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This paper investigates the effects of jump bidding between two bidders in the context

of the war of attrition and its implications for market efficiency. The war of attrition

is a common phenomenon where firms compete to remain in the market by investing

aggressively in advertising or research. Jump bidding is a strategy that allows a firm to

bypass the costly period of attrition by making a commitment to remain in the market.

We first identify the dominant bidder 1 with the highest valuation for the object, and

all other types will follow her strategy. This bidder faces the problems of whether to

jump bid or not and when to jump bid. The shape of bidder 2’s valuation distribution

determines the cost of excluding bidder 2 during the war of attrition and thus answers

the above two questions. We find that when bidder 2’s cumulative density function

is of a convex shape, bidder 1 will jump bid. Furthermore, the paper examines the

inefficiencies that arise from the introduction of jump bidding in the auction.
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1 Introduction

War of attrition is a common phenomenon in various aspects of our daily lives. In business,

aggressive marketing and technological competition can lead to a never-ending battle between

firms, with each trying to outdo the other in terms of advertising and R&D investments. One

such example is the advertising campaign between Meituan and Eleme, the Chinese take-

away platforms, which started in 2013. The competition between the two companies involved

aggressive marketing strategies that continued until one party exhausted its resources and

exited the market. However, after finding a new investor, the former loser makes a comeback

and the war is still going on now. Another example is the bidding war that took place in

2011, when a group of technology companies, including Apple, Microsoft, and Sony, com-

peted for the patent portfolio of Nortel Networks, a bankrupt Canadian telecommunications

company. The bidding war lasted several weeks and involved jump bidding, with each com-

pany attempting to outbid the others to secure the patents. Similarly, in 2013, Google and

Apple engaged in a bidding war to acquire the Israeli start-up Waze, which had developed

a popular navigation app. The competition also involved jump bidding, with each company

offering increasingly higher amounts in an attempt to outbid the other.

In this paper, we investigate the effects of jump bidding in the context of the war of attrition

and examine its implications for market efficiency. The war of attrition scenario involves firms

competing to remain in the market for as long as possible, often through costly investments

in advertising or research. However, by making a substantial investment, a firm can signal

its high type and make a credible claim that it will stay in the market for the following

period. This signaling behavior allows the firm to exclude potential competitors who are

perceived to be of lower type, thereby avoiding the costly war of attrition. Jump bidding,

in particular, is a strategy that enables a firm to bypass the war of attrition by making a

commitment to remain in the market without enduring the costly period of attrition.
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By allowing one bidder to make a jump bidding and signal her commitment to staying in

the game for a certain period of time, we first identify the dominant bidder with the highest

valuation of the object. It is enough to discover how this dominant bidder will make the

jump bidding and all the other types will follow her strategy to hide their types. The timing

of the game is that two bidders initially engage in a war of attrition, and then at some time,

bidder 1 can make a claim of persistence in the auction game by paying some cost.

Bidder 1 faces two critical decisions: whether to jump bid or not and when to jump bid. We

find that the answers to both of the questions depend on the shape of the density function

of bidder 2’s valuation distribution, which determines bidder 1’s cost of excluding bidder 2

during the war of attrition. Jump bidding is costly and there is only one chance, so bidder

1 wants to make the most efficient use.

If the density function of bidder 2 is flat at the beginning of the auction, this indicates that

bidder 2 is less likely to have a low valuation. In such a case, it will be more beneficial for

bidder 1 to exclude bidder 2 through the war of attrition, which incurs a smaller cost for

bidder 1. In other words, bidder 1 sacrifices fewer of her own low types by staying in the war

of attrition. Therefore, the longer the flat portion of bidder 2’s density function, the longer

bidder 1 would want to stay in the war of attrition and delay the jump bid.

On the other hand, a density function of this shape indicates that bidder 2 is more likely

to have a high valuation, which makes the scare-off effect of the jump bidding to be even

more beneficial. Consequently, bidder 1 is more likely to make the claim. In addition, we

examine the inefficiencies that arise from the introduction of jump bidding in the auction. In

a second-price auction, the object is typically won by the bidder with the highest valuation.

However, with the inclusion of jump bidding, this may not always be the case, and the

winner may be a bidder with a lower valuation. In total, the bidder who is unable to make

a jump bid ends up benefiting, while the other bidder who is able to make such a claim only

benefits if her valuation is high enough. Otherwise, she may end up sacrificing herself to
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exclude bidder 2.

1.1 Related Literature

The study of the war of attrition has its roots in biological competition, as discussed in

earlier works such as Smith [1974] and Bishop et al. [1978]. In the context of complete

and incomplete information, these works laid the foundation for understanding the strategic

behavior of agents in a war of attrition. Further research on this topic has been carried

out by Nalebuff and Riley [1985], who characterized all Bayesian equilibria in a symmetric

war of attrition, which presented a challenge in terms of multiple equilibria. Fudenberg and

Tirole [1986] introduced the concept of trembling hand perfection, where an extremely small

probability that the competitor never quits, selects a unique equilibrium. In addition to

studying the symmetric war of attrition, Myatt [2005] analyzed the asymmetric case. The

introduction of the jump bidding strategy in the war of attrition is a significant contribution

to the existing literature. This strategy involves bidding significantly more than the previous

bid, which can help a bidder secure an item they want without giving their competitors time

to react.

Jump bidding is widely studied in other auction formats: English auction (Avery [1998]

and all-pay auction (Dekel et al. [2007], Leininger [1991]). There is a high potential for

studying jump bidding in the war of attrition. For example, in labor negotiations, a union

and employer may engage in a war of attrition to secure favorable terms. Jump bidding may

occur when the union or employer offers a concession that is significantly more generous than

the previous one, putting pressure on the other party to concede.

The paper is organized as follows: In section 2, we present the basic setting of our model.

Section 3 discusses the classical war of attrition, which serves as a benchmark in our analysis.

In section 4, we introduce our main model, which incorporates the jump bidding strategy in
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the war of attrition by allowing one bidder to make a claim. Finally, in section 5, we conduct

welfare analyses for bidders and the auction organizer, evaluating the efficiency of the jump

bidding mechanism.

2 Basic Setting

Two bidders i = 1, 2 are involved in a dispute for one object. Each bidder has a private

valuation vi drawn from a distribution Fi[0, 1] with strictly positive and continuous density

fi.
1 Their valuations are independent of each other.

Time is modeled as a continuous variable that starts at zero and runs indefinitely. Each

bidder chooses when to concede the object and their bidding strategy is a mapping from

their valuation to the concession time: vi → ti(vi) with ti ∈ R+

⋃
{∞} for i = 1, 2, which

may be revised at any time t ≤ ti. We assume that ti as a function, is increasing in vi, so

its reverse function yi(t) = t−1
i (vi) is also an increasing function, which can be understood

as the valuation of bidder i when she concedes. However, when referring to it as the bidding

value, we assume that ti follows distribution Gi(t) = Fi(t
−1
i (t)) = Fi(yi(t)). All of the above

information is common knowledge, except that bidders do not know the exact valuation of

each other for the object.

We consider a second-price all-pay auction where the bidder who outlasts the other wins

the object. Specifically, as proposed by Smith [1974] and Klemperer [1999], the cost of each

bidder increases proportionally with the time elapsed, until one of the bidders quits. Both

bidders then pay a cost equal to the loser’s quitting time, and the winner obtains a utility

1It is possible that these two distributions have different upper bounds or lower bounds. However,
considering that distributions are common knowledge, the bidder with a lower upper boundary will quit
immediately because of this obvious disadvantage. Therefore, the war of attrition only occurs between
well-matched bidders.
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equal to the difference between their valuation and the opponent’s quitting time, i.e.,

ui = (vi − t−i)1ti>t−i
− ti1ti<t−i

with 1(·) being the indicator function.

3 Benchmark: Classical War of Attrition

Under the scheme of the classical war of attrition, if we take bidder 1 as an example, her

utility is given by u1 = (v1− t2(v2))1t1>t2(v2)− t11t1<t2(v2). Consequently, her expected utility

is

E[u1(v1, t1)] =

∫ t1

0

(v1 − t)dG2(t)− t1[1−G2(t1)]

=

∫ t1

0

(v1 − t)dF2(y2(t))− t1[1− F2(y2(t1))]

(1)

To maximize their expected utilities, the bidders need to determine their bidding strategies.

The first-order condition with respect to the bidding strategy t1 of bidder 1 can be expressed

as:

dE(u1)

dt1
= (v1 − t1)F

′

2(y2(t1))y
′

2(t1)− [1− F2(y2(t1))] + t1F
′

2(y2(t1))y
′

2(t1) = 0

=⇒ v1F
′

2(y2(t1))y
′

2(t1) = 1− F2(y2(t1))

Simplifying the above equation, we get

y1(t1)F
′

2(y2(t1))y
′

2(t1) = 1− F2(y2(t1)) (2)

where v1 = y1(t1) is the valuation of bidder 1 at time t1, and y2(t1) is the valuation of bidder

2 at the same time. Consequently, we transfer the problem from finding the optimal
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concession time into determining the bidder’s valuation when she stops bidding

and quits. Similarly, we can derive the first-order condition for bidder 2. In summary, the

optimal bidding strategies of two bidders (y1, y2) are the solutions of the following function

set.  y1F
′
2(y2)y

′
2 = 1− F2(y2)

y2F
′
1(y1)y

′
1 = 1− F1(y1)

(3)

This is the model of Nalebuff and Riley [1985] in which they prove the existence of a con-

tinuum of pairs of concession value functions (y1, y2). To simplify the question, we consider

a special case where both bidders follow a uniform distribution. The cumulative density

functions for both bidders are given by F1 = F2 = x and f1 = f2 = 1. By substituting

these expressions into the function set 3, we can derive the first-order conditions for the two

bidders:  y1y
′
2 = y1

dy2
dt

= 1− y2

y2y
′
1 = y2

dy1
dt

= 1− y1

(4)

Solving the above partial differential equations, we deduce that

dy2
y2(1− y2)

=
dy1

y1(1− y1)
=⇒

∫
dy2

y2(1− y2)
=

∫
dy1

y1(1− y1)
=⇒ ln

y2
1− y2

= ln
y1

1− y1
·C (5)

There can be several values of C. When C = 1, it is a symmetric case and from equation 5

we have y1 = y2. Replacing it into equation 7, it can be deduced that y1
dy1
dt

= 1− y1, which

by integration results in that −y1 − ln(1 − y1) = t + D. For a unique solution, boundary

conditions are needed. Considering that one bidder stopping at t = 0 indicates her valuation

y1(0) to be 0, we obtain D = 0 and consequently the optimal bidding strategy for bidder 1

as t1(v1) = −y1(t1)− ln(1− y1(t1)) = −v1− ln(1− v1). It is the same for bidder 2 under this

symmetric case. Nalebuff and Riley [1985] not only focus on the symmetric case but also

talk about the asymmetric cases in which they find that there is always one bidder that acts
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more passively in comparison with the other one, depending on whether C is larger than 1

or the reverse.

However, Fudenberg and Tirole [1986] has found a way to get rid of a continuum of equilibria

by adding a tiny perturbation into the model. They assume that with positive probability

one bidder might have a high enough utility that staying forever is a dominant strategy, and

based on this assumption, they realize a unique equilibrium.

Following the model in this benchmark, we assume that with probability ϵ (ϵ > 0 but ϵ → 0)

that one bidder is irrational so she will never concede and play until the very end. This

changes one bidder’s expected payoff in the following way. For bidder 1, for example, her

expected utility to maximize is now written as

E[u1(v1, t1)] =

∫ t1

0

(v1 − t)dF2(y2(t))(1− ϵ)− t1[1− F2(y2(t1))(1− ϵ)] (6)

The new function set of first-order conditions with respect to two concession value functions

are  y1
dy2
dt
(1− ϵ) = 1− y2(1− ϵ)

y2
dy1
dt
(1− ϵ) = 1− y1(1− ϵ)

(7)

Replacing k = 1−ϵ, we can get the following equation by solving these differential functions.

∫
dy2

y2(1− y2k)
=

∫
dy1

y1(1− y1k)
=⇒ ln

y2
1− y2k

= ln
y1

1− y1k
· C1 (8)

Considering the restriction that as t → ∞, it should hold that y1 = y2 = 1, which requires

that 1
1−k

= 1
1−k

C1 and consequently C1 = 1. As a result, this assumption results in a unique

symmetric equilibrium. Throughout the whole paper, we keep this assumption of irrational

bidders so that we can focus on the symmetric equilibrium.
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4 Jump Bidding Game

We propose a novel mechanism in the previous context of a war of attrition game, where

one bidder can signal her commitment to staying in the game for a specified period of time.

Specifically, bidder 1 determines to announce at time t̂ that she will remain in the game for

the subsequent ∆ period, the value of which is predetermined. Therefore, only t̂ is within

bidder 1’s strategic space. Bidder 2 then faces a strategic decision: either quit the game

immediately at t̂ or continue bidding until at least t̂ + ∆. Notably, quitting between t̂ and

(t̂+∆) is not beneficial for bidder 2, as it incurs a time cost without improving his probability

to win. To distinguish between two bidders, we use “she” to represent bidder 1 and “he” for

bidder 2.

In this setting, the bidders’ valuations can be interpreted as their types, where the quitting

time of a bidder is positively related to her type, i.e. ti(vi) is an increasing function for

i = 1, 2. Its reverse function yi = t−1
i is also increasing function. Thus, lower-value bidders

will typically exit the auction earlier, whereas higher-value bidders will stay in the game

longer. Within all the types of bidder 1, we focus on the dominant bidder, who possesses

the highest possible valuation of 1 for the object. Our analysis centers on how the dominant

bidder selects t̂, given that other bidders will follow her strategy. If they do not, they

effectively reveal that their valuation is less than 1. Revealing this information means they

will never win against bidder 2 in this competition and it becomes better for them to quit

immediately. Considering their disadvantage in valuation, the time that they can stay in the

auction is shorter, so it’s better to give up as soon as possible to save costs. In the following

discussions, bidder 1 is always referred to as the dominant bidder who has a valuation of 1

for the object.

The bidding game commences at t = 0, and two bidders engage in a classical war of

attrition game. At each subsequent time point, the two bidders have the option to either
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Figure 1: Bidding Strategies of two Bidders

continue or quit the game. It continues until a certain time, denoted as t̂ when bidder

1 makes a jump bid of ∆ by declaring that she will not quit for this following period of

time. This time corresponds to the valuations (types) of y
1
for bidder 1 and y

2
for bidder 2,

respectively. Therefore, we have that y1(t̂) = y
1
and y2(t̂) = y

2
. The above two bars indicate

the types of bidders who have left the game before t̂, which are illustrated as the blue area

in Figure 1.

In the next stage of the jump bidding game at time t̂, bidder 1 has a strategic advantage

in the auction by excluding more types of bidder 2. By selecting t̂ strategically and making

the claim, upper bars y1 and y2 are established for bidder 1 and bidder 2, respectively. This

results in that bidder 2 will quit immediately if his type falls below y2. For the types of

bidder 2 that are above it, they will stay longer than (t̂ + ∆). On the other hand, bidder

1 with a type falling between y
1
and y1 will remain in the game until quitting at (t̂ + ∆).

Only if her type is above y1 will she continue beyond (t̂ + ∆). This process is represented

by the red section in Figure 1.

Finally, after the time of (t̂+∆), two bidders return to the war of attrition if both of them

are still in the auction.

9



4.1 Boundary Conditions and Trade-off of Jump Bidding

Our first observation about the relationship between the upper bars of two bidders is as

follows.

Proposition 1 The upper bars of two bidders satisfy that: y1 = y2 = y.

This proposition is straightforward to prove. For example, if we assume that y1 < y2, then

at time t̂+∆, bidder 1 with a type between y1 and y2 will quit because she realizes that she

cannot compete against bidder 2. Vice versa, y1 > y2 cannot hold in equilibrium since the

disadvantaged bidder 2 will also quit, increasing y2 until it reaches y1. Consequently, when

entering the next period of the war of attrition, two bidders are still of the same lower bar

and upper bar for their valuation distributions. Q.E.D.

Considering bidder 1 of valuation y
1
, if she were to quit at t̂, she would receive an instant

utility of 0. Alternatively, if she were to make the claim and stay until (t̂ + ∆), she would

win against bidder 2 with a valuation between y
2
and y2 that quits when the claim is made.

Her expected utility of claiming and staying is her value of the object y
1
multiplied by the

probability that bidder 2 quits, which is given by
F2(y)−F2(y2)

1−F2(y2)
, minus the cost of claiming ∆.

Since at this point, bidder 1 is indifferent between two choices, the following equation should

be satisfied.

0 = y
1
·
F2(y2)− F2(y2)

1− F2(y2)
−∆ = y

1
·
F2(y)− F2(y2)

1− F2(y2)
−∆ (9)

Similarly, consider bidder 2 with valuation y2. If he were to quit at t̂, he would receive an

instant utility of 0. Alternatively, if he were to continue, he would stay in the auction until

(t̂ + ∆) where he can win against bidder 1 with a valuation between y1 and y
1
who quit
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before t̂ with probability
F1(y)−F1(y1)

1−F1(y1)
. Thus, the indifference relation is expressed as:

0 = y2 ·
F1(y1)− F1(y1)

1− F1(y1)
−∆ = y ·

F1(y)− F1(y1)

1− F1(y1)
−∆ (10)

Based on these two equations, our second observation about the relationship between the

lower bars is concluded as follows.

Proposition 2 If F1(x) = F2(x) = F (x), two bidders are symmetric and their lower bars

satisfy that: y
1
> y

2
.

The above relationship can be proved by contradiction. For function H(x) = F (y)−F (x)
1−F (x)

with

x ∈ [0, 1], its first-order derivative satisfies that H ′(x) = − f(x)
(1−F (x))2

[1 − F (y)] < 0 since

1− F (y) > 0, so H(x) is a decreasing function. If we assume that y
1
≤ y

2
, we will get

F (y)− F (y
1
)

1− F (y
1
)

≤
F (y)− F (y

2
)

1− F (y
2
)

Given that y
1
< y1 = y, we have

y
1
·
F (y)− F (y

1
)

1− F (y
1
)

≤ y ·
F (y)− F (y

2
)

1− F (y
2
)

which makes equations 9 and 10 unable to hold at the same time. Therefore, it should be

that y
1
> y

2
. Q.E.D.

The proposition at hand embodies a trade-off for bidder 1, who must weigh the advantages

and drawbacks of making a costly claim in the auction. On the one hand, by making the

jump bidding, bidder 1 eliminates a larger range of opponent types from the bidding process,

since up to y types of bidder 2 will immediately quit following the claim. This provides bidder

1 with a strategic advantage, as it leaves fewer bidders to compete against and raises her
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chances of winning the object. On the other hand, however, bidder 1 must also contend with

the fact that making a claim entails sacrificing a larger portion of her own types. Specifically,

the condition y
1
> y

2
indicates that more types of bidder 1 will quit the auction before the

claim is made, thereby reducing the overall payoff for bidder 1.

4.2 Utility Maximization of the Dominant Bidder

Expressions for both y
2
and y can be derived as functions of y

1
by utilizing the two equations

9 and 10. In other words, once the concession value y
1
of bidder 1, which is chosen by the

dominant bidder, is known, the equilibrium solution can be identified. To calculate the profit

of this dominant bidder, the following different cases are considered.

In the first case, bidder 2 quits at t̂, so there is only the war of attrition. The dominant

bidder 1 sacrifices her types below y
1
and wins against bidder 2 with types below y

2
. Her

expected utility is:

πWoA
1 = [1 · F2(y2)−

∫ t̂

0

tdF2(y2(t))]− t̂[1− F2(y2(t̂))] (11)

= F2(y2)−
∫ t̂

0

[1− F2(y2(t))]dt

= F2(y2)−
∫ t̂

0

y1(t)F
′
2(y2(t))y

′
2(t)dt

= F2(y2)−
∫ y

2

0

y1(y2)dF2(y2)

where y1(y2) is implicitly defined by

∫ y
1

y1(y2)

f1(y)

y(1− F1(y))
dy =

∫ y
2

y2

f2(y)

y(1− F2(y))
dy
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Within the expression of equation 11, the first two terms of the equation represent bidder

1’s utility when she wins the object. Specifically, 1 ·F2(y2) is the multiplication of her utility

1 as a dominant bidder for the object and the probability of winning, while
∫ t̂

0
tdF2(y2(t))

integrates all the cost paid by bidder 1 at each time point when bidder 2 concedes and leaves

the auction during the war of attrition. The last term of the equation, −t̂[1 − F2(y2(t̂))],

captures the cost bidder 1 pays when she fails to win the auction, which is equal to the time

t̂ multiplying the probability [1− F2(y2(t̂))].

In the other case, bidder 2 has a high enough valuation that he does not quit at t̂. Bidder 1

then makes a jump biding at this moment, resulting in an expected utility as follows.

πJB
1 = 1 ·

F2(ȳ)− F2(y2)

1− F2(y2)
−∆ (12)

By making such a claim, bidder 1 scares off bidder 2 with valuations between y
2
and y, with

a probability of
F2(ȳ)−F2(y2)

1−F2(y2)
at the cost of ∆. However, it is important to note that bidder

1 only makes a jump bid if bidder 2 is still in the auction at the time of t̂. Therefore, in

order to determine the overall utility function that bidder 1 maximizes, the utility gained

from jump bidding should be multiplied by its probability [1− F2(y2)].

On the other hand, if bidder 1 chooses not to make a jump bidding, she will engage in a war

of attrition with bidder 2. By excluding the same range of valuations of bidder 2 as in jump

bidding, bidder 1’s expected utility is

π̃WoA
1 = F2(ȳ)−

∫ ȳ

0

ỹ1(y2)dF2(y2) (13)

where ỹ1(y2) is implicitly defined by

∫ ȳ

ỹ1(y2)

f1(y)

y(1− F1(y))
dy =

∫ ȳ

y2

f2(y)

y(1− F2(y))
dy
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It is calculated following the same logic as the previous utility in the case of the war of

attrition. As a result, the optimization problem for the dominant bidder 1 is summarized as

follows.

max
y
1
∈[∆,1]

πWoA
1 + [1− F2(y2)]π

JB
1 − π̃WoA

1

s.t. ∆ = y
1
·
F2(y)− F2(y2)

1− F2(y2)
= y ·

F1(y)− F1(y1)

1− F1(y1)

Its restriction is derived from two boundary conditions with respect to the four upper and

lower bars of two bidders (equations 9 and 10).

4.3 To claim or not to claim?

It is difficult to solve for the optimal valuation y
1
for bidder 1 to make the jump bid. Instead,

we discuss bidder 1’s incentive to make such a claim by balancing its cost and benefit. To

simplify the question, we focus on the symmetric equilibrium by assuming that F1 = F2 = F .

The assumption of the existence of irrational bidders ensures a unique equilibrium of the

game.

Taking a special case of the valuation distribution that F (x) = xα with α > 0. The cost-

benefit analysis of jump bidding is contingent on the underlying distribution of valuations

in the auction. The decision of whether to exercise the commitment power of jump bidding

is predicated on bidder 1’s belief that her opponent is more likely to hold a high valuation,

which corresponds to a flatter cumulative density function at the beginning and steeper at

the end. We find that bidder 1 is willing to jump bid if the following condition is satisfied.

Proposition 3 Bidder 1 is willing to make a jump bid if the common valuation distribution

of two bidders F (x) = xα satisfies that α > 1, and ∆ is low enough.
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The rationale behind this strategy is that the initial period of elimination, whereby bidder 1

excludes low-valuation bidder 2, is particularly costly, especially if bidder 2 is deemed to be

strong. By executing jump bidding, bidder 1 can bypass this phase by demonstrating a high

valuation and committing to staying in the auction, thereby forcing low-valuation bidder 2

to exit promptly, and avoiding a protracted war of attrition.

However, jump bidding may not be advantageous if bidder 2 is likely to hold a low valuation,

in which case low-valuation bidder 2 would exit the auction early on, rendering the commit-

ment power redundant. In this scenario, committing to remain in the auction is inefficient

for bidder 1, and it would be more expedient to abstain from jump bidding.

4.4 The sooner claim, the better?

The next question is about the timing of the jump bidding for bidder 1, which is determined

by the value of t̂ (or equivalently the value of y
1
). It reflects how long bidder 1 wants to

stay in the war of attrition, during which she manages to exclude bidder 2 with a valuation

below y. This cost is of the size of
∫ y

0
y1(y2)dF2(y2), as calculated in equation 13. The

optimal duration for bidder 1 is thus affected by the valuation distribution of bidder 2,

which determines the cost of outlasting bidder 2.

If the density function f2(y2) is flatter at the beginning, based on the correspondence of

y1(y2), bidder 1 will sacrifices fewer of her own types to exclude bidder 2 and the cost of

the war of attrition for bidder 1 will also be low. In this scenario, bidder 1 may choose to

postpone the jump bidding until the density function becomes steeper. Conversely, if the

density function is high, indicating that the cost of the war of attrition is high, bidder 1

would prefer to make the jump bidding as soon as possible. It could even be as soon as the

beginning of the auction when y
1
= 0. We will use an example to illustrate this argument.
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Example 1 Assume the probability density function of the bidders’ valuation follows

f(x) =

 ϵ x ∈ [0, b]

2(1−ϵb)
(1−b)2

(x− b) x ∈ (b, 1]

As ϵ is small, the cost of war of attrition to eliminate bidder 2 with a valuation between 0 and

b is low, meaning that bidder 1 sacrifices fewer of her own types. Therefore, the dominant

bidder 1 is willing to stay longer in the war of attrition until bidder 2 with a valuation of b

quits the auction, and then she starts the jump bidding. For instance, if ϵ = 0.01, b = 0.2

and ∆ = 0.0001, we will have y
2
= 0.178, y

1
= 0.185 and ȳ = 0.214. □

5 Welfare Analysis

An efficient auction mechanism is one that maximizes social welfare by allocating the item

to the bidder with the highest valuation. However, the jump bidding mechanism studied in

our paper may introduce inefficiencies in the market. During the war of attrition period,

where t ∈ [0, t̂), the object may be allocated to a bidder with a lower valuation, leading to a

sub-optimal allocation. Similarly, during the jump bidding period, where t ∈ (t̂, t̂+∆), the

bidder with the lower valuation may still win the auction, again leading to a less efficient

outcome.

Despite these potential inefficiencies, bidders may still choose to introduce jump bidding in

order to strategically manipulate their opponent’s behavior and increase their own payoff.

Therefore, although the jump bidding mechanism may lead to sub-optimal outcomes in

terms of social welfare, it still remains a valuable tool for bidders to achieve their individual

objectives.
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5.1 Bidder’s utility
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Figure 2: Bidders’ expected utility with and without jump bidding.

Under the assumption of symmetry with F1(x) = F2(x) = xa where a > 1, we examine

the impact of jump bidding on bidders’ utility. Specifically, we analyze the scenarios for

bidder 1 and bidder 2, comparing their expected utility with and without the option of jump

bidding. Our findings reveal that for bidder 1, the decision to jump bid is based on their

valuation. If their valuation exceeds y, they jump bid and stay longer; otherwise, they quit

the war of attrition early. The left panel of Figure 2 illustrates that although the expected

utility of bidder 1 is lower with jump bidding, eliminating low-valuation bidder 2 becomes

advantageous when bidder 1’s valuation is high enough.

On the other hand, bidder 2’s expected utility is always higher when bidder 1 has the right

to jump bid, even when bidder 2’s valuation is low. The right panel of Figure 2 highlights

that this is because dominant bidder 1 assists in eliminating low-valuation bidder 1 in the

early stages.

In conclusion, the commitment power of bidder 1 results in a trade-off between the bene-

fits and drawbacks of jump bidding. Low-valuation bidder 1 is negatively impacted, while

high-valuation bidder 1 and bidder 2 benefit from the presence of jump bidding. Possible

extensions of this study include analyzing different auction formats, exploring the impact of
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asymmetry, and examining the effect of introducing multiple jump bids.

5.2 Level of attrition
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Figure 3: Level of attrition reduced with jump bidding.

The attrition level can be defined as the cumulative costs borne by both bidders, including

the time spent and the claiming cost ∆ incurred in the jump bidding strategy, which is only

taken by bidder 1. We observe that the inclusion of jump bidding in the auction process has

a significant impact in reducing the attrition level by eliminating low-valuation bidders from

the competition.

To illustrate this, Figure 3 plots the reduction in the total attrition as a function of the

commitment power measured by the claiming cost ∆. We find that the total attrition

decreases with an increase in ∆, which reflects the bidder’s commitment to the jump bidding

strategy. A higher claiming cost can make it more convincing to bidder 2 that bidder 1 is of

higher valuation, which makes it more efficient for bidder 1 to scare off the opponent, thus

reducing the overall attrition level.

However, the societal impact of such reduction is ambiguous. While lower attrition levels

may conserve resources, they can also discourage RD investment, which can ultimately harm

society’s long-term growth prospects. Further research could explore the trade-offs between
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efficiency gains and the potential long-term consequences of reduced competition.

6 Conclusions

In conclusion, our analysis has shed light on the effects of jump bidding in the context of the

war of attrition and its implications for market efficiency. We have found that jump bidding

can be an effective strategy for a firm to bypass the costly war of attrition and signal its high

type. However, the decision to jump bid depends on the shape of the density function of

the other bidder’s valuation distribution, which determines the cost of excluding the other

bidder during the war of attrition. In addition, the inclusion of jump bidding may lead

to inefficiencies in the auction, where the winner may not be the bidder with the highest

valuation.

As a possible extension of this topic, future research can examine the effects of jump bidding

in more complex auction settings, such as multi-unit auctions and auctions with asymmetric

information. Additionally, further research can investigate the role of other strategic behav-

iors, such as signaling and commitment, in the war of attrition and their implications for

market efficiency. Finally, our analysis has focused on the competition between firms, but

it would be interesting to extend this framework to other areas, such as political campaigns

and sports competitions.
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A Proof:

Proof of proposition 3:

We prove by verifying whether dominant bidder 1 has incentive to jump bid at the very

beginning of this competition when α > 1 and ∆ → 0. In this situation, y
2
= 0. So,

equation 9 and 10 can be rewritten as

∆ = y
1
ȳα = ȳ

ȳα − yα
1

1− yα
1

It is easy to see that y
1
→ 0, ȳ → 0 and ȳ

y
1

→ k ∈ (0,+∞), where k satisfies

kα − kα−1 − 1 = 0,

and then

∆ =
1

k
ȳα+1 =

(
1− 1

1 + kα−1

)
ȳα+1

If dominant bidder 1 chooses not to jump bid, to eliminate bidder 2 with valuation from

[0, ȳ], she pays ∫ ȳ

0

ydF (y) =
α

1 + α
ȳα+1 =

(
1− 1

1 + α

)
ȳα+1

To verify that ∆ <
∫ ȳ

0
ydF (y), the remaining thing to prove is kα−1 < α when α > 1. To

prove it, we prove that G(α) = kα−1−α is decreasing in α and it is easy to see that G(1) = 0.

With kα − kα−1 − 1 = 0 and implicit function theorem,

k′(α) = − kα log k − kα−1 log k

αkα−1 − (α− 1)kα−2
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When α > 1, k ∈ (1, 2). So, k′(α) < 0. Then,

G′(α) = kα−1 log k − (α− 1)kα−2k′ − 1

= kα−1 log k

(
1− (α− 1)

k − 1

αk − α + 1

)
− 1

=
log k

k − 1

[
1− α− 1

α

(
1− 1

α(k − 1) + 1

)]
− 1

It is easy to verify that log k
k−1

is decreasing in k ∈ (1, 2) and limk→1
log k
k−1

= 1. Also, α−1
α

∈ (0, 1)

and 1− 1
α(k−1)+1

∈ (0, 1). Therefore, G′(α) < 0 when α > 1. Q.E.D.
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