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Abstract

We study the value of recommendations in disseminating economic information,
focusing on the impact of preference heterogeneity as a key impediment. We consider
Bayesian expected payoff maximizers who evaluate non-strategic recommendations
that are given when the payoff of consumption exceeds or falls below some thresh-
old. We derive conditions under which different types accept these recommendations
and assess the overall value of the recommendation system. Our analysis highlights
the importance of disentangling objective information from subjective preferences.
We consider the design of value-maximizing and sales-maximizing recommendation
systems as well as the role of a polarized population. Finally, we extend our model
in several directions, including multiple recommendation levels and endogenous rec-
ommendation thresholds.
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1 Introduction
Recommendations play an important role in the diffusion of economic information. Poten-
tial job applicants often rely on information from friends about the quality of potential
employers. Consumers may base their own choices of travel destinations, restaurants,
or doctors on what they have heard from their acquaintances. In the digital economy,
product ratings, typically reflecting anonymous consumer reports, are omnipresent.

Despite their relevance, there are considerable impediments to the functioning of rec-
ommendations. For instance, too few recommendations may be given (Che and Hörner,
2018; Kremer, Mansour, and Perry, 2014), senders may be positively selected (Acemoglu,
Makhdoumi, Malekian, and Ozdaglar, 2022), and interested parties might interfere with
the process by selecting which recommendations to publish (Bolton, Greiner, and Ocken-
fels, 2013; Tadelis, 2016). But even when there is no reason to believe that the senders of
a recommendation have incentives to strategically bias the recommendation process, there
are limitations. In this paper, we focus on the role of preference heterogeneity as an impor-
tant friction for the functioning of recommendations. To some extent, even well-intended
recommendations by non-strategic players are likely to reflect the sender’s preferences
rather than objective truth. A receiver who does not question the informational content
of a recommendation may therefore make biased decisions.

To motivate our approach, consider the example of choosing between medical doctors.
Rather than randomly choosing a doctor, a patient may want to rely on the recommen-
dation of a friend who is familiar with one of the available alternatives. Importantly,
the perceived quality of medical care will typically depend on many aspects. How care-
fully does a doctor listen to the patient? How helpful is their response? Is the technical
equipment up-to-date? Is his staff friendly? How crowded is the waiting room? Different
patients will value different aspects differently. Typically, recommendations can capture
this multi-dimensionality only to a limited extent. While the recommendation may show
whether a consumer had a good or bad experience, it will typically be much less clear
how the different aspects contributed to this assessment. The potential receiver of the
recommendation then faces the complex problem of backing out the implications of the
recommendation for their own decision. Relevant considerations for the receiver are: To
which extent does the recommendation contain objective truth? And when it does not,
how likely is it that the preferences of the sender and receiver are aligned? Answers to
these questions will determine whether it is in the receiver’s best interest to follow the
recommendation and how valuable the recommendation is for the receiver.

With this in mind, we consider a setting in which economic agents must decide between
several available options, which we refer to as products for ease of exposition. Each
product is two-dimensional and each dimension can have high or low quality. All agents
agree that a product is worth choosing if it has high quality in both dimensions and is
thus objectively good. Similarly, they agree that a product is not worth choosing if it has
low quality in both dimensions and is thus objectively bad. However, disagreement can
occur when the two components differ in the two dimensions: Each agent will prefer a
product that has high quality in the dimension that is more relevant for her and is thus
subjectively good rather than a product that has high quality in the dimension that is
less relevant for her (is subjectively bad). Moreover, agents are not only heterogeneous
regarding which products they consider subjectively good but also regarding the intensity
of these preferences. This heterogeneity is captured in a continuous type distribution.
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To make the study of recommendations worthwhile, we assume that the products in
question are experience goods so that each agent only has stochastic knowledge of the rel-
evant quality distribution before consumption. In particular, she does not know whether a
particular product is objectively good, objectively bad, subjectively good, or subjectively
bad. However, she knows the probability of each type of product. Moreover, we assume
that for one of the available products, the agent has access to a recommendation stemming
from a previous consumer of that product. The recommendation provides coarse infor-
mation on the product, namely whether the sender had a consumption experience that
was sufficiently good (a buy recommendation), with payoffs above an exogenous threshold
level R, or not (a don’t-buy recommendation). Independent of R, the sender will always
give a buy recommendation for an objectively good product and a don’t-buy recommen-
dation for an objectively bad product. In the remaining cases, buy recommendations will
only come from senders whose preferences for the consumed goods are strong enough.
The receiver of the recommendation must now evaluate the informational content of the
recommendation, taking into account the decision-making environment and her prefer-
ences. Specifically, the decision whether to follow the recommendation will depend on the
receiver’s preferences as well as the distribution of product qualities and preferences in
the overall population.

In this framework, we study recommendations. We are interested in a variety of ques-
tions. How do recommendations create value for the receivers and how can we interpret
this value? When is this value maximal? If one could influence the quality threshold
beyond which a sender gives a buy recommendation, how demanding should the require-
ment be? Are recommendations valuable even when the probability of products being
objectively good or bad is low? How does the value for the receivers change when the
population is more or less polarized?

To answer these questions, we need to take intermediate steps that are of interest in
their own right. Namely, we need to understand which receivers will accept a recommen-
dation in a particular decision environment. We find that the conditions for a Bayesian,
expected payoff maximizer to follow a recommendation are defined by two key quantities
measuring objective value and bias in the recommendation, which are simple functions
of the model primitives. The first of these quantities captures the objective value of the
recommendation. Intuitively, this is high when the recommendation makes it sufficiently
more likely that the product is objectively good and sufficiently less likely that it is objec-
tively bad. The second important quantity captures the direction and extent of the bias
of the recommendation towards one or the other of the two remaining types of products,
which can only be ranked subjectively. Importantly, this bias in the recommendation
originates in consumers’ subjective preferences. When the bias is absent or small enough,
then all players accept the recommendation. That is, they buy after a buy recommen-
dation and they choose the outside option after a don’t-buy recommendation. When the
bias towards one good is large relative to the objective value of the recommendation, then
only those receivers who do not have too strong preferences for the other product will
accept the recommendation. Notably, when the recommendation threshold R approaches
1 (the maximum), a buy recommendation becomes entirely objective, while a don’t-buy
recommendation becomes entirely objective when R approaches 0 (the minimum). As
receivers are aware of this, they accept the recommendation in each case since, in each of
these polar cases, the subjective component completely vanishes.

Against this background, we can move to the central part of our analysis, the study
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of the value of recommendation systems. We think of this value as the expected increase
in payoffs created by receiving a recommendation from a randomly chosen sender to a
randomly chosen receiver. When the recommendation is unbiased or the bias is small,
the analysis is comparatively simple: In that case, we know that all receivers accept the
recommendation. As only buy recommendations affect the choice of the receiver, the
value of the recommendation is the probability of the buy recommendation multiplied by
the expected payoff increase from following the recommendation.1

When a bias exists and is large enough, the analysis becomes more complex, because
only a subset of receivers accepts the recommendation. The value of the recommendation
system then has two components. The first part comes from receivers who accept buy
recommendations. More precisely, it corresponds to the probability of a buy recommenda-
tion, multiplied by the probability that a receiver accepts a buy recommendation and the
expected payoff increase from following the buy recommendation (conditional on being a
receiver who accepts). The second part comes from receivers who do not accept a don’t-
buy recommendation. Intuitively, this happens if a receiver knows that her preferences are
not well aligned with the general population. Then she takes the don’t-buy recommen-
dation as good news about the chances of obtaining the subjectively preferred product
rather than the one that she likes less. Of course, this evidence still has to be weighed
against the bad news that the product is now more likely to be objectively bad and less
likely to be objectively good – but these objective effects may well be dominated by the
higher prospects of getting the subjectively preferred product. The expected contribution
to the value of recommendations that comes from this effect consists of the probability of
a don’t buy recommendation, multiplied by the probability that a don’t buy recommen-
dation is not accepted times the expected increase in expected payoffs coming from not
accepting the recommendation.

Though the components of the value of a recommendation system have clear inter-
pretations, it is non-trivial to understand how the total value depends on primitives.
Nonetheless, we can obtain some strong results when considering the design of recommen-
dation systems when the type distribution is symmetric, so that there is no preference
bias on average in the population. In these cases, the value of the recommendation system
is maximized in one of the two cases where the content of the recommendation is fully
objective. In one of these extreme cases, the product will receive a buy recommendation
only if it is objectively good; in the other one, it will only be accepted if it is objectively
bad.

Next, we study the role of the “degree of subjectivity” in products, that is, the ex ante
probability of the two products which cannot be objectively ranked. It turns out that
for sufficiently well-designed recommendation systems, the value of the recommendation
system is decreasing in the degree of subjectivity. Essentially, the above discussion of
optimal thresholds has shown that the value of the system increases when a (relatively)
objective recommendation is more likely. Thus, when thresholds are relatively extreme,
less subjectivity makes both types of recommendations more objective and simultaneously
increases the probability of objective recommendations, both of which increase the value.
In contrast, when the system is relatively poorly designed so that the recommendation
threshold is intermediate, some subjectivity can be valuable, as it can then increase the
probability of a relatively objective recommendation.

1A receiver who obtains a don’t-buy recommendation chooses the outside option and thus gets the
same expected payoff as without a recommendation.
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Moreover, we ask how a mean-preserving spread in the population distribution changes
the value of a given recommendation system. Assuming a symmetric population, whether
a recommendation system creates more value for such a more polarized population de-
pends on the recommendation threshold and on how likely an objectively good product is
relative to a bad one. Effectively, a more polarized population changes the subjectivity of
the recommendations, and, depending on the relative probability of objective products,
this can be a good thing or not.

We conclude by considering some extensions allowing us to showcase the robustness
of our results and to make more connections to the existing literature. We first extend
our model to allow for more than two different types of recommendations, now called
ratings. The key implication of this change is with more than two ratings there is an
intermediate rating which is purely subjective: only the lowest and highest ratings carry
objective information. When the population is symmetrically distributed, and subjective
products are equally likely, it follows that a value-maximizing designer once again tries to
maximize the probability of an objective rating being given by opting for extreme recom-
mendation threshold levels. Depending on the relative probability of objective products,
the lowest or highest rating is turned objective. Second, we consider the possibility of
receiving multiple (binary) recommendations. In this context we can show that mixed
reviews, that is, when there are both buy and don’t-buy recommendations, rule out both
objective products. Thus, as there is more variance in the recommendations, the product
is necessarily subjective. Moreover, as the number of recommendations increases, the
posterior converges to the true product quality, thus fully revealing the product. Third,
we endogenize the recommendation threshold so that a buy recommendation is given if
and only if the payoff exceeds the prior expected payoff. Considering the case of equally
likely subjective products and of a uniformly, and thus symmetrically, distributed popu-
lation, we show that the recommendation system with an exogenously chosen threshold
generically creates more value than this alternative system with an endogenous threshold.
Essentially, the fact that subjective products are equally likely means that the endogenous
recommendation threshold coincides across types. Therefore, this corresponds essentially
to a fixed, interior recommendation threshold, which is, in general, not optimal. Fourth,
we embed our model in a setting where there is a platform that aims to maximize sales.
That is, the recommendation threshold is chosen such that the probability of buying the
recommended product is maximized. We show that the optimal threshold does not in
general maximize the receiver’s value and that it induces a rotation in the the demand
function as in Johnson and Myatt (2006). Finally, in work in progress, we consider the
case of an asymmetrically distributed population. We derive the value-maximizing recom-
mendation threshold and find that it is no longer necessarily a polar threshold but that
interior solutions are now possible. Intuitively, given the population’s asymmetry, the
subjective content in the recommendation does not cancel out. Further, as it is, on aver-
age, valuable, it is often optimal not to have completely objective recommendations but
to include some subjectivity. Nevertheless, the optimal threshold is still polar whenever
the objectively good product is sufficiently more likely than the objectively bad product,
or vice versa.

The remainder of the paper is organized as follows. Section 2 discusses the related
literature. Section 3 introduces the model and discusses its key assumptions. In Section
4 we describe under what conditions what types accept recommendations. Building on
that, we characterize the value of a recommendation system in Section 5, before turning
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to the design if value-maximizing and persuasive systems in Section 6. We then turn
to the extensions in Section 7 and Section 8 concludes. All proofs are relegated to the
appendix.

2 Related Literature
Our paper investigates the frictions in recommendation systems arising from preference
heterogeneity, and it asks how such systems can be designed to function reasonably well
nonetheless. As we will detail in the following, there are several papers that analyze other
sources of frictions and ask how they can be mitigated.

Public goods problems: Several papers on recommendations deal with public goods
problems that are related to the trade-off between exploration and exploitation, and
they deal with design issues to mitigate the problem. The common element in these
papers is that consumers choose between products based on the information that they
have (typically from previous recommendations of other consumers or from information
collected by the platform), and that they do not take into account the information that
their choices provide to society. Quite generally, the choice that is optimal from a pure
(individual) exploitation perspective may not reveal as much information as alternatives
might do, so that insufficient exploration results. An early version of this argument was
made by Kremer et al. (2014). Che and Hörner (2018) specify the point to the interesting
setting where some of the available choices are niche products that are not well known
and would need more exploration to find out whether they are useful or not. While these
papers assume that the set of products in the market is given, Vellodi (2022) goes a step
further by analyzing the implications of these mechanisms for market structure. Following
up on Che and Hörner (2018), he argues that, with unbiased review systems, even if the
entrant is of superior quality, she might suffer from the cold start problem whereby the lack
of recommendations makes it hard or impossible for entry to be sustainable. He argues
that such lack of contestability entrenches the incumbent as a monopolist.2 Compared to
this work, our paper takes the product choice of the senders and the resulting externalities
as given. Instead, we focus entirely on the inference problems that receivers face when
trying to extract information from recommendations.

The papers also contain closely related policy prescriptions that serve to mitigate the
public goods problem. In broad terms, the authors find that information transmission
should be limited or biased in a way that fosters information acquisition by consumers
(exploration). More concretely, in Kremer et al. (2014) argue that the designer should
be less than fully transparent, not supplying all the information she has to subsequent
consumers. In Che and Hörner (2018), the designer should sometimes recommend a
product that has not yet proven to be of good quality (to encourage exploitation). Vellodi
(2022) emphasizes potential welfare gains from suppressing reviews for incumbents, as this
can provide incentives for new firms to enter and remain active.3 In summary, all three

2He summarizes his point as: “well-established firms and products often have many hundreds of
reviews to their name, affording consumers unprecedented precision when making purchases. But while
this stockpile of information might serve incumbent firms to great effect, it might work against a new
entrant who unavoidably starts from scratch.”

3Similarly, Decker (2022) also argues that platforms may want to encourage consumers to provide
coarse information in recommendations. He starts from the observation that most ratings on Airbnb
are five stars, and that this rating behavior is actively encouraged by the platform. He argues that this
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papers identify public goods problems in the choices of consumers, and they show how
the designer can mitigate them by suitable aggregation and transmission of information.
Our paper is very different in that it does not deal with public goods issues. It is related
in that it asks what determines the informational content of recommendations.

Sender Selection: An alternative source of frictions in recommendation systems
comes from the selection of recommenders. As Acemoglu et al. (2022) argue, only con-
sumers with sufficiently strong ex ante preferences for a product will buy it in the first
place. Though their consumption experience may modify the ex-ante preferences in ei-
ther direction, the recommendation partly reflects this upward bias in the pool of recom-
menders. The receivers must therefore take this bias into account rather than taking the
recommendation at face value. The paper is related to ours in that it emphasizes the role
of preference heterogeneity for the proper interpretation of recommendations. Contrary
to us, however, it focuses exclusively on the implications for sender selection,

Non-truthful Recommendations: Positively biased recommendations may not
only reflect the selection of senders, they may also result from their strategic behav-
ior. For instance, Bolton et al. (2013) and Tadelis (2016) document that consumers on
eBay used to abstain from negative comments on sellers for fear of getting negative com-
ments themselves. Tadelis (2016) discusses the design implications of these issues – eBay
decided to refrain from allowing seller evaluations on buyers.

Receiver Behavior: A related empirical literature asks whether receivers make opti-
mal use of recommendations. Weizsäcker (2010) provides a meta-analysis of experimental
studies of herding games where subjects not only receive private information on the rela-
tive value of different alternatives, but can also draw inferences from previous choices of
other subjects. He finds that, conditional on being in a situation where it is empirically
optimal for the participants to contradict their own private information, they choose this
action, among two alternatives, in only 44 percent of the cases. In contrast, the partici-
pants are much more likely to choose optimally in cases where their own signal happens
to support the empirically optimal action: there, they follow their signal nine out of ten
times. Similarly, Ronayne and Sgroi (2019) document an unwillingness to follow expert
advice even where that would be beneficial for receivers to do, similarly Yaniv and Klein-
berger (2000). Our paper is related to this literature in that it provides a theoretical
benchmark that gives testable predictions on receiver behavior.

3 Model
We introduce the assumption of our model in Section 3.1, followed by a brief discussion
in Section 3.2.

3.1 Assumptions

In what follows we introduce our model in two steps, first introducing products and payoffs
before turning to recommendations and the updating of beliefs associated therewith.

deliberate reduction in the informativeness of the system may help to induce more consumers to use the
platform and that this is consistent with profit-maximizing behavior. He also takes the model to the
data in a structural model. In spite of the similarity in prescriptions (suppression of information), the
reasoning is different, as it does not rely on public goods arguments (and is driven by profit rather than
welfare maximization).
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Products and Payoffs A product is two-dimensional, where Qd = 1 and Qd = 0
capture high and low quality, respectively, in dimension d ∈ {1, 2}. Consumers have
heterogeneous preferences fully characterized by their type i ∈ [−1/2, 1/2]. A consumer
of type i receives a payoff of v(Q1, Q2, i) = (1/2 + i)Q1 + (1/2 − i)Q2 from consuming
product (Q1, Q2), and possible payoffs range from 0 to 1.4 Thus, all consumers obtain
the highest possible payoff 1 from consuming product (1, 1) and the lowest possible payoff
0 from consuming (0, 0). They, therefore, agree that products with (1, 1) and (0, 0) are
objectively good and bad, respectively. By contrast, the value from consuming (1, 0) or
(0, 1) depends on a consumer’s type i, so that the assessment of products (1, 0) and (0, 1)
is subjective. More specifically, consumers i > 0 prefer product (1, 0) over product (0, 1)
and vice versa for consumers i < 0. Consumers’ types are distributed according to some
distribution F . For now, we leave the distribution unspecified but assume continuity and
full support for simplicity.

We assume that the products are experience goods, so that a consumer cannot ob-
serve the quality vectors of a product before consumption. However, she knows the prior
distribution of the quality vectors, which is identical and independent across products.
We set

Pr[(Q1, Q2) = (1, 1)] = qH , Pr[(Q1, Q2) = (1, 0)] = q1,

Pr[(Q1, Q2) = (0, 0)] = qL, Pr[(Q1, Q2) = (0, 1)] = q2,

and write q = (qH , q1, q2, qL).

Recommendations and Updating Throughout the paper, we will consider a situa-
tion in which a consumer has the choice between a product that comes with a recom-
mendation and a product that does not. We distinguish between buy and don’t-buy
recommendations. Formally, the recommendations are defined as r ∈ {B,D, 0}, where 0
captures that no recommendation was received. We refer to our consumer of interest as
the receiver (of a recommendation) and to the consumer who made the recommendation
as the sender.

To eliminate any scope for strategic behavior on the part of the sender, we assume
that the sender is randomly chosen from the population according to the distribution
F and mechanically gives a buy or don’t-buy recommendation depending on the payoff
they have received from consuming some product. In particular, the sender sends a
buy recommendation if and only if she obtained a payoff of at least R ∈ [0, 1]. Hence,
a recommendation can be the result of an objective or a subjective assessment of the
product. For instance, the objectively good product (1,1) yielding a payoff of 1 will always
result in a buy recommendation, while the objectively bad product (0,0) will always yield
a don’t-buy recommendation. Whether the subjective products (1,0) and (0,1) yield a
buy or a don’t-buy recommendation depends on the sender’s type. For instance, following
the consumption of a (1,0) product, a sender of type i gives a buy recommendation if and
only if i ≥ R− 1/2.

Receiving a buy or a don’t-buy recommendation leads the receiver to update her
belief about the distribution of the quality vector of that product, taking into account the
uncertainty about the source of the recommendation and its informational content. To

4For convenience, we identify a product with the corresponding quality vector.
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describe the updated probabilities, we denote the probability of a buy recommendation
conditional on the product being (1, 0) or (0, 1), respectively, as

ϕ1(R) := 1− F (R− 1/2), ϕ2(R) := F (1/2−R),

Note that ϕ1(R) is the probability of a sender having a type of at least R− 1/2, whereas
ϕ2(R) is the probability of a sender having a type of at most 1/2 − R. Thus, having
received a buy recommendation, the posterior reads

pBH(R) =
qH

qH + q1ϕ1(R) + q2ϕ2(R)
, pB2 (R) =

q2ϕ2(R)

qH + q1ϕ1(R) + q2ϕ2(R)

pB1 (R) =
q1ϕ1(R)

qH + q1ϕ1(R) + q2ϕ2(R)
, pBL (R) = 0.

Similarly, a don’t-buy recommendation results in a posterior of

pDH(R) = 0, pD2 (R) =
q2(1− ϕ2(R))

q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL

pD1 (R) =
q1(1− ϕ1(R))

q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL
, pDL (R) =

qL
q1(1− ϕ1(R)) + q2(1− ϕ2(R))) + qL

.

We will use the notation πB ≡ πB(R) for the probability that a randomly chosen sender
gives a buy recommendation and πD ≡ πD(R) for the probability that a randomly chosen
sender gives a don’t-buy recommendation. Clearly,

πB(R) = qH + q1ϕ1(R) + q2ϕ2(R), (1)
πD(R) = q1(1− ϕ1(R)) + q2(1− ϕ2(R)) + qL, (2)

and πD = 1− πB.
Finally, we use the following summary terminology.

Definition 1 The decision environment is given by E := (q, F ). A recommendation
system R consists of a decision environment E and a recommendation threshold R ∈
[0, 1].

3.2 Discussion of the Framework

In the following, we discuss some aspects of the framework. We first highlight the role of
certain assumptions, and then we deal with interpretation.

First, when qH > 0 and qL > 0, the decision environment is such that all types agree
which product is the best and which is the worst (at least weakly). This is an immediate
implication of the fact that, for all consumers, utility is fully determined by the qualities in
each component and increasing in each of these qualities. Of course, there are conceivable
environments where there are no products which are objectively the best or obviously
the worst. For instance, there are clearly no such products in a modified version of our
setting where qH = 0 and qL = 0, as the valuations for the remaining products (1, 0) and
(0, 1) are perfectly negatively correlated. We nonetheless keep the specific feature of the
model, because we want to emphasize the complications arising from the coexistence of
the objective and subjective aspects of recommendations.

Second, there are some other aspects of the framework that we shall deal with sepa-
rately as extensions in Section 7. In the benchmark model of the current section, there
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are only two types of recommendations (“buy” or “don’t buy”), we will handle the case of
multiple levels of recommendations in Section 7.1. In Section 7.2, we return to the case
of two types of recommendations, but, in contrast to the benchmark, we allow for the
possibility that the receiver has access to more than one recommendation. Finally, the
recommendation threshold in the benchmark model is exogenous. In Section 7.3, we han-
dle the alternative that the threshold is endogenous, determined by the expected payoffs
that the receiver would obtain without a recommendation.

Third, the interpretation of the recommendation threshold in the benchmark model
needs some discussion. Our preferred way of thinking about it is as a design parameter. To
motivate this, we follow Decker (2022) who analyzes the five-star rating system of Airbnb
in a structural model. He argues that the platform advises its customers to give a five-
star rating to every host that provides reasonably good services and reserve lower ratings
exclusively to hosts that are very bad. One way to think of this using our setting would
be to argue that the platform is essentially using a coarse recommendation system, with
the vast majority of hosts receiving a buy recommendation and a small subset receiving a
don’t-buy recommendation. In our language, the recommendation threshold would then
be close to R = 0, so that the goods that are not recommended are typically objectively
bad. In that spirit, the threshold should not be taken too literally but rather thought of
as the guidance a platform such as Airbnb gives or as a social norm that has evolved or
is being actively shaped.

Finally, with a single threshold above and below which buy and don’t-buy recommen-
dations, respectively, are given, it is impossible to always reveal the product in question.
If, in contrast, the sender could simply give four different ratings depending on the con-
sumption experience, full revelation would be possible by associating a rating with each
product type. However, in practice the multi-dimensionality of products, which we model
here as simply as possible using four different product types, would typically render such
a full-revelation system infeasible, resulting in coarse information transmission as in our
model.

4 Optimal Receiver Behavior
In this section, we ask under which circumstances a receiver will accept recommenda-
tions, depending on his type i and the decision environment, comprising the probability
distribution over products as well as the type distribution. Finally, it includes the rec-
ommendation threshold, which, as argued above, can usefully be interpreted as a design
parameter. In Section 4.1, we first provide further terminology and some useful auxiliary
results. Section 4.2 then characterizes the optimal behavior of the receiver by identi-
fying thresholds dividing the type set into receivers that accept and do not accept the
recommendation.

4.1 Notation and Auxiliary Results

To understand how beliefs are updated after a recommendation, it is useful to decompose
the difference between beliefs with and without a recommendation into several compo-
nents. We illustrate this for buy recommendations. Let p(r) = (prH , p

r
1, p

r
2, p

r
L) denote the

vector of posterior probabilities following a recommendation r ∈ {B,D}. The total effect
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of the buy recommendation B on the probability vectors is the sum of three parts,

p(B)− q = (p(B)− q′′) + (q′′ − q′) + (q′ − q), (3)

where the three components of the right-hand side will be explained in Steps 1 to 3 below.

Step 1 The first effect of a buy recommendation is that the probability of an objectively
bad product falls to zero. We isolate this effect by assuming that the odds ratios
between the remaining events remain unchanged so that it corresponds to a change
from the prior probability q to q′ := ( qH

1−qL
, q1
1−qL

, q2
1−qL

, 0). This effect of the buy
recommendation states that all three quality profiles other than (0, 0) become more
likely at the expense of quality profile (0, 0).

Step 2 Next, the buy recommendation means that the objectively good product becomes
more likely relative to the subjectively good and bad products. We isolate this effect
by assuming that (i) the probability of (1, 1) increases to pH and (ii) the odds
ratios between the remaining events remain unchanged so that the effect corresponds
to a change from q′ := ( qH

1−qL
, q1
1−qL

, q2
1−qL

, 0) to q′′ := (pH , k
q1

1−qL
, k q2

1−qL
, 0), where

k = (1−pH)(1−qL)
q1+q2

to guarantee that q′′ is a probability vector. Clearly, pH > qH
1−qL

.

Step 3 Finally, the buy recommendation changes the odds between the subjective prod-
cuts. We isolate this effect as a change in the probability vector from q′′ :=
(pH , k

q1
1−qL

, k q2
1−qL

, 0) to p(B).

The first two steps of this decomposition are positive for any type of receiver and thus
capture objectively positive effects of a buy recommendation: The receiver knows that
the product is not objectively bad, and the probability of an objectively good product
is higher than without a recommendation. By contrast, an analogous decomposition for
the case of a don’t-buy recommendation reveals that after a don’t-buy recommendation,
the receiver knows that the product is not objectively good, and the probability of an
objectively bad product is higher than without a recommendation. Finally, the third step
of the decomposition captures heterogeneous effects on receivers. Moreover, the effect of a
recommendation on the odds of the two subjective products will depend on the parameters
of the model. Therefore, we introduce the following self-explanatory distinction.

Definition 2

(i) A recommendation r shifts probability from (0, 1) to (1, 0) if pr2 − q2 < pr1 − q1.

(ii) A recommendation r shifts probability from (1, 0) to (0, 1) if pr2 − q2 > pr1 − q1.

(iii) Otherwise, a recommendation r does not affect the probability between (0, 1)
and (1, 0).

Note that the terminology applies both to buy and don’t-buy recommendations. Intu-
itively, a recommendation shifts probability towards one of the two products that cannot
be compared objectively if it makes it relatively more likely than the other one of these
goods. In the case of a buy recommendation, this will happen if the ex-post probability
of the product after such a recommendation (relative to the other one of these products)
is high compared to the ex-ante probability.

10



We are now in a position to understand the effects of a recommendation on expected
payoffs and, thus, whether it is optimal for the receiver to accept a recommendation. To
this end, denote by UB

i and UD
i the expected payoff of player i of buying a product with

a buy and don’t-buy recommendation, respectively, and U0
i the expected payoff of buying

the alternative product with no recommendation.5 We have

U r
i = prH + pr1(1/2 + i) + pr2(1/2− i), r ∈ {B,D}, (4)

and

U0
i = qH + q1(1/2 + i) + q2(1/2− i). (5)

For an expected payoff maximizer, it is optimal to accept a buy recommendation if UB
i −

U0
i ≥ 0, that is, if the expected payoff from buying the recommended product is higher

than the expected payoff from buying the other product (that has no recommendation).
Similarly, it is optimal to accept a don’t-buy recommendation if UD

i − U0
i ≤ 0, that is,

if the expected payoff from buying the product without any recommendation is higher
than the expected payoff from buying the product with the don’t-buy recommendation.
Whether it is optimal to accept a recommendation depends on the receiver’s type i and
the parameters of the model, that is, the probability vector q and the type distribution F .
As our first result shows, it turns out that the condition for accepting a recommendation
is the same for buy and don’t-buy recommendations.

Proposition 1 For given probability vector q and the type distribution F , a receiver of
type i accepts a buy recommendation if and only if she accepts a don’t-buy recommendation.

Unless noted differently, all proofs are relegated to the appendix. Proposition 1 establishes
that the conditions under which a receiver i accepts a buy or a don’t-buy recommendation
are the same. Intuitively, following the above discussion, a receiver will accept a recom-
mendation if he thinks that it has sufficient objective content and/or that his tastes are
sufficiently aligned with those of the sender. Whether the recommendation is positive or
negative does not matter for this assessment.

4.2 Characterizing Optimal Receiver Behavior

Next, we ask which types i will accept a recommendation or not. Proposition 1 allows us
to consider only buy recommendations. We have

UB
i − U0

i ≥ 0

⇔pBH(R)− qH + (pB1 (R)− q1)(1/2 + i) + (pB2 (R)− q2)(1/2− i) ≥ 0,

⇔(pBH(R)− qH) +
pB1 (R)− q1

2
+

pB2 (R)− q2
2

≥ i[(pB2 (R)− q2)− (pB1 (R)− q1)]. (6)

To formulate this condition in compact form, we use the following terminology.
5There are different ways to interpret this setting. First, the consumer could face the choice between

two a priori identical (in terms of the distribution of the possible quality vectors) experience goods
and receive additional information about one of them in the form of a recommendation. Second, the
consumer faces the choice between an experience good and an outside option, where the expected payoff
of the experience good before receiving a recommendation coincides with the value of the outside option.

11



Definition 3

(i) The objective content of a recommendation r is defined as

∆r
O := prH(R)− qH +

pr1(R)− q1
2

+
pr2(R)− q2

2
(7)

(ii) The subjective content of a recommendation is defined as

∆r
S := (pr2(R)− q2)− (pr1(R)− q1) (8)

∆r
O is independent of i, capturing the effect of following the recommendation on the

average player (i = 0). Because of this feature, we can think of it as the objective
part of the effect of following the recommendation. By contrast, ∆r

S captures how the
recommendation affects the probabilities of products 1 and 2, about which the players
disagree – it is non-zero only if the recommendation affects these probabilities in different
ways. A positive (negative) value of ∆r

S corresponds to a positive (negative) effect of r
on the likelihood of product 2 relative to product 1. Whether each type of effect means
that a receiver of type i will feel more inclined to buy the product will obviously depend
on the sign of i, and is therefore subjective. Inequality (6) can thus be rewritten as

∆B
O ≥ i∆B

S . (9)

Thus, the acceptance of the recommendation hinges on the interplay of the objective
and subjective effects of the recommendation on the expected payoffs, captured by ∆B

O

and ∆B
S , respectively. To improve the intuition further, the next result is helpful.

Lemma 1 For any prior distribution q and any recommendation threshold R we have
∆B

O ≥ 0 and

(i) ∆B
S > 0 if a buy recommendation shifts the probability from (1, 0) to (0, 1);

(ii) ∆B
S < 0 if a buy recommendation shifts the probability from (0, 1) to (1, 0);

(iii) ∆B
S = 0 otherwise.

Intuitively, as laid out in the decomposition of the recommendation’s effect in equation (3),
the objective part ∆B

O of the recommendation must be positive, as it makes the objectively
good product more likely relative to the two subjectively good and bad products and rules
out the objectively bad product. By contrast, the sign of subjective content ∆B

S > 0 can
be positive or negative, corresponding to Step 3 in the above decomposition, with the
result of Lemma 1 following directly from the definition.

It will turn out to be useful to also consider the case when a receiver rejects a don’t-buy
recommendation, that is, buys the product despite it receiving a negative recommenda-
tion. Accordingly, player i rejects a don’t-buy recommendation if and only if

UD
i − U0

i ≥ 0

⇔pDH(R)− qH + (pD1 (R)− q1)(1/2 + i) + (pD2 (R)− q2)(1/2− i) ≥ 0,

⇔ ∆D
O ≥ i∆D

S . (10)

With this in hand, we obtain the following counterpart to Lemma 1.
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Lemma 2 For any prior distribution q and any recommendation threshold R we have
∆D

O ≤ 0. Further, πB∆
B
O = −πD∆

D
O and sgn(∆B

S ) = − sgn(∆D
S ) .

Intuitively, decomposing the effect of a don’t-buy recommendation as we did above for
a buy recommendation, ∆D

O captures the objectively bad effect on the expected product
quality, as the don’t-buy recommendation rules out the objectively good product and
makes the objectively bad one more likely than the subjective products. This decrease
in the recommended product’s objective value corresponds to the increase resulting from
a buy recommendation, yielding πB∆

B
O = −πD∆

D
O . Hence, a receiver will only reject

a don’t-buy recommendation if the subjective effect ∆D
S is sufficiently positive. Finally,

this subjective effect of a don’t-buy recommendation goes in the opposite direction of the
subjective effect of a buy recommendation. We can now determine how the behavior of
the receivers in terms of accepting or rejecting a recommendation depends on their type,
where, using equation (6), we define the indifferent type ĩ as

ĩ :=
∆B

O

∆B
S

if ∆B
S ̸= 0. (11)

Proposition 2

(i) If |∆B
S | ≤ 2∆B

O, then all i ∈ [−1/2, 1/2] accept the recommendation.

(ii) If ∆B
S < −2∆B

O, then all i ≥ ĩ accept the recommendation.

(iii) If ∆B
S > 2∆B

O, then all i ≤ ĩ accept the recommendation.

Note that Lemma 2 implies that in case (i), both buy and don’t-buy recommendations
leave the probability between the subjective products unchanged. Further, we could also
formulate cases (ii) and (iii) in terms of ∆D

S , in which case the signs of ∆D
S would just be

flipped according to Lemma 2.
The intuition for Proposition 2 is straightforward. For ∆B

S = 0, the recommendation
leaves the probability of the products 1 and 2 unaffected. Accordingly, accepting the
recommendation is optimal for all players because of its positive objective value ∆B

O ≥ 0.
For ∆B

S ̸= 0, this conclusion still holds as long as |∆B
S | remains small enough – as required

by (i): In that case, even the players who are most negatively affected by the subjective
content of the recommendation (those at i = 1/2 or i = −1/2) are convinced by its
objective character.

As |∆B
S | increases, the role of the shifting of the probability becomes apparent. Type

i ≥ 0 prefers product (1,0) over product (0,1). Hence, when the recommendation shifts
the probability from the latter to the former (∆B

S < 0), this yields a positive effect on
that receiver’s expected payoff, reinforcing the objective effect. By contrast, the expected
payoff of a type i ≤ 0 is adversely affected by the shift of the probability. The condition
in (ii) is always fulfilled for i > 0, as the objective and subjective effects reinforce each
other. It also holds when i < 0, as long as |i| is small enough that the adverse subjective
effect does not dominate the objective effect. Similarly, when the recommendation shifts
the probability from (1,0) to (0,1) (when ∆B

S > 0), types i > 0 experience a reduction in
their value, which can outweigh the positive objective effect. The condition in (iii) makes
sure that the latter case does not arise.

The following simple observation follows immediately from Proposition 2.
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Corollary 1

(i) If a recommendation increases the probability of (1,0), then all i ≥ 0 accept it.

(ii) If a recommendation increases the probability of (0,1), then all i ≤ 0 accept it.

The proof is omitted, as the result follows directly from showing that ĩ ≤ 0 in case (i) and
ĩ ≥ 0 in case (ii). Intuitively, a consumer who is indifferent between products (1, 0) and
(0, 1), only cares about the objective content of the information that the recommendation
conveys, and therefore always accepts a recommendation. A fortiori, the receivers for
whom the information increases the probability of the subjective product that they prefer
will also accept a recommendation.

Finally, we provide a result on the effects of changes in the recommendation threshold
R on receiver behavior.

Proposition 3 Suppose R → 1 or R → 0. Then, all types accept the recommendation
irrespective of the product distribution.

Essentially, in the limits, one of the recommendations contains only objective informa-
tion. When R → 1, buy-recommendations are only given when the product is objectively
good, while don’t-buy recommendations contain both subjective and objective informa-
tional content.6 When R → 0, every product receives a buy recommendation except the
objectively bad one so that the don’t-buy recommendation contains only objective infor-
mational content.7 We know from Proposition 1 that the equivalence condition is the same
for buy and don’t-buy recommendations. Thus, it does not matter which recommendation
is purely objective for all types to follow as long as one of them is.

Finally, the fact that all types follow the recommendation for these extreme thresholds
does not imply that the value of the recommendation system is maximal in these cases,
as we will see in the Section 6.

5 The Value of the Recommendation System
The previous section has characterized the optimal receiver behavior under a given recom-
mendation system. In the following, we characterize the value of recommendation systems
for a given economic environment. Before describing this value, we first describe the ex-
pected payoffs of a fixed type i, depending on whether she has access to a recommendation
system and whether she accepts it or not.

Without a recommendation system, the expected payoff of a receiver i is given by

V0(i) = qH + (1/2 + i)q1 + (1/2− i)q2, (12)

as this is the a priori expected payoff in the absence of a recommendation. Next, the
probability that the sender gives a buy recommendation is πB. In the presence of a

6Note that for R = 1 the probability of a subjective product leading to a buy recommendation is a
probability-zero event.

7Once more, note the probability-zero events leading to this observation.
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recommendation system, the expected payoff of a receiver i who accepts a recommendation
from a random sender i is thus given by

VA(i) =πB(R)
(
pBH(R) + (1/2 + i)pB1 (R) + (1/2− i)pB2 (R)

)
+ (1− πB(R))

(
qH + (1/2 + i)q1 + (1/2− i)q2

)
. (13)

Here the first term captures the probability of receiving a buy recommendation multiplied
by the expected payoff from accepting it (and thus buying the recommended product),
and the second term is the probability of a don’t-buy recommendation multiplied by the
expected payoff from buying the product without any recommendation, that is, based on
priors.8 Analogously, we obtain the expected payoff of a receiver i who does not accept
the recommendation as

VN(i) =πB(R)
(
qH + (1/2 + i)q1 + (1/2− i)q2

)
+ (1− πB(R))

(
pDH(R) + (1/2 + i)pD1 (R) + (1/2− i)pD2 (R)

)
. (14)

Naturally, the probabilities of the respective recommendations are the same as above.
However, the values for receivers now result from not accepting the recommendation,
that is, from buying the product without a recommendation after having received a buy
recommendation for another one and conversely, from buying a product for which one has
received a don’t-buy recommendation.

We now define the value of a recommendation system.

Definition 4 V (R), the value of a recommendation system R := (E , R), is the
expected increase in payoffs that comes from the existence of recommendations, where the
expectation is taken over all pairs of independently drawn senders and receivers.

Using this definition, we can characterize the value of a recommendation system as
follows.

V (R) =


∫ 1/2

−1/2
(VA(i)− V0(i))dF (i) if |∆B

S | ≤ 2∆B
0∫ ĩ

−1/2
VN(i)dF (i) +

∫ 1/2

ĩ
VA(i)dF (i)−

∫ 1/2

−1/2
V0(i)dF (i) if ∆B

S < −2∆B
0∫ ĩ

−1/2
VA(i)dF (i) +

∫ 1/2

ĩ
VN(i)dF (i)−

∫ 1/2

−1/2
V0(i)dF (i) if ∆B

S > 2∆B
0

(15)

To understand this result, recall from Proposition 2 that the change in probability from
products (1,0) to (0,1) essentially determines which types accept a recommendation: De-
pending on the sign and size of ∆B

S , either (i) all types accept a recommendation, (ii) all
types above the threshold ĩ accept a recommendation, or (iii) all types below the threshold
ĩ accept a recommendation. The difference between the expressions for ∆B

S < −2∆B
0 and

∆B
S > 2∆B

0 , respectively, comes from the fact that only types i > ĩ accept the recommen-
dation in the former case, whereas only types i < ĩ accept it in the latter case. In our
central result, we express the value of recommendation system in terms of its objective
and subjective content. Let M := max{−1/2, ĩ} and m := min{1/2, ĩ}. Then, after
simple rearrangements of (15) we obtain:

8We choose the notation VA(i) to emphasize the dependence of this expected payoff on the type of
the receiver. Clearly, the expression also depends on R and on the decision environment; similarly, for
the expressions below.
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Proposition 4 V (R), the value of the recommendation system with threshold R, is:

V (R) =
πB∆

B
O if |∆B

S | ≤ 2∆B
0

πBF (m)
[
∆B

O −∆B
SE[i | i ≤ m]

]
+ (1− πB)(1− F (m))

[
∆D

O −∆D
S E[i | i ≥ m]

]
if ∆B

S < −2∆B
0

(1− πB)F (M)
[
∆D

O −∆D
S E[i | i ≤ M ]

]
+ πB(1− F (M))

[
∆B

O −∆B
SE[i | i ≥ M ]

]
if ∆B

S > 2∆B
0

The above expressions can be interpreted as follows. When ∆B
S = 0, the recommen-

dation does not affect the relative probabilities of (0, 1) and (1, 0). Accordingly, it follows
from equation (6) that all receivers accept the recommendation and benefit from the ob-
jective increase ∆B

O in expected payoffs after a buy recommendation (that arises with
probability πB). When ∆B

S ̸= 0, the analysis is more complex. We will interpret the term
for V (R) for ∆B

S > 0, the argument for ∆B
S < 0 is analogous.

If ∆B
S > 0, the buy recommendation shifts probability from (1, 0) to (0, 1), which is

unfavorable for receivers i > 0, reducing their gains from accepting and possibly making it
negative. Indeed, if ∆B

S is sufficiently large that ĩ < 1/2 and thus m = min{̃i, 1/2} < 1/2,
Proposition 2 implies that only a fraction F (m) of the receivers accepts a buy recommen-
dation. The term −∆B

SE[i | i ≤ m] captures the average effect of the shift in the relative
probabilities of (1, 0) and (0, 1) on the value of accepting the recommendation for these
buyers. The sign of this effect depends on the distributional properties of F captured in
E[i | i ≥ M ]: It will be positive if the positive contribution of types i < 0 dominates the
negative contributions of types i ∈ (0, 1).

The second component of the value of the recommendation system for ∆B
S > 0 is

arguably more surprising. In brief, it comes from receivers who do not accept a don’t-buy
recommendation because, given their lack of alignment with the rest of the population,
they treat the recommendation not to buy as good news about the product. In more detail,
a don’t-buy recommendation (which happens with probability 1− πB) carries an adverse
objective content (as summarized in the term in squared brackets by ∆D

O). However, for
buyers with i > 0 the don’t-buy recommendation also carries some good news, namely
that the product is more likely to be of the preferred type (1, 0) rather than (0, 1). Those
with i > m(> 0) then buy the product in spite of the adverse objective content, valuing
the beneficial subjective effect with −∆D

S E[i | i ≥ m] > 0 on average.9 Such receivers
exist only if ∆B

S is sufficiently large (and hence ∆D
S is sufficiently negative relative to ∆D

O).
In the following, we shall often invoke the following symmetry assumption.

Assumption 1 F (−x) = 1− F (x) for all x ∈ [−1/2, 1/2].

With this assumption in place, the following quantity has a simple interpretation.

β := F (1/2−R). (16)

It captures the fraction of the population that is willing to recommend product (1, 0)
or, equivalently (given the symmetry of the distribution), product (0, 1). For fixed type
distribution F , β and R are inversely related. In the symmetric setting, it is possible
to provide a simple expression for V (R) that allows for transparent comparative statics
results. To this end, a reparametrization is helpful:

9Note that −∆D
S E[i | i ≥ m] is positive: By Lemma 2, ∆B

S > 0 implies ∆D
S < 0.
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Definition 5 The degree of subjectivity of the recommendations is given as Q := q1+q2
2

.
The odds of an objectively good product are σ := qH/qL.

Using these parameters, we can rewrite the value of the recommendation system as follows.

Proposition 5 Suppose Assumption 1 holds. Then, irrespective of the change in proba-
bilities between (1,0) and (0,1), all types follow the recommendation. Moreover,

V (β) = πB∆
B
O = (1− 2Q)

σ +Q (β − σ + σ2(1− β))

(σ + 1)2

To prove this, observe that, under Assumption 1, min{∆B
O+

∆B
S

2
,∆B

O− ∆B
S

2
} ≥ 0. Then,

according to Proposition 2, for any shift in probabilities between (1,0) and (0,1), all types
follow. Thus, using Proposition 4, we can write the value of the recommendation system
as πB

[
∆B

O −∆B
SE[i]

]
. Because of the symmetry of the population, we have E[i] = 0, so

the value of the recommendation system is given by πB∆
B
O, which we can rearrange as

written in the proposition.
In this symmetric setting, β ∈ [0, 1] is a sufficient statistic capturing the influence of

the distribution and the recommendation threshold on the value. In addition, the value
of the recommendation system depends on the degree of subjectivity Q and the odds of
the objectively good product σ.10 Studying the value of the recommendation system as
a function of β is particularly interesting, as it allows to capture different aspects of the
model. We can interpret changes of β as either changing the threshold R for a given
distribution F of as changes of in the distribution F for a given threshold R.

6 Optimal Design of Recommendation Systems
In the previous section, we have obtained a general and intuitive characterization of the
value of a recommendation system with threshold R. We now turn to design issues,
focusing on the role of the recommendation threshold as a design parameter. In doing
so, we begin by deriving the optimal recommendation threshold for the symmetric model,
before looking into the implications of relaxing this assumption.

We start by proving the following auxiliary result, showing that the effect of changes
in β on the probability of a buy recommendation and the average value of accepting it
may be countervailing, resulting in a non-trivial relation between β and V (β) = πB∆

B
O.

Lemma 3 Suppose that Assumption 1 holds. Then

(i) πB is strictly increasing in β;

(ii) ∆B
O is strictly decreasing in β;

(iii) ∂2V
∂β∂σ

< 0.

(iv) the value of the recommendation system is maximized for β∗ = 1 if σ < 1 and for
β∗ = 0 if σ > 1.

10Observe that by varying R we can obtain any β ∈ [0, 1].
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The results reflect the assumption of a symmetrically distributed population. Under
symmetry, all receivers follow the recommendation, so that the buying probability is iden-
tical to the likelihood of a buying recommendation. Therefore, result (i) is immediately
intuitive given the interpretation of β as the fraction of the population that recommends
products (1, 0) or the fraction of the population that recommends (0, 1). Turning to (ii),
as β increases, a greater fraction of the population is willing to recommend (1, 0) and
(0, 1). Thus, the likelihood that a buy recommendation refers to an objectively good
product falls. Put differently, the informational content of the recommendation becomes
less objective and the objective part of the recommendation ∆B

O falls.
Next, the average subjective effect of the recommendation cancels out as E[i] = 0.

Therefore, V (R) = πB∆
B
O. To understand (iii) and (iv), we thus need to understand the

effect of β on this product. From part (ii), we know that the objective component ∆B
O is

strictly decreasing in β. Moreover, as σ increases (high states become more likely relative
to low states), the probability of a buy recommendation becomes larger. Therefore, having
a high share of objective goods is particularly valuable when β is low. This explains result
(iii). While this result immediately implies that value-maximizing level of β must be
weakly increasing in σ, result (iv) is much stronger, stating that only boundary solutions
can arise. Intuitively, the symmetry assumption renders the problem linear in β, yielding
a corner solution, the nature of which is in line with the implication of (iii) that the
value-maximizing level of β must be increasing in σ.

With Lemma 3 in hand, it is easy to derive the threshold that maximizes the value of
the recommendation system.

Proposition 6 Suppose Assumption 1 holds. Then, the value of the recommendation
system is maximized for

(i) R∗ = 0 if σ < 1;

(ii) R∗ = 1 if σ > 1;

(iii) any R∗ ∈ [0, 1] if σ = 1.

The result is an immediate implication of Lemma 3(iv), as R = 0 corresponds to β = 1
and R = 1 corresponds to β = 0. The above intuition for the value-maximizing choice
of β thus translates directly to the choice of R: for R = 1 the informational content
of a buy recommendation is purely objective, while for R = 0 it is purely objective for
a don’t-buy recommendation. Hence, by choosing either a threshold R = 1 or R = 0
the designer is choosing in what case the recommendation system is purely objective
and when it is rather subjective. Following the above logic, therefore, objectively good
products are more likely than objectively bad ones (i.e., when σ > 1), an objective buy
recommendation maximizes the value of the recommendation system and vice versa when
bad products are more likely (σ < 1).

The assumption of a symmetric population allows for a relatively clean interpretation
of the role of objective information in determining the (optimal) value of the recommen-
dation system since the subjective component cancels out due to the symmetry in the
population. However, the assumption of a symmetric population may prove restrictive
depending on the context and does not allow us to study the role of the subjective com-
ponent in the optimal design of the recommendation system. To make headway in that
direction, we make the following assumption.
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Assumption 2 We have q1 = q2 = Q and let F (x) = (x+ 1/2)a for a > 0.

By assuming that the subjective products are a priori equally likely, we ensure that any
shift in the probabilities between the subjective products following a recommendation is
purely driven by the asymmetry in the population. Together with the parameterization of
the distribution of types in the population, this allows for a relatively tractable analysis.
Importantly, we can model situations in which there are more or less people who prefer
product 1 over product 2 and vice versa.

Before we turn to the optimal design of the threshold, we obtain the following corollary
of Proposition 2.

Corollary 2 Suppose Assumption 2 holds. Then, we have:

1. ∆B
S = 0 if a = 1.

2. ∆B
S < 0 if a > 1.

3. ∆B
S > 0 if a < 1.

Thus, as mentioned above, any shift in the probabilities between the subjective products
is driven by the distribution of the types. More precisely, when types are symmetrically
distributed (a = 1) we have no shift. When the distribution of types is convex (a > 1),
so that more people prefer product 1 over product 2, the probability is shifted to product
1. The reason is that a buy recommendation is more likely to come from a person who
prefers product 1, so that product 1 is relatively more likely than product 2 after a buy
recommendation. Analogously, when the distribution of types is concave (a < 1), the
probability is shifted to product 2.

We can now gauge the extent to which the corner solution in Proposition 6 is an
artefact of the symmetry assumption.

Proposition 7 Suppose Assumption 2 holds. The optimal threshold R∗ is interior, i.e.,
R∗ ∈ (0, 1), if

a

a+ 1
≷ Q+ qH ≷

1

a+ 1
for a ≶ 1.

We can infer two things from this result, which is illustrated in Figure 1. First, when
a is sufficiently close to 1, the parameter space for which an interior solution exists,
vanishes. Hence, the corner solution in Proposition 6 is not simply the result of a knife-
edge condition. Second, even when the distribution of the types is very asymmetric, i.e.,
when a is either very large or very close to 0, an corner solution may exist for some
parameters.

It is difficult to derive the optimal threshold under Assumption 2, since changes in the
in the threshold may change the set of types that accept a recommendation. However, it
is possible to derive the solution for specific numerical examples, that are insightful and
representative of the solution more generally. Suppose a = 2, σ ∈ [0.2, 5] and Q ∈ (0, 0.3].
For these parameters, we can show that all types accept recommendations so that the
value of the recommendation system can be written as

V (R) = πB

[
∆B

O −∆B
SE[i]

]
=

3σ − 6Q2(1−R− σ +Rσ2)−Q(9σ − 3 +R2(1 + σ)2 + 2R(1− σ − 2σ2))

3(1 + σ)2
.
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Figure 1 Illustration of the result in Proposition 7. The shaded area captures the param-
eter space in which an interior solution arises. Clearly, near a = 1, this space colappses
and no interior solution exists for a = 1, while the the space expans fully for a → 0,∞.

Further, we can show that this function is quasiconcave in R so that applying the Karusch-
Kuhn-Tucker Theorem (e.g., Sundaram, 1996, Theorem 8.13) gives the solution

R∗(σ,Q) =


0 if σ < 3Q−1

3Q−2
2σ−1−3Q(σ−1)

σ+1
if 3Q−1

3Q−2
≤ σ ≤ 3Q−2

3Q−1

1 if σ > 3Q−2
3Q−1

.

(17)

Comparing this to the solution in the symmetric case in Propositio 6 is instructive. There,
the optimal threshold was R∗ = 1 for σ < 1. In the asymmetric example above we
still get the corner R∗ = 1 when σ is sfficiently large. Analogously, we still get a an
optimal threshold of R∗ = 0 when σ is sufficiently small. However, there is a wedge
around σ = 1 for which the interior solution obtains. Just as in Proposition 6, setting
R = 1 makes a buy recommendation fully objective. Consequently, the subjective value
of the recommendation ∆B

S is zero. Further, the probability of the buy recommendation
is minimized at πB = qH . However, since the objectively good product is so likely, it’
is still optimal to proceed in this way. As σ falls, however, the objective value of the
buy recommendation falls, while the subjective value increases for any R ̸= 1, 0. Hence,
at some point the value of the objective content no longer dominates the value of the
subjective content. Thus, it becomes optimal to lower the threshold, thus also including
(on average positive) subjective information in the buy recommendation by lowering the
threshold. Moreover, this increases the probability of a buy recommendation, which is
also increasing the value of the recommendation system. As σ falls further, the objective
value of the buy recommendation falls further, while the subjective value increases further
eventually leading to the case where the subjective value dominates the objective one.
Finally, when the objectively good product has a sufficiently high probability, i.e., when
σ is sufficiently high, it is optimal to set R = 0, thus fully objectifying the now relatively
likely don’t-buy recommendation.
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Figure 2 We have fixed R = 3/4. The green and blue line both correspond to symmetric
type distributions. For F given by the green line, we have β = 1/2, whereas β = 0
for the blue line. All probability mass is on [−1/4, 1/4] for β = 0 while all mass is on
[−1/2,−1/4] ∪ [1/4, 1/2] for β = 1/2. Hence, as we move from β = 0 to β = 1/2 we are
employing a mean-preserving spread of the distribution of types.

6.1 The Effect of the Degree of Subjectivity and of Polarized
Populations

Having gained a clear understanding of the optimal design of the recommnendation thresh-
old, we turn our attention to two comparative-static exercises. We first study the effect
the degree of subjectivity Q has on the value of the recommendation system and then
consider changes in the polarization of the population. For this to be tractable, we restrict
attention throughout this section to the symmetric-population case.

6.1.1 The Effect of a Mean-preserving Spread

In the discussion so far, we have kept the distribution of types F fixed, and by varying
β, we have varied the threshold R with the goal of reaching some objective. We will now
consider the opposite case, where we fix the threshold R and vary the distribution F .11

Specifically, we ask how a mean-preserving spread of the distribution of types affects the
value of the recommendation, thus conducting comparative statics on the polarization of
the population. For the symmetric population, such a mean-preserving spread can also be
captured by varying β. When R > 1/2, an increase in β corresponds to a mean-preserving
spread of the distribution of types, as illustrated in Figure 2. When R < 1/2, a decrease
in β corresponds to a mean-preserving spread of the distribution of types. Together, we
obtain the following result.

Proposition 8 Suppose Assumption 1 holds.

1. Suppose σ < 1. Then a mean-preserving spread in the distribution of types increases
the value of the recommendation system for R > 1/2 and decreases it for R < 1/2.

2. Suppose σ > 1. Then a mean-preserving spread in the distribution of types decreases
the value of the recommendation system for R > 1/2 and increases it for R < 1/2.

11Note that for R = 1/2 we must have β = 1/2 because the symmetry of F requires F (0) = 1/2, so
this exercise is only meaningful for thresholds R ̸= 1/2. Further, for R > 1/2 we must have β ≤ 1/2
because β = F (1/2−R) ≤ F (0) = 1/2. Accordingly, for R < 1/2 we must have β ≥ 1/2.
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Consider the case σ < 1 with a threshold R > 1/2 to gain some intuition for the
result. From Proposition 6 we know that in that case the value of the recommendation
system is maximized for β = 1, which yields an objective don’t-buy recommendation,
which is observed with probability πD = qL. Now, with a threshold of R > 1/2, a
buy recommendation is given for objectively good products and for subjective products
when the sender is sufficiently extreme, i.e., for very low or very high i. As noted above,
increasing β corresponds to a mean-preserving spread of the distribution of types given
the threshold R, which means that the buy recommendations are more likely to be the
result of subjective products, thus increasing the probability of buy recommendations
while lowering their objective value. However, for σ < 1 this is the value-maximizing
thing to do, as objectively good products are relatively unlikely in that case. Thus, given
a high recommendation threshold of R > 1/2, a more polarized population benefits more
from the recommendation system. Conversely, when the recommendation threshold is
relatively low with R < 1/2, a less polarized population centered around the middle
benefits more from the recommendation system than a more polarized one.

6.1.2 The Effect of the Degree of Subjectivity

Finally, we consider the role of the degree of subjectivity in the product distribution.
Given the discussion above, one might expect that a recommendation system is more
valuable when subjective products are relatively unlikely, that is, for low degrees of sub-
jectivity Q. The following result shows that this notion is only partly correct.

Corollary 3

(i) If 3σ−β−σ2+σ2β > 0, then the value of the recommendation system Q is decreasing
in Q. In particular, this is the case when σ = 1.

(ii) If 3σ − β − σ2 + σ2β < 0, then the maximal value of the recommendation system is
achieved for the interior value Q∗ := 3σ−β−σ2+σ2β

4σ−4β−4σ2+4σ2β
∈ (0, 1

2
).

To gain some intuition for this result, it is useful to rewrite the condition to obtain an
interior solution to

σ(3− σ)

1− σ2
< β if σ < 1,

σ(3− σ)

1− σ2
> β if σ > 1.

Recall from Proposition 6 that for σ > 1 it is optimal to set β = 0, corresponding to
R = 1. That is, it is optimal to make the buy recommendation fully objective. The above
condition tells us that there is an interior solution if and only if the β is sufficiently small
and thus sufficiently close to that optimal solution. Suppose β is sufficiently small so that
the value of the recommendation system is maximized at an interior Q and consider the
corner cases of Q → 0 and Q → 1/2. In the former case, subjective products are virtually
non-existent, and the only thing a buy recommendation does is confirm that the product
is objectively good, which was already a priori more likely. As such, the receiver does
not learn much from the recommendation system, reducing its value. In the latter case of
Q → 1/2 with a sufficiently small β and thus sufficiently high R, very few (albeit relatively
objective in content) buy recommendations are sent, so that the system is once more not
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very valuable. At an interior Q, these effects balance out so that buy recommendations
are sent sufficiently often and convey relatively objective and, thus, valuable information.

To complete the picture, suppose β is not sufficiently small, so that the value of the
system is decreasing in Q. In that case, the relatively high β and thus low R mean that the
buy recommendation is fairly subjective in its informational content. Given that σ > 1,
this is not desirable for the receiver. As Q decreases, the subjective products become
less likely, thus making buy recommendations more objective and more likely and thereby
increasing the value of the recommendation system.

7 Extensions
Our benchmark model relied on several assumptions. First, there were only two levels of
recommendations (”buy“ and ”don’t buy“). Second, the recommendation threshold was
exogenously given. Third, each receiver only has access to one recommendation. We now
relax each of these assumptions in turn.

7.1 Multiple levels of recommendations

We now consider an alternative recommendation system that nests the benchmark model.
There are two threshold levels R2 ≥ R1 both in [0, 1] and three types of recommendations
r ∈ {D,N,B} which we interpret as “don’t buy”, “neither buy or don’t buy” and “buy”.
A buy recommendation obtains if the payoff was above R2, a don’t buy recommendation
obtains if the payoff was below R1 and neither obtains for payoffs in (R1, R2).

In Appendix A.1, we provide the resulting posteriors. For buy and don’t-buy recom-
mendations, they are analogous to the benchmark, except that the different thresholds in
each case have to be taken into account. As in the benchmark model, the highest and
lowest rating rule out the objectively bad and the objectively good product, respectively.
The intermediate rating r = N , however, rules out both objective products and is thus
fully subjective in its informational content.

In the modified setting, it is natural to say that a receiver accepts a recommendation
if he buys after a buy recommendation, does not buy after a don’t buy recommendation,
whereas the behavior in the intermediate case is arbitrary.

To maintain tractability in the face of the high number of different cases that can arise,
we assume a symmetrically distributed population and equally likely subjective products.
Thus, we assume that Assumption 1 holds and that q1 = q2 = Q. With this in hand,
the posteriors above simplify substantially (see Section A.1), and it is easy to verify that
the receiver will always buy a product with the highest rating r = B, and never buy
one with the lowest rating r = D. A product with the middle rating r = N is bought
if and only if 1/2 ≥ qH + Q ⇔ qL ≥ qH . Intuitively, the intermediate rating r = N
rules out both objective products. Whether this is overall good or bad news depends on
the relative likelihood of the objectively good and bad products. Indeed, ruling out the
objective products is good news if and only if the bad product is more likely than the
good one. Finally, observe that because of the two symmetry assumptions, all of this was
independent of the receiver’s type, so that all types will behave in the same way. Thus,
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the value of this recommendation system can be written as

V (β, γ) =(qH + 2Qβ)

(
qH + qβ

qH + 2qβ
− (qH +Q)

)
+ [1− (qH + 2Qβ)− (1− qH − 2Qγ)]max{1/2− (qH +Q), 0}.

The term in the first line corresponds to πB∆
B
O in our benchmark model and captures

the value that is generated when the highest rating r = B is received. The second term
captures the additional value that may come from the intermediate rating r = N , which
only arises if qL ≥ qH . As such, the problem closely mirrors that in the benchmark
model. Before we state the corresponding result, observe that R1 and R2 are implicitly
determined by β and γ and since R2 ≥ R1 we must have γ ≥ β.

Proposition 9 The optimal thresholds R∗
1 and R∗

1, are such that

γ∗ = 1 if σ < 1

β∗ = 0 if σ > 1

Thus, the optimal recommendation system, in many ways, mimics that in the bench-
mark model, where Proposition 6 is the point of comparison. Essentially, the designer
again try to maximize the probability of an objective rating. Depending on what objective
product is a priori more likely, it is either the high or the low ranking which is turned
fully objective by choosing the right thresholds. Since the intermediate rating is always
subjective, it can effectively be bundled together with the not-objective rating, so that
one of the two thresholds can always be chosen freely without affecting the value of the
recommendation system. This is, of course, an artifact of the symmetric population and
equally likely subjective products, where the intermediate rating conveys no information
beyond ruling out the objective products.

7.2 Multiple recommendations

We now consider the situation where the receiver obtains not only a single but multiple
recommendations. Just as before, they are sent from randomly drawn individuals from
the population.

In Appendix , we provide the posteriors, depending on the number of buy recom-
mendations (b) and don’t-buy recommendations (d). Just as before, a single buy rec-
ommendation is enough to rule out the objectively bad product and a single don’t-buy
recommendation is enough to rule out the objectively good product. Consequently, when
the receiver receives mixed recommendations, that is, both buy and don’t-buy recom-
mendations, she rules out both objective products. We are first interested in determining
what the receiver can learn about the product quality as the number of recommendations
increases.

Proposition 10 Consider the case of a symmetric population with any thresholds R ∈
(0, 1). If the receiver obtains only buy or don’t-buy recommendations, respectively, then
her posterior belief converges to the objectively good or bad product, respectively, as the
number of recommendations increases. If the receiver obtains mixed recommendations,
then p1(b, d)/p2(b, d) = q1/q2 and pH(b, d) = pL(b, d) = 0 for any b, d > 0.
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Thus, in the case of a symmetric population, it is never possible to learn which of the
two subjective products is being recommended. This is a direct result of the symmetry
assumption of the population: irrespective of the threshold, the probability of receiving a
(don’t-) buy recommendation is the same for both subjective products so that the receiver
cannot learn anything about the relative likelihood of the two products. Moreover, the
ability to fully learn about the objective products in the case of homogenous recommen-
dation is tightly connected to the recommendation system in place, as evidenced by the
following corollary.

Corollary 4 Consider the case of a symmetric population with threshold R ∈ {0, 1}.
Then, the receiver will never get mixed recommendations and obtaining more than one
recommendation does not lead to additional learning. Moreover, the product is only re-
vealed if it is objectively good or bad, respectively, when the threshold is R = 1 or R = 0,
respectively.

With the extreme thresholds, the subjective products are indistinguishable from the
objectively good or bad product, respectively, when the threshold is R = 0 or R =
1. Hence, in those cases, everything the receiver can learn is learned from the first
recommendation.

The above results suggest, not very surprisingly, that receiving more recommendations
allows the receiver to learn more about the recommended product quality. However, it is
not clear how this translates into the value of the recommendation system. To make the
point as starkly as possible, we consider the case of “infinite learning” and compare it to
the case of receiving a single recommendation as in the main text. To do so, we first need
to characterize the value of the recommendation system in the limit with infinitely many
recommendations. It follows from Proposition 10 that the receiver can learn most from
multiple recommendations when the threshold is not extreme. In that case, the objective
products are revealed with probability 1. In the case of subjective products, nothing can
be inferred beyond the fact that the product is subjective. Thus, it is not clear whether
a receiver i would want to buy the product with mixed recommendations or the outside
option. As we will see, the question of which receivers buy the product is quite relevant
for the value of this “infinite learning” recommendation system. First, let us characterize
the receiver’s behavior. Let

ĩ∞ :=
(qH − qL)(q1 + q2)

(1− q1 − q2)(q1 − q2)
,

so we can formulate the following result.

Lemma 4 Consider the “infinite learning” recommendation system with interior threshold
R ∈ (0, 1). Then,

(i) any receiver type i ∈ [−1/2, 1/2] buys the product if it is objectively good;

(ii) no receiver type i ∈ [−1/2, 1/2] buys the product if it is objectively bad;

(iii) if the product is subjective,

(a) and q1 > q2, all receiver types i ≥ ĩ∞ buy the product;
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(b) and q1 < q2, all receiver types i ≤ ĩ∞ buy the product.

(c) and q1 = q2, all receiver types i ∈ [−1/2, 1/2] buy the product if qL ≥ qH and
none buy it if qL < qH .

The first two cases of the lemma are obvious. To understand the last case, observe that
the receiver knows that the recommended product is either (1,0) or (0,1). If the probability
of the former is sufficiently high (Case, iii.a), types who care sufficiently strongly about
the first dimension will buy it. Note, however, that it might be that not even type i = 1/2
buys it, if qH is sufficiently high, in which case the outside option may be more attractive.
It is precisely this objective effect that leads to Case iii.c when q1 = q2. Finally, an
analogous interpretation applies to Case iii.b. With this in hand, we obtain that the
value of the “infinite learning” recommendation system is given by

V∞ = qH

∫ 1/2

−1/2

(1− V0(i))dF (i) + (q1 + q2)

∫
I

(
1

2
+ i

q1 − q2
q1 + q2

− V0(i)

)
dF (i),

where I is the set of types who buy the recommended good according to Lemma 4. We
can now determine when infinite learning is (not) valuable.

Proposition 11 Suppose the population distribution is symmetric. Then, having multiple
recommendations does not increase the value of the recommendation system if q1 = q2 or
if q1 ̸= q2 and

qH /∈
[
min

{
1− q1 − q2

2
,
−3q22 − 4q1q2 + 3q2 − q21 + q1

4(q1 + q2)

}
,max

{
1− q1 − q2

2
,
−3q21 − 4q1q2 + 3q1 − q22 + q2

4(q1 + q2)

}]
To grasp this result intuitively, consider first the receiver’s behavior in the single-recommendation
system. With a threshold of R = 0, the receiver buys the recommended product when it
is objectively good or subjective. In contrast, with a threshold of R = 1, the receiver buys
the recommended product only when it is objectively good. In the optimal system, the
former happens when qH < ql and the latter if qH ≥ qL. Now, in the “infinite learning”
system, behavior coincides when the product is objective in quality. Thus, the key point
lies in behavior regarding subjective products, which corresponds to the case of mixed
recommendations. When qL is sufficiently high, the outside option looks relatively bleak
and so any type will buy either of the subjective products. Analogously, when qH is
sufficiently high, any type will buy the recommended product. Thus, when the objective
probabilities are sufficiently extreme, the behavior coincides and receiving multiple rec-
ommendations does not increase the value of the recommendation system. Only when the
objective probabilities are sufficiently close to each other, behavior do differ. For instance,
when q1 > q2, low types who value the second dimension more strongly, which is less likely
to be high in that case, will opt for the outside option rather than the subjective product,
so that the value of the system with multiple recommendations is higher than that of the
single-recommendation system, as it provides more granular information.

7.3 Endogenous Recommendation Threshold

The recommendation threshold was so far an exogenously given value. As we have argued
in Section 3.2, the threshold should not be taken too literally but rather interpreted as
something being shaped by the designer of the platform or as a social norm that has
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evolved. Such a norm could be to give a buy recommend a product when it was better
than initially expected. As such, the recommendation threshold is endogenous, which we
consider in this extension. Thus, an agent i sends a buy recommendation whenever the
payoff is at least the prior expected payoff qH + q1(1/2 + i) + q2(1/2 − i). In that case,
posteriors take the following form ....

It is straightforward to verify that Propositions 1 and 2 still hold in this case. We are
interested in how the value created by this recommendation system compares to those of
a fixed threshold as in the main model.

For the sake of tractability, we assume equally likely subjective products q1 = q2 = Q
and consider a uniformly (and thus symmetrically) distributed population. Then, we
obtain that i1 = 2qH+2q−1

2
and i2 =

1−2qH−2q
2

= −i1 thus implying that F (i2)−(1−F (i1)) =
(−i1 + 1/2)− 1 + (i1 + 1/2) = 0. Using this we get

∆B
S = [(pB2 (R)−Q)− (pB1 (R)−Q)]

= Q

(
F (i2)

qH +Q(1− F (i1)) + F (i2)
− (1− F (i1))

qH +Q(1− F (i1)) + qF (i2)

)
= 0

so that all types follow the recommendation according to Proposition 2. Further, by
Proposition 4 we obtain that the value of the recommendation system is given by

VE = (2Q− 1)
(
Q2 +Q(2qH − 1)− (1− qH)qH

)
.

Naturally, since the recommendation threshold is endogenously determined, this expres-
sion does not depend on R. The question is how it compares to the system where the
threshold is exogenous and optimally chosen as in the benchmark model.

Proposition 12 Suppose q1 = q2 = Q and F (x) = x + 1/2. Then the value of the
recommendation system in the endogenous-threshold model is strictly lower than in the
benchmark with the optimally chosen threshold whenever σ ̸= 1 and equal when σ = 1.

The result can be understood quite easily by observing that with equally likely sub-
jective products, the outside option is type-independent and given by qH +Q. Thus, the
endogenously determined reference point corresponds to the model with an exogenously
given reference point of R = qH + Q. Since the solution to the benchmark model is to
generically have a corner solution, the only case in which the value of the system with
an endogenously determined threshold is optimal is when σ = 1, as then any threshold is
optimal.

7.4 Revenue-maximizing platform

We now embed our recommendation system into a simple model of a revenue-maximizing
platform. Suppose that one of the products the consumer can buy is being offered on a
platform that designs the recommendation system. Consumers’ expected payoff should
thus be interpreted as net of the product’s price. We assume that for every unit of the
product sold via the platform, the platform gets a revenue cut of α > 0. The platform’s
objective is to maximize its revenue. In the absence of a recommendation system, the
product offered via the platform is a priori identical to the outside option and we assume
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that a fraction γ ∈ [0, 1] of consumers buy the product on the platform. In this setting,
should the platform introduce a recommendation system and if so, what is the optimal
threshold?

In general, we can deduce from Propositions 2 and 4 that, following the introduction of
a recommendation system with a threshold R, the demand for the recommended product
will be

D(R) =


πB if ∆B

S = 0

πBF (m) + (1− πB)(1− F (m)) if ∆B
S > 0

(1− πB)F (M) + πB(1− F (M)) if ∆B
S < 0,

where M := max{−1/2, ĩ} and m := min{1/2, ĩ}. Further, we know from Proposition
3 that all types accept a recommendation for R = 0 and none do for R = 1, so that
D(R) = πB in those cases. More precisely, we have D(0) = qH + q1 + q2 and D(1) =
q1 + q2 + qL. For intermediate thresholds and depending on the distribution of types
as well as the product probabilities, the demand will be somewhere in between. For
instance, in the case of a symmetric population, we will always have D(R) = πB, as all
types accept a recommendation in that case. Then, it is optimal to set R = 0, as it ensures
the highest probability of buy recommendations and thus yields the highest demand. For
asymmetrically distributed populations, it could in principle be that the demand is higher
for intermediate thresholds. Intuitively, while a higher threshold decreases the probability
of a buy recommendation, it could lead to some types who reject the recommendation and
thus buy the product whenever they receive a don’t-buy recommendation. If this happens
sufficiently often for sufficiently many types, an interior threshold could be optimal. The
following result provides a sufficient condition for the extreme threshold R = 0 to be
optimal for any population distribution.

Proposition 13 Suppose qH ≥ 1/2. Then, the optimal threshold for the platform is given
by R = 0, yielding a demand of D(0) = qH + q1 + q2. Moreover, such a recommendation
system is implemented if and only if qH + q1 + q2 ≥ γ so that the induced demand exceeds
the demand without a recommendation system.

The result tells us that, in a sense, setting the lowest possible threshold yields the
most persuasive recommendation system in terms of the probability of the recommended
product being bought. Somewhat remarkably, this is at least sometimes also the most
valuable recommendation system from the perspective of the population of receivers, as
we know from Proposition 6 that the extreme threshold R = 0 can be optimal.12

Moreover, the result allows for a nice connection to Johnson and Myatt (2006), who
study demand rotations which are distinct from demand shifts. Following a demand
rotation, as the name suggests, the demand for a product for some types will increase
while it decreases for others. In contrast, a demand shift yields an increase (or decrease)
for all types. In our model, a buy recommendation may lead to a demand rotation:
Following a buy recommendation with intermediate threshold r, some type may buy with
more conviction than before while others may no longer buy the product. Proposition 13

12Note that in Proposition 6 the threshold of R = 0 is optimal when σ < 1 ⇔ qH < qL, which clearly
does not meet the sufficient condition in Proposition 13. However, as noted in the text preceding the
result, in the case of a symmetric population sales are always maximized with R = 0.
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tells us, however, that it will never be optimal to implement a recommendation system
that leads to a demand rotation when an objectively good product is relatively likely.

Finally, we can interpret the platform’s problem as one of constrained Bayesian per-
suasion (Kamenica and Gentzkow, 2011). The sender (the platform) wants to persuade
the receiver (population of consumers) to buy the product. However, the platform is
constrained in what signal structures and thus distributions of posteriors it can induce,
as they can only be generated through the recommendation system.

8 Conclusion
We have set out to study the role of preference heterogeneity in recommendations. Under
what circumstances do people follow a recommendation? What determines the value of
a recommendation system and when is it maximized? Our analysis highlights the im-
portance of disentangling objective information from subjective preferences. We have
seen that, depending on the distribution of preferences in the population, the subjective
content can reinforce the positive news of a buy recommendation or reverse it, so that a
buy recommendation is treated as a bad signal. Conversely, the subjective content can
turn a don’t-buy recommendation into good news for some people. It is thus important
for the designer of a recommendation system to take into account how the choice of sys-
tem, boiling down to the recommendation threshold in our model, influences the relative
objectivity of recommendations.

Our results show that extreme recommendation systems can often be the most valu-
able, as they then manage, despite the presence of preference heterogeneity, to convey
objective information with a high probability. Moreover, this value-maximizing recom-
mendation system is sometimes the most persuasive model in terms of maximizing the
probability that receivers buy the product in question. In particular, when objectively
bad products are relatively likely, the objectives of a designer who wants to maximize the
receivers’ expected payoffs and of a designer interested in maximizing sales coincide.

Throughout our analysis, we have maintained a number of classical assumptions such
as risk neutrality, linear probability weights, or Bayesian updating. Preliminary results
suggest that a promising avenue for future research is to relax these assumptions and
study their impact on the receiver’s tendency to accept a recommendation or not and,
thus, on the value of the recommendation system.
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A Proofs

Proof of Proposition 1

Accepting the don’t-buy recommendation means not buying the recommended good but
the product without recommendation. Observe that the condition for accepting a don’t-
buy recommendation, U(0)− U(D) ≥ 0, is equivalent with

qH + q1(1/2 + i) + q2(1/2− i) ≥ pD1 (R)(1/2 + i) + pD2 (R)(1/2− i). (18)

Replacing

qs = πBps(B) + πDps(D) = (1− πD)ps(B) + πDps(D) for s ∈ {H, 1, 2}

and using

pBH(R) = 1− pB1 (R)− pB2 (R),

equation (18) simplifies to

1− pB1 (R)− pD2 (R) ≥ (1/2 + i)[pB2 (R)− pD2 (R) + pD1 (R)− pB1 (R)]. (19)

Similarly, accepting the buy recommendation is optimal if and only if U(B) − U(0) ≥ 0
or, equivalently

pD1 (R)(1/2 + i) + pD2 (R)(1/2− i) ≥ qH + q1(1/2 + i) + q2(1/2− i).

Proceeding as above, one finds that this condition is equivalent to equation (19).

Proof of Lemma 1

The statement regarding the sign of ∆B
S follows immediately. For the sign of ∆B

O note
that we can write

∆B
O =

2qH(1− (qH + q1ϕ1(R) + q2ϕ2(R)))

2(qH + q1ϕ1(R) + q2ϕ2(R))

+
q1(ϕ1(R)− (qH + q1ϕ1(R) + q2ϕ2(R)))

2(qH + q1ϕ1(R) + q2ϕ2(R))

+
q2(ϕ2(R)− (qH + q1ϕ1(R) + q2ϕ2(R)))

2(qH + q1ϕ1(R) + q2ϕ2(R))
,

the sign of which depends only on the numerator. Further, the derivative of the numerator
with respect to ϕ2(R) is given by q2(qL − qH) and the derivative of the numerator with
respect to ϕ1(R) is given by q1(qL − qH). Thus, suppose qL ≥ qH in which case the
numerator is smallest for ϕ1(R) = ϕ2(R) = 0. It then reads

2qH(1− qH)− q1qH − q2qH ≥ qH(1− qH − q1 − q2) ≥ qHqL ≥ 0.

Conversely, when qL < qH the numerator is smallest when ϕ1(R) = ϕ2(R) = 1, in which
case it reads

(2qH + q1 + q2)(1− qL) ≥ 0.
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Proof of Lemma 2

The proof for ∆D
O ≤ 0 is analogous to that part of the proof in Lemma 1 and thus omitted.

For the second part, recall that

qs = πBps(B) + πDps(D) = (1− πD)ps(B) + πDps(D) for s ∈ {H, 1, 2}.
With this, we show that πB∆

B
O = −πD∆

D
O . We have

πB∆
B
O = πB

(
pBH(R)− qH +

1

2
(q1(B)− q1 + q2(B)− q2)

)
= πB

(
pBH(R)− πBp

B
H(R)− πDp

D
H(R) +

1

2

(
pB1 (R)− πBp

B
1 (R)− πDp

D
1 (R)

)
+

1

2

(
pB2 (R)− πBp

B
2 (R)− πDp

D
2 (R)

))
= πBπD

(
pBH(R)− pDH(R) +

1

2

(
pB1 (R)− pD1 (R) + pB2 (R)− pD2 (R)

))
= −πD

(
πB(p

D
H(R)− pBH(R)) +

1

2

(
πB(p

D
1 (R)− pB1 (R)) + πB(p

D
2 (R)− pB2 (R))

))
= −πD

(
(1− πD)p

D
H(R)− πBp

B
H(R) +

1

2

(
(1− πD)p

D
1 (R)− πBp

B
1 (R)

)
+
1

2

(
(1− πD)p

D
2 (R)− πBp

B
2 (R)

))
= −πD

(
pDH(R)− qH +

1

2

(
pD1 (R)− q1 + q2(D)− p2

))
= −πD∆

D
O .

Finally, to prove ∆B
S = ∆D

S ⇔ ∆B
S = 0 we once more use the identity

qs = πBps(B) + πDps(D) = (1− πD)ps(B) + πDps(D) for s ∈ {H, 1, 2}.
We need to show that the two values are equal if and only if they are zero. To see this,
note that

∆D
S = ∆B

S

⇔pB2 (R)− q2 − pB1 (R) + q1 = pD2 (R)− q2 − pD1 (R) + q1

⇔pB2 (R)− pB1 (R) = pD2 (R)− pD1 (R)

⇔pB2 (R)(1− πB)− pB1 (R)(1− πB) = πDp
D
2 (R)− πDp

D
1 (R)

⇔pB2 (R)− pB1 (R) = πBp
B
2 (R) + πDp

D
2 (R)− πBp

B
1 (R)− πDp

D
1 (R)

⇔pB2 (R)− pB1 (R) = q2 − q1

⇔∆B
S = 0

Next, observe that
∂∆B

S

∂(1− ϕ1(R))
=

q1(qH + 2ϕ2(R)q2)

π2
B

≥ 0

∂∆D
S

∂(1− ϕ1(R))
= −q1(qL + 2q2(1− ϕ2(R))

(1− πB)2
≤ 0.
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Thus, ∆B
S is increasing in (1 − ϕ1(R)) and ∆D

S is decreasing in (1 − ϕ1(R)) and they
intersect at 0, so that whenever one is positive, the other is negative.

Proof of Proposition 2

We proceed case by case and suppress the dependence on the recommendation to simplify
notation.

(i) In this case the inequality in equation (6) reduces to
0 ≤ (pH − qH) + (p2 − q2)

⇔ 0 ≥ qH − qH
qH + q1ϕ1(R) + q2ϕ2(R)

+ q2 −
q2ϕ2(R)

qH + q1ϕ1(R) + q2ϕ2(R)

⇔0 ≥ qH(qH + q1ϕ1(R) + q2ϕ2(R)− 1) + q2(qH + q1ϕ1(R) + q2ϕ2(R))− q2ϕ2(R)

⇔0 ≥ q1q2 − qHqL − q2(q1 + qL)F (1/2−R)− q1(q2 + qH)(1− ϕ1(R))

Further, observe that the inequality is most stringent when ϕ2(R) = (1−ϕ1(R)) = 0.
Hence, for the statement to be true we need

0 ≥ q1q2 − qHqL.

Further, observe that the condition for leaving the odds between (1,0) and (0,1)
unaffected can be written as

p2 − q2 = p1 − q1

⇔ q2ϕ2(R)

qH + q1ϕ1(R) + q2ϕ2(R)
− q2 =

q1ϕ1(R)

qH + q1ϕ1(R) + q2ϕ2(R)
− q1

which, when ϕ2(R) = (1− ϕ1(R)) = 0, simplifies to

−q2 =
q1

qH + q1
− q1 ⇔ q2 = −q1(1− q1 − qH)

q1 + qH

Plugging this into the above inequality yields

0 ≥ q1q2 − qHqL ⇔0 ≥ −q21(1− q1 − qH)

q1 + qH
− qHqL,

which is satisfied.

(ii) Since the recommendation shifts the odds from (0, 1) to (1, 0), we have p2 − q2 <
p1 − q1. Note that

pH − qH + p2 − q2 ≥ 0 ⇔ ∆O ≥ −∆S/2 ⇔ ĩ ≤ −1/2.

Thus, given the condition pH − qH + p2 − q2 ≥ 0 in case (a), all types accept the
recommendation. It follows immediately, that in case (b) all types i ≥ ĩ accept the
recommendation.

(iii) Since the recommendation shifts the odds from (1, 0) to (0, 1), we have p2 − q2 >
p1 − q1. Note that

pH − qH + p1 − q1 ≥ 0 ⇔ ∆O ≥ ∆S/2 ⇔ ĩ ≥ 1/2.

Thus, given the condition pH − qH + p1 − q1 ≥ 0 in case (a), all types accept the
recommendation. It follows immediately, that in case (b) all types i ≤ ĩ accept the
recommendation.
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Proof of Proposition 3

Recall from equation (6) the optimal acceptance condition

(pBH(R)− qH) +
pB1 (R)− q1

2
+

pB2 (R)− q2
2

≥ i[(pB2 (R)− q2)− (pB1 (R)− q1)].

First, observe that

lim
R→1

pB1 (R) = lim
R→1

pB2 (R) = 0

and thus limR→1 p
B
H(R) = 1. Hence, in the case R → 1 the optimality condition simplifies

to

1− qH − q1 + q2
2

≥ i(q1 − q2).

Consider i ≥ 0 and note that for q2 ≥ q1 this is always satisfied. Further, for q1 > q2 the
condition is most stringent for i = 1/2 in which case it is equivalent to 1 ≥ q1+ qH , which
is always satisfied. The case for i < 0 is analogous.

In the case R → 0 we get

lim
R→0

pi(B) =
qi

1− qL

for i ∈ {H, 1, 2} and thus the optimality condition simplifies to
qHqL
1− qL

+
q1qL

2(1− qL)
+

q2qL
2(1− qL)

≥ i[
q2qL
1− qL

− q1qL
1− qL

]

⇔2qH + q1 + q2 ≥ 2i[q2 − q1].

Consider i ≥ 0 and note that for q1 ≥ q2 this is always satisfied. Further, for q2 > q1 the
condition is most stringent for i = 1/2 in which case it is equivalent to qH ≥ q1, which is
always satisfied. The case for i < 0 is analogous.

Proof of Proposition 4

(i) If ∆B
S = 0, then V (R) =

∫ 1/2

−1/2
(VA(i)− V0(i))dF (i). Inserting (12) and (13) yields

V (R) = πB

∫ 1/2

−1/2

(
pBH(R) + (1/2 + i)pB1 (R) + (1/2− i)pB2 (R)

)
− (qH + (1/2 + i)q1 + (1/2− i)q2)dF (i)

= πB

∫ 1/2

−1/2

(pBH(R)− qH) +
pB1 (R)− q1

2
+

pB2 (R)− q2
2︸ ︷︷ ︸

=∆B
O

dF (i)

+ πB

∫ 1/2

−1/2

i([(pB2 (R)− q2)− (pB1 (R)− q1)]︸ ︷︷ ︸
=∆B

S =0

)dF (i)

= πB∆
B
O

(ii) If ∆B
S > 0, then V (R) =

∫ m

−1/2
VA(i)dF (i) +

∫ 1/2

m
VN(i)dF (i) −

∫ 1/2

−1/2
V0(i)dF (i).

Inserting (12), (13) and (14) and proceeding analogously as in case (i) gives the
expression.

(iii) If ∆B
S < 0, then V (R) =

∫M

−1/2
VN(i)dF (i) +

∫ 1/2

M
VA(i)dF (i) −

∫ 1/2

−1/2
V0(i)dF (i).

Inserting (12), (13) and (14) and proceeding analogously as in case (i) gives the
expression.
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Proof of Proposition 5

According to Proposition 2, all types accept the recommendation if

min{∆B
O +

∆B
S

2
,∆B

O − ∆B
S

2
} ≥ 0. (20)

To see that this condition is fulfilled, first observe that

∆B
O +

∆B
S

2
= pBH(R)− qH + pB2 (R)− q2

=
qH

qH + β(q1 + q2)
− qH +

βq2
qH + β(q1 + q2)

− q2

=
qH + βq2 − (qH + q2)(qH + β(q1 + q2))

qH + β(q1 + q2)

=
β(q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)

Now, if q2 − (qH + q2)(q1 + q2) ≥ 0, then this is clearly positive. If, in contrast, we have
q2 − (qH + q2)(q1 + q2) < 0, we obtain

β(q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)

≥ (q2 − (qH + q2)(q1 + q2)) + qH(1− qH − q2)

qH + β(q1 + q2)

=
(qH + q2)(1− q1 − q2 − qH)

qH + β(q1 + q2)
≥ 0

so that ∆B
O +

∆B
S

2
≥ 0 even in this case. Proceeding analogously, one also obtains that

∆B
O − ∆B

S

2
= pBH(R)− qH + pB1 (R)− q1 ≥ 0. Together with Proposition 2 this implies that

all types accept the recommendation, so that

V (β) =

∫ 1/2

−1/2

(qH + β((1/2 + i)q1 + (1/2− i)q2)) dF (i)

−
∫ 1/2

−1/2

(qH + β(q1 + q2)) (qH + (1/2 + i)q1 + (1/2− i)q2) dF (i)

= qH +
β(q1 + q2)

2
− (qH + β(q1 + q2))

(
qH +

(q1 + q2)

2

)
+ (q1 − q2) [β − (qH + β(q1 + q2))]

∫ 1/2

−1/2

i dF (i)

= qH +
β(q1 + q2)

2
− (qH + β(q1 + q2))

(
qH +

q1 + q2
2

)
,

because F (−x) = 1− F (x) implies
∫ 1/2

−1/2
i dF (i) = 0. Finally, replacing (q1 + q2)/2 by Q

and qH by (1− 2Q)σ/(1 + σ) yields the result.
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Proof of Lemma 3

(i) Note that πB = qH + 2Qβ so that the result follows immediately.

(ii) We have

∆B
O = (pBH(R)− qH) +

pB1 (R)− q1
2

+
pB2 (R)− q2

2

=
qH + βQ

qH + 2βQ
− qH −Q

so that

∂∆B
O

∂β
= − QqH

(2βQ+ qH)2
< 0.

(iii) We have

∂2V

∂β∂σ
= −2Q(1− 2Q)

(1 + σ)2
< 0.

Proof of Proposition 6

We have

V ′(β) =
Q(1− 2Q)(1− σ)

1 + σ
,

which is negative for σ > 1, positive for σ < 1 and zero for σ = 1. Thus, V is maximized
for β = 0 and β = 1, respectively, in the first two cases and for any β in the last case.
The result then follows by the continuity and full-support assumption on F together with
β = F (1/2−R).

Proof of Proposition 7

Suppose a < 1, in which case we have by Proposition 4

V (R) =


πB

[
∆B

O −∆B
SE[i]

]
if ĩ > 1/2

πBF (̃i)
[
∆B

O −∆B
SE[i | i ≤ ĩ]

]
if ĩ ≤ 1/2

+(1− πB)(1− F (̃i))
[
∆D

O −∆D
S E[i | i ≥ ĩ]

]
In the case ĩ > 1/2 we can write this as

V (R) = qH +
aQ(1−Ra) +Q(1−R)a

a+ 1
−
(
qH +Q(1−Ra) + q(1−R)a

)
(qH +Q)

Thus, we can write

V ′(R) =

{
aQ((a+1)(Ra−1+(1−R)a−1)(Q+qH)−aRa−1−(1−R)a−1)

a+1
if ĩ > 1/2

... if ĩ ≤ 1/2
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where ... is not written out for simplicity as we do not need it. Observe that Proposition
3 implies ĩ > 1/2 if R ∈ {0, 1}, so that for R sufficiently close to 0 and 1, respectively,
V ′(R) is given by the first line above. We can then write

V ′(R) > 0 ⇔ (a+ 1)
(
Ra−1 + (1−R)a−1

)
(Q+ qH)− aRa−1 − (1−R)a−1 > 0

⇔ (a+ 1)(Q+ qH) >
aRa−1 + (1−R)a−1

Ra−1 + (1−R)a−1
=

a(1−R)1−a +R1−a

(1−R)1−a +R1−a
,

so that

lim
R→0

V ′(R) > 0 ⇔ (a+ 1)(Q+ qH) > a

and analogously

lim
R→1

V ′(R) < 0 ⇔ (a+ 1)(Q+ qH) < 1.

Thus, a sufficient condition for an interior solution when a < 1 is given by

1

a+ 1
> Q+ qH >

a

a+ 1
.

Proceeding analogously for the case of a > 1 and noting that Proposition 3we obtain the
corresponding result, completing the proof.

Proof of Proposition 8

We have argued in the text that for R > 1/2 a mean-preserving spread corresponds to
an increase in β while for R < 1/2 it corresponds to a decrease in β. From the proof of
Proposition 6 we can see that the value of the recommendation system is increasing in β
for σ < 1 and decreasing in β for σ > 1. Thus, the statement follows.

Proof of Corollary 3

We first take the derivative of V with respect to Q to obtain

∂V

∂Q
=

1

(σ + 1)2
(
β − 3σ + 4Qσ − 4Qβ + σ2 − 4Qσ2 − σ2β + 4Qσ2β

)
Setting this equal to zero and solving for the candidate solution we obtain

Q∗ =
3σ − β − σ2 + σ2β

4σ − 4β − 4σ2 + 4σ2β

Next, the SOC reads

4σ − 4β − 4σ2 + 4σ2β < 0,

where the l.h.s. of the SOC is the denominator of Q∗. Thus, a necessary condition for a
positive interior solution is

3σ − β − σ2 + σ2β < 0.
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This already proves the first part of (i). To prove (ii), note that 3σ − β − σ2 + σ2β < 0
implies 4σ−4β−4σ2+4σ2β < 0. Hence, the candidate solution is positive. It remains to
show that Q∗ < 1

2
. Recall that, by the requirements that the SOC holds and Q∗ > 0, we

can focus on the case that both the numerator and the denominator in Q∗ are negative.
Accordingly, the requirement that 3σ−β−σ2+σ2β

4σ−4β−4σ2+4σ2β
< 1/2 becomes

2σ − 2β − 2σ2 + 2σ2β < 3σ − β − σ2 + σ2β.

Equivalently,

(σ + 1) (σ + β − σβ) > 0

or

σ >
β

β − 1
,

which always holds for β − 1 < 0. For the case of β = 1, one can directly verify that for
any σ satisfying the condition for case (ii), we also obtain a strictly interior solution.

A.1 Multiple Levels of Recommendations

The posteriors are given as follows. Following a buy recommendation we have

pBH(R) =
qH

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)
,

pB1 (R) =
q1(1− F (R2 − 1/2))

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)
,

pB2 (R) =
q2F (1/2−R2)

qH + q1(1− F (R2 − 1/2)) + q2F (1/2−R2)

pBL (R) = 0,

while a don’t-buy recommendation results in a posterior of

pDH(R) = 0,

pD1 (R) =
q1F (R1 − 1/2)

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL
,

pD2 (R) =
q2(1− F (1/2−R1))

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL

pDL (R) =
qL

q1F (R1 − 1/2) + q2(1− F (1/2−R1)) + qL
.

Finally, neither buy nor don’t buy yields

p1(N) = 0 p3(N) =
q2Γ2

q1Γ1 + q2Γ2

p2(N) =
q1Γ1

q1Γ1 + q2Γ2

p4(N) = 0.

where Γ1 ≡ F (R2 − 1/2)− F (R1 − 1/2) and Γ2 ≡ F (1/2−R1)− F (1/2−R2).
Symmetric Case
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Let F (1/2 − R2) = 1 − F (R2 − 1/2) = β and F (1/2 − R1) = 1 − F (R1 − 1/2) = γ.
We have

pB1 (R) =
qH

qH + 2Qβ
, p1(N) = 0, pD1 (R) = 0,

pB2 (R) =
Qβ

qH + 2Qβ
, p2(N) =

1

2
, pD2 (R) =

Q(1− γ)

1− qH − 2Qγ
,

p3(B) =
Qβ

qH + 2Qβ
, p3(N) =

1

2
, p3(D) =

Q(1− γ)

1− qH − 2Qγ
,

p4(B) = 0, p4(N) = 0, p4(D) =
qL

1− qH − 2Qγ
.

Proof of Proposition 9

We need to consider two cases. First, suppose σ < 1 so that 1/2 > qH +Q, yielding

V (β, γ) =(qH + 2Qβ)

(
qH + qβ

qH + 2qβ
− (qH +Q)

)
+ [1− (qH + 2Qβ)− (1− qH − 2Qγ)](1/2− (qH +Q))

Taking the respective derivatives we obtain

∂V

∂β
= 0

∂V

∂γ
= 2Q(1/2− qH −Q) ≥ 0.

In contrast, for σ ≥ 1 so that 1/2 ≤ qH +Q we have

V (β, γ) =(qH + 2Qβ)

(
qH + qβ

qH + 2qβ
− (qH +Q)

)
Taking the respective derivatives we obtain

∂V

∂β
= Q(qL − qH) ≤ 0

∂V

∂γ
= 0.

The result follows directly from here.

Endogenous Recommendation Threshold: Proof of Proposition 12

In this model, the posteriors are given as follows:

pBH(R) =
qH

qH + q1(1− F (i1)) + q2F (i2)
,

pB1 (R) =
q1(1− F (i1))

qH + q1(1− F (i1)) + q2F (i2)
,

pB2 (R) =
q2F (i2)

qH + q1(1− F (i1)) + q2F (i2)

pBL (R) = 0,
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where i1 = 2qH+q1+q2−1
2(1−q1+q2)

and i2 = 1−2qH−q1−q2
2(1−q2+q1)

.13 Analogously, we obtain the posteriors of
a don’t-buy recommendation as

pDH(R) = 0,

pD1 (R) =
q1F (i1)

q1F (i1) + q2(1− F (i2)) + qL
,

pD2 (R) =
q2(1− F (i2))

q1F (i1) + q2(1− F (i2)) + qL
,

pDL (R) =
qL

q1F (i1) + q2(1− F (i2)) + qL
, .

Choosing the optimal threshold for the model with endogenous threshold the value of
the system reads

V (R∗) =

{
qH(1− qH − q) if qH ≥ qL

(qH + q)(1− qH − 2q) if qH < qL.

We need to compare this to (see Lemma ??)

V (R) = qH +Q(1−R)−
(
qH + 2Q(1−R)

)
(qH +Q).

Consider first qH ≥ qL so that V (R∗) = qH(1− qH − q). Then, we have

V (R∗)− V E = qH(1− qH − q)− (qH + q(1− qH − q)) + (qH + 2q(1− qH − q))(qH + q)

= −q(1 + 2q2 − 3qH + 2q2H + q(4qH − 3))

Now, take the derivative of this with respect to qH to obtain −q(4qH−3+4q) and observe
that this is negative whenever qH ≥ 3/4 − q which is satisfied for qH ≥ qL. Thus, for
qH = 1− 2q we have V (R∗)−V E ≥ −q2(4q− 3) ≥ 0. Proceeding analogously for the case
of qH < qL completes the proof.

A.2 Multiple Recommendations

The posterior when having received the set of recommendations (b, d) with b+d > 0 then
reads

pH(b, d) =

{
qH

qH+q1(ϕ1(R))b+q2(ϕ2(R))b
if d = 0

0 if b = 0

p1(b, d) =
q1(ϕ1(R))b(1− ϕ1(R))d

q1(ϕ1(R))b(1− ϕ1(R))d + q2(ϕ2(R))b(1− ϕ2(R))d

p2(b, d) =
q2(ϕ2(R))b(1− ϕ2(R))d

q1(ϕ1(R))b(1− ϕ1(R))d + q2(ϕ2(R))b(1− ϕ2(R))d

pL(b, d) =

{
qL

q1(1−ϕ1(R))d+q2(1−ϕ2(R))d+qL
if b = 0

0 if d = 0
13To obtain for instance i1 we need to solve 1/2 + i1 = qH + q1(1/2 + i1) + q2(1/2− i1).
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Proof of Proposition 10

Suppose the receiver gets only buy recommendations and that b → ∞. Then, for R ∈
(0, 1) we must have ϕ1(R) = ϕ2(R) ∈ (0, 1) so that limb→∞(ϕi(R))b = 0 for i = 1, 2.
Hence, limb→∞ pH(b, 0) = 1. Proceeding analogously we obtain the statement for the case
of only don’t-buy recommendations.

Assuming mixed recommendations, we clearly have pH(b, d) = pL(b, d) = 0 for any
b, d > 0. Further, because ϕ1(R) = ϕ2(R) we get for i = 1, 2 that

pi(b, d) =
qi

q1 + q2
,

yielding the statement.

Proof of Corollary 4

To see this, consider for instance the posterior for the case R = 0 noting that mixed
reviews are not possible in this case. We have:

pH(b, d) =

{
qH

qH+q1+q2
if d = 0

0 if b = 0

p1(b, d) =

{
q1

qH+q1+q2
if d = 0

0 if b = 0

p2(b, d) =

{
q2

qH+q1+q2
if d = 0

0 if b = 0

pL(b, d) =

{
0 if d = 0

1 if b = 0

Proof of Lemma 4

Observe that the expected payoff of buying the recommended good with mixed recom-
mendations reads

1

2
+ i

q1 − q2
q1 + q2

so that the result obtains from appropriately rearranging the inequality

1

2
+ i

q1 − q2
q1 + q2

≥ V0(i).

Proof of Proposition 11

Suppose q1 = q2 = Q. Then, the value of the “infinite learning” recommendation system
is given by

V∞ = qH(1− qH −Q) + 2QIqL≥qH

(
1

2
− qH −Q

)
,
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which coincides with the value of the single-recommendation system for the optimal β,
depending on whether qL or qH is bigger.

Suppose q1 > q2 so that by Lemma 4 all types i ≥ ĩ∞ buy the product. Further,
assume qH ≥ qL, which is equivalent to qH ≥ (1 − q1 − q2)/2. Then, no type buys a
subjective, recommended product if ĩ∞ ≥ 1/2, which is equivalent to qH ≥ (−3q21 −
4q1q2 + 3q1 − q22 + q2)/(4(q1 + q2)). Thus, if

qH ≥ max

{
1− q1 − q2

2
,
−3q21 − 4q1q2 + 3q1 − q22 + q2

4(q1 + q2)

}
no type buys a subjective, recommended product. Observe that in that case, the value of
the “infinite learning” recommendation system, is given by

qH − qH

(
qH +

q1 + q2
2

)
,

which coincides with the value of the single-recommendation system for β = 0.
Now, suppose qH < qL, which is equivalent to qH < (1 − q1 − q2)/2. Then, every

type buys a subjective, recommended product if ĩ∞ ≤ −1/2, which is equivalent to
qH ≤ (−3q21 − 4q1q2 + 3q1 − q22 + q2)/(4(q1 + q2)). Thus, if

qH ≤ min

{
1− q1 − q2

2
,
−3q22 − 4q1q2 + 3q2 − q21 + q1

4(q1 + q2)

}
all types buy a subjective, recommended product. In that case, the value of the “infinite
learning” recommendation system is given by

qH +
(q1 + q2)

2
− (qH + (q1 + q2))

(
qH +

q1 + q2
2

)
,

which coincides with the value of the single-recommendation system for β = 1.
Proceeding analogously, we obtain the same for the case of q1 < q2, which concludes

the proof.

Revenue-Maximizing Platform: Proof of Proposition 13

Note that qH ≥ 1/2 implies πB ≥ 1/2, as πB = qH + q1ϕ1(R) + q2ϕ2(R). Thus, we have
for the case of ∆S > 0

1/2 ≤ πB ⇔ πBF (m) + (1− πB)(1− F (m)) ≤ πB ≤ qH + q1 + q2.

and similarly for the case of ∆S < 0.

1/2 ≤ πB ⇔ (1− πB)F (M) + πB(1− F (M)) ≤ πB ≤ qH + q1 + q2.

Together, these two inequalities imply the optimality of R = 0. The case ∆B
S = 0 is

trivial.
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