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Abstract

This paper introduces a general statistical framework to study aggregate shock

propagation in a dynamic (S,s) economy. The proposed framework enables re-

searchers to combine micro and macro data to estimate all the parameters in this

economy by maximum likelihood or Bayesian methods, estimate the cross-sectional

distributions latent states over time, estimate impulse responses to aggregate shocks

of any function of the cross-sectional distribution of lumpy variables given any

initial distribution of state gaps and to forecast any function of the cross-sectional

distribution of lumpy variables. As an application of our framework we study the

propagation of monetary policy shocks in a random menu cost economy.
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1. Introduction

Many decisions by economic agents are characterized by long periods of inaction fol-
lowed by large adjustments. This type of pattern has been empirically documented us-
ing micro data for prices, plant-level capital, firm-level employment, inventory orders,
individual cash withdrawals, portfolio management decisions, individual consump-
tion of durable goods, among others. Economists have often rationalized this behavior
by incorporating microeconomic adjustment frictions, in particular, fixed adjustment
costs, to agent optimization problems. The resulting decision rules are known as (S,s)
rules, with adjustment only taking place whenever the gap between the variable of
interest and its frictionless counterpart is large enough. Despite the pervasiveness of
lumpiness in the data, understanding the implications of (S,s) rules for the propaga-
tion of macroeconomic shocks is still an ongoing question.

This paper introduces a general statistical framework to study aggregate shock
propagation in an economy with microeconomic adjustment frictions. Our approach
imposes minimal requirements on available data and shock structure. Regarding the
former, we assume the time series of aggregate variables as well as a panel of agents’
choices, including the lumpy variable that follows a two-sided (S,s) rule, are observ-
able to the econometrician. Regarding the latter, we assume that the frictionless value
of the lumpy variable is subject to shocks that are conditionally iid across agents and
over time. Given this setup, the proposed framework enables researchers to combine
micro and macro data to (i) estimate all the parameters in this economy by maximum
likelihood or Bayesian methods, (ii) estimate the cross-sectional distributions latent
states over time, (iii) estimate impulse responses to aggregate shocks of any function
of the cross-sectional distribution of lumpy variables given any initial distribution of
state gaps and (iv) to forecast any function of the cross-sectional distribution of lumpy
variables.

At the core of our framework lies a state space representation of the data gen-
erating process of the dynamic (S,s) economy. We allow for two idiosyncratic latent
states, the frictionless value of the lumpy variable and an indicator of costless ad-
justment. The proposed state space representation has two blocks: a measurement
equation and two transition equations. The measurement equation maps the lagged
value of the lumpy variable and the current latent states to the current value of the
lumpy variable. Note that such mapping simply captures two-sided (S,s) rules sub-
ject to random opportunities for free adjustments. The transition equations specify the
evolution of the two latent states. These can be nonlinear and subject to non-Gaussian
disturbances. In addition, we consider an auxiliary block summarizing the evolution
of additional observables over time. These could include both micro and macro vari-
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ables. This framework is able to accommodate as special cases well-known models
of (S,s) rules such as random menu cost models (Stokey, 2009; Alvarez et al., 2016;
Auclert et al., 2022), models of plant level investment (Baley and Blanco, 2020; Bertola
and Caballero, 1994; Caballero et al., 1995), models of individual cash withdrawals (Al-
varez and Lippi, 2009; Miller and Orr, 1966; Frenkel and Jovanovic, 1980) and models
of labor adjustment (Elsby and Michaels, 2019; Elsby et al., 2019).

Next, we develop state space methods to solve the filtering, smoothing and fore-
casting problems given our proposed state space representation. The first challenge
we face is the curse of dimensionality: the overall state space is of dimension 2n, given
two latent states per observation. Thus, forward filtering and backward smoothing re-
cursions become highly computationally intensive. To overcome this issue, we impose
that the shocks entering state transition equations are independent across individuals
and time, when conditioned on current and past observable variables.1 Under this
assumption, we can solve for each individual’s filtering and smoothing problems sep-
arately. In other words, instead of a single 2n-dimensional integral, we now have n
two-dimensional integrals, which can be parallelized.

In addition, the presence of (S,s) rules introduces “kinks” in the measurement
equation for the lumpy variable as well as the possibility of non-Gaussian state tran-
sition errors. This renders the Extended Kalman approach for filtering and smoothing
unsuitable for this setup. As an alternative, we use a combination of grid-based filter-
ing and smoothing, and Gauss-Legendre integration. In fact, the former is particularly
appealing in an (S,s) economy because the presence of (S,s) rules ensures that the fric-
tionless lumpy variable is bounded for each inaction spell. Thus, to approximate the
filtered and smoothed densities, we only need to solve the forward filtering and back-
ward smoothing recursions at each Gauss-Legendre node in that bounded interval.

As an empirical application of our framework, we study the effects of monetary
policy shocks on inflation in a standard random menu cost model. Prices are set ac-
cording to a two-sided (S,s) rule subject to an idiosyncratic probability of free adjust-
ment. Moreover, the frictionless price equals a constant markup over the marginal
cost. The goal is to construct the impulse response function of inflation to a mon-
etary policy shock. As a first step, we estimate the aggregate input price response
from a structural VAR. For identification, we borrow Cesa-Bianchi et al. (2020)’s high-
frequency monetary policy surprise series to use as external instrument. Next, we
combine data on aggregate input prices with rich micro price data underlying the UK
Consumer Price Index to estimate the parameters governing the dynamics of both fric-

1 Note that this does not rule out effects of aggregate shocks on lumpy variables. What we assume is
that any unobserved aggregate shocks affect lumpy variables only through their effect on the non-lumpy
observable variables and their effect on the frictionless value of the lumpy variable.
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tionless and actual prices together with the cross-sectional distribution of price gaps
over time.

The advantage of our framework is that it allows the construction of impulse re-
sponses of any function of the cross-sectional distribution of lumpy variables given any
initial distribution of state gaps. We perform four exercises to illustrate the usefulness
of our approach. First, we quantify the role of price adjustment frictions in shaping
the inflation response to monetary policy by comparing the responses of actual versus
frictionless inflation. Second, we decompose the response of inflation at the product,
region or household level. Third, we evaluate how the effects of monetary policy vary
over time and whether these are state and/or sign dependent depending on the initial
distribution of price gaps. Lastly, we provide new inflation forecasts by aggregating
individual price trajectory forecasts and test whether they outperform existing infla-
tion forecasting models.

Related Literature. This paper relates to five strands of literature. In terms of method-
ology, it builds on existing work on state space methods for nonlinear and/or non-
Gaussian state space representations (Särkkä, 2013). More specifically, on articles that
explore grid-based methods such as Kitagawa (1987) and Kramer and Sorenson (1988).
Our paper is closest to Bandeira (2020) that provides a closed-form solution to the fil-
tering and smoothing problems in a model with a single observable variable, which
is subject to adjustment frictions and follows a random walk with drift and Gaussian
disturbances in its frictionless form. We deviate from Bandeira (2020), however, along
two important dimensions: we provide state space methods for a general class of (S,s)
economies and study the propagation of aggregate shocks in these settings.

Second, it contributes to a line of research that uses micro and macro data to es-
timate macroeconomic models (Liu and Plagborg-Møller, 2023; Fernández-Villaverde
et al., 2020; Chang et al., 2022). The key difference is that we propose a semi-structural
approach, which increases flexibility and helps with parameter estimation. In fact,
our state space representation is able to accommodate previous models of microeco-
nomic adjustment frictions by specifying the correct mapping to structural parameters.
However, this is not required in order to estimate cross-sectional distributions of latent
states, construct impulse response functions and produce forecasts.

Third, the underlying research question is closely related to the literature that
looks at the implications of the presence of (S,s) rules for aggregate dynamics. Ca-
ballero and Engel (1991) characterize structural and stochastic heterogeneities on one-
side dynamic (S,s) economies that ensure the convergence of the aggregate economy to
its frictionless equilibrium. Alvarez et al. (2016), Baley and Blanco (2020) and Alvarez
and Lippi (2022) provide closed-form expressions for the impulse responses of aggre-
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gate variables to a permanent, one-off aggregate shock in terms of sufficient statistics.
We view our approach as complementing previous work: we estimate the impulse
responses of any function of the cross-sectional distribution of lumpy variables to a
permanent or transitory aggregate shock and for any initial distribution of price gaps.

Fourth, our empirical application mostly connects to research on heterogeneous
effects of monetary policy. Boivin et al. (2009) and Cravino et al. (2020) decompose ag-
gregate inflation responses across sectors and households respectively, using Factor-
Augmented Vector Autoregression Models (FAVARs) that do not account for lumpi-
ness. In addition, a number of papers investigate whether the effects of a monetary
policy shock vary across time (Primiceri, 2005), depending on the sign of the shock
(Long and Summers, 1988; Cover, 1992; Ravn and Sola, 2004) or over the business cy-
cle (Vavra, 2014; Tenreyro and Thwaites, 2016; Angrist et al., 2018). We argue that the
key object to explain any heterogeneity in effects is the cross-sectional distribution of
price gaps, which we are able to recover empirically.

Finally, there is a vast literature on inflation forecasting, as surveyed by Faust and
Wright (2013). Our paper is, to the best of our knowledge, the first to combine mi-
cro and macro data and account for microeconomic lumpiness in producing inflation
forecasts at any level of disaggregation.

2. A state space representation of a dynamic (S,s) economy

A state space model is a time series model in which a time series, Yt, is interpreted as
the result of a noisy observation of a stochastic process Xt. Its representation usually
consists of an initial value for the state variable together with a transition equation, de-
scribing the dynamics of the state variables, and a measurement equation, linking the
observed variable, the measurement, to the state. We will focus, instead, on the prob-
abilistic state space representation, which uses conditional density functions, rather
than equations, to summarize the primitives of the model.

First, we introduce notation. Consider a panel with agents indexed by i = 1, . . . , n
and time indexed by t = 1, . . . , T.2 si,t denotes the lumpy measurement for agent i at
time t. For each i, there are two state variables, Xi,t ≡ [s⋆i,t, ℓi,t], where s⋆i,t denotes the
frictionless value of si,t and ℓi,t is an indicator variable that equals one if the agent
receives a costless adjustment opportunity.3 We allow for addional measurement vari-
ables, Z̃t ≡ [z1:n,t, Zt], where zi,t is a vector of agent-specific variables and Zt is a vector
of aggregate variables. The econometrician, thus, observes Y1:T ≡ {s1:n,1:T, Z̃1:T}.

2 To ease exposition, we assume a balanced panel. Note, however, that results still hold otherwise.
3 The frictionless value of the lumpy variable is the value that the agent would choose in absence of

microeconomic adjustment frictions
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The probabilistic state space representation of (S,s) economies requires four condi-
tional densities: for the lumpy measurement, p

(
s1:n,t |X1:n,1:t, s1:n,1:t−1, Z̃1:t; Θ

)
; for the

non-lumpy measurements, p
(
Z̃t |X1:n,1:t−1, s1:n,1:t−1, Z̃1:t−1; Θ

)
; for the states, p

(
X1:n,t |

X1:n,1:t−1, s1:n,1:t−1, Z̃1:t; Θ
)
; and for the initial states, p

(
X1:n,1 | s1:n,1, Z̃1; Θ

)
. In what

follows, we discuss four assumptions of the model, each of which simplifies one of the
conditional densities functions above.

A1. Lumpy measurements follow a two-sided (S,s) rule

The first assumption follows naturally from our focus on lumpy economies. To for-
malize agent behavior, let’s define the inaction function d : R2 × {0, 1} → {0, 1} as:

d(si,t−1, Xi,t;θ1,i) = 1{si,t−1 − s⋆i,t ∈ [Li, Ui]} (1 − ℓi,t) + 1{si,t−1 − s⋆i,t = ci} ℓi,t , (1)

where θ1,i ≡ (Li, ci, Ui) and it is such that Li < ci < Ui is a vector of parameters that
includes the lower and upper bound of the inaction region (Li and Ui) and the reset
point for the lumpy variable gap (ci). According to (1) agents choose not to adjust
under the two scenarios. First, provided there is no free adjustment, whenever the gap
between the lagged lumpy variable and its current frictionless value falls within the
inaction region. Second, provided there is no free adjustment, when the gap between
the lagged lumpy variable and its current frictionless value is exactly at the reset point.

Thus, si,t evolves according to the following individual conditional probability
function:

p
(
si,t |X1:n,1:t, s1:n,1:t−1, Z̃1:t; Θ

)
= δ (si,t − si,t−1) d(si,t−1, Xi,t;θ1,i)

+δ
(
si,t − (s∗i,t + c)

)
(1 − d(si,t−1, Xi,t;θ1,i)) (2)

At a given point in time, the individual probability mass function takes either the past
value of the lumpy variable with probability given by the inaction indicator or a new
value such that the gap is set to the reset point with the opposite probability.

Given that (2) holds for every i and is independent across i’s, the conditional den-
sity for the lumpy measurement can be written as the product of the individual densi-
ties: p

(
s1:n,t |X1:n,1:t, s1:n,1:t−1, Z̃1:t; Θ

)
= ∏n

i=1 p (si,t |Xi,t, si,t−1;θ1,i).

A2. Conditional on s1:n,1:t−1, non-lumpy measurements ⊥⊥ X1:n,1:t−1

The second assumption imposes that conditional on the full history of past lumpy
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measurements, non-lumpy measurements are independent of past states. This as-
sumption has two implications. First, states only affect non-lumpy measurements
through the lumpy measurement. Second, lumpy measurements only affect non-
lumpy measurements with a one-period delay.

The conditional density for non-lumpy measurements, which we refer to as the
auxiliary model, can be simplified to: p

(
Z̃t | s1:n,1:t−1, Z̃1:t−1;θ3

)
A3. States are Markovian and conditionally independent across i’s

The third assumption implies that for every i, only the past state affects the current
one and parameters are individual specific. In other words, any common shock must
be observable. The conditional density is, once again, a product of the individual ones:
p
(
X1:n,t |X1:n,1:t−1, s1:n,1:t−1, Z̃1:t; Θ

)
= ∏n

i=1 p
(
Xi,t |Xi,t−1, s1:n,1:t−1, Z̃1:t;θ2,i

)
.

A4. Initial states are conditionally independent across i’s

Finally, the individual filtered distribution depends on initial measurements and in-
dividual specific parameters and the overall density is the product of the individual
ones: p

(
X1:n,1 | s1:n,1, Z̃1; Θ

)
= ∏n

i=1 p
(
Xi,1 | s1:n,1, Z̃1;θ0,i

)
A1 is a feature of (S,s) models, while A2 and the Markovian states assumption

(A3.a) are implicit in many state space representations. It’s mostly the independence
assumption, captured by both A3.b and A4, that is strictly our choice. It deals with
the curse of dimensionality: the overall state space is of dimension 2n, which implies
evaluating functions at (2 x # grid points)n nodes to do inference. With independence
across i’s, each problem can be solved individually, resulting in n problems with a
state space dimension of 2 each. Thus, we instead need to evaluate n functions at
(2 x # grid points) nodes.

3. State space methods for a dynamic (S,s) economy

Given a data generating process that satisfies the assumptions described in the previ-
ous section, we next present the state space methods to estimate the states, X1:n,1:t−1,
over time as well as the model parameters. The former requires deriving the fil-
tered probability density, the one-step ahead predicted probability density and the
smoothed probability density of states. With the model primitives and the states,
we are then able to derive the likelihood function, required to accomplish the latter
through Maximum Likelihood or Bayesian Estimation.

Under our four assumptions above, the filtered and one-period ahead predicted
probability density for the states are given by the following Lemma:
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Lemma 1 Under A1-A4,

p
(
X1:n,t | s1:n,1:t, Z̃1:t; Θ

)
=

n

∏
i=1

p
(
Xi,t | s1:n,1:t, Z̃1:t; Θ

)
,

p
(
X1:n,t | s1:n,1:t−1, Z̃1:t; Θ

)
=

n

∏
i=1

p
(
Xi,t | s1:n,1:t−1, Z̃1:t; Θ

)
,

where,

p
(
Xi,t | s1:n,1:t−1, Z̃1:t; Θ

)
=

∫
p
(
Xi,t |Xi,t−1, s1:n,1:t, Z̃1:t; Θ

)
x p

(
Xi,t−1 | s1:n,1:t−1, Z̃1:t−1; Θ

)
dXi,t−1 (3)

p
(
Xi,t | s1:n,1:t, Z̃1:t; Θ

)
∝ p (si,t |Xi,t, si,t−1;θ2,i) x p

(
Xi,t | s1:n,1:t−1, Z̃1:t; Θ

)
(4)

Proof. See Appendix

The filtered and one-period ahead predicted densities for the states are equal to
the product of the individual densities. The individual predicted density is equal to
the product of the conditional density for states (a model primitive) and the individ-
ual filtered density at time t − 1 integrated over all possible states at time t − 1. The
individual filtered density is proportional to the conditional density for the lumpy
measurement (a model primitive) and the individual predicted density. To solve for
these, take the initial filtered state distribution as a starting point and iterate forward
alternating equations (3) and (4) .

Given the one-period ahead predicted density, we derive a similar Lemma for the
smoothing problem:

Lemma 2 Under A1-A4,

p
(
X1:n,t | s1:n,1:T, Z̃1:T; Θ

)
=

n

∏
i=1

p
(
Xi,t | s1:n,1:T, Z̃1:T; Θ

)
,

where,

p
(
Xi,t | s1:n,1:T, Z̃1:T; Θ

)
= p

(
Xi,t | s1:n,1:t, Z̃1:t; Θ

)
x

∫ p
(
Xi,t |Xi,t−1, s1:n,1:t, Z̃1:t; Θ

)
p
(
Xi,t+1 | s1:n,1:T, Z̃1:T; Θ

)
p
(
Xi,t+1 | s1:n,1:t, Z̃1:t+1; Θ

) dXi,t+1

Proof. See Appendix

The individual smoothed density is equal to the product of two elements: the indi-
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vidual smoothed distribution at time t and the conditional density for states times next
period’s smoothed density over the one-period ahead predicted density integrated
over individual states at time t + 1. The solution now requires backward iteration and
the starting point is the last filtered state.

We are now ready to derive the likelihood function as follows:

Lemma 3 Under A1-A4,

p (Y1:T |Θ) = p (Y1 |Θ) x
T

∏
t=2

p
(
Z̃t | s1:n,1:t−1, Z̃1:t−1;θ3

)
x

n

∏
i=1

T

∏
t=2

∫
p (si,t |Xi,t, si,t−1;θ1,i) p

(
Xi,t | si:n,t−1, Z̃1:t−1; Θ

)
dXi,t

Proof. See Appendix

The likelihood is the product of the initial conditions, the auxiliary model and
the likelihood for lumpy measurements i.e. the product of the conditional density
for lumpy measurement and the one-step ahead predicted density across time and
across individuals. A key feature of the likelihood is parameter separability: θ3 can be
estimated separately from {θi}n

i=1. Moreover, if we make the assumption that θi’s are
common within groups, we shall evaluate likelihood at the group level.

Grid Based Methods. Developing state space methods for lumpy economies poses
one key challenge: the kinks. This non-linearity, together with the possibility of non-
Gaussian state transition errors, rules out closed-form solutions to the forward filter-
ing and backward smoothing recursions defined above. In other words, widely used
techniques such as the Kalman filter and its extended family are no longer suitable. At
the same time, the (S,s) rules that generate the kinks lead the way towards the use of
grid based approximation techniques.

Grid based methods discretize the state space and solve the recursions only at a
selected number of points. The hurdle is point selection, in particular, keeping the
number of points as small as possible. There are two state in the state space repre-
sentation: one has only a two-point support but the second is continuous. Given the
(S,s) rule, however, si,t is continuous but bounded. Bounds allow quadrature meth-
ods, which are known to provide good approximations with a small number of grid
points. In particular, we use Gauss-Legendre nodes.
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4. Monetary Policy and Inflation in a Random Menu Cost Economy

As an application of our framework we study the propagation of monetary policy
shocks in a random menu cost economy. In this application the lumpy variable is
taken to be (log) prices of different products observed in micro price data whose mea-
surement equation is given by (2) and the arrival of costless adjustment opportunities
is given by (??). For (??) and (??) we assume the following,

Frictionless prices. Each price observed in the micro data is set by a single product
firm that has the following production function,

Yi,t = Ai,tKα
i,tN

1−α
i,t (5)

where the two production inputs are capital (Ki,t) and labor (Ni,t) purchased by each
firm at prices Rt and Wt in perfectly competitive markets.4 The idiosyncratic total
factor productivity (TFP) component is assumed to evolve according to,

ai,t = ρai,t−1 + εi,t (6)

where ai,t ≡ log Ai,t and εi,t is an idiosyncratic TFP shock distributed according to
some probability density function, p(εi,t), and i.i.d. across i and t.5 Products are sold
under monopolistic competition and each firm faces an isoelastic demand curve. Un-
der these assumptions, frictionless prices (in logs) evolve according to,

p⋆i,t = β0 + ρp⋆i,t−1 + βr,0 rt + βr,1 rt−1 + βw,0 wt + βw,1 wt−1 − εi,t (7)

where rt ≡ log Rt, wt ≡ log Wt and the β’s are functions of the structural parameters
(in this case α, ρ and the elasticity of demand ε).

Input prices. In this application there are no other non-lumpy observables at the firm
level that affect frictionless prices so we only need to specify an auxiliary transition
equation for aggregate input prices. It is assumed that (log) of input prices follows a
Vector Autoregression (VAR) augmented with a function of the cross-sectional distri-
bution of (log) prices as follows,

4 For simplicity we assume that capital fully depreciates after one period. Note that (5) could be
easily generalized to include more inputs.

5 In our framework, TFP shocks can be distributed according to a normal distribution (Golosov
and Lucas, 2007), a mixture of normal distribution (Karadi and Reiff, 2019) or a fat-tailed distribution
(Gertler and Leahy, 2008; Midrigan, 2011).
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Zt = A0 +
p

∑
j=1

Aj Zt−j +
p

∑
j=1

Cj h(p1:n,t−j−1:t−j) + ut (8)

where Zt = [wt, rt]′ is a vector of input prices, h(·) is a known function of the cross-
sectional distribution of prices (e.g. the aggregate price index) and ut is i.i.d. white
noise with variance Σu. As commonly done in the SVAR literature, we assume that
there exists a rotation B0 such that B0ut = εt where εt is a vector of structural shocks
that contains the monetary policy shock. Finally, monetary policy shocks are identi-
fied using the high-frequency surprises from Cesa-Bianchi et al. (2020) as an external
instrument.

Data and estimation. We use the methods presented in section 3, rich micro price
data underlying the UK CPI and aggregate data on input prices to: (i) estimate all
the parameters in (2), (??), (7) and (8), (ii) estimate the cross-sectional distributions of
latent states over time and (iii) compute the impulse response functions of inflation at
different disaggregation levels at different points in time.
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