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Abstract
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risk, focusing on the analysis of structural asymmetries across economic states (i.e.,
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side risk following a monetary easing during recessions is about four times higher than
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1 Introduction

One of the key functions of central banks is to overview risk. In recent years, much atten-
tion of monetary policy-makers has been devoted to downside risks to the economy (FED
(2008), BoE (2020), ECB (2024)). Whereas there has been an obvious focus on the role
of macro-prudential operations in shaping risk (Chavleishvili et al. (2021)), the relation
between this and monetary policy still remains relatively unexplored. The reason is that
the monetary policy-downside risk connection is more nuanced. However, it may be partic-
ularly relevant. Specifically, despite monetary interventions not being directly targeted at
managing risk, they are likely to have important effects in shaping it via their impact on
business cycle fluctuations and inflation patterns. The recent evidence put forward in Forni
et al. (2023) and Loria et al. (2022) precisely points in this direction. Nonetheless, both
these works carry a limitation, namely they focus only on the average effects (across time)
of monetary policy on downside risk, which may be misleading to monetary policy-makers.
The reason is that, given the business cycle-smoothing function of monetary policy, sig-
nificant policy interventions are naturally associated to periods in which economic growth
considerably deviates from its mean, and it may well be the case that the response of down-
side risk to monetary policy differs based on the specific phase of the business cycle (i.e.,
expansion/recession). This paper precisely aims to investigate whether this is the case.
Specifically, I study what are the effects on downside risk of an unexpected monetary tight-
ening (easing) during booms (slowdowns).

I adopt an empirical approach. In particular, I study the dynamic effects across economic
states of a structural monetary policy shock on four downside risk measures (i.e., Uncer-
tainty, Downside Uncertainty, Macro Skewness, Growth-at-Risk), derived linearly combin-
ing relevant quantiles of the conditional expected distribution of output growth. As in Forni
et al. (2023), the dynamic responses of quantiles of the predicted density to structural shocks
are obtained combining coefficients associated to a VAR and quantile regressions. However,
I extend the original framework by substituting constant coefficients with smooth-transition
parameters in order to account for state dependence. Specifically, I recover state-dependent
quantile impulse response functions (QIRFs) combining mean IRFs, recovered from the
estimation of a smooth-transition VAR, and obtaining the coefficients of the combination
estimating a smooth-transition quantile regression. Then, the downside risk response to the
shock is computed linearly combining state-dependent QIRFs, according to the definition
of each of the four indicators. Effectively, instead of computing conditionally (on the state)
linear QIRFs, I rely on generalized QIRFs conditioning only on the state in place when the
shock hits and allow endogenous state transition throughout the response forecast horizon.
The approach to compute state dependent QIRFs proposed in this paper is quite flexi-
ble, as it consents to obtain responses across a continuum of states and quantiles without
the need of any distributional assumption that would constrain quantile dynamics. More-
over, it is computationally efficient, can be estimated in a single step and it delivers easily
interpretable results. I identify monetary policy shocks using the instrument of Miranda-
Agrippino and Ricco (2021). The data used covers the US for the period 1973m1:2019m12.

I find that expansionary monetary policy is effective in reducing downside risks to the
economy during recessions. On the other hand, monetary contractions implemented dur-
ing booms significantly increase risk. Crucially, however, monetary interventions cause risk
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responses about four times bigger in size, if the shocks occur during economic slowdowns
instead of booms (given the same magnitude of the shock).1 In addition, I find that re-
sponses of downside risk in recession almost overlap with those obtained using the constant
parameter model of Forni et al. (2023). On the contrary, linear IRFs are about four times
higher than those computed conditioning on an expansionary state of the economy. This
evidence has important policy implications. Specifically, policy interventions calibrated on
linear (i.e., average) estimates would lead to an over-cautious behavior of monetary policy-
makers (i.e., monetary tightening during booms would be too conservative). Interestingly,
the result holds also when looking at unexpected monetary contractions occurring during
booms associated to high private credit to GDP levels. Regarding the transmission mecha-
nisms, in line with the existing literature, I find that movements in the left tail are the main
drivers of variations in the shape of the expected density of output growth; in addition,
I show that the lowest quantiles of the density respond more pronouncedly to monetary
policy shocks occurring during slowdowns. Consequently, the state asymmetries in the
responses of downside risk measures (linear combinations of the 5th, 50th, 95th quantiles
of the expected density) can be explained by the discrepancy in the GaR (5th quantile)
responses in expansions and recessions. Moreover, evidence proposed in this paper sug-
gests that financial conditions are a key driver of the asymmetric transmission of monetary
policy shocks to downside risk across economic states. I also find that monetary policy
is able to explain a relevant share of variations in downside risk. In this regard, variance
decomposition shows that unexpected monetary interventions in recessions account for up
to 20% of variations in the shape of the predicted density of output growth on impact and
25% at longer horizons. On the other hand, variance explained by monetary policy shocks
occurring during booms is rather similar on impact, but only around 10% at longer horizons.

Related literature. This paper relates to three strands of the literature.
First, my work closely speaks to a very recent methodological literature analyzing the

causal link between structural shocks and (quantiles of) predicted distributions. In par-
ticular, Forni et al. (2023) combine structural VARs and quantile regressions, finding that
a contractionary monetary policy shock affects the predicted density of output growth by
increasing its dispersion and by moving mass to the left tail. Similarly, Loria et al. (2022)
couple quantile regressions and local projections, reaching the same conclusions. Along sim-
ilar lines, Caldara et al. (2021) recover the forecast density of output growth from a Markov-
switching VAR, confirming and rationalizing previous results. Instead, Chavleishvili et al.
(2021) propose a quantile VAR and study the effects of macro-prudential policy on downside
risk. The methodological contribution of my work is to extend the model of Forni et al.
(2023) to account for state-dependence, combining a smooth-transition VAR and smooth-
transition quantile regressions.

Second, there is an empirical literature studying the asymmetric impact of monetary
policy shocks in expansions and recessions. Despite robust evidence in favor of the exis-
tence of a state dependence, finding in terms of the direction of the asymmetry a still very
far from being univocal. In particular, Bruns and Piffer (2023) use an ST-VAR, directly
estimating transition parameters and identifying shocks using the instrument of Gertler

1The asymmetry holds when looking at mean responses. These results are in line with the financial
accelerator literature.
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and Karadi (2015), to find that monetary policy is more effective in recession. The same
conclusion is reached by Peersman and Smets (2001), Garcia and Schaller (2002), Lo and
Piger (2005) using Markov-switching multivariate models. The results of Debortoli et al.
(2023) go along the same lines. On the other hand, Tenreyro and Thwaites (2016) ex-
ploit smooth transition local projections and a narrative identification à la Romer and
Romer (2004), obtaining diametrically opposite results. The same conclusion is defended in
Jordà et al. (2020), modelling panel instrumental variable local projections and exploiting
a quasi-natural experiment, and in Alpanda et al. (2021), exploiting panel threshold local
projections and sign restrictions.2 I contribute to this literature by bringing evidence that
sustains the claim of higher effectiveness of monetary policy during economic slowdowns.
In addition, I show that this conclusion holds when looking to moments beyond the mean.

Finally, this work speaks to a literature focusing on the estimation of the conditional
forecast density of output growth. The seminal work is Adrian et al. (2019), who obtain
the conditional distribution semi-parametrically estimating quantile regressions and fitting
predicted quantiles into skewed-t distributions. More recently, Plagborg-Møller et al. (2020)
test various predictive models, concluding that forecasts of moments beyond the first should
be looked at cautiously because they tend to be imprecisely estimated. On the other hand,
Cho and Rho (2023) confirm the robustness of Adrian et al. (2019) results. Another recent
work is Wolf (2021), who proposed a fully parametric skewed stochastic volatility model to
estimate GaR, finding results similar to those of the seminal paper. Other relevant recent
works are Clark et al. (2024) and Delle Monache et al. (2023). I contribute to this literature
by extending the model of Adrian et al. (2019) allowing the predictive power of regressors
in quantile regressions to vary with the state of the economy.3

The rest of the paper is structured as follows. Section 2 describes the econometric
approach, Section 3 presents the main results and Section 4 discusses some robustness
exercises. Finally, Section 5 provides few concluding remarks.

2 Econometric approach

This section describes the empirical approach proposed in this paper. First, I present the
definition of downside risk adopted in this work. Second, I describe the econometric method
used to recover the response of downside risk to monetary policy shocks, across economic
states. Third, I linger on the estimation procedure and on the data used.

2.1 Downside risk

I consider four different indicators to proxy macroeconomic downside risk, all defined as lin-
ear combinations of relevant quantiles of the conditional expected density of output growth,
xτt . More in detail, downside risk measures are defined as follows. “Uncertainty” is com-
puted approximating the dispersion of the expected density of output growth (i.e., difference

2The recent contribution of Gonçalves et al. (2023) calls into question results obtained using state
dependent local projections.

3My contribution to this literature is functional to the extension of the model of Forni et al. (2023) and
improving forecasting accuracy is beyond the scope of this paper.
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between the 95th and the 5th quantiles)

Ut = x95t − x5t (1)

Next, following the intuition of Forni et al. (2024), I decompose Uncertainty and consider
only its downside component, named “Downside Uncertainty”, which is defined as the
dispersion of the left portion of the density

Dt = x50t − x5t (2)

Relating to a recent literature on skewed business cycles (Iseringhausen et al. (2023)), I
proxy the third moment of the conditional forecast density of output growth looking at the
difference between its left and right portions (Kelley (1947)), and define “Macro Skewness”
as

St = (x50t − x5t )− (x95t − x50t ) (3)

Finally, referring to the seminal paper of Adrian et al. (2019), I define Growth-at-Risk
(GaR) as the negative of the 5th quantile of the density

GARt = −x5t (4)

Note that all measures are defined such that any increment in these indicators is to be
interpreted as an increase in (downside) risk. There are few advantages related to the
adopted definitions. First, they consent to summarize the shape of the expected density of
output growth in few meaningful objects, without the need of distributional assumptions
on xt. Second, they allow to explain variations in risk measures by looking directly to
the dynamics of their defining components (i.e., quantiles). Third, as different measures
of downside risk explored in the literature are usually found to be highly correlated, the
proposed definition consents to uncover an additional layer and investigate whether co-
movements are driven by the same factors (i.e., quantiles). The main limitation is that
quantiles are not observed. This means that recovering them and studying their state-
dependent dynamics in response to monetary policy shocks requires a dedicated econometric
framework, which is described in the next section.

2.2 State-dependent (linear combination of) quantile IRFs

In this section, I describe how I recover the state-dependent dynamic response of quantiles
of a distribution of interest to structural shocks. Next, given the definition of downside
risk measures proposed above, I show how to extend the econometric framework to recover
state-dependent IRFs of linear combinations of quantiles.

State-dependent quantile IRFs. I compute state-dependent quantile IRFs by extending
the model proposed in Forni et al. (2023) to account for state asymmetries. Specifically, as
in the reference paper I combine quantile regressions and structural VAR, but I decline both
in a state-dependent fashion featuring smooth-transition parameters. Details are outlined
below.

First, expanding the quantile forecasting model of Adrian et al. (2019) I assume that,
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conditional on the state of the economy, quantiles of a distribution of interest can be ob-
tained as a linear combination of predictors. Formally,

xτt = β′
τ,s(L)Wyt

β′
τ,s(L) = f(zt−1)β

′
τ,R(L) + (1− f(zt−1))β

′
τ,E(L)

f(zt) =
e−ϕzt

1 + e−ϕzt

(5)

where xτt is the quantile τ of the distribution of interest and yt is a vector of predictors. The
selection matrix W is composed of zeros and ones and it allows impose a null coefficient on
selected predictors.4 The state-dependence of the vector of polynomials in the lag operator,
β′
τ,s(L), is obtained as a convex combination of coefficients associated to “limit” states,

β′
τ,R(L) and β′

τ,E(L), which for convenience I define as recession and expansion. The pa-
rameters of the convex combination are defined by a logistic transition function f(zt) which
takes as input an observed state indicator zt.

5 The parameter ϕ governs the smoothness of
the transition from one “limit” state to the other. Summarizing, {xt, yt, zt} are observed
data, whereas {β′

τ,R(L), β
′
τ,E(L), ϕ} are the parameters of the model.6

Second, I assume that the vector of predictors yt in Equation 5 has an invertible smooth-
transition vector moving average (ST-VMA) representation, such that this can be recovered
estimating a smooth-transition VAR (ST-VAR) from observed data. Formally, I define the
process governing yt as

yt = Bs(L)yt + ξt

Bs(L) = f(zt−1)BR(L) + (1− f(zt−1))BE(L)
(6)

where yt (defined as in Equation 5) is a vector of endogenous variables and ξt is the error
term. Mirroring Equation 5 in a multivariate setting, the state-dependence of the matrix
of coefficients in the lag operator Bs(L) is parameterized as a convex combination of coef-
ficients associated “limit” states, BR(L) and BE(L). The definition and interpretation of
the transition function f(zt) is exactly the same as in Equation 5. Now, given invertibility,
the ST-VAR can be expressed in its structural ST-VMA representation, as follows

yt = Cs(L)Hζt (7)

where Cs(L) = (I−Bs(L))
−1 is a matrix of reduced-form state-dependent IRFs, ζt = H−1ξt

is a vector of structural shocks and H is the impact matrix used to recover structural
parameters.

Third, combining Equations 5 and 7 one can obtain an expression that defines the

4The matrix W is not essential and can be set to be an identity; it is used to allow for a parsimonious
specification.

5I use a lagged value of f(zt) to compute the weights of the linear combination in order to avoid
contemporaneous feedback on whether the economy is in a recession (i.e., shocks are allowed to affect the
state of the economy only one period after they hit).

6Finally, note that since the elements of the vector of coefficients are polynomials in the lag operator,
the model in Equation 5 can be thought as a conditional quantile forecasting model, where the influence of
predictors is allowed to change with the state of the economy.
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quantile xτt as a linear combination - different in each state of the economy - of structural
shocks. Formally,

xτt = [β′
τ,s(L)WCs(L)H]ζt (8)

where the element in squared brackets denotes state-dependent quantile IRFs. The intuition
behind Equation 8 is that quantiles of a variable of interest can be obtained combining a
set of predictors, which in turn respond dynamically to structural shocks, allowing to trace
a direct link between shocks and quantiles. In other words, the mapping from structural
shocks to quantiles, β′

τ,s(L)WCs(L)H, is nothing else than a state-dependent linear combi-
nation, β′

τ,s(L)W , of state-dependent structural mean IRFs, Cs(L)H.

State-dependent (linear combination of) quantile IRFs. The econometric frame-
work used to obtain state-dependent quantile IRFs described above can be relatively easily
adapted to obtain state-dependent IRFs for linear combinations of quantiles, hence down-
side risk measures. To see how, consider a generic linear combination of quantiles of xt

qt = axτat + bxτbt − cxτct

= aβ′
τa,s(L)Wyt + bβ′

τb,s
(L)Wyt − cβ′

τc,s(L)Wyt

= [aβ′
τa,s(L) + bβ′

τb,s
(L)− cβ′

τc,s(L)︸ ︷︷ ︸
β′
τabc,s

(L)

]WCs(L)Hζt
(9)

where the first equality defines the generic linear combination of quantiles, the second uses
Equation 5 to substitute each xτt and the third exploits Equation 7 to substitute yt. Equation
9 describes a state-dependent mapping from structural shocks to combination of quantiles,
which is nothing else than an impulse response function. Now, note that WCs(L)H is
independent of quantiles, hence it suffices to modify ad hoc the generic β′

τ,s(L) in Equation
8 with β′

τabc,s
(L) to obtain the IRFs of interest. Then, given the above and the definition of

downside risk measures presented in the previous section, it is straightforward to see that
simply substituting the following

β′
U ,s(L) = β′

0.95,s(L)− β′
0.05,s(L)

β′
D,s(L) = β′

0.50,s(L)− β′
0.05,s(L)

β′
S,s(L) = (β′

0.50,s(L)− β′
0.05,s(L))− (β′

0.95,s(L)− β′
0.50,s(L))

β′
GAR,s(L) = −β′

0.05,s(L)

(10)

in place of the generic β′
τ,s(L) in Equation 8 is enough to obtain state-dependent IRFs for

Uncertainty, Downside Uncertainty, Macro Skewness and GaR, respectively.

2.3 Estimation and data

The parameters needed to recover IRFs are Ψ = {β′
τ,R(L), β

′
τ,E(L), BR(L), BE(L), ϕ,W,H},

whereas observed data are Dt = {xt, yt, zt}.

Reduced-form parameters. The parameters to be estimated consist in all the ele-
ments belonging to Ψ, except from W and H, which are obtained pre-estimation and post-
estimation, respectively. Estimation in performed as follows. First, notice that given the
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smooth-transition parametrization of state dependence, conditional on the state s, quantile
IRFs can be obtained via a linear combination, β′

τ,s(L), of VMA coefficients, Cs(L). In the
linear baseline model (i.e., assuming constant parameters), these two objects can be esti-
mated separately, as they are independent. Specifically, β′

τ (L) can be estimated via quantile
regression, whereas C(L) is obtained inverting an estimated VAR (Forni et al. (2023)). Now,
when extending the model to incorporate state-dependence, parameters β′

τ,s(L) and Cs(L)
are correlated because they are both a function of the smoothness parameter ϕ, hence they
should be estimated jointly. However, specifying a joint likelihood is cumbersome and would
require distributional assumptions that would constrain quantile dynamics, significantly re-
duce the scope of the analysis. Instead, I opt for a more agnostic estimation procedure.
Specifically, I exploit the fact that, conditional on ϕ, Equations 5-6 become linear in coef-
ficients, such that {β′

τ,R(L), β
′
τ,E(L)} and {BR(L), BE(L)} are independent, and hence can

be estimated separately using the standard constant-parameters quantile regression estima-
tor (Koenker and Bassett Jr (1978)) and OLS, respectively. Formally, quantile regression
coefficients for quantile τ , conditional on ϕ, are obtained as follows

β̃′
τ,ϕ(L) = argmin

β̃′
τ,ϕ(L)

Lqr = argmin
β̃′
τ,ϕ(L)

T∑
t=1

(1(ητt,ϕ≥0)|ητt,ϕ|τ + 1(ητt,ϕ<0)|ητt,ϕ|(1− τ)) (11)

where ητt,ϕ = xt − β̃′
τ,ϕỹt,ϕ and β̃′

τ,ϕ =
[
β′
R,τ,ϕ(L) β′

E,τ,ϕ(L)
]
and ỹt,ϕ =

[
e−ϕzt

1+e−ϕzt
yt

(1− e−ϕzt

1+e−ϕzt
)yt

]
and 1() is an indicator function that takes value 1 if the condition in parenthesis is satisfied,
0 otherwise. Similarly, conditional on ϕ, VAR coefficients can be obtained minimizing the
standard OLS loss function

B̃ϕ(L) = argmin
B̃ϕ(L)

Lvar = argmin
B̃ϕ(L)

T∑
t=1

(ξ′t,ϕξt,ϕ) (12)

where ξt,ϕ = yt − B̃ϕ(L)ỹt,ϕ and B̃ϕ(L) =
[
BR,ϕ(L) BE,ϕ(L)

]
and ỹt is defined as above.

Now, exploiting the model conditional (on the state) linearity, I obtain an estimate for ϕ
via grid-search (Lerman (1980)).7 More in detail, I define a joint conditional (on ϕ) QR-
VAR loss function as the sum of the conditional “standardized” QR and VAR loss functions
described in Equations 11-12. Then, the estimate for ϕ is obtained as the value - within
a finite and discrete uni-dimensional pre-specified gird Φ - that minimizes the conditional
QR-VAR loss function

ϕ∗ = argmin
ϕ∈Φ

(L̃qr + L̃var) (13)

Note that the QR and VAR conditional loss functions are intrinsically different, hence
hardly comparable. In order to overcome this limitation, I exploit the discrete nature of the
grid-search approach and consider their standardized version, L̃qr and L̃var. Operationally,
I obtain two vectors L̄qr and L̄var, where each entry corresponds to the value associated to
the conditional loss functions evaluated at a certain ϕ, and standardize them. Doing so, I
obtain two vectors that give information on how different values of ϕ perform in terms of

7See Bruce (1997) for an application to threshold VARs.
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normalized deviations from the neutral performance, de facto “controlling” for the different
nature of QR and VAR conditional loss functions. Finally, once ϕ∗ is obtained, coefficients
β̃′
τ,ϕ∗(L) and B̃ϕ∗(L) are recovered using expressions 11-12.

Selection matrix. The matrix W is chosen pre-estimation of reduced-form parameters
described above. The rational for the inclusion of W in the model is twofold. First, it al-
lows to perform quantile regression estimation on a subset of the VAR regressors, allowing
for flexibility. Second, by imposing ex-ante a zero coefficient on certain quantile regression
predictors, the selection matrix allows for parsimony and eases interpretation of results.
Now, the criterion to pin-down the elements of W is the following. Non-zero coefficients
in state-dependent quantile regression are allowed only for predictors whose associated co-
efficients in linear quantile regressions are statistically significant at least at the 15% level
in each of the three quantile regressions used to compute downside risk measures (i.e., for
τ = 0.05, 0.5, 0.95). The intuition is that including regressors whose predictive power direc-
tion is very much uncertain is very likely to result in bad forecasts.

Identification. The matrix H is pinned-down post estimation, combining reduced-form
VAR residuals, their covariance matrix and an external instrument. Specifically, I identify
structural shocks following the procedure proposed in Gertler and Karadi (2015).8

Generalized IRFs. The state-dependent quantile IRFs defined in Equation 8, condi-
tional on the state, are a linear combination of structural shocks. This implies an implicit
assumption on the fact that the economic state in place when the shock hits remains the
same throughout the forecast horizon. In order to overcome such imposed constraints on
post-shock quantile dynamics, I opt to rely on generalized IRFs (GIRFs) à la Koop et al.
(1996), which allow to condition only on the state in place when the shock hits, but consent
shifts across states to evolve endogenously along the forecast horizon. Formally, GIRF for
quantile xτ is defined as

GIRFxτ (h, δ, λ) = E[xτt+h|δ, λt]− E[xτt+h|δ = 0, λt] (14)

where h is the response forecast horizon, δ is the size of the shock and λt represents the eco-
nomic condition when the shock hits (or, initial conditions). Differently from conditionally
linear IRFs, GIRFs do not have a fully parametric expression, and hence are obtained via
simulations. Specifically, E[xτt+h|(δ), λt] is obtained via an iterated forecast for h periods,
which starts using predictors realized at time t (i.e., λt). Then, the forecast distribution
for a specific λt (i.e., economic state) is recovered repeating the forecast F times, each time
drawing a vector of VAR residuals for each forecast iteration.9 Note that parameters Ψ
are treated as fixed in the forecast exercise, hence do not directly account for estimation
uncertainty. The simulation algorithm is described more in detail in Appendix C.3.10

8Note that the impact matrix is not state-dependent. See Appendix C.2 for more details.
9I do not assume any distribution for ξt, therefore I opt for a form of bootstrap procedure.

10Accordingly, I calculate generalized forecast error variance decompositions (GFEVD), as proposed in
Lanne and Nyberg (2016) and Caggiano et al. (2017). See Appendix C.4 for the definition and computation
algorithm.
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Data. I include in yt 4 blocks of variables: policy (1-year nominal interest rate)11, real
(log industrial production and unemployment rate), financial (National Financial Condi-
tion Index, log SP500 stock prices index, private credit to GDP), prices (log consumer price
index).12 Next, I define the state variable zt to be a standardized 2-months backward-
looking moving-average of the growth rate of industrial production.13 Finally, the variable
whose quantile dynamics are of interest of this paper, xt, is chosen to be a 3-months ahead
industrial production growth. The data cover the US for the period 1970m1:2019m12. As
for the instrument used to identify structural shocks, I adopt the one proposed in Miranda-
Agrippino and Ricco (2021), extended in Degasperi and Ricco (2021) to cover the period
1991m1:2017m12.

3 Results

This section presents and comments the main findings of the paper. First, I show the
baseline results. Then, I explore potential transmission mechanisms that may rationalize
the benchmark results. Finally, I present the output of an exercise in which I look at
the response of downside risk to a contractionary monetary policy shock hitting during an
economic expansion associated to a high private credit to GDP level.

3.1 Baseline results

Figure 1 plots the downside risk measures defined in Section 2.1, estimated using the quantile
forecasting model presented in Equation 5.

Figure 1: Risk measures - Estimates

This figure plots the estimated downside risk measures; vertical shaded bands indicate NBER recessions.

All the estimated indicators appear relatively flat during normal times, whereas they
spike during recessions. Series are particularly highly correlated, suggesting that there may

11I use the 1-year nominal interest rate as the policy rate to account for the zero lower bound period,
following the approach of Gertler and Karadi (2015) and Miranda-Agrippino and Ricco (2021).

12Including financial conditions indicators relaxes concerns regarding invertibility, a key condition for the
identification strategy to be valid (Forni et al. (2022)).

13I choose a window of two months for the moving average to maintain a similar information set as for
the VAR lags. The window is the same as Bruns and Piffer (2023).
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exist a common factor driving the co-movements.14 Growth-at-Risk (i.e., left tail of the
density) is the most volatile among the risk measures and it is the main driver of variations
in the other series.15 Overall, evidence presented in Figure 1 is in line with the existing
literature. Specifically, during economic downturns there is a drop in the first moment of
the predicted density, coupled by a a spike in uncertainty (i.e., second moment) mostly
driven by its downside component. In turn, this implies that the density becomes more
left-skewed (i.e., increase in the third moment). Variations in the shape of the expected
density are majorly driven by fluctuations in its left tail.

Figure 2: Risk measures - Impulse Response Functions

This figure plots the IRFs to a monetary policy shock of risk measures. Red (blue) lines denote average
responses in recession (expansion). Confidence bands are reported at the 90% level. Dash-dotted black lines
indicate IRFs obtained using the benchmark linear model of Forni et al. (2023).

Now, if Figure 1 presents an overview of the downside risk outlook over time, Figure 2
provides insights on the ability of monetary policy to drive its dynamics.16 In particular, it
shows the response of downside risk to an expansionary (contractionary) monetary policy in
recession (expansion), calibrated to cause a drop (increase) of 50 basis points on impact in
the policy rate. Blue (red) lines indicate the responses of risk measures, conditional on the

14See Table 3 in Appendix B.
15The average variation between two consecutive periods in the 5th quantile is 1.5 and 2.5 times the

average variation in the median and in the 95th quantile, respectively. As downside risk measures are
obtained as combinations of such quantiles, it follows that tail tail risk is the main driver of variations in
the other risk measures. See Figure 7 in Appendix A for graphical evidence.

16See Appendix C.1 for the response of the full density, across states.
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shock hitting during booms (recessions).17 Dash-dotted black lines indicate IRFs obtained
using the benchmark linear model of Forni et al. (2023). Evidence presented in Figure 2
shows that an expansionary monetary policy shock hitting during recessions is effective in
reducing downside risk. On the other hand, a monetary contraction occurring during booms
increases risk. Nonetheless, given a same size shock, the magnitude of the increase in risk
following a monetary contraction in expansion is about four times smaller than the reduction
in risk in the aftermaths of an loosening shock during slowdowns. In addition, notice that
the responses of downside risk in recession almost overlap with those obtained using the
constant parameter model of Forni et al. (2023).18,19 This evidence has important policy
implications. Specifically, policy interventions calibrated on linear (i.e., average) estimates
would lead to an over-cautious behavior of monetary policy-makers. Specifically, basing
policy on average parameters would lead to over-conservative tightenings during booms.
However, notice that mean responses reported in Figure 8, Appendix A, show that also real
variables and prices respond asymmetrically across states.20 This means that, for instance,
to achieve a reduction in inflation during a boom with a tightening intervention of the same
magnitude of the increase that an easing policy during a recession would have generated,
the size of the shock should be bigger; this in turn implies that the increase in downside
risk would be higher. In practice, central banks face an inflation-risk trade-off.

Finally, if Figure 2 shows that monetary policy is indeed able to drive some of the
dynamics of downside risk, it is still to be defined how relevant is monetary policy in
explaining overall dynamics. A potential answer can be gauged looking to the forecast error
variance decomposition. The GFEVD presented in Table 1 suggests that monetary policy
accounts for a relevant share of total variations in the shape of the predicted density of
output growth, hence in downside risk. Overall, the variance explained by monetary policy
shocks is systematically higher during economic slowdowns, compared to expansions. In
absolute terms, monetary interventions explain about 20% of the variations on impact in
downside risk indicators during recessionary times, slightly less during booms. At longer
horizons, the variance explained during economic downturns increases to 25%, whereas it
decreases to about 10% during expansions. Finally, note that monetary policy is found to
explain relatively low shares of variation in real variables, however it plays an important
role in shaping expectations (i.e., moments of the forecast distribution of output growth).21

17I cluster in the recession (expansion) set all GIRFs obtained from an initial condition in which the
value of the associated transition function is in its top (bottom) percentiles. This means that I compare
the responses of risk measures to monetary policy shocks in deep recessions and sustained booms. Results
qualitatively hold when I consider milder recessions and booms (see Section 4).

18This is in line with the fact that most of variations in the risk measures occur during recession, as
highlighted in Figure 1.

19Note that linear IRFs are not imposed to lie in between GIRFs in expansion and recession. The reason is
twofold. First, GIRFs are obtained via simulation and the continuous lines plotted in Figure 2 are averages
of selected simulations. Second, when considering GIRFs, the mapping form mean response to quantile
responses is non-linear.

20These results can be rationalized by models featuring a “financial accelerator” mechanism. Overall,
results for mean responses are in line with those of Bruns and Piffer (2023), who use a similar methodology
to account for state-dependence in the effects of monetary policy.

21The GFEVD for the ST-VAR variables is reported in Table 4, Appendix B
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Table 1: Generalized forecast error variance decomposition

h = 0 h = 12 h = 24

Recession Expansion Recession Expansion Recession Expansion

Growth-at-Risk 18.52 23.58 25.59 9.47 25.40 8.94
Uncertainty 20.63 9.89 26.22 10.04 25.96 9.30
Downside Uncertainty 20.69 15.17 26.21 10.69 25.57 9.65
Macro Skewness 20.57 18.67 26.15 8.54 26.11 7.90

This table shows the the variance of variables of interest explained by the monetary policy shock at different
forecast horizons, across states.

3.2 Transmission mechanisms

The baseline results presented in the previous section show that monetary policy is able to
drive downside risk and that this ability is higher during economic downturns. However,
evidence so far is still muted with respect to the potential drivers of such causal relation.
This section aims to fill this gap by shedding some additional light on possible transmission
mechanisms.

The risk measures responses to a monetary shock presented in Figure 2 appear very
highly correlated, suggesting that there may exist a common driver. Given the relevance
of GaR in explaining variations in the other risk indicators over time highlighted in Figure
1, tail risk arises as the natural candidate. In order to explore whether this is the case, I
“unpack” risk measures and look directly to the responses of their components. In particu-
lar, I compare the response of quantiles whose linear combination defines the risk measures
of interest. Figure 3 plots the responses of a set of representative quantiles of the forecast
density to the same monetary policy shock (note that I flip the sign of the responses in
expansion, to ease the size comparison).22 The left (right) panel shows quantile responses,
conditional on the shock hitting in a recession (expansion). As above, the size of the struc-
tural shock is calibrated such that the policy rate declines (increases) by 50 basis points on
impact on average. Results show that the 5th quantile of the forecast distribution of output
growth is more responsive to the shock than the median and the 95th quantile, in both
states. This means that changes in the shape of the density can be largely explained by the
more pronounced shift of the left tail, compared to that of the median and the right tail.
In particular, the gap between the shift of the left and right tails explains the movement in
Uncertainty. Instead, the variations in Macro skewness is due to the fact that the responses
of the right tail and the median are very similar, implying that the shape of the right side
of the density experiences only minor variations; the opposite applies to the left side, as the
left tail increases more than twice compared to the median. Now, notice that the difference
between the response of the left tail and those of the median and the right tail is much
more pronounced during economic downturns. This means that variations in the shape of
the forecast density - hence in the risk measures - are deeper during slumps and that the

22See Figure 9 for the response of more quantiles to the shock, across states.
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source of this asymmetry is the variation in the left tail, i.e., Growth-at-Risk.

Figure 3: Quantiles - Impulse Response Functions

This figure plots representative quantile IRFs to a monetary policy shock, conditional on the monetary
intervention occurring in recession or expansion.

In turn, the state-dependent response of tail risk to the monetary shock can be explained
by the the asymmetric response of NFCI across states (see Figure 8), as Tables 5-6 suggest
that NFCI is by far the most important predictor of tail risk and that its relevance is
higher in recessions. Summarizing, evidence proposed in this paper points to the following
transmission mechanism: 1) monetary policy has an asymmetric effect on NFCI; 2) NFCI is
a very strong predictor of GaR, implying its state-dependent response; 3) tail risk response
is a major driver of uncertainty and skewness responses, causing such responses to be
asymmetric across states.23

Table 2: Quantile regression - Selected regressors

τ = 0.05 τ = 0.5 τ = 0.95

Recession Expansion Recession Expansion Recession Expansion

NFCI -0.82 -0.12 -0.35 -0.13 -0.35 -0.09
SP500 0.00 0.00 0.00 0.00 0.00 0.00
(lag) Policy rate 0.04 0.02 -0.01 0.00 0.00 0.00

This table reports estimated quantile regression coefficients, after the selection of relevant regressors.

23See Adrian et al. (2020) for a theoretical model embedding tail risk.
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3.3 Does leverage matter?

In this section, I focus on whether the occurrence of a monetary policy shocks during a
boom has different impacts based on whether the expansions is associated with a high
private credit to GDP level. Figure 4 suggests that risk in highly-leveraged states of the
economy responds indistinguishably from unconditional booms.

Figure 4: IRFs - Booms and high credit/GDP

This figure plots the response of downside risk indicators to a contractionary monetary policy shock. Black
lines are baseline responses during booms; grey lines indicate responses during booms associated to high
private credit to GDP levels.

4 Robustness

In this section, I check the robustness of the empirical results presented in Section 3 against
a battery of tests. I gather tests based on which component of the quantile IRF (i.e.,
β′
τ,s(L)WCs(L)H) they affect.
First, I perform three modifications concerning β′

τ,s(L). First, I change the “tail” quan-
tiles used to build proxies for the moments of the forecast density (i.e., I use τ = {0.1, 0.9},
instead of τ = {0.05, 0.95}). Second, I change the horizon of the forecast density from three
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to six months. Third, I impose no state-dependence in the combination of mean IRFs to ob-
tain quantile IRFs; practically, I impose β′

τ,s(L) = β′
τ,R(L) = β′

τ,E(L) and obtain coefficients
estimating a linear quantile regression. The output of this first set of robustness exercises
in reported in Figure 10. On top of reassuring on the robustness of the empirical exercise,
stability of results vis-à-vis the changes described above provides also relevant insights.
In particular, results obtained using a linear quantile forecasting model are quantitatively
very similar to the ones obtained adopting a smooth-transition framework. This implies
that most of the state asymmetries in the dynamics of risk responses described in Section
3 can be explained by the asymmetric responses of mean variables during booms and re-
cessions, rather than their non-linear combination. On the contrary, the asymmetry across
states of GaR risk measures responses on impact is entirely driven by the non-linearity
coming from ST-QR, by construction.

Second, I change the composition of the W matrix, in two ways. First, I select as predic-
tors to be included in Equation 5 all variables whose associated coefficient in a linear quantile
regression is statistically significant at the 5% level for at least one of the three relevant
quantiles used to compute proxies for the moments of the density (i.e., τ = 0.05, 0.5, 0.95).
Second, I set W equal to the identity matrix, essentially including in Equation 5 all vari-
ables part of the vector yt and their lags. Results are reported in Figure 11. Varying the
set of predictors does not qualitatively change the results at short and long IRF forecast
horizons. However, variations cause the response of risk measures to the shock on impact to
be different form the baseline results. That said, one should cautiously interpret the output
of this robustness exercise. In particular, using predictors whose coefficients are imprecisely
estimated can lead to misleading results. This is precisely the reason why I included the
selection matrix W in the baseline model in Equation 5.

Third, I relax the bounds I use to define recessions and expansions, which ultimately
determine the set of initial conditions used to simulate CR(L)H and CE(L)H with the
algorithm described in Appendix C.3. Specifically, I define the relevant threshold for reces-
sions zR such that f(zR) is equal to the share of NBER recessions in the sample.24 Then,
I define zR,τ the quantile of zt that corresponds to zR; the threshold for expansions zE is
obtained as the value of zt that corresponds to its 1− zR,τ quantile. In other words, I look
at the response of GaR risk measures during milder recession/booms. Results are reported
in Figure 12. As expected, the discrepancy between responses during slowdowns and booms
is lower than in the baseline results, but interpretations and conclusions remain unaltered.

Fourth, instead of estimating the smoothness parameter ϕ as described in Section 2, I
calibrate it to match the share of NBER recession in the considered sample, as in Auerbach
and Gorodnichenko (2012). Results quantitatively very similar.

Finally, I test the robustness of results against two minor modelling variations. In par-
ticular, I change the number of lags in the VAR (hence, quantile predictors) and the length
of the moving average used to compute the state indicator zt. It turns out that these
variations do not affect the qualitative conclusions of the paper.

24This is the definition I use to calibrate the smoothness parameter of the transition function, as described
in Section 2.
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5 Concluding remarks

Recent years have witnessed an increasing interest of monetary policy-makers towards
macroeconomic downside risk. However, despite a growing attention, evidence on the rela-
tion between monetary policy and such risk is still scarce. This paper aims to fill this gap.
In particular, I analyse the causal link between monetary interventions and a specific set of
downside risk measures. I find that monetary policy is able to drive downside risk and that
this ability is much more pronounced during economic slowdowns. The discrepancy can
be explained by the asymmetric response to monetary interventions of financial indicators,
which in turn contribute in explaining the state-dependent response of Growth-at-Risk,
which ultimately determines the response of all downside risk measures. I obtain these
results estimating newly proposed state-dependent quantile IRFs.
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A Figures

Figure 5: Transition function

This figure plots the transition function f(zt), where zt is a standardized 2-months backward-looking industrial
production growth moving average and ϕ = 2.06. Vertical shaded bands represents NBER recessions.
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Figure 6: Conditional (on ϕ) QR-VAR Loss function

This figure plots of the loss function defined in Equation 13, evaluated at each discrete value of ϕ contained
in Φ. The red dot denotes the minimum value assumed by the function (i.e., when evaluated in ϕ∗).
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Figure 7: Predicted quantiles

This figure plots the 95th, 50th and 5th estimated quantiles of the forecast density of output growth.
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Figure 8: GIRFs - STVAR variables

This figure plots generalized IRFs in recession (red) and expansion (blue). Confidence bands are reported at
the 68% level. The size of the shock is calibrated to generate an average decrease of 50 basis points in the
policy rate on impact in each state.
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Figure 9: Quantiles - Impulse Response Functions

This figure plots representative quantile IRFs to an expansionary monetary policy shock, conditional on the
monetary intervention occurring in recession or expansion.
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Figure 10: Robustness 1 - β′
τ,s(L)

Solid lines are computed using τ = {0.1, 0.9} in place of τ = {0.05, 0.95} to represent the left and the right
tails of the forecast density, respectively; dashed lines represent responses of moments of a 6-months ahead
forecast distribution; dash-dotted lines are obtained using a linear quantile forecasting model (i.e., imposing
β′
τ,R(L) = β′

τ,E(L)). Shaded bands are simply used to visualize the area spanned by the different models,
roughly describing “modelling uncertainty”. Red (blue) lines represents recessionary (expansionary) periods.
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Figure 11: Robustness 2 - W

Solid lines represent responses obtained including in ST-QRs only regressors whose associated coefficient is
significant at 5% in at least one of the the linear quantile regressions for τ = {0.05, 0.5, 0.95}. Dashed-dotted
lines are computed setting the matrix W to be an identity. Shaded bands are simply used to visualize the
area spanned by the different models, roughly describing “modelling uncertainty”. Red (blue) lines represents
recessionary (expansionary) periods.

A7



Figure 12: Robustness 3 - Mild recession/booms

This Figure plots the response of GaR risk measures to an expansionary monetary policy shock. The param-
eters defining the expansion and recession sets are less stringent, comapred to the baseline case.
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B Tables

Table 3: Downside risk measures - Correlations

Tail risk Downside uncertainty Total uncertainty Skewness

Tail risk . . . .
Downside uncertainty 0.94 . . .
Total uncertainty 0.90 0.95 . .
Skewness 0.80 0.86 0.68 .

This table shows the correlation among estimated GaR risk measures.

Table 4: GFEVD - STVAR variables

h = 0 h = 12 h = 24

Recession Expansion Recession Expansion Recession Expansion

Policy rate 16.10 16.10 4.24 5.65 2.76 5.25
INDPRO 9.28 9.28 41.39 14.06 45.77 17.56
UNEMP 1.43 1.43 19.26 2.23 22.74 3.00
NFCI 20.16 20.16 25.89 9.65 24.48 9.08
SP500 9.07 9.07 17.29 7.80 14.17 6.39
CPI 17.91 17.91 15.24 6.39 10.14 2.58
Commodity 45.79 45.79 51.62 23.06 46.03 13.48

This table shows the the variance of variables of interest explained by the monetary policy shock at different
forecast horizons, across economic states.
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Table 5: Quantile regression - All regressors

τ = 0.05 τ = 0.5 τ = 0.95

Rec Exp Lin Rec Exp Lin Rec Exp Lin

Policy rate 0.22 -0.26 -0.01 0.11 0.11 0.24∗∗∗ 0.23 -0.03 0.24∗∗∗

INDPRO -0.24 0.13 0.10∗ 0.06 -0.05 0.04 0.03 0.25 0.04
UNEMP -0.25 0.02 0.00 -0.39 0.14 0.03 -0.16 0.10 0.03
NFCI -0.99 -0.55 -0.49∗∗∗ -0.43 0.06 -0.45∗∗∗ -0.66 -0.01 -0.45∗∗∗

SP500 0.01 0.00 0.02∗ 0.04 0.01 0.01 0.03 0.01 0.01
CPI 0.21 0.01 0.04 -0.05 -0.13 -0.03 0.36 0.17 -0.03
Commodity -0.06 0.01 0.05 0.14 0.11 0.18∗∗∗ 0.07 0.03 0.18∗∗∗

(lag) Policy rate -0.03 0.33 0.12∗∗ -0.08 -0.07 -0.18∗∗∗ -0.19 0.12 -0.18∗∗∗

(lag) INDPRO 0.22 -0.12 -0.10∗∗ -0.05 0.04 -0.05 -0.01 -0.26 -0.05
(lag) UNEMP 0.60 0.10 0.20 0.49 -0.04 0.09 0.40 -0.01 0.09
(lag) NFCI 0.21 0.31 -0.12 0.12 -0.23 0.21∗∗∗ 0.28 -0.19 0.21∗∗∗

(lag) SP500 0.00 0.01 -0.01 -0.04 0.00 0.00 -0.02 -0.01 0.00
(lag) CPI -0.19 0.02 -0.02 0.06 0.11 0.03 -0.36 -0.15 0.03
(lag) Commodity 0.05 -0.07 -0.08 -0.16 -0.10 -0.19∗∗∗ -0.10 -0.05 -0.19∗∗∗

This table reports estimated quantile regression coefficients. It shows estimates relative to relevant quantiles,
across states. Note that ∗∗∗, ∗∗, ∗ denote significance of estimates at the 1%, 5% and 10% levels.

Table 6: Quantile regression - Selected regressors

τ = 0.05 τ = 0.5 τ = 0.95

Recession Expansion Recession Expansion Recession Expansion

NFCI -0.82 -0.12 -0.35 -0.13 -0.35 -0.09
SP500 0.00 0.00 0.00 0.00 0.00 0.00
(lag) Policy rate 0.04 0.02 -0.01 0.00 0.00 0.00

This table reports estimated quantile regression coefficients, after the selection of relevant regressors.
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C Extensions and Algorithms

C.1 Shaping the forecast density

In this section, I extend the model described in Section 2 imposing ex post distributional
assumptions. The objective of this exercise is to relate directly my work to that of Adrian
et al. (2019), who recover the exact shape of the forecast density of output growth semi-
parametrically.

First, I reproduce the main findings of the seminal paper. Specifically, I fit quantiles
predicted using Equation 5 into skewed-t distributions.25 More in detail, I cluster predicted
quantiles in “recession” and “expansion” sets based on whether the time of the prediction
for such quantiles is classified as NBER recession. Then, I consider the average predicted
quantiles of each of these two sets and fit them into skewed-t distributions. The densities
that I obtain are plotted in Figure 13 with continuous lines. Overall results confirm the main
conclusions of Adrian et al. (2019): predicted densities in recessions are more dispersed, left-
skewed and shifted to the left compared to densities in normal times.

Second, I recover the shape of the predicted density in the aftermaths of an expansionary
monetary policy shock, across states. In order to obtain post-shock predicted quantiles,
I simply sum baseline predicted quantiles in expansion/recession (obtained as described
above) with the corresponding state QIRF; then, I fit the obtained quantiles into skewed-t
distribution as in Adrian et al. (2019). In Figure 13, I plot the densities across states one
quarter after the shock (i.e., the peak response horizon) with dotted lines.

Figure 13: Densities before and after a monetary policy shock

This figure plots predicted densities of output growth before and after an expansionary monetary policy shock,
distinguishing between expansions and recessions.

Results essentially confirm what highlighted in previous sections. An expansionary
monetary policy shock shifts to the right the forecast density of output growth, decrease
its dispersion and left-skewness mainly because of variations in the left tail. The effects
are more pronounced if the monetary intervention occurs during an economic slowdown.

25The main difference between Adrian et al. (2019) model and mine is that I use smooth-transition
quantile regressions instead of linear quantile regressions to predict quantiles of interest.
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This results closely speak to those of Adrian et al. (2019). Specifically, the reference paper
shows that the forecast density of output growth becomes more dispersed and left-skewed
during recessions; I show that a significant component of such dynamics could be explained
by monetary policy operations during slowdowns.

C.2 Identification of shocks with external instrument

In this section, I briefly describe how I identify the relevant column of the impact matrix
H thanks to information coming from an external instrument, following the procedure of
Gertler and Karadi (2015). Specifically, I assume that an observed instrument ι exists such
that the following conditions hold

E[ιtζ1,t] = α ̸= 0

E[ιtζn,t] = 0 n = 2, ..., N
(15)

where ιt is the instrument, ζ1,t is the structural shock of interest, ζn,t is any of the remaining
structural shocks.26 I also assume that the shocks are fundamental. Given the assumptions,
the following holds

H1,1 = γ1ω (16)

and
Hn,1 = γnH1,1 (17)

where H1,1 is the first entry of the first column of the impact matrix H; similarly, Hn,1 is
the nth entry of the first column; ω = var[ιt]/α; γ1 is the coefficient obtained regressing the
reduced-form residuals associated to the policy indicator on the instrument; γn is obtained
regressing reduced-form residuals associated to the nth endogenous variable in yt on fitted
reduced-form residuals obtained using γ1 and ι. Finally, exploiting the fact that Σ = HH ′,
the object H1,1 can be recovered following Gertler and Karadi (2015) as

H1,1 = [σ − (σ̃ − σγ)′[σγγ′ − (σ̃γ′ + γσ̃′) + Σ̃]−1(σ̃ − σγ)]
1
2 (18)

where γ =
[
γ2 ... γN

]′
, σ = Σ1,1 and σ̃ = Σ2:N,1 and Σ̃ = Σ2:N,2:N . This allows to recover

the absolute identifying column H.,1, and in turn the full impact matrix.27

The main limitation of this approach is that it does not consent to have state-dependence
in the impact matrix and, as a consequence, non-linearity only comes from the reduced-form
coefficients. Consequently, asymmetries across states generated within the framework just
described should be thought as a lower bound of non-linearity.28

26The order of shocks in ζt is irrelevant, so there is no loss of generality in assuming the structural shock
of interest to be ordered first.

27The full impact matrix can be recovered finding an orthonormal matrix U , such that (chol(Σ)U)1 =
H.,1. Note that the full matrix is not needed for identification purposes, but only to compute variance
decompositions.

28State-dependent impact matrices could be recovered from state-dependent residuals covariance matrices.
However, as mentioned above, obtaining such covariances would require distributional assumptions to define
proper likelihood functions. As I opt to avoid assumptions to leave quantiles dynamics unconstrained, I rely
on a linear impact matrix to identify shocks.
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C.3 Generalized Quantile Impulse Response Functions (GQIRFs)

A GIRF is broadly defined as a difference between two conditional expectations with a
different conditioning set. Specifically, one set includes the realization of a shock, whereas
the other does not. More formally, I follow Koop et al. (1996) and Caggiano et al. (2022)
to define a GIRF as

GIRF (h, δ, λ) = E[yt+h|δ, λ]− E[yt+h|λ] (C.2.1)

where yt is defined as in Equation 6, h is the horizon of the GIRF and δ is the shock. I
distinguish between GIRFs across states by conditioning on the initial condition λ, which
defines the regime in place when the shock δ hits. Wheres standard IRFs are computed
conditional on a state, this definition of impulse responses allows to condition on an initial
condition only (allowing the state to be different at different horizons). The simulation
algorithm used to compute GIRFs in this paper is reported below.

1. Estimate relevant objects

(a) estimate the ST-VAR to obtain {ξt,Σ, BR(L), BE(L)};
(b) apply the 2SLS procedure to obtain {γ};
(c) obtain the identifying matrix H as described in Section 2

(d) estimate ST-QR to obtain {βτ
R, β

τ
E}

2. Construct histories (i.e., initial conditions)

λt =
[
yt yt−1 ... yt−m−1

]
where m is the length of the moving average window used to compute the transition
variable zt.

3. Cluster histories into expansion and recession sets

(a) compute transition variable zλt for each history λt

(b) compare zλt to a cut-off values zR and zE

(c) assign λt to the set ΛE if zλt > zE and to ΛR if zλt < zR

The cut-off values zR and zE are chosen such that 1% of histories belong to ΛR and
1% to ΛE

4. Select randomly, with replacement, I histories from the relevant set (ΛR to build
GQIRF in recession, ΛE for expansion)

5. For each of the history draw i

(a) compute structural shocks from ST-VAR matrix of residuals ξ (obtained stacking
residuals over time, horizontally; dimension NxT )

ζ = H−1ξ
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(b) draw with replacement columns from ζ to obtain J matrices of bootstrapped
structural shocks of size NxH (where N is the number of variables in the VAR
and H is the horizon of the GIRF), the jth matrix being defined as ζji

(c) For each of the J matrices

i. perturbate the kth element of the first column of ζji by an amount δ, where
k is the position of the shock of interest in the vector of structural shocks;
define the new obtained matrix ζj,δi

ii. transform the two matrices of structural shocks back into matrices of reduced-
form residuals

ξji = Hζji

ξj,δi = Hζj,δi

iii. simulate the evolution of yt (i.e., first column of the drawn λ) over t up to h
using the STVAR coefficients

yt = (f(zt−1)BR(L) + (1− f(zt−1))BE(L))yt + ξji,t

where z0 = zλi
. At each iteration over t, simulate the evolution of quantiles

using the estimated coefficient in the ST-QRs

xτt = (f(zt−1)βτ,R(L)
′ + (1− f(zt−1))βτ,E(L)

′)Wyt

Update the value of zt−1 at each iteration over t, based on the simulated
values of yt (to account for endogenous state transition). Obtain the h-steps
ahead simulation, xτ,ji,t+h. Perform the same operations, substituting ξji,t with

ξj,δi,t , and obtain the simulated values given the shock, xτ,j,δi,t+h

iv. compute conditional GQIRF as

GQIRF (h, δ, λi)
j = xτ,j,δi,t+h − xτ,ji,t+h

(d) average over all bootstrapped residuals j

GQIRF (h, δ, λi) = J −1
J∑
j=1

GQIRF (h, δ, λi)
j

(e) average over all histories i

GQIRF (h, δ) = I−1
I∑

i=1

GQIRF (h, δ, λi)

Note that the GQIRFs obtained applying the algorithm described above are dependent
on the sign and the size of the perturbation δ.
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C.4 Generalized Forecast Error Variance Decomposition

The Generalized Forecast Error Variance Decomposition (GFEVD) of interest, defined
as the variation in yk due to shock δj as a share of total variation at horizon h̃,
conditional on history λi, reads

GFEVDh̃
kj(δj) = I−1

I∑
i=1

∑h̃
h=0GIRFk(h, δj , λi)

2∑N
j=1

∑h̃
h=0GIRFk(h, δj , λi)2

(C.3.1)

where GIRFk(h, δj , λi) is computed as described in step 5 in Appendix C.3. Note that
GIRFs are computed conditional on the size and the sign of the shocks ∆ = (δ1, ..., δN ),
a condition that is inherited by the GFEVD. In order to ensure comparability across
shocks-responses, I set ∆ = (c̄, ..., c̄), where c̄ is an arbitrary constant.
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