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Abstract

We study a model of communication in which a better-informed sender learns
to communicate with a receiver who takes an action that affects the welfare of
both. Specifically, we model the sender as a machine-learning-based algorithmic
recommendation system and the receiver as a rational, best-responding agent that
understands how the algorithm works. The results demonstrate robust communi-
cation, which either emerges from scratch (i.e., originating from babbling where
no common language initially exists) or persists when initialized. We show that
the sender’s learning hinders communication, limiting the extent of information
transmission even when the algorithm’s designer’s and the receiver’s preferences are
aligned. We then show that when the two are not aligned, there is a robust pattern
where the algorithm plays a cut-off strategy pooling messages when its private infor-
mation suggests actions in the direction of its preference bias while sending mostly
separate signals otherwise.
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1 Introduction

Suppose a learning algorithm conveys messages to a Bayesian decision-maker, whose

actions impact both parties’ welfare. The algorithm is better informed. However, the

parties’ objectives can differ, leading to an interaction akin to a strategic communication

game. Over time, the algorithm autonomously refines what messages to convey for

different states based on feedback from the decision-maker’s actions. This paper asks if

meaningful communication can emerge and endure in this setting.

This question holds significant economic relevance. Algorithmic advice from AI or

machine learning tools has become increasingly important to human decision-makers

in a diverse and broadening array of domains from the judiciary system (Ludwig and

Mullainathan, 2021) and employee recruitment processes (Hoffman et al., 2018) to rec-

ommending pricing for accommodation services (e.g., Huang, 2022; Garcia et al., 2022),

airline tickets, and recommendations on platforms such as Amazon, Spotify, and Netflix.

These services must not only gather relevant information but also present it to users in

a credible and profitable manner. A number of authors have recently argued that the

algorithm’s designer’s and the end user’s incentives are often misaligned (e.g. Cowgill

and Stevenson, 2020; Huang, 2022; Garcia et al., 2023). For example, Airbnb (an on-

line platform connecting hosts with tenants), offers personalized pricing suggestions to

hosts based on a variety of factors. Because Airbnb earns revenue solely when hosts rent

their properties, it should ideally prioritize lower prices than those optimal for hosts,

who incur variable costs, at any demand level, thus posing a communication challenge.

To customize real-time price recommendations for millions of hosts with diverse objec-

tives influenced by individual time varying variable costs, a straightforward and scalable

solution involves utilizing a learning algorithm.

But how challenging is it to learn to communicate? This is a difficult question to an-

swer both in theory and in practice. Communicating in strategic settings is a well-known

hard coordination problem with the potential for communication breakdowns, often re-

ferred to as ‘babbling’ outcomes. Furthermore, economic theory’s descriptive power is
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notably limited, primarily due to the severe multiplicity of equilibria, leaving the ex-

tent of information transmission in practice unanswered. Finally, the process of learning

to communicate is inherently difficult. The fact that the receiver’s behavior adapts to

the sender’s policy makes the problem non-stationary, creating a well-known learning

challenge. Beforehand, it is unclear whether we should expect any communication to

emerge.

Interacting learning algorithms create stochastic dynamic systems of such complexity

that analytical results appear out of reach. To make progress, we adopt an experimental

approach. We let an AI-powered algorithmic advisor, call it sender, repeatedly interact

with a ‘Bayesian’ receiver in synthetic, computer-simulated interactions. We do so in a

‘cheap talk’ strategic context, as in Crawford and Sobel (1982), where the sender can send

any message without any costs to the receiver. By ‘Bayesian,’ we mean that the receiver

accurately extracts information from messages and chooses the action that maximizes

their period’s payoff.1 We focus on the outcome of the learning process rather than

the learning rate. Therefore, we focus on relatively simple and transparent learning

algorithms intentionally designed for slow, unsupervised learning. These algorithms

refine their communication policy through active experimentation. They do so by testing

alternative messages for given states, reinforcing those messages that prompt the receiver

to choose a more favorable action. Our simulations allow the algorithm to explore

extensively and interact repeatedly until its behavior stabilizes.

The results demonstrate robust communication, which either emerges from scratch

(i.e., originating from babbling where no common language initially exists) or persists

when initialized. As expected, the extent of information transmission decreases with the

wedge between the receivers and the sender’s preferences. But how much information

gets transmitted? We measure the informative content of the learned strategies in two

ways. First, we document a significant level of information transmission quantified by

the percentage reduction in the average entropy of the state resulting from message

1We leave for future research the case in which the receiver foresees the impact of its current choices
on the algorithm’s future behavior.
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observation across a wide range of parameters and initializations and averaged over a

large number of independent experiments. Our algorithmic agent systematically learns

to communicate. Next, we look at how much information is transmitted in practice

relative to the maximum amount that can be transmitted in theory. To address this, we

numerically determine the most informative Nash equilibrium of the underlying game

finding that our experiments achieve a comparable level of transmission.

We provide a more in-depth analysis studying the anatomy of the communication

policy learned and relating it to the underlying algorithm’s design. We first consider the

simplest case in which preferences are perfectly aligned. We demonstrate that learning

hinders communication, bounding the extent of information transmission away from

full revelation. To build intuition, consider a simple exploration strategy where the

algorithm with some constant small probability sends a message uniformly at random.

Then, even if it is truthfully sending information when not exploring, the receiver knows

that any message can also result from exploration. This uniform noise implies that the

receiver’s posterior belief about the algorithm’s signal after any message is pulled towards

the prior mean of the algorithm’s signal distribution. Consequently, the receiver will not

necessarily match its actions to the message sent by the algorithm but takes actions closer

to the prior mean. The algorithm will learn this bias in actions and will best-respond

to it by exaggerating its information away from the prior mean. With a compact state

space, this will result in the algorithm eventually playing a partitioning strategy where it

truthfully communicates only information close to the prior mean and otherwise creates

pools of nearby signals, distorting the information transmission. This type of pooling will

happen as long as the state space of the algorithm is fine enough relative to its exploration

rate. The size of this distortion increases in the extent of exploration. Furthermore, full

revelation is not restored even if the algorithm’s exploration rate vanished over time:

distortions are pinned down by the initial exploration rate.

When the algorithm’s designer and the receiver have different preferences as with

Airbnb and its hosts, no stable language is learned - the algorithm introduces constant

local perturbations in the meaning of messages. To build intuition, notice that if the
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algorithm’s designer prefers higher actions than the receiver, then this bias goes against

the algorithm’s incentives to exaggerate low signals because of the mechanism above

while increasing its incentives to exaggerate high ones. As a consequence, the algorithm

will learn to distort its messages especially when its information is strongly of the same

direction as its preference bias. In the Airbnb example, its algorithm would recommend a

single low price whenever its information suggest that a price from the low end of possible

prices is optimal to the host. Whenever the sender’s private information suggests actions

that are not in the direction of its bias, the algorithm will cycle over available messages

in a way that in any given moment leads to almost complete revelation of the sender’s

information. In the case of Airbnb this would imply fully revealing or only partially

obfuscating recommendations for high prices. We show that this pattern of pooling at

the top (or bottom) and near-revelation at the bottom (or top, respectively) is robust

to different ways the algorithm can experiment, different “speed” at which the receiver

learns the algorithm’s current strategy, and lying costs that increase in the distance from

the truth (as in Kartik, 2009).

We then turn to analyzing the welfare implications of the pattern we observe. We

first show that the behavior learned by the algorithm yields a higher expected welfare to

both the sender and the receiver than the most informative equilibrium of the cheap talk

game. This is due to the high amount of information revelation implied by the threshold

strategy above. In fact, the pattern we find is similar to the equilibrium of the cheap

talk game when the receiver can commit ex-ante to how it will map messages to actions

as in Alonso and Matouschek (2007). However, the threshold at which the sender pools

its messages is determined differentially and hence the receiver’s welfare is always lower

than in Alonso and Matouschek (2007).

In a paper developed concurrently with this one, Condorelli and Furlan (2023) con-

sider a cheap-talk setting in which both sides of the interaction employ reinforcement

learners. The authors find that they can replicate policies of the ex-ante optimal Nash

equilibrium of Crawford and Sobel (1982)’s game. Due to the fact that we consider a

more sophisticated receiver, our study differs both in the questions we ask, as well as in
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the results we obtain.

2 The Model

We consider Crawford and Sobel (1982)’s quadratic payoff setting for our interaction

between algorithm and rational agent. There is a sender S, who observes a state variable

X which is uniformly distributed on [0, 1]. Given a realized state x, the sender’s payoff

is US(y, x, b) = −(y − x − b)2, where y represents the receiver R’s action, and b > 0

represents the sender’s bias. The receiver’s payoff given state realization x and action

y is UR(y, x) = −(y − x)2. After observing the state x, S sends a message m ∈ M to

the receiver, who considers the message, updates their belief over the state X, and then

plays an action y ∈ R. The sender has a messaging strategy µ(m | x) which specifies

the likelihood of sending message m ∈ M given state x. The receiver, in turn, has an

action strategy y(m,µ) specifying an action for every possible message sent by S, given

S’s policy µ.

2.1 Algorithmic Cheap Talk

This is where our study departs from the classical cheap talk setting among rational

agents. We consider an interaction in which the sender is not fully rational, but a

reinforcement learning algorithm. This algorithm updates its behavior over time, as

payoffs from an interaction with a rational receiver are accrued.

Our baseline specification2 considers a tabular Q-learner as the sender S. Q-learning

is a much studied reinforcement learning method, well regarded due to its simplicity

and minimal information requirements. For a detailed introduction, consider Sutton

and Barto (2018). Q-learning was introduced to find optimal policies for single-agent

Markov decision problems (MDPs), when little to no information about payoff functions

and state transitions is known to the algorithm’s designer. This learning rule has become

the focus of attention also of researchers interested in multi-agent learning, again due

2We have considered alternative specifications including Q learning with softmax-policies, and con-
textual exp-3 learning. Qualitatively, the results are analogous to those presented in our baseline setting.
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to its minimal modeling requirements, ease of setup, and also since many more involved

reinforcement learning schemes retain, at the very least, some of the conceptual intuitions

introduced by Q-learning.

Tabular Q-learners require games of finite action and state spaces. We therefore

discretize our setting, so that the state X ∈ IK = {x(1), . . . , x(k), . . . , x(K)} ⊂ [0, 1],

where x(k) are spaced uniformly on the interval [0, 1]. We fix x(1) = 0, x(K) = 1, so that

x(k) − xk−1 = 1
K−1 for all 1 < k ≤ K. Correspondingly, the Q-learner can generate

messages m ∈ MK = IK . We consider message spaces of the same cardinality as the

state space. As will become clear shortly, being able send more messages than K will

put the algorithm at no advantage.

A Q-learner learns a Q-value function. This function Q : IK × MK 7→ R is meant

to allow the learner to find an optimal policy mapping from IK to MK . Essentially,

this function is meant to estimate the expected payoff for any given state and action,

allowing to find optimal actions upon realization of a state. The estimator is formed as

a simple weighted-averaging rule, and only updated upon realizing a given state-action

pair.

We refer to realizations at a period t using subscripts. Upon a realization of state

xt, message mt, and payoff ut, the Q-function is updated the following way:

Qt+1(x,m) =


Qt(x,m) + α

[
ut + δmaxm′∈MK

Qt(xt+1,m
′)−Qt(x,m)

]
if x = xt, m = mt

Qt(x,m) otherwise

,

(1)

where α > 0 is known as the ‘learning rate’, and δ ∈ [0, 1] is a discount factor. Our

framework carries no time-dependence among state realizations, as states are sampled

every period i.i.d. uniformly from IK . In our baseline setting, we therefore set δ = 0.

Settings of δ > 0 do not affect our results.

Notice that Q-learning does not specify a policy. Convergence results on Qt give

requirements on how often actions are selected over time, but the updating rule is ag-
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nostic about how actions at are sampled in every period. In our baseline specification,

we consider one of the most common sampling rules: ε-greedy. Specifically, given a

non-increasing sequence of εt ∈ [0, 1] for every period t, the sender sends the currently

believed optimal message (the ‘greedy’ action), argmaxm′ Qt(xt,m
′), with probability

1−εt. With probability εt, m is sampled uniformly from MK . Formally this means that

if for every period t we define m∗
t (x

(k)) = argmaxm′ Qt(x
(k),m′), then the algorithmic

sender’s policy µt(m | x) can be defined as follows:

µt(m
(k) | xt) =


(1− εt) +

εt
K if m(k) = m∗

t (xt)

εt
K otherwise.

. (2)

In our baseline scenario, it will help to fix ideas by considering εt = ε ∈ (0, 1) fixed

for all periods. The receiver R is what we consider a ‘sophisticated’ agent: at every

period t, R knows the sender’s policy µt. This setting can be seen as an extreme version

of a receiver who knows that their recommendations are being generated algorithmically

and learns the algorithm’s strategy faster than the time between the updates to the

algorithm’s policy. Upon receiving a message mt, the receiver forms a belief about the

true state of the world.

As for the receiver’s strategy, we write yt(m) = y(m,µt) if there is no potential for

confusion. The quadratic payoff function implies that, given µt and the sender’s message

m, the receiver’s best response is to set yt(m) to be the expectation of x conditional on

(µt,m). First, let ρ(x) be the prior probability of x ∈ IK being realized. Then, define

ρt(x,m) as the receiver’s belief over x conditional on (µt,m):

ρt(x,m) = P
[
X = x | µt,m

]
=

ρ(x)µt(m | x)∑K
k=1 ρ(x

(k))µt(m | x(k))
.
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Then,

yt(m) = E
[
x | µt,m

]
=

K∑
k=1

x(k)ρt(x
(k),m). (3)

Note that P[m | µt] =
∑K

k=1 ρ(x
(k))µt(m | x(k)). For any m ∈ MK , let S∗

t (m) = {x ∈

IK : m = m∗
t (x)}, the set of states taking m as the current maximizer of the Q-function,

and let K∗
t (m) = |S∗

t (m)|. Then we can also write

yt(m) = P[exploitation | µt,m]E
[
x
∣∣ x ∈ S∗

t (m)
]
+P[exploration | µt,m]E[x]

=

∑
x∈S∗

t (m) ρ(x)(1− ε)

P[m | µt]
E
[
x
∣∣ x ∈ S∗

t (m)
]
+

∑
x∈IK ρ(x) ε

K

P[m | µt]
E[x].

The receiver’s optimal action can thus be seen as a convex combination of the expected

state conditional on the sender exploiting (i.e. choosing the ‘greedy’ action which max-

imizes Qt), and exploring, in which case the conditional expected state corresponds to

the prior.

We consider a uniform distribution over states, so we can simplify:

yt(m) =
K∗

t (m)(1− ε)

K∗
t (m)(1− ε) + ε

E
[
x
∣∣ x ∈ S∗

t (m)
]
+

ε

K∗
t (m)(1− ε) + ε

E[x]. (4)

To make this learning dynamic more concrete, in the example of Airbnb’s price

recommendations, a host may have an idea of what prices are optimal for the platform to

set given the demand conditions that the platform observes. They may also have an idea

how Airbnb is using its superior information in its recommendations to try to influence

the hosts’s pricing decisions. However, the only thing we really require is that the receiver

has enough interactions with Airbnb’s recommendations to have correct beliefs about

how Airbnb is currently mapping its private information to recommendations. We also

require that the host understands that Airbnb is constantly updating its recommendation
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algorithm and exploration of different communication strategies is part of this process.

Based on these ingredients the host then forms a posterior belief over what different

price recommendations can mean and selects final prices for their apartment optimally

given these beliefs.

3 Results

In the following, we discuss simulation results and related theoretical insights. Our

baseline setup contains 960 simulation runs, consisting of T = 10 Million periods each.

We set α = 0.1, ε = 0.15, and number of states and messages K = 15. We begin by

considering the no-bias case (b = 0).

Notice that every period, the receiver changes how they react to the sender’s mes-

sages, based on the messaging policy. This makes for a highly non-stationary learning

problem for the sender. Furthermore in this model, messages have no intrinsic meaning

known to the sender. Can we expect any kind of information transmission to be learned

at all? It turns out that, indeed, in all our experiments, the sender learns to communicate

to some extent. We consider the long run policy µ∞ learned by the sender, and judge it

by the quality of the information it reveals about the true state. To do so, we follow the

approach by Condorelli and Furlan (2023) and consider the mutual information between

the state and generated messaging policy, normalized by the entropy of the state. This

is a useful measure as it can be interpreted as the percentage reduction in the entropy

of the state resulting from observing a message. In our notation,

I =

( ∑
x∈XK

ρ(x) log

(
1

ρ(x)

))−1 ∑
x∈XK

∑
m∈MK

µ∞(m | x) log

(
µ∞(m | x)∑

x′∈XK
µ∞(m | x′)ρ(x′)

)
.

(5)

The heatmap in figure 1 shows the information I of the final policy, averaged over

simulation experiments, for a grid of differing exploration rates and biases (ε, b):
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Figure 1: Average I over 960 simulation experiments per grid point, for fixed exploration rate ε.
The information transmitted is substantial for smaller values of the parameters, and only reaches 0 for
extreme values of b, under which only babbling survives.

While it is clear from this figure that our learning agent can learn to communicate, it

remains unclear what kinds of policies might survive in the long run, and whether some

of those policies can be understood as equilibria of an underlying game. Furthermore, it

is not obvious whether the learning process of the sender converges, and if it does, what

behaviors it might converge to. Interestingly, the case of b = 0 is special here in that

all our simulation experiments feature convergence of the sender’s policy µt. As will be

discussed in later sections, the policies converge to Nash equilibria of a noisy version of

Crawford and Sobel (1982)’s cheap talk game. We observe that the sender consistently

learns to play policies that are close in informativeness to the best possible equilibria

of that noisy cheap talk game, as will be discussed. For b > 0 on the other hand, our

experiments lead to cycles, with a common feature of top-pooling as will be discussed

later on.

In the following sections, we delve into the anatomy of the learning process and the

policies learned in the long run in this interaction.
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3.1 No Bias: The Pure Communication Problem

We start by considering what happens when the sender’s and receiver’s payoff functions

turn out to be fully aligned. We consider this pure communication problem from the

two extreme perspectives a sender might take when initializing their algorithm. Recall

that S does not initially know the incentives of the receiver. Furthermore, in some

applications, there might not even be a natural language in which to communicate

their private information. Given all of this uncertainty, there are two extreme stances

a designer of an algorithm might take when initializing their learning algorithm: zero

revelation (‘babbling’), or full revelation (when messages have some expected meaning).

As we show below, neither option is robust to learning: a sender who initially fully

reveals the state, will eventually play a less informative strategy, that still reveals some

amount of information. On the other hand, babbling is not robust to learning either.

3.1.1 Full Revelation

We first consider the case in which the algorithm is initialized to fully reveal the state.

Note that there are multiple options when initializing Q values that lead to a fully re-

vealing policy, since any messaging strategy that is one-to-one will be fully revealing.

Generically, initializing Q values randomly from the payoff range [−1, 0] will lead to a

fully revealing policy, as the probability of having two identical Q values is zero. Alter-

natively, one can consider what we call a ‘diagonal’ initial policy, where values are set in

any such way that the optimal policy satisfies m∗
0(x) = x for all x ∈ XK . For example,

a naive initialization would set Q0(m,x) = 0 if m = x, and draw uniformly randomly

from [−1, 0] for all other pairs. Here we discuss the case of diagonal initial policy, since

intuitions and results will qualitatively carry over to alternative initializations of full

revelation, which are relegated to Online Appendix B.

When exploration εt = ε remains fixed over time, we focus attention on the ex-

ploitative part of a final policy, m∗
∞(x) for x ∈ IK , which we sometimes refer to as

‘argmax-policy’. When there is little potential for confusion, we will refer to m∗(x) as

‘policy’, understanding that the actual policy used by the algorithm to realize actions is
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in fact µ.

Figure 2 shows the mean final policy, averaged over simulations, when the bias b = 0.

On the x-axis, we show the index k of any given state x(k), and on the y-axis, the

message index associated with each state according to the mean policy. Notice that,

since messages are not payoff-relevant in our baseline scenario, a fully-revealing message

for a given state x(k) could be any value in MK , as long as it is assigned to be fully-

revealing through policy µ. For ease of exposition, in each simulation run, messages of

the final policy have been re-labeled to be monotone in state index.

Figure 2: Long run policy averaged over simulation runs. We observe 3 different final policies, 99%

of simulation experiments coincide with the above. The remainder differs from the above only in the

message assignment of one state.

All our simulation runs converge in the sense that the argmax-policy m∗
t (·) of the

algorithm remains constant for 500,000 periods. In fact, convergence occurs to policy

profiles that are Nash equilibria of a game related to our cheap talk game, with the

added difficulty that the sender’s message gets lost with a probability ε:

Definition 1. Let Γε
K(b) be the K-discrete, ‘noisy cheap talk game’. In this game,

senders and receivers are rational, with payoffs US(y, x, b), UR(y, x) states and messages

are discrete XK = MK ⊂ [0, 1], and importantly, the sender does not have full control

12



over their messaging channel. The sender chooses a messaging policy m∗ : XK 7→ MK .

With probability 1 − ε, messages are implemented according to m∗. With probability ε,

a message is instead generated uniformly from MK . The receiver is unconstrained and

best responds to how messages are generated, .

Note that Γ0
K(b) coincides with our discretized cheap talk game. For general ε > 0,

this noisy cheap talk game is a discretized version of the game analysed in Blume et

al. (2007). The next result specifies the connection between long-run policies of our

algorithm and Nash equilibria of Γε
K(0):

Proposition 1. Suppose exploration satisfies
∑

t≥0 εt = ∞, and define ε̄ = limt→∞ εt.

Suppose the sender’s argmax-policy m∗
t and receiver best response yt(m) converge to a

point
(
m̄, ȳ(m)

)
∈ MK

K × RK . Then
(
m̄, ȳ(m)

)
is a Nash equilibrium of Γε̄

K(b).

Proof. All proofs can be found in the appendix.

Proposition 1 suggests that the absence of full revelation in Figure 2 indicates that

full revelation is not a Nash equilibrium of Γε
K(0). To see why this is the case, recall

from (4) that the receiver’s optimal action yt(m) is always biased towards the prior

E[X] by ε. Now consider the following example: suppose that at some period t, we have

m∗
t (x

(1)) = m(1), and m∗
t (x

(2)) = m(2), with K∗
t (m

(1)) = K∗
t (m

(2)) = 1, i.e. m(1),m(2)

each are only considered optimal for one state. In that case, we can calculate when S

will receive higher payoff streams from “deviating” to sending m(1) if x(2) is realized

instead of sending m(2):
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US(yt(m
(2)), x(2), 0) = −

(
− ε

K∗
t (m)(1− ε) + ε

x(2) +
ε

K∗
t (m)(1− ε) + ε

1

2

)2

= −

(
ε
1

2
− εx(2)

)2

,

US(yt(m
(1)), x(2), 0) = −

(
(1− ε)x(1) + ε

1

2
− x(2)

)2

= −

(
ε
1

2
− εx(2) − (1− ε)(x(2) − x(1))

)2

Recall that we have x(1) = 0, x(2) − x(1) = 1
K−1 , so that we arrive at the following:

US(yt(m
(2)), x(2), 0) < US(yt(m

(1)), x(2), 0) ⇔
∣∣∣ε1
2
− ε

1

K − 1

∣∣∣ > ∣∣∣ε1
2
− 1

K − 1

∣∣∣. (6)

We have K − 1 > 0.5, so the argument of the left hand side must be positive. We have

two cases:

1.) ε12 − 1
K−1 > 0.

Then, (6) simplifies to (1− ε) 1
K−1 > 0, which always holds. For this case to be true, we

get the condition ε > 2
K−1 .

2.) ε12 − 1
K−1 < 0.

Then, (6) requires ε > 1−ε
K−1 , so that ε > 1

K must hold. Thus here, one must have

1
K < ε < 2

K−1 .

In the above example, we attain two possible relationships between exploration prob-

ability and discreteness of the state-space that are sufficient for a Q-learner to never

learn to separate states x(1), x(2). Note that case (1) can be true for arbitrarily fine

grids, and thus this result is not implied by our considering a discretized problem. Note

also that the simulations generating Figure 2 are done under the baseline parameters
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ε = 0.15,K = 15. We get that here 2
K−1 ∼ 0.142 < ε, so that case (1) is satisfied.

As mentioned above, the algorithm learns to pool states, because the receiver knows

that any message can come from exploration and hence biases its actions towards the

prior mean. Therefore pooling two states yields higher gains for states that are far away

from the prior mean. This explains why in our simulations the pools form both for top

and bottom states but the algorithm still fully reveals the state close to the middle of

the state space. Notice further that the algorithm pools states by inflating language by

associating a lower state to a message that was previously sent only at a more extreme

state. Consequently, the receiver will learn to best respond to this message by taking

actions that are even closer to the prior mean than before. This, in turn, may lead to the

algorithm finding it optimal to pool even less extreme states to the same pool. In other

words, information distortions caused by the baseline exploration can be magnified by

further strategic interaction between the algorithm and the receiver.

Given that the policies converge, it seems wasteful for the algorithm to keep exploring

at a constant rate ε. One might expect that a decaying exploration rate should counteract

the forces described above, and lead to full revelation. To address this question, we

run the following experiment: We first run the simulation under a given fixed ε0 until

convergence. Once convergence is achieved, we let εt decay to zero while the algorithm

continues to run. We refer to this as the ‘ε-decay’ setting. We let εt = ε0exp(−tβ),

where β = 10−5 in our baseline setting, a slow decay rate ensuring
∑

t≥0 εt = ∞.3 To

match the previous simulation experiment, we initialize ε0 = 0.15 and plot the results

in Figure 3 below.

3See e.g. Calvano et al. (2020).
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Figure 3: Long run policy averaged over simulation runs. We observe a set of 4 final policies. 96% of

simulation experiments coincide with policy shown in Figure 2.

Again, all simulation runs converge to equilibria - in this case, since exploration de-

cays to zero, the equilibria recovered correspond to Nash equilibria of the game without

noise. None of the long run policies feature full revelation. The algorithms find policies

that are equilibria of the noisy game while εt > 0. The issue is, that these equilibria re-

main equilibria for smaller ε < εt. Since the equilibrium conditions remain satisfied while

εt continues to decay, the policy remains unadjusted and learning stops. We can define

a class of equilibria that we observe in the majority (> 99%) of our experiments under

full revelation, for which there is a simple mechanism to their robustness to decaying εt.

First, some definitions will be helpful:

Definition 2. Say that an argmax-policy m∗(·) ‘has a connected pool of size n’ if there

is a set of states P = {x(k1), . . . , x(k1+1), . . . , x(kn)} ⊆ MK s.t.

1. k1 ≤ k ≤ kn ⇒ xk ∈ P ,

2. m∗(x) = m if and only if x ∈ P .

Definition 3. For any K < ∞, ε ∈ [0, 1] say a Nash equilibrium (m∗, y∗) of Γε
K(0) is a

connected-pool (CP) equilibrium if the policy m∗ consists of connected pools (possibly of
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size 1) only.

Existence is guaranteed, since babbling is a CP-equilibrium. Connected-pool equi-

libria have a simple structure with important implications on incentives: take a CP-

equilibrium for ε small enough. Then as ε is decreases, incentives for the sender are

unaffected by changes in the receiver’s posterior. As a result, the equilibrium continues

to exist also for lower levels of ε.

Lemma 1. For all K < ∞ there exists ε̄K > 0 small enough s.t. all CP-Nash equilibria

of Γε̄K
K (0) remain Nash equilibria of Γε

K(0) for all ε < ε̄K .

Indeed, in our simulation experiment under decaying εt and diagonal initial policy

as shown in figure 3, all 4 final policies are CP-equilibria. Moreover, for our remaining

experiments in the no-bias setting, all final policies are CP-equilibria.

Given this fact about convergence in this setting, it is natural to ask whether more can

be said about selection, i.e. whether some CP-equilibria are favoured by the algorithmic

learning process. We computationally answer this question by computing, for every fixed

ε ≥ 0, the most informative CP-Nash equilibrium of Γε
K(0), given K = 15.4 We refer to

this as µ∗
ε. We then compute the percentage reduction in uncertainty over the state of

that µ̄ε as measured by I (5), which we refer to as Ī(ε). The following Figure 4 shows

RI = I
Ī(ε)

, the ratio of average I observed by final policies in our experiments to Ī(ε).

4This is done by sorting candidate policies according to their informativeness I, and then searching
over all policies for a given I until an equilibrium is found. Notice that due to the uniform prior ρ0,
policies that have the same number of pools of the same size will have equal I. The search then amounts
to iterating over all possible combinations of pools of a given number and size, in decreasing order of I.
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Figure 4: RI , plotted over fixed ε.

The figure shows how, with little variation, the sender’s policy converges to policies

close in information quality to the best possible information conveyed among all CP-

Nash equilibria of Γε
K(0). This is likely due to the full-revelation initialization of the

sender: starting from there, the rest point involving the fewest adjustments to m∗ in the

learning process would of course be one of the most informative equilibria.

Regarding convergence speed, we observe that larger ε leads (usually) to faster con-

vergence speed. We refer to the time period at which convergence was achieved as TC

and plot in Figure 5 below. In this initialization, we find a few large outliers that strongly

influence the average convergence speed; however, for most experiments, larger ε implies

faster convergence.
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Figure 5: TC , plotted over fixed ε.

Taken together, figures 4 and 5 imply a tradeoff in terms of learning outcomes: while

lower exploration is more likely to lead to more informative policies relative to the best

equilibrium, higher exploration will lead to faster convergence.

As can be expected based on Proposition 1, both the value of ε if it is constant,

and the initial value ε0 if it decays, affect our simulation experiments. To gain an

overview of the learned policies as ε is changed, we analyze long-run policies through the

information content they transmit to the receiver. The following Figures ?? and 7 show

the relationship between I and varying (initial) ε when exploration is constant (decaying

in Figure 7, respectively), and a diagonal initial policy is used.

Notice first that by definition, when exploration is fixed, the information content

measured by I will include the fixed exploration rate ε, which necessarily leads to a

degradation in information transmission of the policy µ∞. For the case where ε remains

fixed over time, we therefore also introduce the alternative measure I∗, which measures

the information content of the argmax policy m∗
∞ alone:
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I∗ =

( ∑
x∈XK

ρ(x) log

(
1

ρ(x)

))−1 ∑
x∈XK

∑
m∈MK

m∗
∞(x) log

(
m∗

∞(x)∑
x′∈XK

m∗
∞(x′)ρ(x′)

)
.

The following figure shows the result including both I and I∗:

Figure 6: I of long run policy averaged over simulation runs. ε constant ∈ {0.01, 0.1, 0.2, . . . , 0.6},

Information replaced by I∗.

The figure clearly illustrates how higher exploration rates lead to more equilibrium

pooling and hence less information being transmitted. This finding holds also when we

run this experiment under the condition that εt decays over time, as the CP-equilibria

that are first found correspond to higher exploration rates:
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Figure 7: I of long run policy averaged over simulation runs. ε-decay at β = 10−5. X-axis signifies

initial ε0 ∈ {0.01, 0.1, 0.2, . . . , 0.6}.

3.1.2 Babbling

In this section we show that when algorithms are initialized with Q values corresponding

to a babbling strategy, they generically learn a more informative policy. We show that

this property is due to an inherent instability of the babbling policy. Indeed, should

values be initialized at the correct payoffs to babbling (including the correct best response

of the receiver (4)), the learner is stuck at babbling. However, initializing in a small

neighborhood of those correct payoffs leads the learner away from babbling. Experiments

investigating this further are found in Online Appendix B. Again, all our experiments

converge to a Nash equilibrium, as proposition 1 still applies.

First, we initialize babbling with Q0(m,x) = v for all m,x, for v ∼ U [−1, 0] and plot

the results in Figures 8 and 9.
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Figure 8: Long run policy averaged over simulation

runs, constant ε = 0.15. Here, we observe a large set

(73) of final policies, all of which are CP-equilibria.

Figure 9: Long run policy averaged over simulation

runs, decaying εt. Here, we observe a large set (67)

of final policies, all of which are CP-equilibria. 56

of these ( 84%) are also present in the experiment

above, of figure 8.

Despite the algorithm and the receiver not having an initial common language, the

algorithm learns to communicate surprisingly close to the same level as when initialized

from perfect communication. Especially states close to the prior of the receiver are

communicated nearly perfectly. This is also reflected in the high informativeness of

communication when we plot both I, I∗ together in Figure 10 below.

Figure 10: I, I∗ of long run policy averaged over simulation runs. ε ∈ {0.01, 0.1, 0.2, . . . , 0.6} constant.
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Next, in Figure 11, we consider RI , the ratio of average information I to the best

theoretical equilibrium information Ī(ε) under fixed ε.

Figure 11: RI , plotted over fixed ε.

Interestingly, even when initializing at the worst possible information quality, the

final policy’s information quality on average is no less than 75% of the best information

quality among all CP equilibria of Γε
K(0). Furthermore, increasing exploration leads to

information quality closer to the best equilibrium. The result may suggest a practical

trade-off when choosing the exploration rate in situations where the sender and the

receiver do not have a common language: A higher exploration rate leads to learning

equilibria that are closer to the best available equilibrium. However, at the same time

the best equilibrium that can be learned becomes worse due to exploration distorting

communication at extreme states. Figure 10 suggests that as long as we care only about

the informativeness of the final outcome, lower initial exploration rates lead to better

outcomes.

Contrary to the situation of full revelation initialization, here we observe that, while

larger exploration ε both leads to better final policies in terms of as well as a faster

convergence speed.
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Figure 12: TC , plotted over fixed ε.

Last, we consider a decaying exploration rate as before. Figures 13 below plots the

informativeness of the learned outcome I as a function of the initial exploration rate. As

can be seen from the figure, there is large downward variation in the informativeness of

the learned outcome for low levels of ε which almost completely vanishes for exploration

rates higher than 0.3. Moderate initial exploration rates help learning equilibria before

the exploration rate die out. However, as we know from above, it also adversely affects

the best equilibrium that can be learned. This is also evident in the fact that the highest

levels of informativeness in Figure 13 are achieved at exploration rates around 0.1.
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Figure 13: I of long run policy averaged over sim-

ulation runs. ε decay at β = 10−5.
Figure 14: Most frequent final policy for ε0 ≥ 0.3

As the average I appears to stabilize for ε0 ≥ 0.3, we plot the most commonly learned

policy for this range of exploration rates in Figure 14. In line with our findings above, the

most frequent final policy learned is the same, which is shown in figure 14. For ε0 = 0.3,

this policy is learned in ∼ 29% of the experiments, while for all higher ε0 > 0.3, it is

learned in > 90% of the simulation experiments. This suggests that when no common

language exists, losses from exploration with a decaying exploration rate are bounded

from above and the algorithm “gets stuck” only at relatively informative equilibria of

the underlying cheap talk game without noise.

3.2 Positive Bias

When the sender prefers higher actions than the receiver, i.e. when b > 0, the pattern

we observe is consistent and robust: full revelation for low states, and pooling for high

states. In fact, even the cutoff state at which the algorithm starts to pool messages is

robust and commonly fixed at a single value, varying only in the bias and exploration

rate. The following figures show mean final policies for varying biases, when Q-values

are initialized at the correct payoffs for full revelation, and ε = 0.15 fixed:
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Figure 15: b = 0.1 Figure 16: b = 0.2

We can characterize the cutoff to the top pool, which for large enough K takes a

simple form we refer to as x̄(b, ε) in the figures above.

Lemma 2. When 0 < b < 1+ε
4 , and ε ≤ min{2b, 1−2b

1−b }, let the largest state below the top

pool be xk∗. Then k∗ is pinned down as ⌊k1⌋, where k1 is the lower root of the following

quadratic polynomial a2k
2 + a1k + a0 = 0, with

a2 = (1− ε)(1 + ε)

a1 = −(1− ε)
(
K(2 + ε− 4b) + 1 + ε+ 4b

)
− 2ε

(
1 + ε+K(1− ε)

)
a0 =

(
ε+K(1− ε)

)(
K(1 + ε− 4b) + 1 + ε+ 4b

)
.

Furthermore,

x̄(b, ε) = lim
K→∞

k∗

K
=

1 + ε− 4b

1 + 2ε
.

Thus, the limit cutoff x̄ falls in b, with only babbling remaining an outcome for

large enough b. The cutoff falls (rises) in ε if b is smaller (larger) than 1
8 . Notice that

we display policies averaged over the simulation runs; average messages being whole

numbers therefore implies that the same message was used for the same state in all

simulation runs.

Similar behavior emerges under our experiments for decaying εt:
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Figure 17: b = 0.1, εt decay with ε0 = 0.15 Figure 18: b = 0.2, εt decay with ε0 = 0.15

Plotting I, I∗ together:

Figure 19: I, I∗ of long run policy averaged over

simulation runs. b = 0.1, ε ∈ {0.01, 0.1, 0.2, . . . , 0.6}

constant.

Figure 20: I, I∗ of long run policy averaged over

simulation runs. b = 0.2, ε ∈ {0.01, 0.1, 0.2, . . . , 0.6}

constant.

Figures 19 and 20 exemplify the non-monotone dependence of cutoff x̄(b, ε) on ε.

Notice that average I∗ decreases in ε for b = 0.1, but increases over a range ε ∈ [0.1, 0.5]

for b = 0.2. As noted below lemma 2, this is in line with how the cutoff behaves, as

0.1 < 1
8 < 0.2. Of course, x̄(b, ε) is an approximation of the true cutoff at K = 15, but

apparently the behavior as a function of b, ε carries over to that finite K.

The pattern changes considerably when we consider a decaying εt in Figure 21. The

average information remains quite stable for ε0 ≥ 0.1. We find that since εt decays to

zero, the final policies for ε0 ≥ 0.1 all involve the same cutoff to the top pool, which is
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close to x̄(b, 0) = 1− 4b, the cutoff in Lemma 2 when ε → 0, and therefore independent

of ε0. For ε0 < 0.1, exploration is initially too small to lead to the top-pool pattern we

otherwise observe.

Figure 21: I of long run policy averaged over simulation runs, case of b = 0.1, b = 0.2 plotted together.

ε decay at β = 10−5. X-axis signifies initial ε0 ∈ {0.01, 0.1, 0.2, . . . , 0.6}.

Our simulations do not converge to a stationary policy. Instead, they appear to be

cycling through full revelation below the cutoff and sometimes having a small number

of pools of 2-4 states. The pool above the cutoff is robust, however. By inspecting the

policies over time, one can see that most of the time, the algorithm spends playing full

revelation at states below the cutoff. To see this, we generate 100 snapshots of policies

for each simulation run, starting at period 3, 333, 333, and equally spaced until the final

simulation period at 10, 000, 000, to ensure that Q-functions can be updated sufficiently

between the snapshots. The following figure shows the fraction of the time policies were

fully revealing during those snapshots in a histogram over all simulations, under constant

exploration ε = 0.15.
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Figure 22: b = 0.1 Figure 23: b = 0.2

How does this pattern emerge? Starting from the initial full revelation, given their

bias, all sender types would benefit from pooling with the type just above them. The

only type that does not have this option is the highest type. Hence, lower types start

pooling with it, making the mean of the pool progressively lower and hence potentially

enabling even more types to join. Furthermore, it is important to note that compared

to standard perfect Bayesian equilibrium, the exploration strategy of the sender fully

pins down the receiver’s beliefs whenever the receiver observes something that is not

part of the sender’s current optimal exploitative strategy. Since states are uniformly

distributed, and S’s exploration strategy is to choose any action with uniform probability,

the posterior belief after a message that currently does not maximize the Qt matrix for

any state must be uniform across all states. As a result, whenever such an ‘unused’

message m′ is sent, R will play yt(m
′) = E[x] = 0.5. This means that any sender type

always has as an outside option: the choice of playing an unused message that will be

associated with the midpoint policy. Hence, the cutpoint for the top pool is pinned

down by the first type who prefers either fully revealing their type or the midpoint of

the state space to the payoff associated with the top pool. Now, types below the cutoff

type all have a strict incentive to join the type just above them. This leads to a number

of them packing together with the cutoff type, until that type prefers to switch to an

unused action and hence escape the pool. This creates a constant cycling where each

type below the cutoff type joins a type above them until enough of them pool with the
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cutoff type who then escapes the pool by selecting an unused action.5

Accordingly, one would expect that, if there is pooling among states below the cutoff,

most frequently such pools should appear for high states below the cutoff. Figures 24

and 25 show the frequency of having a pool below the cutoff on states larger than the

average state below the cutoff, conditional on having a pool below the cutoff at all. The

figures clearly confirm the intuition.

Figure 24: b = 0.1 Figure 25: b = 0.2

The overall pattern we observe in this section is very close to the one found the-

oretically in Kartik (2009). The biggest differences are the lack of language inflation

and the instability of the final outcome. This is not very surprising, since our setup

does not include a cost for lying and hence the message space does not have a natural

initial meaning. One may wonder what happens when messages are initially meaningful

and deviating from that meaning is costly, for example, because of some reputational

concerns. In Appendix Online Appendix B.3 we re-apply our methodology to a version

of Kartik’s model. Our findings confirm most of Kartik’s predictions, including a fairly

consistent language inflation and a large pool at the top.

5Notice that the highest type below the top pool may also join the top pool to avoid pooling with
lower types. If they prefer that to an unused action, they are not the cutoff type, since after joining the
pool their only option to leave it is through an unused action or by pooling with a lower type which they
already revealed to dislike relative to the top pool. This is the exact way we pin down the cutoff type.
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3.3 Welfare

An important question we face when looking into the effects of the introduction of

algorithmic learning is whether participants of the interaction can be shown to be better

off in comparison to a non-algorithmic alternative. Here we are interested in asking

whether the patterns learned by our recommendation algorithm can be ranked in terms of

the sender’s payoff, receiver’s payoff, and the best equilibrium of the alternative Crawford

and Sobel (1982) rational player interaction. Here we consider the best equilibrium of

the game of continuous states and actions as outlined in Crawford and Sobel (1982),

since the equilibrium computation method we employed in the b = 0 scenario remained

unsuccessful within reasonable computation time.

As can be seen below, we find a robust pattern indicating that expected welfare is

increased for all preference misalignment values, except for perfect and almost perfect

alignment of preferences.

Figure 26: Average Payoffs Figure 27: Welfare Premium

Figure 26 shows expected payoffs on the vertical, plotted against fixed bias values on

the horizontal axis. We plot expected payoffs for sender, receiver in terms of the final

policies learned and averaged over all 480 simulation experiments, and in terms of the

best CS equilibrium given the fixed bias. A clear ordering can be observed: when b > 0,

then both sender and receiver are better off under our learned pattern than under the

best CS equilibrium. Under b = 0, the best CS equilibrium is fully revealing and leads to
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a payoff of zero, which can not be bested by the learning outcomes. Figure 27 plots the

percentage premium that average welfare from our simulation experiment has over the

best CS equilibrium’s welfare (sum of sender and receiver payoffs). For very low biases,

it makes sense that the CS equilibrium welfare is higher than our learning results, owing

to the full or close to full revelation equilibrium that is feasible to rational players then.

However, already biases above 0.01 lead to welfare gains in our learning setting.

4 Conclusions

Algorithmic advise is becoming increasingly ubiquitous especially with the recent ad-

vancements in generative artificial intelligence and concerted industry effort in making

it easily accessible in professions outside of computer science. Typical to these applica-

tions is the algorithm’s superior ability to aggregate and process information relative to

the ultimate decision maker. This paper highlights new sources of possible frictions in

communication between recipients of algorithmic advice and the algorithmic advisors.

We argue that basic algorithms learn to communicate to some degree with decision

makers even when no clear language between the algorithm and the decision maker ex-

ist ex-ante. Nevertheless, this communication will typically remain imperfect due to a

strategic interaction between the algorithm’s need to explore to learn to communicate

and the consecutive imperfect responses from the decision maker. For designers of al-

gorithms our paper allows identifying patterns that might be indicative communication

frictions due to algorithmic exploration, such as pooling of messages at both extremes of

the outcome space. Once identified, there is hope for correcting for such frictions with

reprogramming the algorithm especially if there is no more need for the algorithm to

continue exploring.

On a positive note, we also show that when the algorithm’s designer and the receiver

of the advice have different preferences, the algorithm leads to a welfare improvement

relative to the prediction from the workhorse Crawford and Sobel (1982) model of cheap

talk. The welfare improvements result from the algorithm being unable to find a perfect
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Bayesian equilibrium and keeps cycling over policies. These policies are on average more

informative than the equilibrium policies of Crawford and Sobel (1982). As both the

algorithm’s designer and the end-user benefit from this instability, the designer may

not have incentives to fix it and hence algorithms may help in communication problems

where traditional strategic communication frictions are sizable.
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Online Appendix A Proofs Omitted from the Main Text

Online Appendix A.1 Proof of Lemma 1

Fix K, pick an CP-Nash equilibrium (ω, y) of Γε
K(0) for some ε. Suppose first that there

are at least two pools with upper bound below 1
2 . Let x(k) be the cutoff- type for two

successive pools, i.e. the lowest type of the upper pool, and just above the largest type

of the lower pool. Let n1, n2 be the sizes of the lower and upper pool, respectively. By

the equilibrium property, the following IC constraint must hold:

(
y(m(2))− x(k)

)2
≤
(
y(m(1))− x(k)

)2
⇔
(
x̄(2) − x(k) + α(2, ε)

(1
2
− x̄(2)

))2
≤
(
x̄(1) − x(k) + α(1, ε)

(1
2
− x̄(1)

))2
⇔ L(k, ε) ≤ R(k, ε),

where we follow equation (4), and define x̄(i) as the mean state of pool i, and α(i, ε) =

ε
ni(1−ε)+ε . First, note that for any ε ≥ 0,

x̄(2) − x(k) + α(2, ε)
(1
2
− x̄(2)

)
≥ 0,

since x̄(2) ≥ x(k), and 1
2 ≥ x̄(2) by assumption. Also, for any ε ≥ 0 small enough,

x̄(1) − x(k) + α(1, ε)
(1
2
− x̄(1)

)
≤ 0,

since x̄(1) − x(k) ≤ 0. From now on, let x̄(1) − x(k) < 0 (otherwise there is nothing to

prove), and pick ε̄ such that

x̄(1) − x(k) + α(1, ε̄)
(1
2
− x̄(1)

)
= 0.

Now, L(k, ε) must increase in ε, while R(k, ε) decreases in ε for all ε < ε̄. Thus, the IC

constraint continues to hold as ε is decreased from ε̄. Due to the fact that all pools are
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connected, these IC constraints holding imply all other ICs hold as well.

Now suppose there is exactly one pool below and above 1
2 , in which case the relevant

cutoff-type x(k) must satisfy xk−1 ≤ 1
2 ≤ x(k). In this case, x̄(2)−x(k) holds for all K > 3

and we have that

x̄(2) − x(k) + α(2, ε)
(1
2
− x̄(2)

)
≥ 0,

holds for all ε small enough. Similarly,

x̄(1) − x(k) + α(1, ε)
(1
2
− x̄(1)

)
< 0,

holds for all ε ≥ 0 small enough. Thus, an argument analogous to the case before can

be applied here also.

Finally, the consideration of cutoff types for pools above 1
2 can be done analogously

as above, and so the conclusion follows: the equilibrium is sustained by the incentive

constraints holding for all cutoff types; we have shown that these constraints remain

valid for all ε ≥ 0 small enough, which finishes the proof. ■

Online Appendix A.2 Proof of Lemma 2

To characterize the cutoff under discreteness and b > 0, first define upper and lower

incentive constraints as the constraints faced by two neighboring types:

ICU:

US(y(m∗(x(k)), x(k), b) ≥ US(y(m∗(xk+1), x
(k), b),

ICD:

US(y(m∗(xk+1), xk+1, b) ≥ US(y(m∗(xk), xk+1, b).

Lemma 3. Let b < 1
2 , and let x(k) be the lowest type below the cutoff to the top
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pool. A binding upper incentive constraint implies the lower incentive constraint if

ε ≤ min{2b, 1−2b
1−b }.

Proof. First, note that

US(y(m∗(x(k)), x(k), b) > US(y(m∗(xk), xk+1, b)

⇔ (ε
1

2
− εx(k) − b)2 < (ε

1

2
− εx(k) − b− 1

K − 1
)2

⇔
∣∣a∣∣ < ∣∣a− 1

K − 1

∣∣,
where a = ε12 − εx(k) − b. This holds if a < 0, which holds if ε < 2b.

Next, let K∗ = K − k, the number of types in the top pool. Write ȳ = y(m∗(xk+1.

US(y(m∗(xk+1), xk+1, b) > US(y(m∗(xk+1), xk, b)

⇔ (ȳ − b− xk+1)
2 < (ȳ − b− xk+1 +

1

K − 1
)2,

which is true when ȳ − b− xk+1 > 0. Note that

ȳ − xk+1 =
K∗(1− ε)

K∗(1− ε) + ε

1− xk+1

2
+

ε

K∗(1− ε) + ε

(1
2
− xk+1

)
,

which is decreasing in k. Setting k = K − 2, we get K∗ = 2 and

ȳ − xk+1 = β
1

2(K − 1)
+ (1− β)

( 1

K − 1
− 1

2

)
= β

1

2
+

1

K − 1
(1− β

1

2
) > β

1

2
,

where β = 2(1−ε)
2(1−ε)+ε . We arrive at the sufficient condition

β
1

2
> b ⇔ (1− ε) > b(2(1− ε) + ε)

⇔ 1− 2b

1− b
> ε.

Finally, note that when ICU binds, US(y(m∗(x(k)), x(k), b) > US(y(m∗(xk), xk+1, b) and
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US(y(m∗(xk+1), xk+1, b) > US(y(m∗(xk+1), xk, b) together imply that ICD must hold

also. The result follows.

Now, using Lemma 3, we pin down k1, k2 by taking the ICU bind:

US(y(m∗(xk∗), xk∗ , b) ≥ US(y(m∗(xk∗+1), xk∗ , b),

where some tedious algebra leads to the quadratic equation in the statement of the

Lemma, with

a2k
2 + a1k + a0 ≥ 0.

Since a2 > 0, the LHS is convex and therefore the two roots k1 ≤ k2 are cutoffs such

that the ICU is satisfied for k ≤ k1 and k ≥ k2. Note also that the ICU must be violated

at k = K − 1, since then the top ‘pool’ consists of the top state x(K) only, and due to

the bias b > 0, xK−1 would always be better off pretending to be x(K). Thus, k2 ≥ K

must hold, and is therefore not available as a solution. ⌊k1⌋ is then the largest integer

under which ICU is still satisfied. ■

Corollary 1.

lim
K→∞

k∗

K
=

1 + ε− 4b

1 + 2ε
.

Online Appendix A.3 Proof of Proposition 1

Lemma 4. For any sequence of policies {mt(·)}t≥0, every action-state pair (m,x) is

visited infinitely often with probability 1, if
∑

t≥0 εt = ∞.

Proof. Let mt be the realized message in period t. Notice that, no matter the policy, for

any pair (m,x):

P
(
xt = x,mt = m

)
≥ εt

K2
,

5



as per the exploration part of the epsilon-greedy action selection policy. Let Dt(m,x)

be the event that x,m are realized in period t through exploration. By definition, the

sequence {Dt(m,x)}t≥0 is a sequence of independent events. Thus,

P
(
{Dt(m,x)}t≥0

)
=

1

K2

∑
t≥0

εt = ∞,

as by assumption of the lemma. By the second Borel-Cantelli lemma, (x,m) must be

visited infinitely often with probability 1.

Proof of Proposition 1. It is well known (Watkins and Dayan (1992)) that if yt(m) =

ȳ(m) constant for all t large enough, all Qt(m,x) values will converge to the correct

estimates US(y(m), x), with probability one. Here, since states x are i.i.d., this is an

application of the law of large numbers once all states and actions are observed infinitely

often, as ensured by lemma 4. Given that in fact, policies are changing, continuity is all

that’s needed to conclude this proof.

Pick any converging sequence of argmax policies {m∗
t }t≥0. Notice that the receiver’s

best response yt depends on time t only through µt, the sender’s policy. Define

nT (m,x) =
T∑
t=1

1{mt = m,xt = x}

as the number of times up to T at which (m,x) were realized. Fix m,x, and write

nT = nT (m,x) for ease of notation. Let hT be a sequence s.t. hT ≤ nT , hT →nT→∞ ∞,

and nT − hT →nT→∞ ∞. Using the recursion (1), we can write

QT+1(m,x) = α

nT∑
h=hT+1

(1− α)nt−hUS(yh(m), x) + (1− α)nT−hTQhT
(m,x).

Letting (m̄, ȳ) be the limit of (m∗
t , yt), we have
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∣∣∣QT+1(m,x)− US(ȳ(m), x)
∣∣∣ ≤ α

nT∑
h=hT+1

(1− α)nT−h
∣∣∣US(yh(m), x)− US(ȳ(m), x)

∣∣∣
+ (1− α)nT−hT

∣∣∣QhT
(m,x)− US(ȳ(m), x)

∣∣∣.
By lemma 4, for all (m,x), nT (m,x) → ∞ with probability one. By continuity,∣∣∣US(yt(m), x) − US(ȳ(m), x)

∣∣∣ → 0 as t → ∞. The second term converges to zero as

nT − hT → ∞. For the first term, we can write

α

nT∑
h=hT+1

(1− α)nT−h
∣∣∣US(yh(m), x)− US(ȳ(m), x)

∣∣∣
≤
(
(1− α)hT+1 − (1− α)nT

)
sup

hT+1≤t≤nT

∣∣∣US(yt(m), x)− US(ȳ(m), x)
∣∣∣,

which also converges to zero as nT , hT → ∞, by the previous observation of continuity.

The result follows: for any sequence m∗
t that converges, it must be true that, with

probability one, Qt(m,x) converges to US(ȳ(m), x) for all (m,x). Since the problem of

finding the argmax action for the sender givenQt(m,x) is discrete and unconstrained, the

argmax-correspondence is upper hemicontinuous in Qt-values. Thus, as Qt converges, it

must be true that m̄(x) satisfies m̄(x) ∈ argmaxm US(ȳ(m), x). By definition, ȳ is the

receiver’s best response to µ̄(m|x), defined following (2), by replacing εt with ε̄. Thus,

m̄, ȳ must constitute a Nash equilibrium of Γε̄
K(b). ■

Online Appendix B Alternative Specifications

Online Appendix B.1 Full Revelation

Here we run the same experiment as in the main text in 3.1.1 under a full revelation

policy initialized through Q-values randomly generated from U [−1, 0]. We do observe a

larger variety of long-run policies, but the flavor of our result does not change.
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Figure OA.1: Long run policy averaged over simulation runs, constant ε = 0.15. Here, we observe a

larger set (41) of final policies than in the diagonal initialization. The largest share (∼ 24%) coincides

with the majority final policy in figure 3.

The behavior of I, I∗ is also similar to what we observed in the case of diagonal initial

policy with the information distortion increasing with the exploration rate:

Figure OA.2: I, I∗ of long run policy averaged over simulation runs. ε constant ∈

{0.01, 0.1, 0.2, . . . , 0.6}, full revelation initialized from uniformly randomly.
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Similarly, in the case of decaying εt, we observe a larger variation in final policies

than in the diagonal initial policy case (22 in the former, 4 in the latter), all of which

are CP-equilibria. However, extreme states are still robustly pooled.:

Figure OA.3: Long run policy averaged over simulation runs, decaying ε = 0.15.

Also, the information distortion is robustly increasing in the initial exploration rate:

Figure OA.4: I of long run policy averaged over simulation runs. ε decay at β = 10−5. X-axis signifies

initial ε0 ∈ {0.01, 0.1, 0.2, . . . , 0.6}. Full revelation initialized uniformly randomly.
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Online Appendix B.2 Babbling

This section strengthens the results of 3.1.2. To emphasize the instability of babbling,

we initialize Q-values the following way: Let mB() be the babbling policy, so that

mB(x) = m for all x ∈ XK . Then Q0(x,m) = US(y(mB(x)), x, 0) + vx,m, where vx,m ∼

U [−0.05, 0.05] drawn i.i.d for every (x,m). None of the resulting final policies remain at

babbling:

Figure OA.5: Long run policy averaged over sim-

ulation runs, constant ε = 0.15.

Figure OA.6: Long run policy averaged over sim-

ulation runs, ε decay at β = 10−5.

As expected, I, I∗ also behave similarly to our baseline babbling experiment:
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Figure OA.7: I, I∗ of long run policy averaged over simulation runs. ε ∈ {0.01, 0.1, 0.2, . . . , 0.6}

constant.

Figure OA.8: I of long run policy averaged over simulation runs. ε decay at β = 10−5. X-axis signifies

initial ε0 ∈ {0.01, 0.1, 0.2, . . . , 0.6}.
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Online Appendix B.3 Lying Costs

An extension to our baseline interaction is one in which, contrary to the standard cheap

talk literature, messages have meaning. Here we consider the situation where the sender

faces some cost if they were misrepresenting their private information about the state.

One can imagine a situation where receivers have the possibility of verifying ex post

what has been claimed by the sender, and would punish deviations from the truth. This

setting is related to the one studied in Kartik (2009), where costs are incurred in terms of

the distance of the message sent from the message associated with the true state. In the

case of our learners, we have message and state spaces equal to IK = MK ⊂ [0, 1]. We

then model lying costs of messagem given true state x as a function c(m,x) = c0(m−x)2,

for varying marginal costs c0 > 0.

We keep all baseline parameters of the Q- learning agent as they have been in our

main study above. We run experiments over c0 ∈ {0.1, 0.5, 1.0, 2.0}, and for bias values

of b ∈ {0.0, 0.1, 0.2}.

Figure OA.9: b = 0, c0 = 0.1 Figure OA.10: b = 0, c0 = 0.5
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Figure OA.11: b = 0, c0 = 1.0 Figure OA.12: b = 0, c0 = 2.0

As can be intuitively expected, under b = 0 we arrive at a situation where the

otherwise emerging small pools below and above 0.5, as observed in 2, vanish. The lying

cost makes supporting pooled actions more and more unprofitable, and full revelation is

restored in this case.

Furthermore, in line with Kartik (2009), when lying costs are not too high, we observe

language inflation where types below the cutoff choose messages higher than their true

type despite these messages being fully revealing.

Figure OA.13: b = 0.1, c0 = 0.1 Figure OA.14: b = 0.1, c0 = 0.5
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Figure OA.15: b = 0.1, c0 = 1.0 Figure OA.16: b = 0.1, c0 = 2.0

Figure OA.17: b = 0.2, c0 = 0.1 Figure OA.18: b = 0.2, c0 = 0.5

Figure OA.19: b = 0.2, c0 = 1.0 Figure OA.20: b = 0.2, c0 = 2.0
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