication date. Next, we select a balanced panel of Big
Tech-acquired patents observed every month between 1 year before their acquisition
(closing) date and 3.5 years after,11 such that our time series cover a period of 4.5 years.
To control for unobserved factors that may impact the time trend in citations, we in-
troduce a group of patents that are not treated by the acquisition event: patents that
are cited by the tech giants but never acquired by them (further simply referred to as
‘non-acquired patents’). These patents are assigned placebo acquisition dates by draw-
ing from the distribution of observed big tech acquisitions.12 We assume a lognormal
distribution of the acquisition date 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑝 assigned to the non-acquired patent 𝑝:

𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑝 ∼ 𝐿𝑁 ( ˆ̀, �̂�2)

where the mean ˆ̀ and variance �̂�2 are obtained from the distribution of observed
acquisition dates.

We then select a balanced panel of non-acquired patents observed every month
between 1 year before simulated acquisition and 3.5 years after. On this basis, we obtain
two groups: i. a balanced panel of patents acquired between 1996 and 2021 and observed
in a 4.5 year-window around acquisition, ii. a balanced panel of patents that were
never acquired, but that have been assigned a placebo acquisition date between 1996
and 2021 and are observed in a 4.5 year-window around this placebo. Table 3 presents
the number of patents in these two groups: 844 patents undergo an acquisition event,
and 103,198 are assigned a placebo acquisition date.

11We assume citations are observed from 6 months before the patent publication, because 99% citations
in our sample are made less than 6 months before the patent publication.

12A similar study design is developed by Kleven, Landais, and Søgaard (2019), who assign placebo births
to individuals who never had children by drawing from the observed distribution of age at first child among
parents.
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Table 3: Patents observed over the whole study period

Big Tech acquired Big Tech non-acquired

Amazon 79 8,321
Apple 122 28,169
Facebook 1 4,151
Google 338 23,764
Microsoft 304 38,793

TOTAL 844 103,198

Note: This table presents the number of observations contained in the balanced
sample of patents observed in a 4.5 year-window around (simulated) acquisition.
There are two reasons why Facebook is underepresented. First, the company is
not very active from a patenting point of view. Second, Facebook started acquir-
ing smaller firms later than the other tech giants, so most of its patented acquired
technologies are not observed 3.5 years after acquisition.

2.2.2 Inverse probability weighting

Before comparing the development of Big Tech-acquired and non-acquired patents,
we must ensure that the two groups are comparable in all aspects except for their ac-
quisition status, as if acquisition had been fully randomized. In particular, we must deal
with a selection bias.

Acquired patents are acquired for a reason; the acquirer must see some potential in
them. In order to obtain two comparable groups, we use propensity scores. Propensity
scores can be seen as the channel through which a patent’s characteristics affect its ac-
quisition status and hence create endogeneity in the relation between the treatment (the
acquisition status) and the outcome (forward citations). A patent’s quality is an obvious
determinant of both its acquisition status and the citations it receives. Some other de-
terminants are unobserved. They will be captured by including the number of citations
received by a given patent before acquisition. However, the regressors included in the
propensity scores must be exogenous to the acquisition event. Because most acquisi-
tions are announced before they are actually closed, this announcement might already
impact the citations to the to-be-acquired patents. This means that the event might
have some anticipation effects. Therefore, we aim to use a period of time during which
the announcement has not taken place yet. From our working sample, we observe that
only 2% Big Tech acquisitions are announced more than 8 months before their closing
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date. On this basis, we choose to use the number of citations up to 9 months before
acquisition (i.e. during the first three months of our time series).

To obtain the propensity scores, we first estimate a discrete choice Probit model of
the probability for a patent 𝑝 to have been acquired 𝑃 (𝐴𝑝 = 1) with, as regressors, its
quality (𝑄𝑢𝑎𝑙𝑝 ) and the number of citations it receives during the first three months of
our time series (𝐶𝑖𝑡𝑝 (0)):

𝑃
(
𝐴𝑝 = 1|𝑄𝑢𝑎𝑙𝑝 ,𝐶𝑖𝑡𝑝 (0)

)
=

Φ(𝛼 + 𝛽𝑄𝑢𝑎𝑙𝑝+𝛾1𝐶𝑖𝑡𝑝,−11 + 𝛾2𝐶𝑖𝑡𝑝,−10 + 𝛾3𝐶𝑖𝑡𝑝,−9) (1)

where Φ is the cumulative density function of the standard normal distribution.

We then use the predicted values from the function to generate, for each observa-
tion, the propensity scores (𝑃𝑝 ), which ensure that patents with the same covariate values
have a positive probability of being both acquired and non-acquired. In other words,
conditional on these scores, the distribution of the endogenous covariates should be sim-
ilar between acquired and non-acquired patents (Austin 2011). For instance, because we
observe that patents with a higher quality are more likely to have been acquired,13 the
propensity score associated with a high quality patent is higher.

Next, to disentangle the effect of acquisition from the effect of potential confound-
ing factors, we need to close the propensity scores channel through which these con-
founding factors affect a patent’s acquisition status. This can be done by using the
propensity scores to conduct inverse probability weighting (King and Nielsen 2019). The
first step of this procedure consists in "trimming" non-acquired patents outside of the
acquired patents’ propensity score range. This limits the data to the range of "com-
mon support", i.e. to non-acquired patents that are sufficiently comparable to acquired
patents. On this basis, we end up with a sample of 663 acquired patents (all acquired
patents for which we have information on quality) and 69,396 non-acquired patents.
This represents, respectively, 79% and 67% of the original balanced sample presented in
Table 3. Because patent quality is not observed for EP- and WO-published patents and
pending US-published patents, only US-granted patents are included in this trimmed
sample. Second, we need to weight each acquired patent by the inverse of the proba-
bility that it was acquired (1/𝑃𝑝 ), and each non-acquired patent by the inverse of the
probability that it was not acquired (1/(1 − 𝑃𝑝 )). By weighting patents by the in-

13Based on a t-test at the 1% level on the balanced sample, Big Tech-acquired patents are found to be
statistically higher quality (mean index = 0.05) than non-acquired patents (mean index = 0.02).
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verse of the probability of what they actually are, we make the treated and control
groups more similar. Acquired patents that get the biggest weights are the ones that
are most like non-acquired patents; acquired patents who were least likely to have been
acquired. Inversely, non-acquired patents with the biggest weights are the ones most
like acquired patents; non-acquired patents who were most likely to have been acquired
(Huntington-Klein 2021). In turn, we obtain a sample of patents in which individual
heterogeneity has been averaged across the treatment and control groups.

To ensure that this re-weighting will properly take out the effect of endogenous
covariates on the acquisition status, we must test for "balance". Balance is the assump-
tion that, after weighting, there are no more meaningful differences between acquired
and non-acquired patents in variables included as regressors to compute the propen-
sity scores. This ensures that the inverse probability weighting is appropriate to close
the propensity scores channel through which these regressors affect a patent’s acqui-
sition status, i.e. that acquired and non-acquired patents become similar in all aspects
except for their acquisition status. A common way of checking for balance is to test
for the difference of means between the control and the treated groups. The balance
tables in Appendix IV present the results of this test before and after applying the
inverse probability weighting. We observe that, compared to the raw sample, the dif-
ferences in means between acquired and non-acquired patents in the new trimmed and
weighted sample are reduced. However, in the end, individual variables do not matter;
the only one variable used to weight observations is the propensity score itself. So, for
our weighted sample to be properly balanced, the propensity score distributions for the
two patent groups should be nearly identical. We present in Appendix V the overlaid
density plots of the obtained propensity scores. Because the propensity score distribu-
tions for the treated group of acquired patents and the control group of non-acquired
patents appear to be quite similar, we conclude that, after dropping observations out-
side the range of common support and weighing observations based on their inverse
probabilities, these two patent groups will become comparable.14

14We also see from Appendix V that the propensity scores take very small values. This is due to the
large difference between the sample sizes of acquired and non-acquired patents; since there are much fewer
acquired patents, each of them is given a relatively higher weight. In the next section, we will test whether
our results are robust to selecting two patents groups that are similar in size.
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3 Model

In the previous section, we described how we collected patent citations data to capture
the developments of Big Tech-acquired technologies. In this section, we make use of
the time series nature of this data to identify the effect of the acquisition event. Let us
highlight that our analysis does not aim to compare pre- and post-acquisition levels in
citations, as pre-acquisition citations levels might not be exogenous to the acquisition
event. Instead, we will try and identify the changes in citations that can be attributed
to acquisition over event time.

3.1 Technology developments around the time of acquisition

Our model is defined in two stages. First, we formalize the relationship between the
acquisition event time and the development of the acquired technology by the acquiring
firm as measured by citations to the associated patents. Second, we design a method to
take out the effect of factors endogenous to the acquisition event that could explain the
trend in citations.

3.1.1 Observed time trends

We study the evolution of the number of forward citations by the acquirer as a function
of event time dummies, which represent the months in which citing patents are filed
with respect to the time of acquisition 𝑡 = 0. To identify the impact of a big tech
acquisition, we must correct for the potential endogeneity coming from determinants
of the technology development other than acquisition. Two main determinants should
be accounted for: life-cycle trends (i.e. the number of forward citations might depend
on the stage of a patent’s life) and business-cycle trends (i.e. the industry’s R&D might
be more or less dynamic in given years).

We denote by 𝐶𝑖𝑡𝑝,𝑡,𝑑 the number of forward citations by the acquiring firm to
patent 𝑝 at event time 𝑡 and date 𝑑. We control non-parametrically for life-cycle trends
and business-cycle trends by including the patent’s age 𝑎𝑔𝑒𝑝,𝑑 and a full set of date
𝑚 dummies. The effects of all included regressors are identified because patents are
acquired at different times; conditional on date and age, there are variations in event
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time. We define the following model:

𝐶𝑖𝑡𝑝,𝑡,𝑑 = 𝑓 (𝐽 ′\1, 𝑎𝑔𝑒𝑝,𝑑𝛽1, 𝑀 ′𝛾1) (2)

where 𝐽 ′ is a vector containing the time dummies (𝑡 = −11,−10, ...,−1, 0, 1, ..., 41, 42)
excluding the base category 𝑡 = 0, and 𝑀 ′ is a vector containing the date dummies (𝑑 =

1996𝑚1, 1996𝑚2, ..., 2016𝑚12). To define the function 𝑓 (.), we must account for the
nature and distribution of the response variable: the citations count. The most widely
used model for a count regression is the Poisson distribution. However, the Poisson
model assumes that the mean and variance of the errors are equal. In our case, the
variance of the citations count is much larger than its mean: a majority of patents in the
data set are only cited once, but a few patents are cited many times (see Appendix VI).
Fitting a negative binomial model is a way to correct for the over-dispersion observed
in the distribution of the citations count variable (Ajiferuke and Famoye 2015). The
negative binomial regression model can be written as:

𝑃 (𝐶𝑖𝑡 = 𝐶𝑖𝑡𝑝,𝑡,𝑑 | 𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑) =(
1/𝛿 +𝐶𝑖𝑡𝑝,𝑡,𝑑 − 1

𝐶𝑖𝑡𝑝,𝑡,𝑑

) ©«
𝛿`

(
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(
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1
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(
𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑
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where ` (.) is the mean of the model and 𝛿 is the dispersion parameter, which accounts
for a variance of the data that is higher than the mean, and 𝐶𝑖𝑡𝑝,𝑡,𝑑 = 0, 1, 2, ....

On this basis, we identify the changes in the acquired technology development that
can be attributed to a big tech acquisition as the changes in citations with respect to
the time of acquisition. This is estimated by the event time impact on the number of
citations: \̂1𝑡 .

3.1.2 Unobserved time trends

While life-cycle and business-cycle trends can be directly controlled for, some other
determinants of the technology development are unobserved (e.g. upward trends in
forward citations due to technology spillovers). To disentangle the cross-sectional cor-
relation in the data from the effect of acquisition, we introduce a control group not
treated by the acquisition event: Big Tech-cited (but never acquired) patents. These
patents are assigned placebo acquisition dates randomly drawn from the distribution
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of observed acquisitions by assuming a standard normal distribution (as described in
Section 2.2). We rewrite model 2 as follows:

𝐶𝑖𝑡𝑝,𝑡,𝑑 = 𝑓 (𝐽 ′\2, 𝐴𝑝]
1, 𝐽 ′𝐴𝑝𝛼

1, 𝑎𝑔𝑒𝑝,𝑑𝛽
2, 𝑀 ′𝛾2) (3)

where 𝐴𝑝 = 1 if patent 𝑝 is acquired, 𝐴𝑝 = 0 otherwise.

On this basis, we can estimate the impact of Big Tech (simulated) acquisition for
both acquired and non-acquired patents separately. If life-cycle and business-cycle
trends captured all determinants of the evolution of citations other than acquisition,
the impact of acquisition for non-acquired patents after controlling for age and date
should be null. In other words, the trend in citations to non-acquired patents over
event time captures the remaining unobserved heterogeneity. The effect of acquisition
can therefore be estimated as the event time impact for acquired patents with respect
to non-acquired patents: 𝛼1𝑡 .

4 Results

We present below estimates of the impact of a big tech acquisition on the development
of the acquired technology by the acquiring firm as measured by citations to the associ-
ated patents. Model 2 is estimated on the balanced panel of Big Tech-acquired patents,
and model 3 is estimated on the balanced panel of trimmed Big Tech-acquired and
non-acquired patents where the contribution of each observation has been multiplied
by its weight (i.e. its inverse probability as described in Section 2.2).

4.1 Baseline sample

4.1.1 Impact of Big Tech acquisitions on the acquired technology development
by the acquirer

Figure 1 plots the estimated event coefficients from models 2 and 3 across event time.
As defined above, these are the changes in the number of acquirer’s citations at event
time 𝑡 relative to the acquisition time, having controlled non-parametrically for life-
cycle and business-cycle trends (\̂1𝑡 ) for acquired patents with respect to non-acquired
patents (𝛼1𝑡 ). The figure includes 95% confidence bands around the event coefficients.
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We see that, before acquisition, Big Tech citations to soon-acquired patents grow faster
than for non-acquired patents. Since patents citations are used as a measure of technol-
ogy improvements, this pre-acquisition observed positive trend in citations shows an
increasing interest by the tech giant for the acquired technology. This interest seems
to fade away around 6 months after acquisition as improvements made to the technol-
ogy by its acquirer start slowing down. From around 2.5 years after acquisition, we
even observe a drop in the number of citations to acquired patents with respect to non-
acquired patents (𝛼1

𝑡>30 take negative values).

Two main interpretations can be put forward to explain these results. First, the ob-
served citations pattern might just illustrate a normal trend in an acquired technology
development; the technology might be improved until it reaches maturity, and this
might coincide with the acquisition event (we will further refer to this interpretation
as ‘technology maturity’). Second, Big Tech might be shifting its innovative efforts
away from acquired technologies. In Section 4.2, we propose to further investigate the
credibility of these two potential interpretations.
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Figure 1: Big Tech citations to acquired patents relative to the time of acquisition

Notes: The graphs show the event time coefficients: \1 from model 2 (grey dots), and 𝛼1 from model 3
(black dots). These coefficients are estimated on a balanced sample of patents in a 5 year-window around
(simulated) acquisition. The shaded bands represent 95% confidence intervals.

4.1.2 Robustness checks

To test for the robustness of our results, we propose in Appendix VII to replicate our
analysis based on four alternative samples: i. one from which outlier observations are ex-
cluded, ii. one that reduces the study period from 4.5 years to 2 years around acquisition
such as to capture more Big Tech acquisitions, iii. one with more equally sized groups
of acquired and non-acquired patents, and iv. one with probability weights computed
using the principal component as an alternative to our quality index (as described in
Appendix III). By estimating models 2 and 3 based on these four alternative samples, we
find similar event time coefficients to those obtained using the baseline sample.

Next, because we observe that most Big Tech acquisitions are associated with a time
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lag between their announcement and closing date, we replicate our analysis by using
the announcement date (instead of the closing date) as the event time. The event time
estimates obtained from this robustness check are presented in Appendix VIII (a). Be-
cause most acquisition announcements take place before the closing dates, part of the
pre-closing positive trend in the acquired technology development takes place after the
announcement event (\̂13<𝑡<10 take positive values). But our main result holds; after
acquisition, acquired technologies appear underdeveloped compared to non-acquired
technologies (𝛼1

𝑡>0 take zero or negative values).

Finally, we test whether the Negative Binomial model is appropriate by comparing
it to a Poisson model using the likelihood ratio test. We find that the 𝛿 dispersion
parameter for model 2 is significantly different from zero (𝜒2 = 2985), which contradicts
the assumption of the Poisson model. On this basis, we can confirm that a Negative
Binomial regression should be used. If we were to ignore this over-dispersion of our
data and constrained 𝛿 to zero, we would obtain the event time estimates from a Poisson
model, as presented in Appendix VIII (b). Based on these (biased) estimates, we find
a slight positive evolution in citations until 6 months after acquisition (𝛼1

𝑡=4 is positive),
which then becomes negative just like in the baseline model (𝛼1

𝑡>6 take zero or negative
values).

4.2 Exploring the ‘technology maturity’ interpretation

4.2.1 Technology developments by other firms than the acquirer

We discussed above that the slowing down of the acquired technology development
might be explained by ‘technology maturity’. This would for instance be the case if,
before acquisition, the incumbent platform and the start-up would be working in par-
allel on similar R&D projects. In order to strengthen its own innovation effort, the
platform might decide to buy the start-up. Thanks to the pooling of skills and assets
from both companies, the technology would then reach its maturity. After this point,
each marginal increase in the innovative effort would result in smaller improvements
of the technology, which would explain that it is less developed after acquisition. To
further explore this potential interpretation of our results, we will look at the acquired
technology developments by other firms than the acquirer. If the technology is indeed
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reaching maturity short after acquisition, we should observe a slowing down of its de-
velopment not only by the acquirer, but by the industry as a whole.

We refine model 2 by including, as additional regressors, fixed effects that are con-
stant for all cited patents published by a same acquired firm (𝑓 𝑖𝑟𝑚 𝑗 ):

𝐶𝑖𝑡 𝑗,𝑝,𝑡,𝑑 = 𝑓 (𝐽 ′\3, 𝑎𝑔𝑒𝑝,𝑑𝛽3, 𝑀 ′𝛾3, 𝑓 𝑖𝑟𝑚 𝑗b
1) (4)

Models 2 and 4 are estimated on two separate samples: balanced panels of Big Tech-
acquired patents cited at least once over our study period by 1) the acquirer and 2) other
firms than the acquirer.15 The estimated event time coefficients (\̂1𝑡 and \̂3𝑡 ) are presented
on Figure 2, separately for these two citing groups. As can be observed, and contrary to
citations by the acquirer (a), citations by other firms than the acquirer (b) are relatively
constant around the time of acquisition and even slightly grow from around 2 years
after acquisition.16

These findings are not in line with the ‘technology maturity’ interpretation, ac-
cording to which the slowing down of an acquired technology development after ac-
quisition would be explained by diminishing returns to the innovative effort. Instead,
we find no negative effect of acquisition on citations by the rest of the industry, which
suggests that the improvement potential of the technology has not been exhausted after
acquisition. Therefore, we argue that the observed acquirer’s citations pattern illustrates
a tendency on the part of Big Tech to under-develop acquired technologies.

15The data set on citations by other firms than the acquirer is constructed in the exact same way as for
citations by the acquirer.

16A similar pattern is observe for the citations by the other Big Tech than the acquirer.
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Figure 2: Citations to Big Tech-acquired patents relative to the time of acquisition

(a) by the acquirer (b) by other firms

Notes: The graphs show the event time coefficients: \1 from model 2 (grey dots), and \3 from model 4
(black dots). These coefficients are estimated on a balanced sample of patents cited by their acquirer (on the
left) and by other firms (on the right) in a 5 year-window around acquisition. The shaded bands represent
95% confidence intervals.
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5 Conclusion

With this paper, we aim to bring empirical evidence of the effect of big tech acquisitions
on acquired innovative technologies. Information provided by the patent system allows
us to track technologies before and after they are bought by these dominant firms.

To study the development of an acquired technology, we use information on cita-
tions made to the patents protecting that technology in subsequent patents. After taking
out the effects of life-cycle and business-cycle trends, we find that Big Tech’s citations
to acquired patents with respect to non-acquired patents slow down after acquisition.
A potential explanation for this result is that the acquired technology reaches full ma-
turity thanks to the pooling of skills and assets of the digital platform and the acquired
start-up. However, we find that citations to Big-Tech acquired patents by other firms
than the acquirer are relatively constant around the time of acquisition, or even evolve
rather positively after acquisition, which means that the improvement potential of the
technology has not been exhausted after acquisition. On this basis, we conclude that
the slowing down in the development of Big Tech-acquired technologies cannot be
interpreted as a normal trend in a technology development and that, instead, Big Tech
appears to be shifting its innovative efforts away from acquired technologies.
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Appendix I

Components of the patent quality index

As discussed in Section 2.1.2, we construct a patent quality index using indicators
measuring patents technological and economic value: patent scope, family size, grant
lag, number of claims, generality, originality, and radicalness. For each of these
variables, we explain here, based on the OECD note accompanying the related data
(Squicciarini, Dernis, and Criscuolo 2013), why they are good measures of a patent’s
quality.

Patent scope

The patent scope variable is constructed based on the number of distinct 4-digit IPC
technology subclasses listed in the patent document. It has been shown that
technologically broader patents are associated with more valuable firms (Lerner 1994).

Family size

A patent family is a set of patents filed in several countries but with a common priority
filing. The size of patent families is proxied by the number of patent offices at which a
given invention has been protected. Because extending a patent protection to other
countries implies additional costs and delays, applicants are more likely to go through
that procedure for more valuable patents.

Grant lag

The grant lag variable is constructed based on the number of days elapsing between
the patent application and granting date. In line with the argument that applicants try
to accelerate the grant procedure for their most valuable patents, the length of the
grant lag period has been shown to be negatively correlated with the value of a patent
(Harhoff and Wagner 2009; Régibeau and Rockett 2010).

Adjusted number of claims

A patent is composed of claims, which relate to the technologies that are legally
protected by the patent. Therefore, the more claims a patent contains, the broader the
rights conferred by this patent. It has been shown that patents containing more claims
have, on average, a higher market value (Tong and Frame 1994; Lanjouw and
Schankerman 2001, 2004). Because technology fields seem to vary in the average
number of claims per patent, this variable is further adjusted. The number of citations
to prior art by a patent is used to account for the development level of the technology



area to which this patent belongs, and the adjusted variable is defined as the number of
claims over the number of citations.

Generality

The patent generality variable is constructed based on the number of distinct
technology fields to which citing patents belong (adjusting for the total number of
citing patents). The wider the range of fields, the more relevant the cited patent has
been for subsequent innovation.

Originality

The patent originality variable is constructed based on the number of distinct
technology fields to which cited patents belong. The broader the technology fields on
which a patent relies, the more original the resulting innovation is expected to be
(Trajtenberg, Henderson, and Jaffe 1997).

Radicalness

The patent radicalness variable is constructed based on the number of IPC technology
classes listed in the cited patents documents, but in which the patent itself is not
classified. The more diversified the array of technologies on which the patent relies
upon, the more the invention should be considered radical (Shane 2001).



Appendix II

Distribution of the patent quality index

Figure 3: Patent quality index distribution (Density)

(a) all patents (b) Big Tech-acquired patents

Notes: This graph displays the distribution of the patent quality index for all patents and Big Tech-acquired
patents. The overlaying curve represents a normal density.

Appendix III

Principal Component Analysis

As an alternative to our patent quality index, we propose to define one vector that
approximates the information contained in the seven indicators of a patent’s value. To
do so, we follow a principal component analysis. First, we center our observations
around a point that has as coordinates the average values of all 7 (normalized)



indicators variables. This point is called the center of the data. Second, we calculate the
principal components. Principal component 1 (𝑝𝑐1) is calculated as the line that best
fits the data while going through the center. Principal component 2 (𝑝𝑐2) is calculated
as the next best fitting line that goes through the center and is perpendicular to 𝑝𝑐1.
The other components (𝑝𝑐𝑖 , 𝑖 ∈ [3, 7]) are computed in the same way, i.e. the best
fitting lines that go through the center and are perpendicular to all 𝑝𝑐𝑘<𝑖 . Third, we
project our data onto these 7 axes to obtain the values of the principal components in
our sample. The proportion of the variation in the data that each principal component
accounts for can be computed as the distance between these data projections and the
center of the data. This distance is called the eigenvalue of a component. To choose
the number of components, we use the scree test developed by Cattell (1966), which
assumes that, when the eigenvalues are plotted as a function of the number of
components, the eigenvalues should decline gradually as more and more noise is
modelled (Bro and Smilde 2014). In our data, the point of inflexion is located at the
second component, so we retain 𝑝𝑐1 and 𝑝𝑐2. As we can see from Table 4, these two
components accounts for 47% of the variation in the data. The importance of each of
the 7 indicators of a patent’s value for the obtained principal components is captured
by the value of its eigenvector, presented in Table 5. The main determinants of 𝑝𝑐1
appear to be the patent’s generality and originality, i.e. the (normalized) number of
distinct technology fields to which citing and cited patents belong, and 𝑝𝑐2 is mainly
determined by the patent’s scope and family size, i.e. the (normalized) number of
listed technologies and of countries where the invention is protected.

Table 4: Principal components

Eigenvalue Proportion (cumulative)

𝑝𝑐1 2.01039 0.2872
𝑝𝑐2 1.25212 0.4661
𝑝𝑐3 1.04398 0.6152
𝑝𝑐4 .935372 0.7488
𝑝𝑐5 .801907 0.8634
𝑝𝑐6 .586627 0.9472
𝑝𝑐7 .369598 1.0000

Patents # 5,453,200
Note: This table presents the eigenvalues from the Principal
Component Analysis eigen decomposition.



Table 5: Eigenvectors

𝑝𝑐1 𝑝𝑐2 𝑝𝑐3 𝑝𝑐4 𝑝𝑐5 𝑝𝑐6 𝑝𝑐7

Patent scope 0.3870 0.5340 0.1108 0.0062 -0.4560 0.4003 0.4296
Family size 0.1659 0.5870 -0.1245 0.2564 0.7309 -0.1083 0.0260
Grant speed -0.2148 -0.0588 0.4104 0.8719 -0.1303 0.0558 -0.0421
Adjusted claims -0.1803 0.1340 0.7995 -0.3980 0.2515 0.2463 -0.1672
Generality 0.4969 0.0844 0.3430 -0.0269 -0.2160 -0.7407 -0.1798
Originality 0.5740 -0.1877 -0.0758 0.1131 0.0588 0.4611 -0.6331
Radicalness 0.4096 -0.5536 0.2029 0.0465 0.3570 0.0558 0.5933

Patents # 5,453,200
Note: This table presents the eigenvectors from the Principal Component Analysis eigen decomposition.

Appendix IV

Balance tables

Tables 6 and 7 present the results of the balancing test for the inverse probability
weighting. In the first and second columns, we show the means and the standard
deviations of the variables included as regressors to compute the propensity scores, for
control observations (non-acquired patents) and treated observations (acquired
patents) respectively. In the third column, we regress these variables on the
observation’s treatment value (acquired or not) to compute the differences of means
and the associated standard errors.

Table 6: Raw sample (before trimming and weighting)

(1) (2) (3)
Variable Not acquired Acquired Acquired vs Not

Qual 0.017 0.052 0.035***
(0.075) (0.064) (0.003)

Cit−11 0.053 0.053 0.000
(0.343) (0.314) (0.013)

Cit−10 0.051 0.107 0.056***
(0.316) (0.800) (0.013)

Cit−9 0.053 0.163 0.110***
(0.350) (1.273) (0.014)

Observations 69,495 663 70,158
Standard errors in parentheses.
Significance at the *** 1% level, ** 5% level, * 10% level.



Table 7: Working sample (after trimming and weighting)

(1) (2) (3)
Variable Not acquired Acquired Acquired vs Not

Qual 0.017 0.015 -0.002***
(0.075) (0.080) (0.000)

Cit−11 0.052 0.048 -0.004**
(0.344) (0.321) (0.002)

Cit−10 0.051 0.033 -0.018***
(0.318) (0.249) (0.002)

Cit−9 0.054 0.041 -0.012***
(0.351) (0.320) (0.002)

Observations 69,396 663 70,059
Standard errors in parentheses.
Significance at the *** 1% level, ** 5% level, * 10% level.



Appendix V

Propensity score distributions

Figure 4: Propensity score distribution by acquisition status (Density)

Notes: This figure shows the distribution of the propensity scores for acquired and non-acquired patents.



Appendix VI

Negative Binomial distribution of the citations count

Figure 5: Distribution of the count of Big Tech citations (Percent)

Notes: This figure shows an histogram of the number of citations received by a given patent in a given
month, overlaid with a negative binomial density with the same parameters.

Appendix VII

Alternative data samples

As robustness checks, we propose to replicate our analysis based on four alternative
samples. First, we exclude outliers by assuming citations follow a negative binomial
distribution; patents associated with citations levels with an expected frequency of less
than 0.5 are excluded. In practice, this implies that we only keep acquired patents that
are cited less than 8 times in each time period. Estimating models 2 and 3 based on this



alternative sample brings similar results to those obtained using the baseline sample: as
can be observed from Figure 6 (a), acquirer’s citations to acquired patents are slowing
down after acquisition, and experience a drop in levels from around 2.5 years after
acquisition. Second, we consider a shorter time series; from a period of 4.5 years
around acquisition (1 year before and 3.5 years after), we reduce our study period to 2
years around acquisition (1 years before and 1 year after). This allows to capture more
Big Tech acquisitions; because we end our study period in December 2016 to avoid
biases in the citations count, restricting our sample to patents observed up to 3.5 years
after acquisition meant that we could only use acquisitions undertaken until June 2013,
which represent only half of all 707 Big Tech acquisitions from Table 1. By adding
patents observed between 1 and 3.5 years after acquisition, we capture acquisitions up
to December 2015, which represent 3/4 of Big Tech acquisitions. On Figure 6 (b), we
can see that the drop in the number of citations is not yet significant by the first year
after acquisition but we do observe, just like for the baseline sample, a positive trend
before acquisition and a negative trend after acquisition.

A third working sample is defined in order to test whether the accuracy of our results
is affected by the large difference between the sample sizes of acquired and
non-acquired patents in the baseline sample (leading to low values of the propensity
scores, see Appendix V). We intend to use all 663 acquired patents and 1,000
non-acquired patents. To do so, we first randomly draw (without replacement) 1,000
observations from the sample of non-acquired patents. We then compute the
propensity scores based on the full acquired sample and on the 1,000 non-acquired
random draws. As can be observed from Figure 7, the obtained propensity scores are
larger than those from the baseline sample. After applying inverse probability
weighting on the new samples, we estimate model 2 and we save the obtained
coefficients estimates. This entire process is repeated 100 times. In the end, we obtain
100 coefficients estimates, which we average across event time periods. The average
coefficients are presented on Figure 8 (a). Apart from larger confidence bands due to
the smaller number of observations, this figure is in every way comparable to the
baseline estimates presented on Figure 1.

As last alternative sample is constructed by using a new measure of a patent’s quality
in the propensity scores (based on which we weight acquired and non-acquired
patents). Instead of a simple average of all 7 patent quality’s indicators, and in order to
capture as much information about a patent’s quality as possible, we use the principal
components that maximise the variation in our data (𝑝𝑐1 and 𝑝𝑐2, as described



Figure 6: Big Tech citations to acquired patents relative to the time of acquisition

(a) excluding outliers (b) reducing the study period

Notes: The graphs show the event time coefficients: \1 from model 2 (grey dots) and 𝛼1 from model 3
(black dots). The event time coefficients on the left have been estimated on a sample from which outliers
(i.e. patents associated with citations values whose expected frequency <0.5 assuming that they are
NB-distributed) have been excluded. On the right, we reduced the study period from 4.5 to 2 years. The
shaded bands represent 95% confidence intervals.

in Appendix III). As can be seen from Figure 8 (b), and compared to our baseline
estimates, the event time coefficients are almost unaffected.



Figure 7: Propensity score distribution by acquisition status (Density)

Notes: This figure shows the distribution of the propensity scores for the full sample of acquired and for
1,000 observations randomly drawn from the sample of non-acquired patents.



Figure 8: Big Tech citations to acquired patents relative to the time of acquisition

(a) subsampled non-acquired patents (b) principal component as quality measure

Notes: The graphs show the event time coefficients: \1 from model 2 (grey dots), and 𝛼1 from model 3
(black dots). These coefficients are estimated on a balanced sample of patents in a 4.5 year-window around
(simulated) acquisition. The shaded bands represent 95% confidence intervals.



Appendix VIII

Alternative model specifications

Figure 9: Big Tech citations to acquired patents relative to the time of acquisition

(a) acquisition announcement as event time (b) dispersion parameter constrained to zero

Notes: The graphs show the event time coefficients: \1 from model 2 (grey dots), and 𝛼1 from model 3
(black dots). These coefficients are estimated on a balanced sample of patents in a 4.5 year-window around
(simulated) acquisition. The shaded bands represent 95% confidence intervals.
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