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Abstract

In the pioneering work by Che (1993), a scoring auction was shown to be the optimal
mechanism for procurement where firms compete in both price and quality of the future
contract. Many procurement contracts, however, are awarded based on either observed
characteristics of the firm or quality recorded in past contracts — these are quality
characteristics paid for regardless of winning today.

We show that, when some costs are all-pay, that is, borne regardless of winning,
scoring auction remains optimal among symmetric mechanisms, but with a different
scoring rule, which may be either steeper or flatter than that in Che (1993) depending
on the relative elasticities of winner-pay and all-pay costs. However, the symmetry
of the mechanism may be restrictive, when the informational asymmetry over all-pay
costs is relatively low.

For two firms, we identify two new families of optimal asymmetric mechanisms.
When marginal all-pay costs are sufficiently convex, it is a scoring auction with indi-
vidual reserve scores and a side payment. When they are sufficiently concave, it is a
scoring auction with individual score ceilings and a side payment. Both mechanisms
exhibit ex-ante favoritism while partially retaining auction-style competition.
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1 Introduction

In recent decades, procurement agencies across the world have come under increasing pres-
sure to improve performance and deliver projects faster. The reason is that the traditional
approach, when the contract is awarded to the lowest bidder, fails to capture the trade-
off between costs and quality of procurement. At the same time, quality may represent a
large portion of the buyer’s utility.1 As a result, numerous alternative auction designs have
emerged, see Molenaar et al. (2007) for an overview.

One such design is the scoring auction, where the contract is awarded to the firm with the
best combination of price and quality. It was shown to be superior to the traditional approach
theoretically (see Che (1993)) when quality is contractible, and the associated costs are costs
winner-pay. A special case when quality is represented by the speed of delivery is known
as A+B auctions in road construction (see Lewis and Bajari (2011)). On the other hand,
when quality is not contractible, the average bid auction (see Albano et al. (2006); Decarolis
(2014), Decarolis (2018)) and the low-ball lottery auction (see Lopomo et al. (2022)) have
been proposed, to combat adverse selection.

Our main goal is to find an optimal mechanism when quality is contractible, but the
associated costs can be all-pay. The firm’s experience and past performance, among others,
have this feature. This is in stark contrast with most of the theoretical literature on procure-
ment design, where quality is either adjusted as part of the contract design (see Che (1993);
Asker and Cantillon (2008, 2010)) or exogenously given (see Lopomo et al. (2022)). In the
tradition of the mechanism design literature, we model the firms as having a single latent
type θ ∈ [0, 1], which represents her inefficiency.

We begin with the analysis of optimal symmetric mechanisms, which are relatively easy
to characterize, see Proposition 1. We show that, under mild conditions, it is implemented
by a scoring auction with a quasi-linear scoring rule, see Proposition 2. The equilibrium
quality, however, is not independent of the number of bidders, as in Che (1993), but is
decreasing, see Proposition 3. The intuition is that, as the market share of a firm shrinks, it
can not afford to put the same level of investment upfront. Similarly, the scoring rule is not
independent of the number of bidders, but the comparative statics is more complicated and
depends on the relative elasticities of winner-pay and all-pay costs, see Proposition 4.

We proceed with several arguments showing that symmetric mechanisms can be sub-
optimal, see Propositions 5 to 7. One such argument is simple: if there is no private in-
formation, sole sourcing (i.e., procurement from a single supplier) is strictly optimal. But

1Decarolis et al. (2016) document long-lasting blackouts associated with traditional price-only procure-
ment auctions for electricity works in Italy.
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Figure 1: Allocation function for the (favored) firm 1 and (unfavored) firm 2 in the score
floor (left) and score ceiling (right) mechanisms.

even when private information is present, the trade-off between the all-pay costs and price
competition is sometimes resolved in asymmetric mechanisms. We show that an optimal
symmetric mechanism can be sometimes dominated by a member of an ad-hoc family of
“threshold” mechanisms. Finally, we show that even when the number of firms grows, the
limiting utility of the optimal symmetric mechanism falls short of that of sole sourcing.

The most intriguing (to our minds) part the paper is the analysis of optimal asymmetric
mechanisms, in the presence of all-pay costs, see Theorem 1. To be precise, we identify four
families of mechanisms that could be optimal, when there are two firms. The first two are the
standard scoring auction and sole sourcing. The other two are new and represent a surprising
mixture of symmetric and asymmetric design (i.e., scoring and favoritism), see Propositions 8
to 11. Notably, only the classical scoring auction is a fully symmetric mechanism. The key
factors determining the shape of the optimal mechanism appear to be the informational
asymmetry, as well as the curvature of the marginal all-pay costs.

Our first new mechanism can be though of as an optimal symmetric mechanism with the
efficiency parameter (1− θ) of the favored firms censored from below. We illustrate it with
two ex-ante symmetric firms in Figure 1 (left) and Figure 2 (left). When the efficiency of
both firms is above the threshold, the mechanism proceeds as usual. However, the unfavored
firm 2, whose efficiency is below the threshold, can not win against the favored firm of
equal type, because the latter firm’s efficiency is reported at the threshold. As a result, the
unfavored firm does not invest, if her type is below the threshold. This mechanism alleviates
the duplication of effort among the most inefficient firms, and it is optimal when the marginal
costs of investment is relatively convex.
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Figure 2: Quality for the (favored) firm 1 and (unfavored) firm 2 in the score floor (left) and
score ceiling (right) mechanisms.

Our second new mechanism can be though of as an optimal symmetric mechanism with
the efficiency parameter (1 − θ) of the unfavored firms censored from above. We illustrate
it with two ex-ante symmetric firms in Figure 1 (right) and Figure 2 (right). When the
efficiency of both firms is below the threshold, the mechanism proceeds as usual. However,
the favored firm 1, whose efficiency is above the threshold, always wins against the unfavored
firm of equal type, because the latter firm’s efficiency is reported at the threshold. As a result,
the unfavored firm invests as if her type was at the threshold. This mechanism alleviates
the duplication of effort among the most efficient firms, and it is optimal when the marginal
costs of investment is relatively concave.

Both mechanisms can be implemented by a modified scoring auction, when quality is
contractible. We will refer to the first mechanism as a score floor, applied to the favored
firms, see Proposition 12. That is, for these firms, the score is censored from below. We
will refer to the second mechanism as a score ceiling, applied to the unfavored firms, see
Proposition 13. That is, for these firms, the score is censored from above. Additionally, side
payments have to be made, to make firms indifferent between symmetric and asymmetric
behavior, when they are exactly at the threshold (floor or ceiling).

To conclude, sole sourcing and favoritism are often viewed as signs of collusion and
inefficiency. We show that, when the nature of quality is all-pay, some kind of favoritism
could be efficient. This contradicts the conventional wisdom that the designer should always
try to level the playing field, for example, by giving bid preferences to small, or otherwise
disadvantaged firms. To the contrary, in the presence of all-pay costs, the designer might
want to make the playing field uneven.
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1.1 Related literature

Our paper contributes to the literature on scoring auctions, where quality is endogenously
chosen as part of the contract design, see Che (1993); Branco (1997); Asker and Cantillon
(2008, 2010); Nishimura (2015) for important theoretical contributions, and Adani (2018);
Lewis and Bajari (2011) for empirical.

Two more strands of literature work with quality which is exogenous but not contractible,
see Manelli and Vincent (1995) and Lopomo et al. (2022), and quality which is chosen before
learning one’s type Tan (1992); Piccione and Tan (1996); Arozamena and Cantillon (2004).

But the closest to us is the literature that deals with investment decisions (or entry)
made after learning ones type. Notable theoretical contributions to this study were made in
Celik et al. (2009); Zhang (2017); Gershkov et al. (2021). There are two important economic
differences between our model and the models in this sub-literature: (1) in contrast to our
paper, in Celik et al. (2009); Zhang (2017); Gershkov et al. (2021), an agent’s action is not
contractible which precludes the use of scores which are a focus of the present paper; and
(2) in this literature an agent’s action does not directly benefit the principal whereas this
(variable) benefit a key concern it procurement with endogenous quality. Nevertheless, we
use the mathematical techniques of Zhang (2017) to prove our result in section 5.

Finally, a rare empirical study of scoring auctions in an environment where costs asso-
ciated with past performance (i.e., quality) are clearly all-pay, was done in Decarolis et al.
(2016).

1.2 Organization of the paper

In Section 2 we set the environment. In Section 3 we derive the optimal symmetric mecha-
nism and study it’s comparative statics. In Section 4 we show suboptimality of symmetric
mechanisms among all mechanisms. In Section 5 we derive the optimal asymmetric mecha-
nisms. Finally, in Section 6, we consider ex-ante exclusion of firms.

2 Setup

Consider a single buyer (principal) who wishes to procure a contract, for which there are n
potential suppliers (agents). The quality of the good to be procured is endogenous. Upon
privately learning her cost-efficacy parameter (type) θi ∈ [0, 1], an agent chooses quality
qi ∈ R+, which is perfectly observed by the principal and can be verified by a court. Following
Che (1993), we assume that quality is one-dimensional although some of our results are valid
in the case of multidimensional quality as well. The contract can be allocated among the
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agents in shares zi ≥ 0,
∑n

i=1 zi = 1. Thus, also following Che (1993), we posit that the
good must be procured in any case: the utility of the buyer from the good, relative to the
outside option, is sufficiently high.

Quality is costly to produce and each supplier will incur convex non-decreasing per-unit
production costs cP (qi, θi), if he is selected for the contract. The novel feature is that in addi-
tion to the production (winner-pay) costs, each supplier i also incurs convex non-decreasing
investment costs cI(qi, θi), which are sunk before the auction.2 Thus, the investment costs
are all-pay costs that are borne regardless of winning the contract. Types θi are indepen-
dently distributed with cdf F (θi) and strictly positive density f(θi). Finally, the principal’s
payoff is captured by

∑n
i=1 ziv(qi) for some concave non-decreasing function v(qi).

We impose the following natural assumptions on the cost functions.

Assumption 1. cPq > 0, cPθ > 0, cPqθ > 0, cIq > 0, cIθ > 0, cIqθ > 0.

We seek allocations, implementable in a Bayes-Nash equilibrium (BNE). Denote the
whole profile of types by θ. By the Revelation Principle, it is without loss of generality to
restrict our search to direct mechanisms, that is, mappings (z(θ), t(θ), {qi(θi)}ni=1), where t is
a vector of transfers to the agents. The buyer’s ex-post utility ub and sellers’ ex-post utility
uis are

ub(z, t, q) =
n∑
i=1

(v(qi)zi − ti) , uis(z, t, qi, θi) = ti − cP (qi, θi)zi − cI(qi, θi).

Crucially, while the ex-post allocation zi and transfer ti depend on the whole profile of types
θ, quality qi depends only on private type θi, because quality is chosen beforehand. That
is, we assume that the decisions about investment in quality are independent — a bidder
cannot condition her quality on her competitor’s types. This is a common assumption in
the literature on auctions with endogenous valuations (Gershkov et al. (2021), Celik et al.
(2009)) which we think is a reasonable approximation to reality.

We aim at buyer’s expected utility:

(P1) U = max
z,t,q

E (ub(z(θ), t(θ), q(θ))) ,

2Decarolis et al. (2016) documents quality considerations in procurement, such as documentation, equip-
ment and machinery, works execution, safety and regularity. One could speculate, that for some of them,
the associated investment costs are more sunk than for the others. However, since these characteristics were
measured in past contracts, from the viewpoint of the current contract, they all of the associated costs are
effectively sunk.
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subject to zi(θ) ≥ 0,
∑n

i=1 zi(θ) = 1 and the standard Bayesian IC and IR constraints

θi ∈ arg max
θ′

Eθ−i (uis(z(θ′, θ−i), t(θ
′, θ−i), qi(θ

′), θi)) ,

Eθ−i (uis(z(θi, θ−i), t(θi, θ−i), qi(θi), θi)) > 0,

for all θi in the support.

2.1 Relaxed problem

By the standard envelope argument, the derivative of expected interim transfers can be
related to the expected derivative of interim utility, w.r.t. the true type, almost everywhere.
In other words, interim expected transfers are uniquely defined, up to a constant. Therefore,
we can formulate a relaxed problem:

(P2) U = max
z,q

E
n∑
i=1

(v(qi)zi − c̃P (θi, qi)zi − c̃I(θi, qi)) , s.t. zi ≥ 0,
n∑
i=1

zi(θ) = 1,

c̃P = cP +
∂cP
∂θi

F (θi)

f(θi)
, c̃I = cI +

∂cI
∂θi

F (θi)

f(θi)
,

ignoring a large portion of IC and IR constraints.
In the tradition of mechanism design literature, we will first solve the relaxed problem,

and, upon observing the monotonicity of interim expected allocation in type, argue that it is,
indeed, the solution to the full problem. To do this, we shall show (in Proposition 2 below)
that under the appropriate regularity conditions, the quality schedule q∗(θ) solving (P2) can
be indeed achieved in an equilibrium of a mechanism, namely, a first-score scoring auction.
The appropriate regularity conditions are formulated in assumption 2.

Assumption 2. The regularity conditions are:

1. c̃Pθ > 0, c̃Pqq > 0, c̃Pqθ > 0, c̃iθ > 0, c̃Iqq > 0, c̃Iqθ > 0.

2. The function (v(q)− c̃P (q, θ))(1− F (θ))n−1 − c̃I(q, θ) is submodular in (q, θ).

We will assume assumptions 1 and 2 by default.

3 Optimal symmetric mechanisms

We start with characterizing optimal symmetric mechanisms, similar in spirit to the optimal
mechanism in Che (1993). However, in the presence of investment (all-pay) costs the actual
answer is different and is somewhat more difficult to characterize.

7



3.1 The optimal quality

The buyer’s payoff is equal to

U = E
n∑
i=1

((
v(qi)− c̃P (qi, θi)

)
zi − c̃I(qi, θi)

)
(1)

The buyer will award the contract to a firm for which the virtual production surplus

x(q(θi), θi) := v(qi(θi))− c̃P (qi(θi), θi)

is maximal. Under appropriate regularity conditions (assumption 2, part 1), this will be the
firm with the lowest θi.

Without the investment costs, as in Che (1993), the optimal symmetric quality schedule
q(θ) would be the one maximizing x(q, θ) pointwise. With investment costs, it will be
different.

Denoting by θ(1) the lowest type, the buyer’s payoff may be rewritten as

U = E

(
x(q(θ(1)), θ(1))−

n∑
i=1

c̃I(qi, θi)

)

Given F (·), the pdf of θ(1) is given by n(1−F (θ))n−1f(θ). Due to symmetry, the buyer’s
payoff is finally

U = n

∫ (
x(q(θ), θ))(1− F (θ))n−1f(θ)− c̃I(q(θ), θ)f(θ)

)
dθ. (2)

This representation allows to characterize the optimal quality schedule.

Proposition 1. The quality schedule q∗(θ) solving the relaxed problem (P2) under the sym-
metry constraint qi(θ) ≡ qj(θ) for all i, j is determined by maximizing (2) pointwise. That
is, q∗(θ) maximizes

(v(q)− c̃P (q, θ))(1− F (θ))n−1 − c̃I(q, θ)

over q for each θ. Moreover, q∗(θ) is decreasing.

We also denote the optimal symmetric quality schedule q∗(θ) by qsymm(θ), that is, q∗(θ) ≡
qsymm(θ).
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3.2 Implementation

In this section, we show that the quality schedule q∗(θ) identified in proposition 1 in fact
solves the full mechanism design problem. We do this by showing that q∗(θ) can arise in an
equilibrium of a mechanism, namely a first-score scoring auction with an appropriate score
function.

Scoring auctions are widely used in practice and have been studied extensively in the
procurement literature (see section 1.1), but, to the best of our knowledge, not in the presence
of an all-pay cost component.

A first-score scoring auction is the following mechanism. (1) The bidders submit multi-
dimensional bids (qi, pi) where qi is the offered quality and pi is the offered price. (2) a score
Si = S(qi, pi) is computed for every bidder; (3) the bidder with the highest score (call her
i∗) is awarded the contract in which it is stipulated that she must supply a good of quality
qi∗ for a price of pi∗ . That is, the bidder supplies her own submitted quality for her own
submitted price3.

In fact we will show that for any decreasing quality schedule q(θ) there exists an appro-
priate scoring function S(q, p) such that q(θ) is played by every bidder in an equilibrium of
the first-score scoring auction with the scoring function S(q, p).

As is usual in the quasi-linear environments, a quasi-linear score S(q, p) = s(q) − p)

suffices. It is not hard to show that the scoring function s(q) implementing q(θ) must, due
to the every firm’s first-order condition, satisfy

s′(q) ≡ CP
q (q, θ(q)) +

CI
q (q, θ(q))

(1− θ(q))n−1
, (3)

where θ(q) is the inverse of q(θ).
However, it is not clear that second-order conditions will hold. Recall that in a first-score

scoring auction, the bid is a quality-price pair, so it is two-dimensional. The second-order
condition for a two-dimensional problem is involved since it must exclude joint quality-price
deviations, among others. Without the investment costs, as in Che (1993), it is relatively
easy to show unprofitability of such deviations, as quality bid optimization can be effectively
decoupled from the price bid optimization. However, with investment costs such decoupling is
not possible: for a bidder, the optimal price bid depends quality and at the same time optimal
quality bid depends on price since the price-dependent marginal benefits of investing in
quality must be weighed against marginal costs of investment. In the proof of proposition 2,
we show that despite this potential complication, no condition beyond the already assumed

3In this specification, the contract is always awarded, as we assume throughout. If a contract does not
have to be always awarded, one may amend the auction with a reserve score
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assumption 1 is needed to guarantee the implementation in a FSA.

Proposition 2. Suppose assumption 1 holds but not necessarily assumption 2. For any de-
creasing quality schedule q(θ) with inverse θ(q),including the quality schedule q∗(θ) identified
in Proposition 1, the first-score auction with quasi-linear score S(q, p) = s(q)−p, where s(q)
satisfies (3), has a BNE in which quality strategy of every firm is q(θ).

3.3 Comparative statics

Having characterized the optimal symmetric quality schedule to implement and the optimal
score function, we are now in a position to answer qualitative questions regarding how the
solution would change upon a change in parameters. In particular, we are interested in how
the solution in our model differs from that without investment costs, in Che (1993).

We consider the comparative statics with respect to two parameters — the size of the
investment costs and the number of bidders. To parameterize the size of the investment costs,
we simply let the investment costs equal βCI(q, θ), β ≥ 0. Note that β = 0 corresponds
to the model of Che (1993). For convenience, we denote the dependence on parameters
explicitly by writing q∗(θ, β, n) and s∗(q, β, n).

3.3.1 Comparative statics of the optimal quality

Proposition 3. The optimal symmetric quality schedule q∗(θ, β, n) is:

1. Decreasing in the size of the investment costs β;

2. Decreasing in the number of bidders n.

Proof. By the analysis above, the optimal quality q∗(θ, β, n) maximizes

ψ(q, θ)(1− F (θ))n−1 − βCI(q, θ)− βCI
θ (q, θ)

F (θ)

f(θ)
(4)

pointwise.
As CI

q > 0, CI
θq > 0, the function (4) is submodular in (q, β). Thus, the optimal q∗(θ, β, n)

is decreasing in β. Furthermore, maximizing (4) is the same as maximizing

ψ(q, θ)− β

(1− F (θ))n−1
CI(q, θ)− β

(1− F (θ))n−1
CI
θ (q, θ)

F (θ)

f(θ)
.

As 1 − F (θ) < 1 almost everywhere, increasing n has the same effect on the objective as
increasing β. Thus, the optimal q∗(θ, β, n) is decreasing in n as well.
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The intuition behind proposition 3 is straightforward. A higher scale of investment costs
implies higher marginal virtual investment costs; this leads to a lower optimal quality. Note
that this implies that the optimal quality to implement is always lower than without the
investment costs, in the model of Che (1993). A higher number of bidders, in its turn,
lowers the probability that any particular bidder’s quality will be consumed; this lowers
the principal’s marginal benefits of inducing a higher quality and thus reduces the optimal
one. Note that this result is in contrast to Che (1993)’s model where the optimal quality is
independent of the number of bidders. There, the marginal benefits of increasing quality are
not weighed against the marginal investment costs. Even though with CI ≡ 0 the marginal
benefits do decrease as n grows, the point at which the marginal benefits are equal to 0 does
not depend on n; hence, the optimal quality stays constant in n.

3.3.2 Comparative statics of the optimal score function

How does the size of investment costs and the number of bidders affect the optimal incentives,
i.e., the score function s∗(q)? Given that, as we just showed, the optimal quality is decreasing
in the size of investment costs β, one may conjecture that the higher β, the flatter quality
incentives s(q) should be. This intuition is wrong, because upon an increase in β the bidders
will themselves take the increased marginal investment costs into account, which may render
flattening the score unnecessary. The question of how the optimal score slope changes turns
out to be subtler, with the answer depending on the relative elasticities of production and
investment costs w.r.t. private information θ.

First, we pinpoint a special case where the size of investment costs β does not matter at
all.

Example 1. Suppose cP (q, θ) = θ · g1(q) and cI(q, θ) = θ · g2(q) where g1 and g2 are any
weakly increasing functions. F (θ) = θ

1
d for some d > 0, θ ∈ [0, 1].

Then, the buyer wants the quality to satisfy

(1− F (θ))n−1(v′(q)− θ(1 + d)g′1(q))− θ(1 + d)g′2(q) = 0.

At the same time, in a first-score scoring auction with score S = s(q) − p, a supplier with
type θ sets q so that

(1− F (θ))n−1(s′(q)− θg′1(q))− θg′2(q) = 0.

Comparing the two conditions, we immediately see that the score s∗(q) = v(q)
1+d

implements
the optimal mechanism regardless of g1, g2 and n. Thus, investment costs do not affect the
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slope of optimal score whatsoever (in particular, this score is also optimal in the model of Che
(1993)). Note also that the quality incentives are depressed relative to the truthful score but
this distortion tends to vanish when d→ 0, i.e., when the distribution of types approaches a
constant θ = 1 and asymmetry of information disappears.

Special in the setting of Example 1 is the fact that production and investment costs
exhibit the same linear dependence on the private information θ. Inspired by Example 1,
we surmise that when one cost function exhibits a stronger dependence on θ than the other
cost function, the slope of the optimal score becomes responsive to β. It might increase or
decrease in β depending on which costs depend stronger on the private information.

To gain traction, we restrict attention to environments in which the elasticity of costs
and F (θ) w.r.t θ is constant, as in Example 1.

Proposition 4. Suppose cP (q, θ) = θE1g1(q) and cI(q, θ) = β ·θE2g2(q) where E1, E2 > 0 and
g1(q), g2(q) are some well-behaved functions. Suppose F (θ) = θ

1
d for some d > 0. Denote by

s∗q(q) the slope of optimal score. Then:

1. If E1 > E2 then s∗q(q) increases in β and n at every q;

2. If E1 < E2 then s∗q(q) decreases in β and n at every q.

Proof. From (3), we have

s∗′(q) ≡ θE1(q)g′1(q) +
βθE2(q)g′2(q)

(1− F (q))n−1
, (5)

where θ(q) is the inverse of the optimal q∗(θ, n, β). We suppress the dependence of θ(q)
on β and n for brevity.

At the same time, from the optimality of θ(q),

(1− θ(q))n−1(v′(q)− (1 + E1d)θE1(q))− β(1 + E2d)θE2(q)g′2(q) = 0. (6)

Solving (5) for βθE2(q)g′2(q) and plugging this in (5), we get

s∗′(q) ≡ θE1(q)g′1(q) +
v′(q)− (1 + E1d)θE1(q)g′1(q)

1 + E2d
=
v′(q) + d(E2 − E1)θ

E1(q)g′1(q)

1 + E2d
.

It follows from proposition 3 that θ(q) is decreasing in both β and n for a fixed q. From this,
the result is immediate.
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To understand the intuition behind proposition 4, recall from Che (1993) that the optimal
score without investment costs is less high-powered than the truthful one, and the size of the
discrepancy between the two increases in the severity of the asymmetric information problem,
i.e. size of info rents. Then one adds investment costs. When they are less elastic in private
information than production costs, adding them reduces “overall” information rents and and
this should make the optimal score closer to the truthful one – but this means more-high
powered. When investment costs are more elastic in private information than production
costs, adding them increases overall information rents, moving the optimal score farther from
the truthful one – and thus making it less high-powered. This is exactly what proposition 4
says.

4 Suboptimality of symmetric mechanisms

In this subsection, we show that a solution to our mechanism design problem is in general
not a symmetric mechanism. This is again unlike Che (1993) the fact that the optimal
mechanism is symmetric follows easily from pointwise maximizaion.

Intuitively, the desirability of a symmetric treatment depends on the degree of importance
of private information. If private information is not important at all, it is almost obvious
that an optimal thing to do is to always award the contract to one specific firm (so that
others do not incur investment costs), rather than to have a symmetric contest. On the
other hand, if private information is very important, it becomes important to reveal the
identity of the most efficient firm — and this can be most effectively done by a symmetric
mechanism. This may make a symmetric mechanism optimal in spite of the desire to avoid
duplication of costs.

The first result establishes that this intuition is correct: when importance of private
information is sufficiently low, the optimal symmetric mechanism can in fact be improved
upon under almost no structural assumptions. The second result shows that a symmetric
mechanism is necessarily suboptimal regardless of the degree of importance of private in-
formation if the elasticity of investment costs with respect to quality at zero is sufficiently
high.

We introduce “the importance of private information” in a simple way. Suppose the
production and investment costs are parametrized by a parameter α ≥ 0 such that CP (q, θ|α)

and CI(q, θ|α) do not depend on θ if α = 0 and do depend on θ if α > 0. The functions
are continuous in α. For concreteness, one may think of the parametrizations CP (q, αθ) and
CI(q, αθ).

For our results, we need to introduce a reduction of the problem under consideration to an
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equivalent problem with investment costs only. Namely, denote by x the virtual production
surplus, that is, x = v(q) − C̃P (q, θ). Denote by C(x, θ) the minimal virtual investment
costs possible when the virtual production surplus is x. Namely, C(x, θ) = min{C̃I(q, θ) :

v(q) − C̃P (q, θ) = x}. Given that quality is one-dimensional, C(x, θ) is achieved simply at
the lowest root q of the equation v(q) − C̃P (q, θ) = x. It is not hard to show that given
our assumptions that C̃I(q, θ) and C̃P (q, θ) are supermodular, C(x, θ) is increasing in both
arguments and supermodular as well. We call the function C(x, θ) the indirect investment
costs function.

After this cost minimization step, the principal’s utility may be written simply as

U = Emax
i
xi(θi)− E

n∑
i=1

C(xi(θi), θi), (7)

where xi(θi) is the virtual production surplus of bidder i with type θi. Any tuple of functions
xi(θi) induces a mechanism, so we might think about choosing directly the functions xi(θi)
to maximize (7). This (equivalent) problem looks like the original one, but without any
production costs.

4.1 A small-alpha result

We show that when the importance of private information is sufficiently low, any optimal
mechanism must be asymmetric.

Proposition 5. There exists α > 0 such that for all α ∈ [0, α] the optimal symmetric
mechanism is not an optimal mechanism.

Proof. We will show the suboptimality of the optimal symmetric mechanism for α = 0.
Namely, we will show that for α = 0 the completely asymmetric mechanism (only one
bidder is left) dominates the optimal symmetric mechanism. Then the result will follow
from continuity (the objective at the completely asymmetric mechanism and the objective
at the optimal symmetric mechanism are continuous in α).

With α = 0, the indirect investment costs C(x, θ) is just a function of x. Abusing
notation, we write C(x). Denote by Hi(x) the cdf of xi(θi). We can write the objective as a
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functional of Hi(x) and optimize over Hi(x). That is,

EU = Emax
i
xi(θi)− E

n∑
i=1

C(xi(θi)) =

=

∫ +∞

0

(
1−

n∏
i=1

Hi(x)

)
dx−

∫ +∞

0

n∑
i=1

C ′(x)(1−Hi(x))dx =

∫ +∞

0

(
1−

n∏
i=1

Hi(x)−
n∑
i=1

C ′(x)(1−Hi(x))

)
dx. (8)

Ignoring the monotonicity constraint for Hi(x), let’s optimize (8) pointwise. The integrand
is linear in each of Hi, so without loss of optimality at every x Hi(x) ∈ {0, 1}. It is easy to
see that at optimum at every x at most one of Hi(x) is 0; otherwise the objective can be
increased since C ′(x) ≥ 0 for x > 0. It remains to compare two cases: all of Hi are 1 and all
but one of Hi is 1, and the remaining one is zero. In the first case, the integrand is 0; in the
second case, it is 1−C ′(x). Thus, the optimal mechanism (up to permutation) is as follows:

M∗ =

H∗1 (x) = 0, H∗i (x) = 1 for i = 2, . . . , n if C ′(x) < 1;

H∗i (x) = 1 for i = 1, . . . , n if C ′(x) ≥ 1.
(9)

The functions H∗i are nondecreasing, hence this is indeed the optimal mechanism. This is
the completely asymmetric mechanism in which only one bidder is allowed to participate
and this bidder produces the monopoly surplus xm that satisfies C ′(xm) = 1.

The optimal symmetric mechanism M∗
symm maximizes (8) pointwise under the constraint

that Hi(x) = Hj(x) for all i, j. Taking FOC, one gets H∗symm(x) = n−1
√
C ′(x). After changing

H1(x) from H∗symm(x) to H∗1 (x) given by (9) the objective does not change but if after that
H2(x) is changed from H∗symm(x) to H∗1 (x) given by (9), the objective strictly increases; hence
M∗

symm is not optimal and is strictly dominated by M∗.
WriteM∗(α) andM∗

symm(α) for the optimal mechanism and the optimal symmetric mech-
anism as functions of α. Write EU(M,α) as the principal’s expected utility as the function
of mechanism and α. We have shown above that

EU(M∗(0), 0) > EU(M∗
symm(0), 0).

By continuity, this implies that

EU(M∗(0), α) > EU(M∗
symm(α), α)
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for all sufficiently small α. �

Remark: It may seem obvious that the one-bidder mechanism M∗ is optimal — after
all, why do we need several costly-to-have bidders if the goal is to maximize Emax

i
xi? The

subtlety is that if xi(θi) are not constant in θi, they are stochastic, and hence, Emax
i
xi(θi) >

max
i
Exi(θi). That is, by having two active bidders the principal can achieve on average

more than by having the best of the two bidders only. This is because with two bidders, the
principal has two draws from theta distribution rather than one. Our result in the proof of
proposition 5 is that the single-bidder mechanism is optimal in spite of this effect.

4.2 An all-alpha result

Now we provide a result that holds for all values of α, not only small ones. The condition
that we use instead is that the elasticity of the indirect investment costs is sufficiently high
(or n is sufficiently low).

Suppose indirect investment costs are given by the function C(x, θ) (here, we suppress
dependence on α). Denote by x∗(z, θ) the solution to the problem

max
x

(zx− C(x, θ)) ,

and by ψ(z, θ) the maximum value of this problem. Recall that the optimal symmetric
mechanism x∗symm(θ) satisfies x∗symm(θ) = x∗((1− F (θ))n−1, θ).

Consider the following family of (asymmetric) threshold mechanisms x̃(·|θ0), parametrized
by a threshold θ0 ∈ [0, 1]:

• For bidders i = 2, 3, . . . , n, x̃i(θi|θ0) =

x∗symm(θi), θi ≤ θ0;

x∗(0, θi), θi > θ0.

• For bidder 1, x̃1(θ1|θ0) =

x∗symm(θ1|θ0), θ1 ≤ θ0;

x∗((1− F (θ0))
n−1, θ1), θ1 > θ0.

That is, before the threshold θ0, the mechanism x̃(·|θ0) follows the optimal symmetric mech-
anism; after the threshold θ0 all bidders but bidder 1 are “excluded” so that for them, the
minimal possible x is chosen (corresponding to zero quality), and the production surplus for
bidder 1 is chosen optimally given the exclusion of other bidders. For n = 2, this is the
mechanism analyzed in detail in section 5.

Denote by x the production surplus that satisfies 0 = Cx(x, 1). That is, x is the lowest
production surplus that is possible at an optimum (symmetric or otherwise). (Under our
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assumptions, x also solves the equation 0 = C(x, 1) and is given by x = v(0)− cP (0, 1).) For
the suboptimality of symmetric mechanisms, we need the following condition:

There exists γ > n such that lim
x→x+

C(x, 1)

(x− x)γ
is positive and finite. (10)

Condition 10 says that around x = x, the indirect investment costs behave a like a
function with a sufficiently high elasticity γ (the precise threshold for which happens to be n,
the number of bidders). In an environment where v(q) = q, CP (θ) = b(θ) and CI(q, θ) = g(q)

this condition is equivalent to saying that the elasticity of direct investment costs g(q) at
zero is higher than n. Another reading of the condition 10 is that the number of bidders, n,
is relatively small (smaller than the investment cost elasticity).

Proposition 6. Suppose condition 10 holds, i.e. the indirect investment costs are sufficiently
elastic at minimal production surplus. Then, there exists θ0 < 1 such that the mechanism
x̃(·|θ0) yields strictly higher value of principal’s objective than the optimal symmetric mech-
anism x∗symm(·).

The result is intuitive: the symmetric mechanism should be suboptimal when the problem
of duplication of costs is severe, but it is so exactly when the elasticity of investment costs
is high.

Note that when θ0 = 1, the mechanism x̃(·|θ0) is just the optimal symmetric mechanism.
So we prove Proposition 6 by investigating the derivative of the principal’s objective U(θ0)

with respect to θ0 in a neighborhood of θ0 = 1. We show that even though this derivative
is zero at θ0 = 1, it is strictly negative in a neighborhood of θ0 = 1 which shows that
U(θ0) > U(1) for some θ0 < 1.

4.3 An asymptotic result

The last two results were for a fixed number of bidders n. However, one may conjecture that
when n grows without bound, the symmetric mechanism should perform well as the more
draws from the type distribution we have, the better the most efficient draw becomes and
thus it becomes crucial to treat the bidders symmetrically to not lose the benefit of that
most efficient draw. In this subsection, we show that this intuition is wrong, in the sense
that the optimal symmetric mechanism is not even asymptotically optimal for small α.

Let n be the number of bidders (firms), Un(M) be the principal’s objective as a function
of mechanismM when there are n bidders, andM∗

n be an optimal mechanism with n bidders.
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Definition 1. A sequence of mechanisms Mn is asymptotically optimal iff

lim
n→∞

(Un(Mn)− Un(M∗
n)) = 0.

We parametrize the indirect cost function as C = C(x, αθ) where α is the “importance
of private information”.

Recall that ψ(z, θ) is given by

ψ(z, θ) := max
x

(zx− C(x, αθ).)

Note that ψ(·, θ) is convex (and, under mild conditions, strictly so). Also, as C(x, αθ) ≥ 0

and for all αθ there exists an x0 such that C(x0, αθ) = 0, we get ψ(0, θ) = 0.
In section 4.1, we have shown that with a sufficiently small α, the optimal symmetric

mechanism is not optimal. The proposition below gives a stronger result: with a sufficiently
small α, the utility that the principal wins by using an optimal (asymmetric) mechanism
rather than the optimal symmetric mechanism does not vanish when the number of bidders
tends to infinity.

Proposition 7. There exists α > 0 such that for all α ∈ [0, α), the sequence of optimal
symmetric mechanisms M symm

n is not asymptotically optimal.

Proof. We prove the result by showing that with a sufficiently small α, simply leaving one
bidder provides asymptotically higher utility than using the optimal symmetric mechanism.

First, we derive the limiting utility of the optimal symmetric mechanism. The principal’s
objective at the optimal symmetric mechanism M symm

n can be written as

Un(M symm
n ) = n

∫ 1

0

ψ((1− θ)n−1, αθ)dθ.

After the substitution y = (1− θ)n−1, we get for n > 1:

Un(M symm
n ) =

n

n− 1

∫ 1

0

ψ(y, α(1− y
1

n−1 ))y
1

n−1
−1dy.

By continuity of ψ, it follows that

lim
n→∞

Un(M symm
n ) =

∫ 1

0

ψ(y, 0)

y
dy.

18



Now consider the principal’s utility from leaving only one bidder. It is given by

U1(M
symm
1 ) =

∫ 1

0

ψ(1, αθ)dθ.

At α = 0, this is just ∫ 1

0

ψ(1, 0)dθ = ψ(1, 0).

If we prove that ∫ 1

0

ψ(y, 0)

y
dy < ψ(1, 0), (11)

the result will follow by continuity of U1(M
symm
1 ) =

∫ 1

0
ψ(1, αθ)dθ in α. But note that because

ψ(·, θ) is strictly convex and ψ(0, θ) = 0, the function y → ψ(y,0)
y

is strictly increasing, thus
for all y ∈ (0, 1) we have

ψ(y, 0)

y
< ψ(1, 0)

and thus (11) holds.

The crux of the proof above is that the limiting utility from the optimal symmetric
mechanism is strictly less than the utility of just always procuring from the best type of one
bidder (even though the law of large numbers would suggest otherwise). This is precisely
because when using the symmetric mechanism, the principal has to pay for all the bidders’
investment costs.

5 Optimal asymmetric mechanisms for n = 2

5.1 The set-up

Now we provide partial results about optimal mechanisms without the a priori restriction
to the symmetric ones. In general, the analysis is hard; to the best of our knowledge,
only partial results are available in the literature for the class of problems to which our
problem belongs4. The mathematical difficulty comes from the assumption of independent
investments, i.e., that fact that a bidder’s quality is allowed to depend only on her own type
but not on competitor’s type. This precludes the use of pointwise integral maximization
which is typical in mechanism design. As a result, one has to use perturbation techniques
to characterize an optimum.

4Zhang (2017) provides the result for n = 2 and additively separable environment with quadratic costs;
Gershkov et al. (2021) provide a general condition under which the optimal mechanism is symmetric; Celik
et al. (2009) study only binary investment decisions.
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Here, we provide a new set of partial results which to a certain extent generalize what
is currently known for n = 2. The economic novelty lies in the characterization of the
dependence of the optimal mechanism on the curvature of marginal all-pay costs. Our proof
is based on Zhang (2017), Gershkov et al. (2021). However, we would like to stress again that
even though our settings are related mathematically, they represent qualitatively different
situations economically as in Zhang (2017), Gershkov et al. (2021) an agent’s action is not
contractible whereas in our model it is.

In this section, we restrict attention to situations with two bidders (n = 2) and in which
CP (q, θ) = αθ, CI(q, θ) = g(q) with g′(q) > 0, g′′(q) > 0 and v(q) = q. That is, the
production costs depend only on private information, with α being a parameter measuring
its importance or the degree of information asymmetry. At the same time, the investment
costs depend only on the quality. Given that quality is one-dimensional, setting v(q) = q

is without loss of generality. This is a setting generalizing the one in Zhang (2017) who
considers only quadratic investment costs g(q) = Kq2/2.

We start by defining, for the set-up just described, the notion of convexity that, as we
show, is relevant for the shape of the optimal mechanism. Recall that F (θ) is the cdf of the
type θ. Denote by J(θ) = θ + F (θ)

f(θ)
the standard virtual type.

Define ξ(z) := 1−J(F−1(1−z)). Note that under our assumption that J(θ) is increasing,
ξ(z) is also increasing. When θ is uniform on [0,1], ξ(z) = 2z − 1.

Definition 2. We say that marginal investment costs are sufficiently convex iff the function
q → αξ(g′(q)) − q is strictly quasi-convex. We say that marginal investment costs are
sufficiently concave iff the function q → αξ(g′(q))− q is strictly quasi-concave.

Note that the above definition depends not only on the marginal investment costs g′(q)
themselves but on the other primitives as well. This just means that the meaning of the qual-
ifier “sufficiently” is context-dependent. In the simple setting where the type θ is distributed
uniformly on [0,1], αξ(g′(q))− q = 2αg′(q)− q− 1, so any convex marginal costs g′(q) would
be sufficiently convex while any concave marginal costs g′(q) would be sufficiently concave
according to definition 2.

5.2 The main result

We are now in a position to state the main result of this section. Recall that qsymm(θ) is the
optimal symmetric quality identified in proposition 1.

Theorem 1. Suppose n = 2, CP (q, θ) = αθ, CI(q, θ) = g(q) and v(q) = q. Then:
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1. If the marginal costs are sufficiently convex, there exists a θ0 ∈ [0, 1] such that an
optimal pair of quality schedules is

q∗1(θ) =

 qsymm(θ), θ < θ0;

qsymm(θ0), θ > θ0;
q∗2(θ) =

 qsymm(θ), θ < θ0;

0, θ > θ0.
(12)

2. If the marginal costs are sufficiently concave, there exists a θ0 ∈ [0, 1] such that an
optimal pair of quality schedules is

q∗1(θ) =

 qsymm(0), θ < θ0;

qsymm(θ), θ > θ0;
q∗2(θ) =

 qsymm(θ0), θ < θ0;

qsymm(θ), θ > θ0.
(13)

In both cases, bidder 1 is the “favored” bidder while bidder 2 is the “unfavored” one.

Thus, in an optimal mechanism discrimination takes a relatively simple form: one should
take the optimal symmetric quality schedule and truncate it either from the left (if marginal
investment costs are sufficiently convex) or from the right (if marginal investment costs are
sufficiently concave). In the region where quality schedules are asymmetric (so that one
bidder is “favored”), one quality stays at the level the optimal symmetric quality reached at
the threshold θ0 while the other jumps to an extreme value.

Typical pairs of quality schedules (12) and (13) are depicted in Figure 2, left and right
correspondingly. (These are for an example with g(q) = qγ/γ, analyzed in detail in sec-
tion 5.3.)

Both asymmetric mechanisms (12) and (13) can be implemented as appropriate modifica-
tions of a first-score scoring auction. The quality schedules given by (12) can be implemented
via a scoring auction with discriminatory reserve scores (score floors) while quality schedules
given by (13) can be implemented via a scoring auction in which the unfavored bidder faces
a score ceiling. For this reason, we say that quality schedules (12) represent a “score floors"
mechanism while the quality schedules (13) represent a “score ceilings" mechanism.

Importantly, and somewhat unexpectedly, in both cases the implementation includes a
side-payment for the favored bidder — it is either a bonus she gets from passing the (higher)
unfavored bidder’s reserve score or a kickback she pays for winning without competition when
the unfavored bidder’s score hits its ceiling. The role of the side-payments is to ensure the
correct incentives of the “intermediate” types θ located in the vicinity of the threshold θ0 that
are supposed to choose the symmetric quality. We describe the proposed implementation in
detail in subsection 5.5.
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The result of Theorem 1 is especially clean when the production costs are distributed
uniformly, that is, F (θ) = θ. The following corollary stems from the fact that when the type
θ is distributed uniformly on [0,1], αξ(g′(q))− q = 2αg′(q)− q − 1.

Corollary 1. Suppose that in the setting of Theorem 1 it additionally holds that θi is dis-
tributed uniformly on [0,1]. Then:

1. If g′′′(q) > 0, an optimal mechanism is a “score floors” mechanism given by (12).

2. If g′′′(q) < 0, an optimal mechanism is a “score ceilings” mechanism given by (13).

Thus, that θi is distributed uniformly, all that matters is whether marginal investment
costs are convex or concave. Also note that Corollary 1 implies that quadratic (total) costs,
that are often assumed, are a knife-edge case with g′′′ = 0 and thus are not representative.

5.3 Example: constant-elasticity investment costs

Now we illustrate Theorem 1 and Corollary 1 with an example. Suppose that g(q) = qγ/γ

for some γ > 1. In this case, Corollary 1 identifies an optimal mechanism for (almost) all
γ > 1: it is a “score floors” mechanism for γ > 2 and a “score ceilings” mechanism for
γ < 2. However, for some values of α the optimal threshold θ0 can be 0 or 1, implying that
the optimal mechanism is in fact symmetric, coinciding with the one identified in section 3,
or the sole-sourcing — a completely asymmetric mechanism in which one bidder is totally
excluded a priori5. We provide a complete description of the solution as a function of
parameters γ and α in Proposition 8 and illustrate it in Figure 3.

Proposition 8. Suppose n = 2, F (θ) = θ, CP = αθ/2, CI = qγ/γ where α ≥ 0, γ > 1.
Then, an optimal mechanism is:

• sole-sourcing if α < min
{

2− 2
γ
, 2
γ

}
;

• a scoring auction with discriminatory score ceilings if γ ≤ 2 and 2− 2
γ
< α < 1

γ−1 ;

• a non-discriminatory scoring auction (the optimal symmetric mechanism) if γ < 2 and
1

γ−1 < α;

• a scoring auction with discriminatory score floors (reserve scores) if γ > 2 and 2
γ
< α.

5In fact, one may show that it is always the case for γ = 2: the optimal mechanism can be represented
by both (12) and (13) and thus involves a boundary value of θ0.
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γ

α
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Sole-sourcing

Score Floors

Score Ceilings

Symm.

Figure 3: Type of optimal mechanism with n = 2 as a function of (γ, α). Costs are given by
CP = αθ/2, CI = qγ/γ.

When the optimal mechanism is “score floors”, the optimal threshold θ∗0 is given by

θ∗0 = 1−
(

2

αγ

) γ−1
γ−2

.

When the optimal mechanism is “score ceilings”, the optimal threshold θ∗0 satisfies

γ − 1

γ

(
1− (1− θ∗0)

γ
γ−1

)
− αθ∗20 /2 = θ∗0(1− θ∗0)

1
γ−1 .

Proposition 8 is a testimony to the richness of the problem even under a relatively sim-
ple parametrization. Note that for every γ the optimal mechanism tends to become more
symmetric as α grows — this is not a coincidence and is explained in the next subsection.
However, while the mechanism becomes completely symmetric for high α when γ < 2, it
maintains some (slight but positive) degree of asymmetry even for very high α when γ > 2.

5.4 Comparative statics

5.4.1 Dependence on the importance of private information α

How does the optimal mechanism change when the importance of private information (the
degree of information asymmetry) α changes? In subsection 5.3 we saw that as α grows,
the mechanism becomes more symmetric. In fact, this result holds in general in the class of
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settings we consider in section 5.
We state this observation in the next two propositions.

Proposition 9. Suppose n = 2, CP = αθ, CI = g(q) and θi is not necessarily uniformly
distributed. Then, for the optimal score floors mechanism (including boundary cases), the
optimal threshold θ∗0 is weakly increasing in the importance of private information α. Thus,
the optimal score floors mechanism becomes more symmetric as α grows.

Proposition 10. Suppose n = 2, CP = αθ, CI = g(q) and θi is not necessarily uniformly
distributed. Then, for the optimal score ceilings mechanism (including boundary cases), the
optimal threshold θ∗0 is weakly decreasing in the importance of private information α. Thus,
the optimal score ceilings mechanism becomes more symmetric as α grows.

The intuition behind propositions 9 and 10 is related to the main economic trade-off
faced by the principal when deciding on the level of mechanism asymmetry. This is the
trade-off between ex-post efficiency and avoidance of duplication of investment costs. On
the one hand, the principal would like to award the contract to the most efficient producer
to obtain the best possible price-quality combination. However, to find out which one is the
most efficient best, one has to treat the bidders symmetrically — and this will inevitably
lead to both bidders incurring investment costs. By bidders’ participation constraints, these
costs must ultimately be paid by the principal for both bidders. On the other hand, if
the principal constrains herself to a sole supplier a priori, she will have to compensate
only one firm for the investment costs; however, it might not turn out to be the most
efficient supplier. In general the principal’s dilemma is resolved at some intermediate level
of mechanism symmetry. When the importance of private information α grows, the ex-
post efficiency motive becomes stronger and the optimal solution moves towards the optimal
symmetric mechanism.

Because we can also interpret α as the degree of information asymmetry between the
buyer and the suppliers (the higher α, the higher is the degree of the principal’s uncertainty
about a supplier’s production costs), the message of Propositions 9 and 10 can also be
formulated as follows: Information asymmetry is associated with an optimal mechanism’s
symmetry. Information symmetry is associated with an optimal mechanism’s asymmetry.

5.4.2 Optimal vs. Efficient Mechanisms

Even though in this paper we analyze mostly buyer-optimal mechanisms, an interesting
question is how the degree of asymmetry compares between the buyer-optimal and the
society-optimal (efficient) mechanism. We can easily answer this question when θ is uniform.
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Somewhat unexpectedly, we find that the efficient mechanism exhibits more favoritism than
the buyer-optimal mechanism, not less.

Proposition 11. Suppose n = 2, CP = αθ, CI = g(q) with either g′′′(q) > 0 for all q or
g′′′(q) < 0 for all q, and F (θ) = θ. Then, the efficient mechanism is weakly more asymmetric
(exhibits weakly more favoritism) than the buyer-optimal mechanism.

The intuition behind Proposition 11 is that while the buyer takes into account virtual
costs, the social planner takes into account just costs when determining the optimal degree of
mechanism asymmetry. Since virtual costs are more responsive to θ than just costs (because
they also include type-dependent information rents) the buyer is more concerned about ex-
post efficiency than the social planner. Hence, by the logic of Propositions 9 and 10 the
buyer should choose a more symmetric mechanism than the social planner. This is exactly
what Proposition 11 says.

5.5 Implementation

Now we describe the implementation of the optimal quality schedules 12 and 13 in more
detail. Even though they may be implemented in a direct mechanism, we seek an implemen-
tation via an appropriate modification of a first-score scoring auction which will presumably
be more practical.

5.5.1 “Score floors” mechanisms

As noted above, when the optimal quality schedules are given by (12), they can be im-
plemented with a modified first-score scoring auction in which the bidders face different
score floors (reserve scores) and also the favored bidder gets a bonus in case she passes the
un-favored bidder’s (higher) reserve score.

We describe the implementation formally in a more general setting than the one con-
sidered in section 5 so far. Recall from Proposition 2 that the optimal symmetric quality
q∗symm(θ) can be implemented by a score function S(q, p) = s(q)− p where s(q) is defined by
(3). Given a score function s(q) defined by (3) for q∗symm(θ), define

ψs(e, θ) := max
q

(
e · (s(q)− cP (q, θ))− cI(q, θ)

)
.

Let q∗(e, θ) be the quality that solves this problem.
Also, denote t ∧ θ0 = min{θ0, t} and

IR(a, b) :=

∫ b

a

(
(1− F (t ∧ θ0))cPθ (q∗(1− F (t ∧ θ0), t), t) + cIθ(q

∗(1− F (t ∧ θ0), t), t)
)
dt.
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(The notation “IR” stands for “information rents”).

Proposition 12. Suppose an optimal mechanism is a “score floors” mechanism with a thresh-
old θ0 ∈ [0, 1). Then, the optimal quality schedules given by (12) can be implemented in a
modified first-score scoring auction in which:

• the quasi-linear score S(q, p) = s(q)− p is used;

• the favored bidder faces a reserve score (score floor) of Sr1 = ψs(1−F (θ0),1)
1−F (θ0)

. That is, her
score S1 counts only if S1 ≥ Sr1 .

• the unfavored bidder faces a (higher) reserve score (score floor) of Sr2 = ψs(1−F (θ0),θ0)
1−F (θ0)

.
That is, her score S2 counts only if S2 ≥ Sr2 .

• the favored bidder gets a bonus B1 = IR(θ0, 1) if her score exceeds the unfavored bidder’s
reserve score Sr2, regardless of whether the favored bidder wins or not.

• the equilibrium score bid of the favored bidder is

S∗1(θ1) =


ψs(1−F (θ1),θ1)−IR(θ1,θ0)

1−F (θ1)
, θ1 ≤ θ0;

Sr1 , θ1 > θ0.
.

The score bid S∗1(θ1) jumps down at θ1 = θ0.

• the equilibrium score bid of the unfavored bidder is

S∗2(θ2) =


ψs(1−F (θ2),θ2)−IR(θ2,θ0)

1−F (θ2)
, θ2 ≤ θ0;

no bid, θ2 > θ0.

Two comments are in order about the structure of the mechanism described in Proposi-
tion 12.

• The role of the bonus. The bonus serves to create the correct incentives for the types
of the favored bidder that are immediately to the left of and including θ0. The score
strategy of bidder 1 jumps down at θ0, so the type θ0 is exactly indifferent between
bidding the two scores. Note that her quality strategy is continuous at θ0 meaning that
the type θ0 should be indifferent between bidding two different prices. To achieve the
indifference, she must be compensated. Without the bonus, θ0 and some more efficient
types would opt out of the “fierce competition” high-scores, choosing to win with score
Sr1 and with comfortable probability of 1 − F (θ0) instead. Thus, the bonus is needed
to achieve the efficient symmetric competition among types θ < θ0.
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• Why two reserve scores? Here, the reserve scores are only needed to create asym-
metry, not to exclude inefficient types, as the contract should be always awarded. So
one might surmise that having only the reserve score for the unfavored bidder would
suffice. So why are there two reserve scores but not one? The answer is that when
we impose a binding reserve score for the unfavored bidder, there emerges a region of
types of the favored bidder which win with a probability that does not depend on their
bid. (This probability is equal to the probability that the unfavored bidder does not
pass her reserve score.) Without a reserve score for the favored bidder, this would in-
centivize such types of her to choose the minimal quality and infinite price which would
not be efficient/optimal. Thus, the reserve score is needed for the favored bidder as
well. It should be low enough so that in equilibrium, the favored bidder always passes
her reserve score, but it will be binding for all types θ1 > θ0.

5.5.2 “Score ceilings” mechanisms

The quality schedules given by (13) are implemented by an even less standard modification
of the first-score scoring auction than the one described for the case of “score floors”. Namely,
now the score ceiling is introduced, ties happen in equilibrium and are resolved in favor of
the favored bidder, and the favored bidder pays a side-payment upon winning which we call
a kickback. For the purposes of the proposition to follow, redefine information rents by

IR(a, b) :=

∫ b

a

(
(1− F (t))cPθ (q∗(1− F (t), t), t) + cIθ(q

∗(1− F (t), t), t)
)
dt.

Proposition 13. Suppose an optimal mechanism is a “score ceilings” mechanism with a
threshold θ0 ∈ [0, 1). Then, the optimal quality schedules (13) can be implemented in a
modified first-score scoring auction in which:

• the quasi-linear score S(q, p) = s(q)− p is used;

• the unfavored bidder faces a score ceiling of S̃ = ψs(1−F (θ0),θ0)−IR(θ0,1)
1−F (θ0)

. That is, the
unfavored bidder’s score S2 does not count if S2 > S̃.

• the favored bidder faces any score ceiling weakly higher than S̃. In particular, the
favored bidder may face no score ceiling.

• ties are resolved in favor of the favored bidder;
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• the bidders use the same continuous equilibrium score strategy given by

S∗i (θ) =

 S̃, θ < θ0;

ψs(1−F (θ),θ)−IR(θ,1)
1−F (θ)

, θ ≥ θ0.

• Upon winning with score S̃, the favored bidder must pay the buyer a kickback of

T = ψs(1, θ0)−
ψs(1− F (θ0), θ0)

1− F (θ0)
+

F (θ0)

1− F (θ0)
IR(θ0, 1). (14)

From (14), it may not be immediate that the kickback is nonnegative (and thus the name
is warranted). We establish that it indeed is in the following proposition:

Proposition 14. In the modified first-score auction implementation described above, the
kickback T is nonnegative (and positive if θ0 > 0).

We again make several comments.

• The role of the kickback. We again stress that the role of the side-payment, in this
case kickback, is to provide correct incentives; it is in no way evidence of corruption
which is absent from our model as the buyer and the auctioneer are one and the same.
The kickback is needed to ensure that the types θ1 > θ0 of the favored bidder do
not rush to win for sure with the score S̃ and instead maintain efficient symmetric
competition with the types θ2 > θ0 bidder 2 in the low-score range.

• Alternative description. Also, this mechanism may be described as follows. After
the bidders submit bids (qi, pi), the buyer first looks if the favored bidder’s bid is
satisfactory, in the sense that s(qi)− pi ≥ S̃. If it is, it is taken and the game ends. If
it is not, the bid is compared with that of bidder 2 and then the best bid in terms of
score wins.

6 Allow-k-bidders mechanisms

One interesting family of asymmetric mechanisms is mechanisms where the principal allows
only k ≤ n bidders to enter, and employs the optimal symmetric mechanism for these k
bidders. Such mechanisms may be more practical than arbitrary asymmetric mechanisms
since this particular kind of asymmetry may be less salient, and thus on the surface such
mechanisms may look more “fair”.
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Given that the principal only chooses k ≤ n, which k would be optimal for him? One
reasonable guess is that it may be often optimal to set k = 2: this choice saves a lot of
investment costs while still preserving some competition. We show that in a large class of
settings, including the example in subsection 5.3, this guess is wrong. Namely, we show that
often the optimal solution is “one-or-all”: depending on the importance of private information,
it is always optimal for the principal to either allow only 1 bidder or all of the bidders to
enter. In this sizable set of situations, no intermediate k ∈ {2, 3, . . . , n − 1} can ever be
optimal.

Proposition 15. Suppose CP = αθ, CI = g(q) where g(0) = 0, g′(q) is strictly increasing
and g(q)√

g′(q)
is also strictly increasing. Suppose also that F (θ) = θ. Then, the buyer’s utility

U(k) is a quasi-convex function of the number of bidders k allowed to enter. Thus, it is
optimal for the principal to allow either one or all bidder to enter, that is, k∗ ∈ {1, n}.

The condition that g(q)√
g′(q)

is strictly increasing means that, in a certain sense, investment

costs are not too convex. However, this condition is admittedly mild, as it is satisfied for
g(q) = qγ and all γ > 1 and even for exponential costs g(q) = exp(q)− 1.

Example: Suppose g(q) = q2/2. Then, the buyer’s utility from the optimal symmetric
mechanism with k bidder is

U(k) =
1

2

k

2k − 1
− α

k + 1
,

which is a quasi-convex function. Thus, there exists an α0 such that for

k∗(α) =

 1, α < α0;

n, α > α0.

Proposition 15 also explains the quasi-convex behavior of utility depicted in Figure 2 in
Gershkov et al. (2021) for a related additively separable setting.
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Appendix

A Omitted proofs

A.1 Proof of Proposition 2

Proof. Choosing quality q and price p is equivalent to choosing quality q and score S =

s(q)− p. Given score strategy S(θ), price strategy is recovered by p(θ) = s(q(θ))− S(θ). So
it is sufficient to establish the existence of equilibrium in quality-score pairs.

Given quality schedule q(θ) and s(q) given by (3), define the pseudotype by k(θ) :=

s(q(θ))− CP (q(θ), θ). Imagine the firms already chose qualities q(θ) and now choose which
scores Si to bid. The problem of firm i is

max
S

(k(θi)− S)P(S > max
j 6=i

Sj)− CI(q(θi), θi).

Since CI is constant (already sunk), we have a textbook first-price auction problem in which
the valuation of each bidder is ki = k(θ) and the bid is S. This auction has the textbook
symmetric equilibrium Si = S∗(ki).

We claim that (qi, Si) = (q(θi), S
∗(k(θi))), i = 1, . . . , n is in fact a BNE of the scoring

auction.
First, we show that the score strategy S∗(k(θi)) is decreasing in θi. Indeed, S∗(k) is

increasing being the textbook equilibrium while k(θi) is decreasing. To show the latter, it is
sufficient to show that k(θ(q)) is increasing. But k(θ(q)) ≡ s(q)− CP (q, θ(q)) so

dk(θ(q))

dq
= s′(q)− CP

q (q, θ(q))− CP
θ (q, θ(q))θ′(q) =

CI
q (q, θ(q))

(1− θ(q))n−1
− CP

θ (q, θ(q))θ′(q) > 0,

where we used (3) for the second equality and known signs of CI
q , CP

θ , θ′(q) for the inequality.
Abusing notation, we write S∗(θ) ≡ S∗(k(θ)). We proved that S∗(θ) is decreasing.
Now suppose every bidder but the bidder i plays according to the alleged BNE strategy

(q, S) = (q(θ), S∗(θ)). We shall show that it is indeed optimal for bidder i to respond with
exactly the same strategy. To this end, consider bidder’s i two-dimensional optimization
problem:

max
q,S

Π(q, S|θi) = max
q,S

(
s(q)− CP (q, θi)− S

)
P(S > max

j 6=i
S∗(θj))− CI(q, θi).

Because S∗(θ) is decreasing and all θi are iid uniform on [0, 1], the optimization problem can
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be rewritten as

max
q,S

(
s(q)− CP (q, θi)− S

) (
1− S∗−1(S)

)n−1 − CI(q, θi).

Denote Πmax(q|θi) := maxS Π(q, S|θi). This is the maximum profit bidder i can get by
bidding some score if her quality is fixed at some (possibly suboptimal) level q. Denote
by σ∗(q, θi) the optimal score bid given that quality is fixed at level q and type of bidder
i is θi. Thus, Πmax(q|θi) ≡ Π(q, σ∗(q, θi)|θi). It follows from the above construction that
σ∗(q(θi), θi) ≡ S∗(θi). Thus, for (q, S) = (q(θi), S

∗(θi)) to be bidder’s i best response, it is
sufficient that q(θi) is a maximizer of Πmax(q|θi).

It follows from the structure of the objective function Π(q, S|θ) that the optimal score
bid given that quality σ∗(q, θi) depends only on the expression s(q)−CP (q, θi) (pseudotype
at arbitrary q), so we can write σ∗(s(q)− CP (q, θi)). Note that because S∗(·) is decreasing,
the profit function Π is supermodular in (S, s(q) − CP (q, θi)); thus, the function σ∗(·) is
increasing.

By Envelope Theorem, the first-order condition for the maximization of Πmax(q|θi) over
q is (

s′(q)− CP
q (q, θ)

) (
1− S∗−1(σ∗(s(q)− CP (q, θ)))

)n−1 − CI
q (q, θ) = 0. (15)

Set q = q(w), where w ∈ [0, 1] is the “misreported type”, in (15):

(
s′(q(w))− CP

q (q(w), θ)
) (

1− S∗−1(σ∗(s(q(w))− CP (q(w), θ)))
)n−1 − CI

q (q(w), θ) = 0.

(16)
Because S∗(θ) ≡ σ∗(s(q(θ)) − CP (q(θ), θi)) and equation (3), the equation (16) is always
satisfied at w = θ, so the first-order condition (15) is always satisfied at q = q(θ). To prove
that q = q(θ) indeed maximizes Πmax(q|θ), we need to check some second-order conditions of
some form. We use the following two-step argument: first, we show that (16) is satisfied only
at w = θ; second, we show that in a neighborhood w = θ, the LHS of (16) is increasing in
w. This implies that the LHS of (15) is decreasing in q in a neighborhood of q(θ), meaning
that q = q(θ) is a local maximum of Πmax(q|θ). Thus, we show that Πmax(q|θ) has only one
critical point, q = q(θ), and it is a local maximum. It follows that it must be the global
maximum as well, proving the result.

Denote the LHS of (16) by g(w, θ).

Lemma 1. For all w and θ, g(w, θ) = 0 implies w = θ.

Proof. One (straightforward) approach would be to try to show that for every θ, the equation
(16) has only one solution w = θ. Instead, we show that for every w, the equation (16) has
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only one solution θ = w. This is an equivalent statement which is easier to show.
To this end, note that:

1. s′(q(w))− CP
q (q(w), θ) is decreasing in θ by supermodularity of CP (q, θ).

2.
(
1− S∗−1(σ∗(s(q(w))− CP (q(w), θ)))

)n−1 is decreasing in θ because (1) CP
θ > 0; (2)

σ∗(·) is increasing by the discussion above; (3) S∗−1(·) is decreasing as S∗(·) is decreas-
ing.

3. CI
q (q(w), θ) is increasing in θ by supermodularity of CI(q, θ).

These three observations imply that whenever s′(q(w))− CP
q (q(w), θ) > 0 (for θ lower than

some threshold), g(w, θ) is decreasing in θ, and whenever s′(q(w))− CP
q (q(w), θ) ≤ 0 (for θ

higher than this threshold), g(w, θ) < 0. Thus, for every w there can be at most one θ such
that g(w, θ) = 0. Since this is true for θ = w, the result follows.

Lemma 2. For all θ, gw(w, θ)|w=θ > 0.

Proof. By (3), s′(q(w)) ≡ CP
q (q(w), w) +

CIq (q(w),w)

(1−w)n−1 . Plugging this into (16), one gets

g(w, θ) =

(
CP
q (q(w), w)− CP

q (q(w), θ) +
CI
q (q(w), w)

(1− w)n−1

)
(1− S∗−1(σ∗(·)))n−1 − CI

q (q(w), θ).

Rearranging, one gets

g(w, θ) =

∫ w

θ

CP
qθ(q(w), y)dy · (1− S∗−1(σ∗(·)))n−1

+

∫ w

θ

CI
qθ(q(w), y)dy

−

(
1−

(
1− S∗−1(σ∗(·))

1− w

)n−1)
CI
q (q(w), w).

As S∗−1(σ∗(s(q(θ))− CP (q(θ), θ)) ≡ θ, one obtains

gw(w, θ)|w=θ =CP
qθ(q(θ), θ) · (1− θ)n−1 (17)

+ CI
qθ(q(θ), θ) (18)

+ (n− 1)1n−2CI
q (q(θ), θ)

∂

∂w

{
1− S∗−1(σ∗(·))

1− w

}
|w=θ. (19)

The first two terms are positive by supermodularity of costs. The last term is

∂

∂w

{
1− S∗−1(σ∗(s(q(w))− CP (q(w), θ)))

1− w

}
|w=θ = −

σ∗′(·)[s′(q)− CP
q ]q′(θ)

S∗′(S∗−1(·))(1− θ)
+

1− S∗−1(·)
(1− θ)2

.
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Again using S∗−1(σ∗(s(q(θ))− CP (q(θ), θ)) ≡ θ, we get that the last expression is

−
σ∗′(·)[s′(q)− CP

q ]q′(θ)

S∗′(θ)(1− θ)
+

1

1− θ
=

1

1− θ

(
1−

σ∗′(·)[s′(q)− CP
q ]q′(θ)

σ∗′(·)([s′(q)− CP
q ]q′(θ)− CP

θ )

)
= − CP

θ

k′(θ)(1− θ)
.

As CP
θ > 0 and k′(θ) < 0 (we proved earlier that the pseudotype is decreasing), CI

q > 0, this
implies that the term (19) is positive, yielding the desired result.

The above two lemmas together show show that Πmax(q|θ) has only one critical point,
q = q(θ), and it is a local maximum. It follows that it must be the global maximum as
well; thus (q(θ), S∗(θ)) is a best response to itself, and hence a strategy forming a symmetric
BNE.

A.2 Proof of Proposition 6

Proof. Principal’s utility as a function of threshold θ0 can be written as

U(θ0) = n

∫ θ0

0

max
x

[
(1− θ)n−1x− C(x, θ)

]
dθ +

∫ 1

θ0

max
x

[
(1− θ0)n−1x− C(x, θ)

]
dθ.

Denote by x∗(θ, θ0) is the solution to the problem max
x

[(1− θ0)n−1x− C(x, θ)]. Note that
x∗symm(θ) ≡ x∗(θ, θ). Differentiating U(θ0), we get

U ′(θ0) = (n− 1) max
x

[
(1− θ0)n−1x− C(x, θ0)

]
− (n− 1)(1− θ0)n−2

∫ 1

θ0

x∗(θ, θ0)dθ,

where we used Envelope theorem to evaluate the derivative of the second addend in U(θ0).
This may be further rewritten as

U ′(θ0)/(n− 1) = (1− θ0)n−2
(

(1− θ0)x∗(θ0, θ0)−
∫ 1

θ0

x∗(θ, θ0)dθ

)
− C(x∗(θ0, θ0), θ0). (20)

In what follows, we prove that lim
θ0→1

U ′(θ0)

(1−θ0)
γ(n−1)
γ−1

< 0 which implies the result.

To evaluate the limit

L1 := lim
θ0→1

(1− θ0)n−2
(

(1− θ0)x∗(θ0, θ0)−
∫ 1

θ0
x∗(θ, θ0)dθ

)
(1− θ0)

γ(n−1)
γ−1

,

use the first-order Taylor expansion of the function t → x∗(t, θ0) at t = 1 and the second-
order Taylor expansion of the function t →

∫ 1

t
x∗(θ, θ0)dθ at t = 1. (The expansions are
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valid because x∗(θ, θ0) is differentiable in the first argument by Implicit Function theorem.)
After simplifications, we get

L1 = lim
θ0→1

(1− θ0)n−2 ((1− θ0)x∗θ(1, θ0)(θ0 − 1) + x∗θ(1, θ0)(1− θ0)2/2 + o((1− θ0)2))

(1− θ0)
γ(n−1)
γ−1

=

= lim
θ0→1

−x∗θ(1, θ0)(1− θ0)n/2 + o((1− θ0)n)

(1− θ0)
γ(n−1)
γ−1

= 0,

because x∗θ(1, 1) is finite and n > γ(n−1)
γ−1 since γ > n.

Now consider L2 := lim
θ0→1

C(x∗(θ0,θ0),θ0)

(1−θ0)
γ(n−1)
γ−1

. We prove that L2 > 0. First, denoting lim
x→x+

C(x,1)
(x−x)γ :=

D > 0, by L’Hopital’s rule we get that lim
x→x+

Cx(x,1)
(x−x)γ−1 = γD > 0. Thus,

lim
x→x+

C(x, 1)

[Cx(x, 1)]
γ
γ−1

=

[
lim
x→x+

[C(x, 1)]γ−1

[Cx(x, 1)]γ

] 1
γ−1

=

[
lim
x→x+

Dγ−1(x− x)γ(γ−1)

(γD)γ(x− x)(γ−1)γ

] 1
γ−1

=
D

(γD)
γ
γ−1

> 0.

Now substitute x = x∗(1, θ0) with θ0 → 1 to the above limit (this is valid since lim
θ0→1

x∗(1, θ0) =

x). Note that by FOC Cx(x
∗(1, θ0), 1) ≡ (1− θ0)n−1. Thus,

0 <
D

(γD)
γ
γ−1

= lim
x→x+

C(x, 1)

[Cx(x, 1)]
γ
γ−1

= lim
θ0→1

C(x∗(1, θ0), 1)

[Cx(x∗(1, θ0), 1)]
γ
γ−1

= lim
θ0→1

C(x∗(1, θ0), 1)

(1− θ0)
γ(n−1)
γ−1

.

Finally, note that

0 < lim
θ0→1

C(x∗(1, θ0), 1)

(1− θ0)
γ(n−1)
γ−1

= lim
θ0→1

lim
θ→1

C(x∗(θ, θ0), θ)

(1− θ0)
γ(n−1)
γ−1

= lim
θ→1
θ0→1

C(x∗(θ, θ0), θ)

(1− θ0)
γ(n−1)
γ−1

= L2.

To sum up,

lim
θ0→1

U ′(θ0)

(1− θ0)
γ(n−1)
γ−1

= (n− 1)(L1 − L2) = (n− 1)(0− L2) < 0.

A.3 Proof of Theorem 1

Proof. Part 1. If marginal costs are sufficiently convex, by definition 2 the function q →
αξ(g′(q))) − q = α(1 − J(F−1(1 − g′(q)))) − q is strictly quasi-convex. Quasi-convexity is
preserved under any monotone transformation of the argument, so plugging q = g′−1(1 −
F (θ)), we get that the function α(1− J(θ))− g′−1(1−F (θ)) is strictly quasi-convex as well.
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The environment considered in the theorem is additively separable. It may be shown that
in an additively separable environment the optimal mechanism is the same in two cases: (1)
quality choice (agent’s action) is contractible and v(q) enters principal’s utility (our case);
(2) quality choice (agent’s action) is non-contractible and v(q) enters agent’s utility (the case
in Zhang (2017)). Thus, we can use the analysis in Zhang (2017).

By following the same steps as in Zhang (2017), we reach the conclusion that the function
α(1 − J(θ)) − g′−1(1 − F (θ)) plays in our model exactly the same role as the function
J(θ)−KF (θ) in Zhang (2017), with the proviso that θ is a cost type here and utility type
in Zhang (2017), so the notions of F and J should be modified appropriately. We will
invoke the appropriate generalizations of the results in Zhang (2017) with the expressions
“strictly increasing” and “strictly decreasing” interchanged (again as θ increases costs in this
paper and decreases costs in Zhang (2017)). As the function α(1 − J(θ)) − g′−1(1 − F (θ))

is strictly quasi-convex, it either (1) strictly decreasing, (2) strictly increasing, or (3) first
strictly decreasing and then strictly increasing. In the case (1) by Corollary 1, part I in
Zhang (2017), the optimal mechanism is symmetric so the quality schedules (12) with θ0 = 1

are optimal. In the case (2) by Theorem 1, part I in Zhang (2017), the optimal mechanism
is completely asymmetric so that one bidder gets the contract with probability 1. This
corresponds to quality schedules (12) with θ0 = 0. Finally, in the case (3) by Theorem 1 in
Zhang (2017) there exists θ0 ∈ [0, 1] such that an optimal mechanism is symmetric for θ < θ0

while having [θ0, 1] is a “favored bidder interval”. That is, for θ > θ0 one bidder is “favored”
and gets the contract with probability 1 − F (θ0); and the other bidder is “un-favored” and
gets the contract with probability 1−F (1) = 0. This implies the quality schedules (12) with
that particular θ0.

Part 2 is proved analogously.

A.4 Proofs of remaining results in section 5

Proof of proposition 8:

Proof. It follows from Corollary 1 that if γ > 2 an optimal mechanism is either score floors,
sole-sourcing, or symmetric while if γ < 2 an optimal mechanism is either score ceilings,
sole-sourcing, or symmetric.

For a score floors mechanism, the FOC for the optimal threshold θ0 is

ψ(1− θ0, θ0) =

∫ 1

θ0

x∗(1− θ0, θ)dθ. (21)

Plugging in ψ(e, θ) = γ−1
γ
e

γ
γ−1 − αθe and x∗(e, θ) = ψ′e = e

1
γ−1 − αθ, we get an equation
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which is under θ0 < 1 simplified to

(1− θ0)
γ−2
γ−1 =

2

αγ
.

sole-sourcing corresponds to θ0 = 0 and it obtains if the derivative of the objective at
θ0 = 0 is non-positive. Thus, it will obtain if 1− 2

αγ
≤ 0, α ≤ 2/γ, otherwise there will be a

θ0 ∈ (0, 1) satisfying FOC and giving a score floors mechanism.
For a score ceiling mechanism, the FOC for the optimal threshold θ0 is

ψ(1, θ0)− ψ(1− θ0, θ0) =

∫ θ0

0

x∗(1− θ0, θ)dθ. (22)

Plugging in ψ and x∗, we get

γ − 1

γ

(
1− (1− θ0)

γ
γ−1

)
− αθ20/2 = θ0(1− θ0)

1
γ−1 . (23)

In general, there is no closed-form solution to this equation. sole-sourcing now corresponds
to θ0 = 1 while the symmetric solution to θ0 = 0. To obtain an α threshold separating the
sole-sourcing region from the score ceiling region, plug in θ0 = 1 to (23). To obtain an α

threshold separating the symmetric solution region region from the score ceiling region, solve
(23) for α and then take the limit when θ0 → 0.

Proof of proposition 9:

Proof. For this costs specification, ψ(e, θ) = H(e)−αl(θ)e for some functionH(e). Rewriting
(21), we get that

U ′θ0 = ψ(1−θ0, θ0)−
∫ 1

θ0

x∗(1−θ0, θ)dθ = H(1−θ0)−(θ0)(1−θ0)−
∫ 1

θ0

(H ′(1−θ0)−αl(θ))dθ =

α

[∫ 1

θ0

l(θ)dθ − l(θ0)(1− θ0)
]

+H(1− θ0)− (1− θ0)H ′(1− θ0).

Thus,

U ′′θ0,α =

∫ 1

θ0

l(θ)dθ − l(θ0)(1− θ0) > 0,

where the inequality follows from the fact that l(θ) is strictly increasing. By the standard
monotone comparative statics theorem, the optimal θ∗0(α) must be a weakly increasing func-
tion.

Proof of proposition 10 is analogous to that of proposition 9 and is omitted.
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Proof of proposition 11:

Proof. The efficient mechanism is characterized by a statement analogous to Theorem 1 in
which in the definition of the function ξ(·) one replaces J(θ) with just θ. With F (θ) = θ

J(θ) is proportional to θ and thus Corollary 1 applies fully to the efficient mechanisms as
well. Hence, an optimal mechanism is either a “score floors” mechanism or a “score ceilings”
mechanism. Now note that the efficient mechanism in a given setting 1 is the same as a
buyer-optimal mechanism in another setting 2 such that virtual costs in setting 2 are equal
to costs in setting 1. If CP = αθ/2, the virtual production costs CP + CP

θ F/f are exactly
αθ. Thus, the efficient mechanism for CP = αθ is equal to the buyer-optimal mechanism
for CP = αθ/2. So we need to compare the buyer-optimal mechanism for CP = αθ/2

with the buyer-optimal mechanism for CP = αθ. Since α halves and thus decreases, by
Propositions 9 and 10 the optimal threshold moves in a way that makes the mechanism
less symmetric. Thus, the efficient mechanism is less symmetric than the buyer-optimal
mechanism.

Proof of proposition 12:

Proof. Denote by θ0 the optimal threshold. Denote by x∗(e, θ) the solution to the problem
max
x

(ex− C(x, θ)).
Bidder 1 is the favored bidder. The x bids are just the optimal x’es to implement:

x∗1(θ1) = x∗(1−min{θ1, θ0}, θ1);

x∗2(θ2) =

x∗(1− θ2, θ2), θ2 ≤ θ0;

x∗(0, θ2), θ2 > θ0.

The equilibrium expected transfers can be recovered using the envelope formula:

t∗i (θi) = C(x∗i (θi), θi) +

∫ 1

θi

Cθ(x
∗(t), t)dt,

so

t∗1(θ1) =

C(x∗(1− θ1, θ1), θ1) +
∫ θ0
θ1
Cθ(x

∗(1− t, t), t)dt+
∫ 1

θ0
Cθ(x

∗(1− θ0), t), t)dt, θ1 ≤ θ0;

C(x∗(1− θ0, θ1), θ1) +
∫ 1

θ1
Cθ(x

∗(1− θ0), t), t)dt, θ1 > θ0;
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and

t∗2(θ2) =

C(x∗(1− θ2, θ2), θ2) +
∫ θ0
θ2
Cθ(x

∗(1− t, t), t)dt+
∫ 1

θ0
Cθ(x

∗(0, t), t)dt, θ2 ≤ θ0;

C(x∗(0, θ2), θ2) +
∫ 1

θ2
Cθ(x

∗(0, t), t)dt, θ2 > θ0;

The bonuses to be given are naturally the constants in the expressions above for θi < θ0:

B1 :=

∫ 1

θ0

Cθ(x
∗(1− θ0), t), t)dt

B2 :=

∫ 1

θ0

Cθ(x
∗(0, t), t)dt

For many specifications (including all examples in section ...), B2 = 0, so only the favored
bidder gets the bonus.

The bonuses are necessary to render the equilibrium (and allocation) symmetric for θi <
θ0.

For θi < θ0, the equilibrium (symmetric) price bid can be recovered as

p∗i (θi) =
t∗i (θi)−Bi

Prob.(i wins)
=
t∗i (θi)−Bi

1− θi
.

For θ1 > θ0, the price bid of bidder 1 has to satisfy

p∗1(θ1) =
t∗1(θ1)

Prob.(1 wins)
=
t∗1(θ1)

1− θ0
=
C(x∗(1− θ0, θ1), θ1) +

∫ 1

θ1
Cθ(x

∗(1− θ0), t), t)dt
1− θ0

.

On the other hand, for θ1 > θ0, in our construction bidder 1 must not try to outbid the
good types of bidder 2 (those with θ2 < θ0), opting instead for the guaranteed victory with
prob. 1 − θ0 provided she passes her reserve score. Given this, she will optimally set the
price at the maximum level that ensures barely passing her reserve score, so

x∗1(θ1)− p∗(θ1) ≡ Sr1 for all θ1 > θ0

p∗(θ1) ≡ x∗(1− θ0, θ1)− Sr1 for all θ1 > θ0

Thus, for the implementation to be valid it must be that

x∗(1− θ0, θ1)− Sr1 ≡
C(x∗(1− θ0, θ1), θ1) +

∫ 1

θ1
Cθ(x

∗(1− θ0), t), t)dt
1− θ0

,
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so

x∗(1− θ0, θ1)−
C(x∗(1− θ0, θ1), θ1) +

∫ 1

θ1
Cθ(x

∗(1− θ0), t), t)dt
1− θ0

≡ Sr1 = const in θ1. (24)

So the LHS of (24) must not depend on θ1. In fact, this is so; this is a consequence of the
envelope theorem applied to the maximization problem max

x
(ex−C(x, θ)) and parameter θ.

As the LHS of (24) is a constant in θ1, we can recover Sr1 by evaluating the RHS at any
θ1 > θ0, in particular, at θ1 = 1. Thus, the principal has to set

Sr1 := x∗(1− θ0, 1)− C(x∗(1− θ0, 1), 1)

1− θ0
=
ψ(1− θ0, 1)

1− θ0
.

To recover the unfavored bidder’s reserve score, note that it must be equal to the score
bid of the marginal non-excluded type θ0. That is,

Sr2 := x∗2(θ0)− p∗2(θ0) = x∗(1− θ0, θ0)−
C(x∗(1− θ0, θ0)

1− θ0
=
ψ(1− θ0, θ0)

1− θ0
.

Now it is easy to see that the reserve for the unfavored bidder is higher, i.e. Sr2 > Sr1 . Indeed,
this just follows from the fact that ψ(e, θ) is decreasing in the second argument.

A.4.1 Checking monotonicity

The envelope formulas take care of only the FOC of the firms’ problems. For the whole
construction to be valid (i.e., for the strategies described indeed be optimal for the firms),
one must also check that the score bid strategies S∗(θ) = x∗(θ)− p∗(θ) are monotone (non-
increasing).

The favored firm’s score bid jumps down at θ0, from Sr2 to Sr1 and stays constant for
θ1 > θ0. The unfavored firm does not bid anything for θ2 > θ0. So it is sufficient to check
that the (symmetric) score bids are nonincreasing for θ < θ0.

For example, if C = (x+αθ)γ/γ, for θ < θ0 we have S∗(θ) = γ−1
γ

(1−θ)
1

γ−1 −α θ0−θ
2
0/2−θ2/2
1−θ

which is a decreasing function for θ < θ0 although it is not obvious.
In general, the equilibrium score bid for θ < θ0 is

S∗(θ) = x∗(1− θ, θ)−
C(x∗(1− θ, θ), θ) +

∫ θ0
θ
Cθ(x

∗(1− t, t), t)dt
1− θ

=

ψ(1− θ, θ)−
∫ θ0
θ
Cθ(x

∗(1− t, t), t)dt
1− θ

. (25)

The next lemma shows that it is indeed a nonincreasing function in general.
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Lemma 3. The score bid strategy defined by (25) is nonincreasing for in θ for θ < θ0.

Proof. Note that by envelope theorem, ψe = x∗ and ψθ = −Cθ where we omit the arguments
for brevity.

Differentiating, we obtain

(1− θ)2S∗′(θ) = (−x∗ − Cθ + Cθ)(1− θ) + ψ(1− θ, θ)−
∫ θ0

θ

Cθ(x
∗(1− t, t), t)dt =

− x∗ · (1− θ) + ψ(1− θ, θ)−
∫ θ0

θ

Cθ(x
∗(1− t, t), t)dt =

− C(x∗(1− θ, θ), θ)−
∫ θ0

θ

Cθ(x
∗(1− t, t), t)dt < 0,

where we used the facts that ψ(1 − θ, θ) = (1 − θ)x∗(1 − θ, θ) − C(x∗(1 − θ, θ), θ) and that
C(·, ·) > 0, Cθ(·, ·) > 0, θ < θ0. �

Proof of proposition 14:

Proof. Denote by xm(θ1) the “monopolistic” production surplus that the favored bidder offers
when she wins with prob.1 and by xs(θ) the optimal symmetric surplus that each bidder offers
when θi > θ0. In general, the derivations similar to the above lead to the following formula
for the kickback T :

T (θ1, θ0) = xm(θ1)− xs(θ0) +
C(xs(θ0), θ0) +

∫ 1

θ0
Cθ(xs(t), t)dt

1− θ0

− C(xm(θ1), θ1)−
∫ θ0

θ1

Cθ(xm(t), t)dt−
∫ 1

θ0

Cθ(xs(t), t)dt.

It is easy to see that T1(θ1, θ0) = 0, so the kickback does not depend on the reported type
not only in the example above but in general. Thus,

T (θ1, θ0) = T (θ0, θ0) = xm(θ0)− xs(θ0) +
C(xs(θ0), θ0) +

∫ 1

θ0
Cθ(xs(t), t)dt

1− θ0

− C(xm(θ0), θ0)−
∫ 1

θ0

Cθ(xs(t), t)dt.
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As θ0 ≥ 0,

T (θ0, θ0) ≥ xm(θ0)−xs(θ0)+
C(xs(θ0), θ0) +

∫ 1

θ0
Cθ(xs(t), t)dt

1
−C(xm(θ0), θ0)−

∫ 1

θ0

Cθ(xs(t), t)dt

= [xm(θ0)− C(xm(θ0), θ0)]− [xs(θ0)− C(xs(θ0), θ0)] ≥ 0,

where the last inequality is due to the fact that xm(θ) maximizes the expression x−C(x, θ).
If θ0 > 0, the last inequality is strict, so T > 0.

A.5 Proof of proposition 15

Proof. Recall that ψ(e, θ) ≡ maxx (ex− C(x, θ)).
For C(x, θ) = g(x + αθ), ψ(e, θ) = H(e) − αθe for some function H(e). Denote h(e) :=

H(e)/e. First, we show that the condition that g(t)√
g′(t)

is strictly increasing implies that

h′(e)e3/2 is increasing.
Indeed, given that g(0) = 0 it is easy to show that

h(e) =

 0, e < g′(0);

g′−1(e)− g(g′−1(e))
e

, e ≥ g′(0).

and thus after simplifications

h′(e)e3/2 =

 0, e < g′(0);

g(g′−1(e))√
e

, e ≥ g′(0).

As g′−1(e) is increasing and g(t)√
g′(t)

is increasing by assumption, h′(e)e3/2 is increasing.

Now, the principal’s payoff from playing the optimal symmetric mechanism among k

remaining bidders is

U(k) =

∫ 1

0

k
(
H((1− θ)k−1)− αθ(1− θ)k−1

)
dθ. (26)

We shall show that U(k) is quasi-convex when k is treated as a continuous variable6 This
implies the result.

6The integrand in (26) is quasi-concave in k. However, a sum (integral) of quasi-concave functions can
be quasi-convex and not quasi-concave.
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Using the substitution y = (1− θ)k−1, U(k) may be rewritten as

U(k) =
k

k − 1

∫ 1

0

(
H(y)− α(1− y

1
k−1 )y

)
y

2−k
k−1dy =

k

k − 1

∫ 1

0

(
h(y)− α(1− y

1
k−1 )

)
y

1
k−1dy.

Now substitute δ := 1
k−1 . Because this is a monotone transformation, it is sufficient to show

that U(k(δ)) is quasi-convex in δ. When k = 1, we set δ = +∞.

U = (1 + δ)

∫ 1

0

(
h(y)− α(1− yδ)

)
yδdy = (1 + δ)

∫ 1

0

h(y)yδdy − α(1 + δ)

∫ 1

0

(1− yδ)yδdy.

We now compute U ′δ. Integrating the first term by parts we get

(1 + δ)

∫ 1

0

h(y)yδdy =

∫ 1

0

h(y)dy1+δ = h(1)−
∫ 1

0

h′(y)y1+δdy.

Thus, (
(1 + δ)

∫ 1

0

h(y)yδdy

)′
δ

=

∫ 1

0

h′(y)y1+δ ln(1/y)dy.

The second integral can be computed explicitly:

(1 + δ)

∫ 1

0

(1− yδ)yδdy =
δ

2δ + 1
.

Thus, (
(1 + δ)

∫ 1

0

(1− yδ)yδdy
)′
δ

=
1

(2δ + 1)2
=

1

4

1

(δ + 1
2
)2

=
1

4

∫ 1

0

yδ−
1
2 ln(1/y)dy,

where the last equality may be verified by integration by parts.
Tacking stock,

U ′δ =

∫ 1

0

h′(y)y1+δ ln(1/y)dy − α

4

∫ 1

0

yδ−
1
2 ln(1/y)dy

=

(∫ 1

0
h′(y)y1+δ ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

− α

4

)∫ 1

0

yδ−
1
2 ln(1/y)dy.

Now, we shall show that the expression in parentheses above is increasing in δ. This will
imply that U ′δ(δ) is of increasing sign and hence U(δ) is quasi-convex.
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Rewrite ∫ 1

0
h′(y)y1+δ ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

=

∫ 1

0

[
h′(y)y

3
2

]
yδ−

1
2 ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

and consider the following family of density functions on (0, 1) parametrized by δ:

f(y|δ) =
yδ−

1
2 ln(1/y)∫ 1

0
yδ−

1
2 ln(1/y)dy

.

It is not hard to show that for any δ1 < δ2 f(y|δ2) first-order stochastically dominates
f(y|δ1).7 Thus, for any increasing function b(y)

Ey∼f(·|δ)(b(y)) =

∫ 1

0
[b(y)] yδ−

1
2 ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

is increasing in δ. However, we have shown above that the function h′(y)y3/2 is increasing
indeed.

7For this, note that f(y|δ2)/f(y|δ1) is increasing in y and thus apart from endpoints the two densities
cross only once, with f(y|δ2) crossing f(y|δ1) from below.
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