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Abstract

This paper investigates the advantages a seller can gain by strategically creating
product scarcity to manipulate consumer word-of-mouth communication. The seller
offers a product of uncertain quality and establishes a service speed that determines
whether opinion leaders are immediately served or delayed when attempting to pur-
chase the product. These opinion leaders subsequently share their experiences with
other consumers, influencing their beliefs about product quality and their purchase
decisions. We show that delaying opinion leaders can significantly impact consumer
learning by altering both the content and level of word-of-mouth communication.
Specifically, the content effect alone can incentivize the seller to delay opinion lead-
ers, except in cases where private information is highly accurate and expected prod-
uct quality is moderate. In situations where information about purchased products
spreads more easily than information about pre-orders, the level effect limits the po-
tential for delay, particularly when expected product quality is high.
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1 Introduction

This paper considers how a seller may profitably shape consumer ‘buzz’ about its product
by strategically creating product scarcity. The idea is that initial scarcity limits the number
of opinion leaders who can make early purchases. As such, it can influence both what
leaders can communicate about the product and how much they communicate to other
consumers in the market. We explore how creating initial product scarcity can either help
or hurt the seller by affecting subsequent sales, via this word-of-mouth channel.

In practice, consumers can communicate in many ways, such as face-to-face conversa-
tion, social media posts, online discussion groups, and product reviews. An established
literature has shown how word-of-mouth communication can affect many consumer deci-
sion, including television viewing (Godes and Mayzlin, 2004), book purchases (Chevalier
and Mayzlin, 2006), movie viewing (Liu, 2006; Duan et al., 2008), even adoption of micro-
finance (Banerjee et al., 2013), and much more.

Word of mouth is a valuable tool that enables consumers to learn about product
quality. For example, when considering purchasing a mobile phone, individuals may
seek out information from acquaintances who have ordered or received the same model.
Additionally, online product reviews can provide insights from other consumers that aid
in the decision-making process. By leveraging these sources, individuals can effectively
learn from the experiences of others before making a purchase decision.

Given the power of word of mouth, it is no wonder that firms may try to strategically
influence consumer communication. This can be through so-called ‘buzz marketing’,
where digital advertising aims to help get people taking and build the buzz around a
particular product (Mohr, 2017). This can also be via pricing, as in frequent zero-price
sales for smartphone apps to attract new consumers, who will then spread awareness to
others (Ajorlou et al., 2018). Firms may also want to shape ‘pre-release buzz’ by influencing
how consumers talk before receiving the product (Xiong and Bharadwaj, 2014). They may
even go so far as to directly manipulate consumer communication, by posting fake product
reviews on platforms such as TripAdvisor (Mayzlin et al., 2014), Yelp (Luca and Zervas,
2016), and Amazon (He et al., 2022).

Our paper considers a novel way a seller may strategically influence word of mouth
to shape consumer beliefs about product quality: by using scarcity to delay the purchase
of opinion leaders. Delays and stocks outs are common in practice. Prominent examples
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include the Nintendo Switch in 20201, Tesla in 20212 and the Sony PlayStation 5 over a
similar period.3 While delays can certainly arise for many reasons, such as unexpected
production problems, our focus is on how delay can allow a seller to shape consumer
buzz.

We show that delaying opinion leaders can sometime be profitable, precisely because
of its impact on word-of-mouth communication. We also describe how the profitability of
delay depends on factors such as ex ante beliefs about quality, the precision of consumers’
private information, and the relative number of opinion leaders in the market.

More specifically, we present a two-period model, where a seller first faces a cohort
of opinion leaders and then a cohort of followers who can potentially talk to the leaders.
All parties are initially unsure whether product quality is high or low and each consumer
receives a boundedly informative private signal. The seller chooses a service speed which
influences how quickly leaders can be served, after which leaders arrive and simultane-
ously choose whether to place orders. All demand from leaders up to the service speed is
immediately served while all other leaders who place orders are delayed. Each of these
leaders can then tell some followers about their experience; whether they were delayed
or served, and in the latter case, their utility from buying. Followers then simultaneously
choose whether to buy. Those that buy receive the product, as do leaders who were
delayed.4

We first consider a baseline case, where leaders talk to the same number of followers
regardless of whether they are immediately served or delayed. Delaying leaders therefore
does not affect the overall level of word-of-mouth communication but only its informa-
tional content. Rather than telling followers hard information about product quality,
delayed leaders can only convey soft information about their intention to buy and the fact
that they could not get the product immediately. It is via this content effect that a lower
service speed reduces learning.

We show that delaying leaders can be strictly profitable. That is, for certain parameter

1See https://www.forbes.com/sites/davidthier/2020/04/19/the-real-reason-nintendo-switch-is-out-
of-stock-everywhere/?sh=4e08af9d5694, accessed on March 13 2023.

2See https://www.cnbc.com/2021/08/18/months-long-delivery-delays-confound-would-be-tesla-
owners.html, accessed on March 13 2023.

3See https://www.npr.org/2023/01/05/1147157065/sony-playstation-5-shortage-over, accessed on
March 13 2023.

4Assuming delayed leaders also eventually receive the product allows us to isolate the informational
impact of delay on profits. Reducing service speed then does not directly cost sales but only affects word
of mouth. As such, in the absence of word of mouth or quality uncertainty, the seller would be indifferent
between immediately serving or delaying leaders.
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values, there exists a pure strategy equilibrium where all leaders are delayed. Perhaps
surprisingly, the seller will hide information via delay whenever product quality is likely
high. Meeting a delayed leader is good news because demand is higher for a high-quality
product. When prior beliefs about quality are high, this good news may be enough to
convince a follower to buy regardless of their private signal. The seller may also use delay
when product quality is likely low, but only if signals are not too accurate. Delaying
leaders then only ends up paying off when quality turn out to be low, and demand for a
low-quality product is decreasing in signal precision.

In contrast, no pure strategy equilibrium exists in which leaders are immediately
served. If followers expect a high service speed, then meeting a delayed leader is particu-
larly convincing, since followers reason that demand must exceed the high service speed.
This inference allows the seller to mislead followers by unexpectedly reducing service
speed to delay all leaders. By the same token, it is never strictly profitable in equilibrium
to immediately serve leaders rather than delay them. However, in large markets there
exists a mixed strategy equilibrium where the seller is indifferent and serves all leaders
almost surely, and where followers who meet delayed leaders randomize between always
buying and acting on their private signal.5

We then consider a more general case, where immediately-served leaders talk to more
followers than leaders who are delayed.6 Reducing service speed still affects the infor-
mational content of word of mouth for followers who receive news. Now, it also affect
how many followers receive any news at all. This level effect on word of mouth reduces
learning, as did the content effect, but with different implications for seller behavior.

We show that the level effect on word of mouth makes it less attractive for the seller
to use delay, compared to the baseline. Meeting a delayed leader still constitutes good
news, but when few delayed leaders talk, then this good news is not received by many
followers. This can potentially make it profitable for the seller to immediately serve
leaders to maximize the amount of word off mouth. More specifically, we show that a
pure strategy equilibrium sometimes exists where the all leaders are served. The less that

5Our baseline results are robust to changes in the amount of word of mouth that leaders engage in, or
in the number of leaders relative to followers. These results are also unchanged if we assume that word
of mouth not only transmits utility information but also spreads product awareness, i.e. if we assume that
only followers who hear from leaders are able to buy.

6Arguably, consumers are more likely to share information about the product they actually have, than
about the fact that they put a pre-order. Such information sharing, e.g. can take the form of a product
review.
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delayed leaders talk, the larger the parameter region for which serving all leaders is an
equilibrium. Nonetheless, the seller will still delay leaders in equilibrium when expected
quality is moderate low and signals are relatively inaccurate.

The level effect can also give equilibrium multiplicity, as both a pure strategy equilib-
rium where the seller delays all leaders, and a pure strategy equilibrium where all leaders
are immediately served, can exist for the same parameter values. Our analysis suggest
that equilibrium multiplicity is more of an issue in markets with many opinion leaders.
In such markets, the behavior of followers who do not hear from leaders is particularly
sensitive to their beliefs about the service speed, as not hearing about the product when
there are many leaders is a strong signal of low demand, and hence low quality. This can
affect which service speed the seller finds most profitable.

Our paper’s main contribution is to show how a seller can profitably use product
scarcity to influence word-of-mouth communication. In so doing, we add to the literature
looking at the interaction between consumer word of mouth and seller strategic behavior.7
By directly modeling consumer communication, our paper differs from the strand of this
literature that directly assumes local interaction effects, for which one possible interpre-
tation is word of mouth. See, e.g., Galeotti and Goyal (2009), Galeotti et al. (2020). Our
focus on quality uncertainty also differs from work where word-of-mouth communication
simply informs consumers about product existence, where different papers explore the
interaction between word of mouth and pricing decisions (Campbell (2015), Ajorlou et al.
(2018)), information release (Campbell et al., 2017), as well as both pricing and advertising
(Campbell, 2013).8

Relatively few papers consider how word-of-mouth communication may help con-
sumers learn about product quality. Godes (2017) assume quality is endogenous and
focuses on firm incentives to invest in quality. They show that more word of mouth
that transmits utility information is associated with higher equilibrium quality. Camp-
bell et al. (2020) assume consumers engage in costly search to learn product quality from
earlier buyers. They focus on how the network structure of communication affects the
distribution of quality in the market, via high- and low- quality firms’ entry and exit. Our

7The broader literature on word-of-mouth communications considers how agents can learn from hearing
about outcomes from earlier agents in different settings See, e.g., Ellison and Fudenberg (1995), Bala and
Goyal (1998), Banerjee and Fudenberg (2004). The focus has often been on whether agents will converge on
the same action in the long run and whether this action is efficient.

8Galeotti (2010) instead assumes consumers know about product existence but communicate about
prices, and shows how this affects equilibrium price dispersion.
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modelling approach instead assume that quality is exogenous, and we explore how the
seller’s strategic choice of scarcity can affect both the informational content and the level
of word of mouth.

Our focus on consumer word of mouth and product quality also has some relation
to the literature on customer reviews. A major focus there has been on how firms may
directly manipulate consumers via fake reviews. In terms of theory, Mayzlin (2006) shows
that firm fake reviews can make consumer communication less persuasive, by making it
less credible. Relatedly, Smirnov and Starkov (2022) show that firm ability to censor bad
reviews can affect the informational content of the bad reviews that do end up appearing
in equilibrium.9 We also look at how a seller may benefit from strategically reducing the
informational content of consumer communication, but via product scarcity rather than
deception, and without being privately informed about product quality.

By looking at whether a seller prefers to serve consumers sequentially (first leaders,
then followers), or effectively to serve all consumers simultaneously (by delaying leaders),
our paper also contributes to work on optimal product launch strategies. There the
distinction is often made between a sequential ‘waterfall’ strategy to promote learning,
and a simultaneously ‘sprinkler’ strategy to restrict it. See, e.g. Sgroi (2002); Aoyagi (2010);
Liu and Schiraldi (2012); Bhalla (2013); Parakhonyak and Vikander (2019). Whereas these
papers consider observational learning, where consumers learn from observing each
others choices, we explicitly model word-of-mouth communication, by which consumers
can learn each others’ utility information. Moreover, serving consumers simultaneously
in this literature essentially shuts down any information transmission. This contrasts with
our paper, as delayed leaders still talk to followers, which in turn contributes to making
delay more attractive for the seller.

Our paper also contributes to the literature on firms’ strategic use of product scarcity
to influence consumer behavior. Previous work on scarcity has looked at discouraging
consumer strategic delay (DeGraba (1995); Nocke and Peitz (2007); Möller and Watanabe
(2010)) as well as facilitating price discrimination (Wilson (1988); Bulow and Roberts (1989);
Ferguson (1994); Loertscher and Muir (2022)). A few papers in this literature share our
focus on how scarcity can affect consumer learning about product quality, but via different
mechanisms. Consumers learn either via firm signaling (Stock and Balachander, 2005),
observational learning from each others’ choice (Parakhonyak and Vikander, 2023) or a

9Hauser (2023) look at censorship but without explicitly considering consumer communication. There,
censorship reduces the arrival rate of potential bad news, which can affect firm incentives to invest in quality.
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combination of the two (Debo et al., 2012). In contrast, we look at how scarcity affects how
consumers learn via both the content and the level of word-of-mouth communication.

The rest of the paper is organised as follows. Section 2 introduces the model. Section
3 contains all main results of the paper, with the baseline case, corresponding to an equal
amount of word of mouth for served and delayed leaders discussed in section 3.1, and
the general case discussed in 3.2. Section 4 considers an extension where followers only
become aware of the product if they hear about it through word of mouth. Section 5
concludes.

2 Setting

Suppose there is a product of unknown quality and two possible states of the world,
Ω = {𝐺, 𝐵}. In state 𝐺, quality is good and each consumer who buys obtains 𝑢𝐺 = 1. In
state 𝐵, quality is bad and each consumer who buys obtains 𝑢𝐵 = 0. A consumer who
does not buy gets reservation utility 𝑟 ∈ (0, 1). The actual state is known neither to the
seller nor to consumers. Prior beliefs of all players are that 𝑃(𝐺) ≡ 𝛽 and 𝑃(𝐵) = 1 − 𝛽,
where 𝛽 ∈ (0, 1).

There are two cohorts of potential buyers who make their decisions in different stages.
We refer to the first cohort as opinion leaders, or simply leaders, and the second cohort
as followers. The number of leaders is 𝑁 whereas the number of followers is 𝑛𝑁 , with
𝑛, 𝑁 ∈ N.

Each potential buyer has unit demand and learns about quality based on a noisy
private signal, 𝑠 ∈ {𝑔, 𝑏}, where 𝑃(𝑔 |𝐺) = 𝑃(𝑏 |𝐵) ≡ 𝛼 ∈ (1/2, 1). By 𝛼 < 1, signals
are boundedly informative about the state. Additionally, followers can potentially learn by
hearing from leaders, as described more precisely below. We focus on situations where
𝑃(𝐺 |𝑠 = 𝑔) > 𝑟 > 𝑃(𝐺 |𝑠 = 𝑏). This means that in the absence of further information, it is
optimal for a potential buyer to follow their own private signal.

The timing of the game is as follows. At 𝑡 = −1, the the seller sets a service speed
𝐾 ∈ Z+, with 𝐾 ≤ 𝑁 . This speed will influence how quickly leaders can receive the
product. Then, at 𝑡 = 0, nature chooses product quality, 𝜔 ∈ {𝐺, 𝐵}. The rest of the game
consists of three stages.

In stage 𝑡 = 1, the leaders enter the market, each receives their private signal, and
they simultaneously decide whether to order the product. If the total quantity ordered
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is less than 𝐾, then all leaders who ordered receive the product immediately. If instead
total orders exceed 𝐾, then 𝐾 randomly chosen leaders receive the product immediately,
whereas the remaining 𝑁 −𝐾 leaders do not. We will say that the former group of leaders
are served immediately and that the latter group are delayed.

In stage 𝑡 = 2, the followers enter the market, each receives their private signal, and each
may also learn from a leader via word-of-mouth communication. That is, each follower
connects with at most one leader who ordered the product and hears about that leader’s
experience in stage 1: whether they were delayed or served immediately, and in the latter
case, their utility from receiving the product. Each leader who is served, and each leader
who is delayed, connects with 𝑚1 and 𝑚0 followers, respectively, where 𝑚1 + 𝑚0 ≤ 𝑛, so
that 𝑁(𝑚1 +𝑚0) followers in total learn via word of mouth. The remaining 𝑁(𝑛−𝑚1 −𝑚0)
followers remain unconnected and do not hear from anybody. The parameters 𝑚1 and 𝑚0

capture the effectiveness of word-of-mouth. We assume 𝑚1 ≥ 𝑚0 to capture the idea that
leaders who immediately receive the product, and discover its quality, plausibly should
not communicate less than leaders who have yet to receive the product because they are
delayed.10

Finally, in stage 𝑡 = 3, followers simultaneously decide whether to buy. All followers
who want to buy the product receive it, as do all leaders who were previously delayed.

We normalize the per consumer profit of the seller to 1. The seller sets service speed
𝐾 so as to maximize expected profits, given the subsequent behavior of consumers. Each
consumer makes the purchase decision that is optimal, given their beliefs about prod-
uct quality. These beliefs about quality follow from Bayes’ rule and the other players’
equilibrium strategies, whenever possible.

We will need to characterise beliefs when the seller is expected to immediately serve
all leaders in stage 1, but a follower nonetheless meets a delayed leader in stage 2. Our
approach is to allow for seller ‘trembles’, where the implemented service speed, with small
probability, can differ slightly from the seller’s profit-maximizing choice of 𝐾, in order to
pin down these out-of-equilibrium beliefs. Specifically, if the seller chooses 𝐾 ≥ 1, then
we assume that the implemented service speed is 𝐾 − 1 with probability 𝜖 and 𝐾 with
probability 1 − 𝜖, where 𝜖 > 0 can be arbitrarily small.

Our analysis will focus on the limiting case of large markets, 𝑁 → ∞. We therefore

10We could also allow for each leader who did not order to connect with say 𝑚′ > 0 followers and
communicate their own private signal. Doing so will not qualitatively change our results, as long as such
leaders do not communicate more broadly than leaders who ordered: 𝑚′ ≤ 𝑚0 ≤ 𝑚1.
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normalize both service speed and profits by the total market size, where the seller sets
service speed 𝑘 ≡ 𝐾/𝑁 to maximizes expected profits per consumer. This service speed
𝑘 ∈ [0, 1] should be thought of as the limiting case of the profit-maximizing normalized
service speed 𝐾/𝑁 in a finite market, as 𝑁 become large.11

There is no discounting between stages. Moreover, unless otherwise stated, we assume
that followers observe neither the seller’s choice of service speed 𝐾 nor the total number
of leaders who are immediately observed.

3 Analysis

Since leaders follow their private signals, the probabilities that 𝑗 leaders order the product
in the good and bad states are, respectively,

𝑄𝐺(𝑗) =
(
𝑁

𝑗

)
𝛼 𝑗(1 − 𝛼)𝑁−𝑗 , 𝑄𝐵(𝑗) =

(
𝑁

𝑗

)
(1 − 𝛼)𝑗𝛼𝑁−𝑗 . (1)

Followers who meet a served leader will learn the state by hearing the leader’s utility,
and therefore only buy if the state is good. The decision of other followers may depend
on what they learn from meeting a delayed leader or remaining unconnected, as well as
their own private signal.

As a first step to write out the seller profit function, we will assume a follower buys
with probability 𝛾𝜔 if they meet a delayed leader, and buys with probability 𝛿𝜔 if they
remain unconnected. These probabilities may depend on the state 𝜔 ∈ {𝐺, 𝐵}, since they
take into account both possible realizations of the follower’s private signal 𝑠 ∈ {𝑔, 𝑏}, and
followers with different signals may take different decisions. We later derive what values
𝛾𝜔 and 𝛿𝜔 should take in equilibrium, given follower beliefs.

Denote the number of leaders served in state 𝜔 as 𝑆𝜔(𝐾), and the number of leaders
delayed as 𝐷𝜔(𝐾), where

𝑆𝜔(𝐾) =
𝑁∑
𝑗=0

min{ 𝑗 , 𝐾}𝑄𝜔(𝑗), 𝐷𝜔(𝐾) =
𝑁∑
𝑗=0

max{ 𝑗 − 𝐾, 0}𝑄𝜔(𝑗).

Profits from setting service speed 𝐾 ≥ 1, normalized by market size 𝑁 , are then

𝜋(𝐾) = (1 − �)�̃�(𝐾) + ��̃�(𝐾 − 1)
11Note that the assumption of ‘trembles’ has no direct effect on profits per consumer in a large market.
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where

�̃�(𝐾) = 𝛽

𝑁


𝑁∑
𝑗=0

𝑗𝑄𝐺(𝑗) + 𝑚1𝑆𝐺(𝐾) + 𝑚0𝛾𝐺𝐷𝐺(𝐾) + 𝛿𝐺 (𝑛𝑁 − 𝑚1𝑆𝐺(𝐾) − 𝑚0𝐷𝐺(𝐾))


+
1 − 𝛽

𝑁


𝑁∑
𝑗=0

𝑗𝑄𝐵(𝑗) + 0 + 𝑚0𝛾𝐵𝐷𝐵(𝐾) + 𝛿𝐵 (𝑛𝑁 − 𝑚1𝑆𝐵(𝐾) − 𝑚0𝐷𝐵(𝐾))
 , (2)

and we define profits from setting service speed 𝐾 = 0 as 𝜋(0) = �̃�(0). In each square
bracket in expression (2), the first term refers to the number of leaders who order the
product and therefore receive it either in stage 1 (if served immediately) or in stage 2 (if
delayed); the second term refers to followers who meet immediately-served leaders and
therefore learn the state; the third term refers to receivers who meet delayed leaders; and
the fourth term refers to followers who remain unconnected.

We can now state the following result.

Lemma 1. For any market size 𝑁 and any 𝜖 > 0, the seller maximizes expected profits by setting
service speed 𝐾 = 0 or 𝐾 = 𝑁 , or by randomizing between these two values.

Lemma 1 implies in particular that any equilibrium will involve the seller either de-
laying all leaders, immediately serving all leaders, or possibly randomizing between the
two. Intuitively, a small increase in service speed can help the seller when the state is
good and hurt when the state is bad, as more immediately-served leaders may then reveal
the state to followers. However, this only happens when demand is sufficiently high (e.g
if demand is very low then nobody is delayed even at a low service speed). High demand
is more likely in the good state, so whenever a small increase in service speed helps the
seller in expectation, then a larger increase will help the seller even more, by revealing
information for those demand realizations that are even more indicative of the good state.
As such, the seller does best either to immediately serve all leaders or none at all.

We now turn to follower beliefs, in order to derive the purchase probabilities 𝛾𝐺, 𝛾𝐵,
𝛿𝐺, and 𝛿𝐵 in the expression for seller profits.

Meeting a delayed leader provides positive information about the state, since a delayed
leader must have received a good signal (otherwise they would not have ordered the
product); and good signals are more likely in the good state. The question is whether this
positive information is enough to convince a follower to buy after receiving a bad private
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signal. Suppose that the seller sets service speed 𝐾 = 𝑁 with probability 𝑞 and sets 𝐾 = 0
with probability (1 − 𝑞).12 The expected number of delayed leaders in state 𝜔 is then

𝐷𝜔(𝑞) = (1 − 𝑞)
𝑁∑
𝑗=0

𝑗𝑄𝜔(𝑗) + 𝑞�𝑄𝜔(𝑁).

In particular, if the seller sets 𝐾 = 0 for sure then all consumers are delayed. If the seller
sets 𝐾 = 𝑁 then one follower is delayed with probability �, which is the probability that
service speed 𝑁 − 1 is implemented due to a tremble. Using Bayes’ rule, the belief of a
follower with 𝑠 = 𝑏 who met a delayed leader is therefore

�(𝑞, 𝑁) ≡ 𝛽(1 − 𝛼)𝐷𝐺(𝑞)
𝛽(1 − 𝛼)𝐷𝐺(𝑞) + (1 − 𝛽)𝛼𝐷𝐵(𝑞)

. (3)

The properties of these beliefs are described in the following Lemma.

Lemma 2. In any equilibrium, the belief of a follower with a bad private signal who met a delayed
leader satisfies the following properties:

1. lim𝑁→∞ lim�→0 �(1, 𝑁) = 1.

2. For any fixed 𝑞 < 1, lim𝑁→∞ lim�→0 �(𝑞, 𝑁) = 𝛽.

3. For any 𝑟 > 𝛽 there exists 𝑁(𝑟) such that for any 𝑁 > 𝑁(𝑟) there exists a unique 𝑞∗(𝑁)
which solves �(𝑞∗(𝑁), 𝑁) = 𝑟. Moreover, lim𝑁→∞ lim�→0 𝑞

∗(𝑁) = 1.

The first part of Lemma 2 states that if followers expects the seller to immediately serve
all leaders, then meeting a delayed leader could only result from the combination of high
demand and a tremble, which convinces followers that the state is good.13 The second part
states that delaying leaders with any fixed probability, including playing a pure strategy
𝐾 = 0, would lead followers with bad private signals who meet delayed leaders to revert to
their prior beliefs, because the good private signal of the delayed leader effectively cancels
the bad signal of the follower. Finally, the third part implies that there is a candidate
equilibrium in which both the seller and followers may randomize, but as markets grow
large, the seller’s strategy converges to non-restricting service speed with probability one.

12Lemma 1 shows that we can restrict attention to service speeds 𝐾 = 0 and 𝐾 = 𝑁 .
13This result in fact holds for any market size 𝑁 , not just in the limit.
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We now turn our attention to followers who did not meet any leaders, either served
or delayed. Not meeting a leader is bad news, because there is higher demand in the first
stage when 𝜔 = 𝐺. Therefore, followers with bad private signals who remain unconnected
prefer not to buy. Now consider the belief of an unconnected follower with a good private
signal,

�(𝑞, 𝑁) =
𝛽𝛼𝑈𝐺(𝑞, 𝑁)

𝛽𝛼𝑈𝐺(𝑞, 𝑁) + (1 − 𝛽)(1 − 𝛼)𝑈𝐵(𝑞, 𝑁) ,

where𝑈𝜔 is the expected number of unconnected followers in state 𝜔, given by

𝑈𝜔(𝑞, 𝑁) = (1 − 𝑞) ©«𝑛𝑁 − 𝑚0

𝑁∑
𝑗=0

𝑗𝑄𝜔(𝑗)ª®¬ + 𝑞 ©«𝑛𝑁 − 𝑚1

𝑁∑
𝑗=0

𝑗𝑄𝜔(𝑗) − �(𝑚0 − 𝑚1)𝑄𝜔(𝑁)ª®¬ .
Unconnected followers with good private signals will buy the product as long as �(𝑞, 𝑁) ≥
𝑟. Solving for lim𝑁→∞ lim�→0 �(𝑞, 𝑁) = 𝑟 allows us to formulate the following Lemma.

Lemma 3. In a large market, a follower with a good private signal who did not meet a leader will
buy the product if and only if 𝛽 ≥ 𝛽𝑞(𝑟, 𝛼) where

𝛽𝑞(𝑟, 𝛼) ≡
(1 − 𝛼)

(
𝑛 − [(1 − 𝑞)𝑚0 + 𝑞𝑚1](1 − 𝛼)

)
𝑟

(1 − 𝛼)
(
𝑛 − [(1 − 𝑞)𝑚0 + 𝑞𝑚1](1 − 𝛼)

)
𝑟 + 𝛼

(
𝑛 − [(1 − 𝑞)𝑚0 + 𝑞𝑚1]𝛼

)
(1 − 𝑟)

.

(4)

We can now also take the limit 𝑁 → ∞ in expression (2) to obtain the normalized
profit function for large markets

𝜋(𝑘) =𝛽 [𝛼 + min{𝛼, 𝑘}𝑚1 + max{𝛼 − 𝑘, 0}𝑚0𝛾𝐺+
(𝑛 − min{𝛼, 𝑘}𝑚1 − max{𝛼 − 𝑘, 0}𝑚0)𝛿𝐺] +
(1 − 𝛽) [1 − 𝛼 + max{1 − 𝛼 − 𝑘, 0}𝑚0𝛾𝐵+
(𝑛 − min{1 − 𝛼, 𝑘}𝑚1 − max{1 − 𝛼 − 𝑘, 0}𝑚0)𝛿𝐵] , (5)

where 𝛾𝜔 is the purchase probability of a follower who met a delayed leader buys (con-
sistent with Lemma 2), and 𝛿𝜔 is the purchase probability that a follower is buys after
remaining unconnected (consistent with Lemma 3), conditional on the state being 𝜔.14

14Expression (5) also gives expected seller profits per consumer, taking into account the possibility of
trembles. Given that the market is large we obtain lim𝑁→∞ �̃�(𝐾) = lim𝑁→∞ �̃�(𝐾 − 1) = lim𝑁→∞ 𝜋(𝐾).
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Notice that although the limit profit function 𝜋(𝑘) is constant on 𝑘 ≡ 𝐾
𝑁 ∈ (𝛼, 1],

setting service speed 𝐾 ∈ [1, 𝑁 − 1] is never optimal for any finite market size 𝑁 .
Taking the limit of finite markets, we either have that lim𝑁→∞ 1

𝑁 arg max𝜋(𝐾) = 𝑁 or
lim𝑁→∞ 1

𝑁 arg max𝜋(𝐾) = 0, from Lemma 1. Thus we use 𝑘 = 1 as the profit maximizer
of expression (5) over (𝛼, 1] in what follows.

3.1 Baseline case: 𝑚1 = 𝑚0 = 𝑚

Having derived the large-market profit function and described consumer beliefs, we are
in a position to derive the seller’s equilibrium choice of service speed.

We start with the baseline where 𝑚1 = 𝑚0 = 𝑚. All leaders who place orders then talk
to the same number of followers, regardless of whether they themselves are immediately
served or delayed. The seller’s choice of service speed therefore does not affect the total
level of word of mouth but only its informational content.

Before proceeding, observe that the critical value of 𝛽 for an unconnected follower to
follow their private signal simplifies to

𝛽𝑞(𝑟, 𝛼)|𝑚1=𝑚0=𝑚 =
(1 − 𝛼)(𝑛 − 𝑚(1 − 𝛼))𝑟

(1 − 𝛼)(𝑛 − 𝑚(1 − 𝛼))𝑟 + 𝛼(𝑛 − 𝑚𝛼)(1 − 𝑟) ≡ 𝛽(𝑟, 𝛼) (6)

in the baseline. Note that 𝛽(𝑟, 𝛼) now does not depend on 𝑞 and that 𝛽(𝑟, 𝛼) < 𝑟 for all
values of 𝛼 ∈ (1/2, 1).

Consider a candidate equilibrium with 𝑘 = 0. From Lemma 2, the posterior belief of a
follower with a bad private signal who met a delayed leader is just 𝛽. Therefore,

𝛾𝐺 =

{
𝛼, 𝛽 < 𝑟

1, 𝛽 ≥ 𝑟
, 𝛾𝐵 =

{
1 − 𝛼, 𝛽 < 𝑟

1, 𝛽 ≥ 𝑟
(7)

From Lemma 3 and equation (6) we obtain the purchase probabilities of unconnected
followers

𝛿𝐺 =

{
0, 𝛽 < 𝛽(𝑟, 𝛼)
𝛼, 𝛽 ≥ 𝛽(𝑟, 𝛼)

, 𝛿𝐵 =

{
0, 𝛽 < 𝛽(𝑟, 𝛼)
1 − 𝛼, 𝛽 ≥ 𝛽(𝑟, 𝛼).

(8)

We can now directly substitute these purchase probabilities into the expression for seller
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profits. For 𝛽 ≥ 𝑟, expression (5) reduces to

𝜋(𝑘) =𝛽 [𝛼(𝑚 + 1) + (𝑛 − 𝛼𝑚)𝛼] +
(1 − 𝛽) [(1 − 𝛼) + max{1 − 𝛼 − 𝑘, 0}𝑚 + (𝑛 − (1 − 𝛼)𝑚)(1 − 𝛼)] ,

which is decreasing in 𝑘. Thus, 𝑘 = 0 is an equilibrium when 𝛽 ≥ 𝑟.
For 𝛽 ∈ [𝛽(𝑟, 𝛼), 𝑟), the profit function reduces to

𝜋(𝑘) =𝛽 [𝛼 + min{𝛼, 𝑘}𝑚 + max{𝛼 − 𝑘, 0}𝑚𝛼 + (𝑛 − 𝛼𝑚)𝛼] +
(1 − 𝛽) [1 − 𝛼 + max{1 − 𝛼 − 𝑘, 0}𝑚(1 − 𝛼) + (𝑛 − (1 − 𝛼)𝑚)(1 − 𝛼)] .

Now consider a deviation from 𝑘 = 0 to 𝑘 = 1.15 This deviation is profitable if and only if

𝛽𝛼2𝑚 + (1 − 𝛽)(1 − 𝛼)2𝑚 < 𝛽𝛼𝑚,

which simplifies to 𝛽 > 1 − 𝛼. Thus, 𝑘 = 0 is an equilibrium for 𝛽 ∈ [𝛽(𝑟, 𝛼), 𝑟) as long as
𝛽 < 1 − 𝛼.

Finally, for 𝛽 < 𝛽(𝑟, 𝛼), the profit function reduces to

𝜋(𝑘) =𝛽 [𝛼 + min{𝛼, 𝑘}𝑚 + max{𝛼 − 𝑘, 0}𝑚𝛼] + (1 − 𝛽) [1 − 𝛼 + max{1 − 𝛼 − 𝑘, 0}𝑚(1 − 𝛼)] ,

which again is increasing in 𝑘 if an only if 𝛽 > 1 − 𝛼. Taken together, we can we can
conclude that 𝑘 = 0 in an equilibrium whenever 𝛽 ≥ 𝑟, and whenever both 𝛽 < 𝑟 and
𝛽 < 1 − 𝛼.

Intuitively, restricting reducing service speed affects seller profits by influencing the
informational content of consumer word of mouth. Delayed leaders cannot transmit hard
information to followers that the state is good or bad, and instead just effectively reveal
that they themselves had good private signals and could not get the product immedi-
ately. As such, delaying leaders maximizes the number of followers who receive positive
information via word of mouth, but also limits how convincing this information will be.

It pays off to restrict service speed when the good state is likely (i.e. 𝛽 ≥ 𝑟) since
meeting delayed leaders is then convincing enough to induce followers to buy regardless
of the followers’ private signals. In contrast, when the good state is less likely (i.e. 𝛽 < 𝑟),

15We can restrict attention to this deviation by Lemma 1.
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followers who meet delayed leaders just act on their own signal. Delaying leaders is then
a double-edged sword: hiding hard information via delay helps the seller if the state turns
out to be bad but hurts the seller if the state turns out to good. When signal precision is
high, more (fewer) leaders want to buy in the good (bad) state, so reducing then service
speed tends to hide hard information whose revelation would help (hurt) the seller.

Now consider a candidate equilibrium with 𝑘 = 1. The purchase probabilities of
unconnected followers, 𝛿𝐺 and 𝛿𝐵, are still given by (8). From Lemma 1, the posterior
belief of followers who meet delayed leaders equals to 1, so these followers will buy
regardless of their private signal: 𝛾𝐺 = 𝛾𝐵 = 1.

For 𝛽 ≥ 𝛽(𝑟, 𝛼), substituting these purchase probabilities into expression (5) for seller
profits gives

𝜋(𝑘) =𝛽 [𝛼(𝑚 + 1) + (𝑛 − 𝛼𝑚)𝛼] +
(1 − 𝛽) [(1 − 𝛼) + max{1 − 𝛼 − 𝑘, 0}𝑚 + (𝑛 − (1 − 𝛼)𝑚)(1 − 𝛼)] .

Doing the same for 𝛽 < 𝛽(𝑟, 𝛼) gives

𝜋(𝑘) =𝛽 [𝛼(𝑚 + 1)] + (1 − 𝛽) [(1 − 𝛼) + max{1 − 𝛼 − 𝑘, 0}𝑚] .

Since both these profit expressions are decreasing in 𝑘, we can rule out a pure strategy
equilibrium with 𝑘 = 1 for any parameter values.

Intuitively, if followers expect a high service speed, then nonetheless meeting a delayed
leader is interpreted as a result of tremble and gives compelling evidence of high demand
and hence the good state. This evidence will induce followers to buy even if the prior is
low and even if they have bad private signals. Thus, the seller can profitably deviate by
reducing service speed, to delay as many leaders as possible.

The results so far, together with Lemma 1, imply that no pure strategy equilibrium
exists for 1 − 𝛼 < 𝛽 < 𝑟. We now derive a mixed strategy equilibrium, in which the seller
randomises between 𝑘 = 0 and 𝑘 = 1, and in which followers who meet delayed leaders
randomize between buying and not buying.

Lemma 2 showed that for any finite market size 𝑁 large enough, there exists a mixed
strategy of the seller 𝑞∗(𝑁) that leaves followers who meet delayed leader indifferent about
buying. We now verify that whenever 1 − 𝛼 < 𝛽 < 𝑟, there exists a mixed strategy for
these followers that leaves the seller is indifferent between setting 𝑘 = 0 and 𝑘 = 1. From
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(5), the seller indifference condition is16

𝜋(0) =𝛽[𝛼 + 𝛼𝑚𝛾𝐺 + (𝑛 − 𝛼𝑚)𝛿𝐺] + (1 − 𝛽)[1 − 𝛼 + (1 − 𝛼)𝑚𝛾𝐵 + (𝑛 − (1 − 𝛼)𝑚)𝛿𝐵]
= 𝛽[𝛼 + 𝛼𝑚 + (𝑛 − 𝛼𝑚)𝛿𝐺] + (1 − 𝛽)[1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚𝛿𝐵] = 𝜋(1),

which simplifies to
𝛽𝛼𝛾𝐺 + (1 − 𝛽)(1 − 𝛼)𝛾𝐵 = 𝛽𝛼.

Recall that 𝛾𝐺 and 𝛾𝐵 denote the ex ante purchase probabilities of followers who meet
delayed leaders, depending on the state. These followers who receive good private signals
will buy; meeting a delayed leader provides good news, so their posterior beliefs exceed
𝑃(𝐺 |𝑔) > 𝑟. If these unconnected followers who receive bad private signals buy with
probability 𝜒 ∈ [0, 1], then 𝛾𝐺 = 𝛼 + (1 − 𝛼)𝜒 and 𝛾𝐵 = (1 − 𝛼) + 𝛼𝜒. Substituting into the
seller indifference condition yields

𝛽𝛼[𝛼 + (1 − 𝛼)𝜒] + (1 − 𝛽)(1 − 𝛼)[(1 − 𝛼) + 𝛼𝜒] = 𝛽𝛼.

The right-hand side of this condition is independent of 𝜒, whereas the left-hand side is
increasing in 𝜒 and equals 𝛽𝛼2 + (1 − 𝛽)(1 − 𝛼)2 when 𝜒 = 0 and 𝛽𝛼 + (1 − 𝛽)(1 − 𝛼) > 𝛽𝛼

when 𝜒 = 1. Thus, whenever 𝛽𝛼2 + (1 − 𝛽)(1 − 𝛼)2 < 𝛽𝛼, or equivalently 𝛽 > 1 − 𝛼, there
exists a value 𝜒∗ ∈ (0, 1) that leaves the seller indifferent. If followers with bad signals
who meet delayed leaders then buy with probability 𝜒∗, then the seller is willing to mix
between 𝑘 = 0 and 𝑘 = 1.

It follows that a mixed strategy equilibrium exists for 1 − 𝛼 < 𝛽 < 𝑟. Since 𝑞∗(𝑁) → 1
by Lemma 2, we can conclude that the seller sets a service speed equal of 𝑘 = 1 almost
surely in this equilibrium, whereas followers who meet delayed leader randomize with a
probability strictly greater than 0 and strictly less than 1.

The difference between a pure strategy equilibrium with 𝑘 = 1, which never exists in the
baseline, and a mixed strategy equilibrium with 𝑞∗(𝑁) → 1, which exists for 1−𝛼 < 𝛽 < 𝑟,
relates to follower beliefs. In the mixed strategy equilibrium, followers who meet delayed
leaders understand that either the seller set 𝑘 = 0, in which case meeting a delayed leader

16We work directly with profits expressions for the limiting case of large markets, 𝑁 → ∞. It is easy to
show that for any finite 𝑁 , profit expressions for both 𝜋(𝐾 = 0) and 𝜋(𝐾 = 𝑁) are continuous in 𝛾𝜔 and
hence there exists a unique pair 1 − 𝛼 < 𝛾𝐵 < 𝛼 < 𝛾𝐺 that solves 𝜋(𝐾 = 0) = 𝜋(𝐾 = 1). Thus, the mixed
strategy equilibrium corresponding to the limit of this solution exists and is unique.
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is relatively likely; or the seller set 𝑘 = 1, in which case meeting a delayed leader is very
unlikely (due to a combination of high demand and a tremble). Indeed, in the limit
𝑁 → ∞, the probability of meeting a delayed leader when the seller set 𝑘 = 1 becomes
vanishingly small. Followers would therefore update their beliefs with full weight on
𝑘 = 0 (i.e. posterior equal to 𝛽), unless the seller’s mixed strategy called on it to set 𝑘 = 1
almost surely. In contrast, in a candidate pure strategy equilibrium with 𝑘 = 1, followers
update beliefs with full weight on 𝑘 = 1 (i.e. posterior equal to 1), even though the
equilibrium probability of meeting a delayed leader given 𝑘 = 1 is vanishingly small.

We can summarize the results of this section in the following Proposition.

Proposition 1. Suppose that 𝑚1 = 𝑚0, so that immediately-served leaders and delayed leaders
engage in the same amount of word of mouth. Then:

1. If 𝛽 ≤ 1 − 𝛼 or 𝛽 ≥ 𝑟, a unique equilibrium exists and is in pure strategies, where the seller
sets 𝑘 = 0 and delays all leaders.

2. If 1 − 𝛼 < 𝛽 < 𝑟, a unique equilibrium exists and is in mixed strategies, where the seller
almost surely sets 𝑘 = 1 immediately serves all leaders.

We can represent these results in the following figure, for parameter values 𝑟 = 0.2,
𝑚 = 3, 𝑛 = 4. Signal precision 𝛼 is depicted on the horizontal axis and the prior 𝛽 on the
vertical axis.
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Figure 1: Optimal Service Speed
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The region between the two dashed curves shows where leaders follow their own
signals. The light blue part of this region shows where there is a pure strategy equilib-
rium with 𝑘 = 0, whereas the light red triangle shows where there is a mixed strategy
equilibrium where the seller sets 𝑘 = 1 with probability 1.

We conclude this section by noting that the seller’s equilibrium choice of service speed
does not depend on the number of leaders relative to followers in the market (the parameter
𝑛) or on the number of followers that each leader connects with (the parameter 𝑚). That
is, the fact that leaders engage in word of mouth matters for seller strategic behavior,
but the exact number of followers who learn via word of mouth does not. An important
reason is that service speed does not affect the total level of word mouth when all leaders
who place orders communicate to the same extent. The seller may want to delay leaders,
or immediately serve them, depending on whether it makes sense on balance to hide or
reveal hard information to followers who end up connecting with leaders. More word of
mouth just means that there are more of these followers who can be influenced in this
way.

3.2 General Case

In this section, we consider a general case with 𝑚1 ≥ 𝑚0, so where immediately-served
leaders may talk to more followers than leaders who are delayed. We try to utilize the
intuition from the analysis of our baseline. In particular, by Lemma 1, we can again
restrict attention to candidate equilibria where the seller sets service speed 𝑘 = 0, 𝑘 = 1,
or possibly randomizes between the two, and we can also restrict attention to 𝑘 = 0 and
𝑘 = 1 when looking at potential deviations.

We again start by considering a candidate equilibrium with 𝑘 = 0. The purchase
probabilities 𝛾𝐺 and 𝛾𝐵, for a follower who meets a delayed leader, are still given by
equation (7). The purchase probabilities 𝛿𝐺 and 𝛿𝐵, for an unconnected follower, are
similar to (8), but where 𝑚0 now replaces 𝑚 in the expression for the cutoff 𝛽(𝑟, 𝛼). Thus,
we have

𝛾𝐺 =

{
𝛼, 𝛽 < 𝑟

1, 𝛽 ≥ 𝑟
, 𝛾𝐵 =

{
1 − 𝛼, 𝛽 < 𝑟

1, 𝛽 ≥ 𝑟

𝛿𝐺 =

{
0, 𝛽 < 𝛽0(𝑟, 𝛼)
𝛼, 𝛽 ≥ 𝛽0(𝑟, 𝛼)

, 𝛿𝐵 =

{
0, 𝛽 < 𝛽0(𝑟, 𝛼)
1 − 𝛼, 𝛽 ≥ 𝛽0(𝑟, 𝛼)
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It is straightforward to verify that 𝑛 > 𝑚0 implies that 𝛽0(𝑟, 𝛼) < 𝑟, so we can sequentially
consider three cases: when 𝛽 ≥ 𝑟, when 𝛽 ∈ [𝛽0(𝑟, 𝛼), 𝑟) and when 𝛽 < 𝛽0(𝑟, 𝛼).

Suppose that 𝛽 ≥ 𝑟, which implies 𝛾𝐺 = 𝛾𝐵 = 1, 𝛿𝐺 = 𝛼, 𝛿𝐵 = 1 − 𝛼.
Plugging these purchase probabilities into expression (5) for profits, then evaluating

at 𝑘 = 0, gives

𝜋(0) = 𝛽 [𝛼(𝑚0 + 1) + (𝑛 − 𝛼𝑚0)𝛼] + (1 − 𝛽) [(1 − 𝛼)(𝑚0 + 1) + (𝑛 − (1 − 𝛼)𝑚0)(1 − 𝛼)] .

Doing the same but evaluating at 𝑘 = 1 yields deviation profits

𝜋(1) = 𝛽 [𝛼(𝑚1 + 1) + (𝑛 − 𝛼𝑚1)𝛼] + (1 − 𝛽) [1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚1)(1 − 𝛼)] .

A direct comparison shows that we can rule out a profitable deviation to 𝑘 = 1 when

𝛽 ≤ �̂�(𝛼) ≡ 1 − 𝑚1 − 𝑚0
𝑚1

𝛼. (9)

This condition is trivially satisfied for all (𝛼, 𝛽) when 𝑚1 = 𝑚0, consistent with our results
in the baseline. If𝑚1 > 𝑚0, then condition (9) reflects the following trade-off. Immediately
serving all leaders helps the seller when the state turns out to be good, since more followers
learn via word of mouth than if the seller had restricted service speed. These followers
all buy but would have followed their private signals had they remained unconnected.
In contrast, delaying all leaders helps the seller when the state turns out to be bad, as
followers who meet delayed leaders do not learn the state and instead are all induced to
buy. The seller therefore wants to immediately serve leaders and maximize the number
of followers who learn when the good state is sufficiently likely.

Suppose now that 𝛽 ∈ [𝛽0(𝑟, 𝛼), 𝑟), which implies 𝛾𝐺 = 𝛿𝐺 = 𝛼, 𝛾𝐵 = 𝛿𝐵 = 1 − 𝛼. That
is, followers who do not meet immediately-served leaders just follow their private signals.
Profits from setting 𝑘 = 0 are then

𝜋(0) = 𝛽
[
𝛼 + 𝛼2𝑚0 + (𝑛 − 𝛼𝑚0)𝛼

]
+ (1 − 𝛽)

[
1 − 𝛼 + (1 − 𝛼)2𝑚0 + (𝑛 − (1 − 𝛼)𝑚0)(1 − 𝛼)

]
.

whereas a deviation to 𝑘 = 1 yields

𝜋(1) = 𝛽 [𝛼 + 𝛼𝑚1 + (𝑛 − 𝛼𝑚1)𝛼] + (1 − 𝛽) [1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚1)(1 − 𝛼)] .
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Thus, we can rule out any profitable deviation when 𝛽 ≤ 1 − 𝛼.
Finally, suppose 𝛽 < 𝛽0(𝑟, 𝛼), which implies 𝛾𝐺 = 𝛼, 𝛾𝐵 = 1 − 𝛼, and 𝛿𝐺 = 𝛿𝐵 = 0.

Profits from setting 𝑘 = 0 are then

𝜋(0) = 𝛽
[
𝛼 + 𝛼2𝑚0

]
+ (1 − 𝛽)

[
1 − 𝛼 + (1 − 𝛼)2𝑚0

]
,

while profits from a deviation to 𝑘 = 1 are

𝜋(1) = 𝛽 [𝛼 + 𝛼𝑚1] + (1 − 𝛽)(1 − 𝛼).

It follows that we can rule out any profitable deviation whenever

𝛽 ≤ (1 − 𝛼)2𝑚0
(1 − 𝛼)𝑚0 + (𝑚1 − 𝑚0)𝛼

. (10)

We denote
�̃�(𝛼) = (1 − 𝛼)𝑚0

(1 − 𝛼)𝑚0 + (𝑚1 − 𝑚0)𝛼
.

Using this notation, we sum up all these cases to get the following result.

Lemma 4. An equilibrium with 𝑘 = 0 exists if and only if

1. 𝛽 ∈
[
𝑟, �̂�(𝛼)

]
2. 𝛽 ∈

[
𝛽0(𝑟, 𝛼),min{𝑟, 1 − 𝛼}

]
3. 𝛽 ≤ min

{
𝛽0(𝑟, 𝛼), (1 − 𝛼)�̃�(𝛼)

}
We now provide some intuition on this result and how it compares with the baseline.

Broadly speaking, the main effect in the baseline, by which reducing service speed affects
the content of word of mouth, is still present. The difference is that now, restricting service
speed also affects the level of word of mouth. Setting a low service speed means that fewer
followers learn, in situations where immediately-served leaders talk more than leaders
who are delayed.

This level effect of restricting service speed will reduce the range of parameter values
for which the seller sets 𝑘 = 0 in equilibrium. This can be seen most clearly from Case
1 of Lemma 4. The relevant condition, 𝛽 ≤ �̂�(𝛼), is trivially satisfied for all 𝛽 ∈ [𝑟, 1]
in the baseline since �̂�(𝛼) = 1 when 𝑚1 = 𝑚0. If instead 𝑚1 < 𝑚0, the seller prefers to
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immediately serve leaders when the good state is sufficiently likely, to increase how many
followers learn via word of mouth, as described after equation (9).

The seller’s incentive to immediately serve leaders is also increasing in signal precision,
i.e. �̂�(𝛼) is decreasing in 𝛼. This is because the amount of extra word of mouth generated
by a high service speed is increasing in the total number of orders placed by leaders. A
higher signal precision implies more orders in the good state, when extra word of mouth
helps, and fewer in the bad state, when extra word of mouth hurts.

Now we consider a candidate equilibrium with 𝑘 = 1. As in the baseline, followers
who meet immediately-served leaders will act based on hard information about the state,
whereas followers who meet delayed leaders may either all buy, or follow their private
signals, depending on the value of the prior.

The behaviour of unconnected consumers is also similar to before but with a different
cut-off. That is, unconnected followers will act on their privates signals if 𝛽 ≥ 𝛽1(𝑟, 𝛼)
and otherwise all refuse to buy, whereas the condition in the case 𝑘 = 0 was 𝛽 ≥ 𝛽0(𝑟, 𝛼).
Expression (3) shows that 𝛽𝑞(𝑟, 𝛼) is increasing in 𝑞 when 𝑚1 > 𝑚0, so in particular
𝛽0(𝑟, 𝛼) < 𝛽1(𝑟, 𝛼). That is, followers who do not learn anything via word of mouth
become more pessimistic (and hence require all refuse to buy for a larger range of 𝛽) if
they believe the seller sets a higher service speed. Since only leaders who place orders
will talk, and immediately-served leaders talk more than leaders who are delayed, the
relative probability of being unconnected depends more on the state when service speed
is high. Thus, being unconnected brings relatively worse news in a candidate equilibrium
with 𝑘 = 1 compared to one with 𝑘 = 0.

Note that if 𝑘 = 1, then meeting a delayed leader is interpreted by consumers as a
result of a tremble and therefore is decisively good news. Therefore, 𝛾𝐺 = 𝛾𝐵 = 1 for all 𝛽.
The behaviour of unconnected followers may vary with parameters. We start our analysis
with the case 𝛽 > 𝛽1(𝑟, 𝛼), which implies 𝛿𝐺 = 𝛼 and 𝛿𝐵 = 1 − 𝛼. In this case setting 𝑘 = 1
yields profits

𝜋(1) = 𝛽 [𝛼 + 𝛼𝑚1 + (𝑛 − 𝛼𝑚1)𝛼] + (1 − 𝛽) [1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚1)(1 − 𝛼)] .

A deviation to 𝑘 = 0 gives

𝜋(0) = 𝛽 [𝛼 + 𝛼𝑚0 + (𝑛 − 𝛼𝑚0)𝛼] + (1 − 𝛽) [1 − 𝛼 + (1 − 𝛼)𝑚0 + (𝑛 − (1 − 𝛼)𝑚0)(1 − 𝛼)] .
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Therefore setting 𝑘 = 1 is optimal whenever inequality (9) is reversed, i.e.

𝛽 ≥ �̂�(𝛼) = 1 − 𝑚1 − 𝑚0
𝑚1

𝛼.

Now consider 𝛽 ≤ 𝛽1(𝑟, 𝛼), so that purchase probabilities are 𝛾𝜔 = 1, 𝛿𝜔 = 0. Followers
who remain unconnected never buy, whereas followers who meet delayed leaders (off the
equilibrium path) again always buy.

Profits from setting 𝑘 = 1 are then

𝜋(1) = 𝛽 [𝛼 + 𝛼𝑚1] + (1 − 𝛽)(1 − 𝛼),

whereas deviating to 𝑘 = 0 gives

𝜋(0) = 𝛽 [𝛼 + 𝛼𝑚0] + (1 − 𝛽) [1 − 𝛼 + (1 − 𝛼)𝑚0] .

It follows that the deviation is unprofitable for

𝛽 ≥ (1 − 𝛼)𝑚0
(1 − 𝛼)𝑚0 + 𝛼(𝑚1 − 𝑚0)

= �̃�(𝛼),

which is a weaker condition than 𝛽 ≥ �̂�(𝛼). Intuitively, the seller is less tempted to deviate
to 𝑘 = 0 when unconnected followers never buy, because delaying leaders means that
more followers end up unconnected.

These results can be gathered and restated as the following Lemma.

Lemma 5. An equilibrium with 𝑘 = 1 exists if and only if

1. 𝛽 ≥ �̂�(𝛼)

2. 𝛽 ∈
[
�̃�(𝛼),min

{
𝛽1(𝑟, 𝛼), �̂�(𝛼)

}]
We now comment on three features of these results. First, unlike in the baseline, a

pure strategy equilibrium will exist in which the seller immediately serves all leaders if
the good state is sufficiently likely. The less delayed leaders talk, i.e. the lower the value
of 𝑚0, the larger the parameter region where this equilibrium exists. The intuition is as
described after equation (9). When immediately-served leaders talk more than leaders
who are delayed, setting a high service speed allows the seller to maximize the number of
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followers who learn via word of mouth, and these followers will all buy if the state turns
out to be good.

Second, the fact that followers interpret meeting delayed leaders (off the equilibrium
path) as conclusive good news about the state still limits the parameter range for which
𝑘 = 1 is an equilibrium. It was these beliefs that ruled out a pure strategy equilibrium
with 𝑘 = 1 in the baseline. The seller can take advantage of these beliefs when deviating
to 𝑘 = 0 to systematically fool followers, since they cannot observe the seller’s deviation.

Third, an equilibrium where the seller immediately serves all leaders is easier to
sustain when unconnected consumers never buy, 𝛽 < 𝛽1(𝑟, 𝛼), than when they act on their
private signals, 𝛽 ≥ 𝛽1(𝑟, 𝛼): the equilibrium condition is 𝛽 ≥ �̃�(𝛼) in the first case and
𝛽 ≥ �̂�(𝛼) > �̃�(𝛼) in the second case. The reason is that increased word of mouth can hurt
the seller if followers learn the state is bad, but this matters less if followers also would
refuse to buy had they remained unconnected.

We now turn to mixed strategy equilibria. From Lemma 1, in any such equilibrium, the
seller must randomize between 𝑘 = 1 and 𝑘 = 0. We start by looking for an equilibrium
where a follower who meets a delayed leader and gets 𝑠 = 𝑏 randomizes between buying
and not buying. From Lemma 2, we know that for such equilibrium to exist it must be the
case that 𝛽 < 𝑟 and 𝑞∗(𝑁) → 1 as 𝑁 → ∞. That is, in large markets, the seller must set
𝑞∗ = 1.

The seller’s indifference condition can be written as

𝜋(0) =𝛽[𝛼 + 𝛼𝑚0𝛾𝐺 + (𝑛 − 𝛼𝑚0)𝛿𝐺] + (1 − 𝛽)[1 − 𝛼 + (1 − 𝛼)𝑚0𝛾𝐵 + (𝑛 − (1 − 𝛼)𝑚0)𝛿𝐵]
= 𝛽[𝛼 + 𝛼𝑚1 + (𝑛 − 𝛼𝑚1)𝛿𝐺] + (1 − 𝛽)[1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚1𝛿𝐵] = 𝜋(1).

Suppose that followers who meet a delayed leader but get 𝑠 = 𝑏 buy with probability
𝜒 ∈ [0, 1]. This implies 𝛾𝐺 = 𝛼 + (1 − 𝛼)𝜒 and 𝛾𝐵 = (1 − 𝛼) + 𝛼𝜒. Since in this candidate
equilibrium sellers sets 𝑘 = 1 almost surely, the relevant cutoff for unconnected followers
is 𝛽1(𝑟, 𝛼), so we obtain

𝛿𝐺 =

{
0, 𝛽 < 𝛽1(𝑟, 𝛼)
𝛼, 𝛽 ≥ 𝛽1(𝑟, 𝛼)

, 𝛿𝐵 =

{
0, 𝛽 < 𝛽1(𝑟, 𝛼)
1 − 𝛼, 𝛽 ≥ 𝛽1(𝑟, 𝛼)

Recall that 𝛽1(𝑟, 𝛼) < 𝑟. If 𝛽 ∈ [𝛽1(𝑟, 𝛼), 𝑟], then the seller’s indifference condition
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reduces to

𝜋(0, 𝜒) =𝛽[𝛼 + 𝛼𝑚0(𝛼 + (1 − 𝛼)𝜒) + (𝑛 − 𝛼𝑚0)𝛼]+
(1 − 𝛽)[1 − 𝛼 + (1 − 𝛼)𝑚0(1 − 𝛼 + 𝛼𝜒) + (𝑛 − (1 − 𝛼)𝑚0)(1 − 𝛼)]

=𝛽[𝛼 + 𝛼𝑚1 + (𝑛 − 𝛼𝑚1)𝛼] + (1 − 𝛽)[1 − 𝛼 + (𝑛 − (1 − 𝛼)𝑚1)(1 − 𝛼)
=𝜋(1).

Profits 𝜋(0, 𝜒) are increasing in 𝜒, so there will exist a value of 𝜒 ∈ (0, 1) that makes the
seller indifferent, 𝜋(0, 𝜒) = 𝜋(1) if 𝜋(0, 𝜒 = 0) < 𝜋(1) < 𝜋(0, 𝜒 = 1). It is straightforward to
verify that this condition is equivalent to

1 − 𝛼 < 𝛽 < �̂�(𝛼).

If instead 𝛽 < 𝛽1(𝑟, 𝛼), the seller’s indifference conditions reduces to

𝜋(0, 𝜒) =𝛽[𝛼 + 𝛼𝑚0(𝛼 + (1 − 𝛼)𝜒)] + (1 − 𝛽)[1 − 𝛼 + (1 − 𝛼)𝑚0(1 − 𝛼 + 𝛼𝜒)]
=𝛽(𝛼 + 𝛼𝑚1) + (1 − 𝛽)(1 − 𝛼))
=𝜋(1)

As above, there exists a value of 𝜒 ∈ (0, 1) that makes the seller indifferent if 𝜋(0, 𝜒 =

0) < 𝜋(1) < 𝜋(0, 𝜒 = 1). This condition is now equivalent to

(1 − 𝛼)�̃�(𝛼) < 𝛽 < �̃�(𝛼).

We can summarize these results in the following lemma.

Lemma 6. A mixed strategy equilibrium in which the seller almost surely sets 𝑘 = 1 and immedi-
ately serves all leaders, and where followers with bad signals who meet delayed leaders randomize,
exists if and only if either

1. max{1 − 𝛼, 𝛽1(𝑟, 𝛼)} < 𝛽 < min{�̂�(𝛼), 𝑟} or

2. (1 − 𝛼)�̃�(𝛼) < 𝛽 < min{�̃�(𝛼), 𝛽1(𝑟, 𝛼)}.

We now look for a mixed strategy equilibrium where a follower who remains un-
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connected and gets 𝑠 = 𝑔 randomizes.17 An unconnected follower will be indifferent if
𝛽𝑞(𝑟, 𝛼) = 𝛽, by Lemma 3. Since 𝛽𝑞(𝑟, 𝛼) is increasing in 𝑞, the necessary condition for the
equilibrium to exist is 𝛽0(𝑟, 𝛼) ≤ 𝛽 ≤ 𝛽1(𝑟, 𝛼). This means that an unconnected follower
with a bad signal would buy if they think all leaders were delayed, but would not buy
if they think all leaders were immediately served. Moreover, for any interior 𝑞 ∈ (0, 1), a
follower who meets a delayed leader and gets 𝑠 = 𝑏 retains their prior beliefs, by Lemma
2.

Suppose that an unconnected follower with 𝑠 = 𝑔 buys with probability �. Then seller
profits from setting 𝑘 = 0 are

𝜋(0, �) = 𝛽[𝛼 + 𝛼2𝑚0 + (𝑛 −𝑚0𝛼)𝛼�] + (1− 𝛽)[1− 𝛼 + (1− 𝛼)2𝑚0 + (𝑛 −𝑚0(1− 𝛼))(1− 𝛼)�],

whereas profits from setting 𝑘 = 1 are

𝜋(1, �) = 𝛽[𝛼 + 𝛼𝑚1 + (𝑛 − 𝑚1𝛼)𝛼�] + (1 − 𝛽)[1 − 𝛼 + (𝑛 − 𝑚1(1 − 𝛼))(1 − 𝛼)�].

Since 𝜕𝜋(0,�)
𝜕� > 𝜕𝜋(1,�)

𝜕� > 0, by 𝑚0 < 𝑚1, there exists a unique � that satisfies the seller
indifferent condition, 𝜋(0, �) = 𝜋(1, �) whenever 𝜋(0, � = 0) < 𝜋(1, � = 0) and 𝜋(0, � =

1) > 𝜋(1, � = 1). The first inequality is equivalent to 𝛽 > (1 − 𝛼)�̃�(𝛼) and the second is
equivalent to 𝛽 < 1 − 𝛼, which implies the following.

Lemma 7. A mixed strategy equilibrium in which the seller randomizes between 𝑘 = 0 and 𝑘 = 1
with 𝑞 ∈ (0, 1), where unconnected followers with good signals randomize, exists if and only if

max{𝛽0(𝑟, 𝛼), (1 − 𝛼)�̃�(𝛼)} < 𝛽 < min{𝛽1(𝑟, 𝛼), 1 − 𝛼}.

Having derived all pure and mixed strategy equilibria for the general case, we now
combine Lemmas 4 - 7 to formulate an overall result.

Proposition 2. In large markets the following equilibria exist:

1. If 𝛽 ≥ 𝑟 then

(a) if 𝛽 ≥ �̂�(𝛼) then 𝑘 = 1;

(b) if 𝛽 ≤ �̂�(𝛼) then 𝑘 = 0.
17A follower who remains unconnected and gets 𝑠 = 𝑏 will always have a strict incentive not to buy,

because their posterior is less than 𝑃(𝐺 |𝑠 = 𝑏) < 𝑟.
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2. If 𝛽 ∈ [𝛽1(𝑟, 𝛼), 𝑟] then

(a) if 𝛽 ≥ �̂�(𝛼) then 𝑘 = 1;

(b) if 1−𝛼 ≤ 𝛽 ≤ �̂�(𝛼) then there is a mixed strategy equilibrium with 𝑘 = 1 almost surely;

(c) if 𝛽 < 1 − 𝛼 then 𝑘 = 0

3. If 𝛽 ∈ [𝛽0(𝑟, 𝛼), 𝛽1(𝑟, 𝛼)] then

(a) if 𝛽 ≥ �̃�(𝛼) then 𝑘 = 1;

(b) if (1−𝛼)�̃�(𝛼) < 𝛽 < 1−𝛼 then there is a mixed strategy equilibrium in which 𝑞 ∈ (0, 1).

(c) if (1−𝛼)�̃�(𝛼) ≤ 𝛽 ≤ �̃�(𝛼) then there is a mixed strategy equilibrium with 𝑘 = 1 almost
surely;

(d) if 𝛽 ≤ (1 − 𝛼) then 𝑘 = 0

4. If 𝛽 < 𝛽0(𝑟, 𝛼) then

(a) if 𝛽 ≥ �̃�(𝛼) then 𝑘 = 1;

(b) if (1−𝛼)�̃�(𝛼) ≤ 𝛽 ≤ �̃�(𝛼) then there is a mixed strategy equilibrium with 𝑘 = 1 almost
surely;

(c) if 𝛽 ≤ (1 − 𝛼)�̃�(𝛼) then 𝑘 = 0

We now comment on two forces at play in this result that were absent in the baseline.
First consider a scenario where unconnected followers all act on their private signals,

for all values of the prior and signal precision (that satisfy the participation constraint)
and regardless of their beliefs about the seller’s chosen service speed. This is in fact what
will happen when there are many followers relative to leaders in the market, so when
𝑛 is large. In the limit 𝑛 → ∞, most followers are unconnected in both states, so being
unconnected is uninformative. That is,

lim
𝑛→∞

𝛽0(𝑟, 𝛼) = lim
𝑛→∞

𝛽1(𝑟, 𝛼) =
(1 − 𝛼)𝑟

(1 − 𝛼)𝑟 + 𝛼(1 − 𝑟) ,

where it then follows directly that 𝛽 ≥ lim𝑛→∞ 𝛽0(𝑟, 𝛼) and 𝛽 ≥ lim𝑛→∞ 𝛽1(𝑟, 𝛼) are
equivalent to the participation constraint, 𝑃(𝑔 |𝐺) = 𝛼𝛽

𝛼𝛽+(1−𝛼)(1−𝛽) ≥ 𝑟.
Then only Case 1 and 2 of Proposition 2 are relevant, and we can reformulate in terms

of this corollary:
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Figure 2: Level effect for large 𝑛

Corollary 1. In large markets, with many followers relative to leaders, 𝑛 → ∞, so all followers
act on their private signals, the following equilibria exist:

1. If 𝛽 ≤ 1 − 𝛼 or 𝑟 ≤ 𝛽 ≤ �̂�(𝛼), a unique equilibrium exists and is in pure strategies, where
the seller sets 𝑘 = 0 and delays all leaders.

2. If 1 − 𝛼 < 𝛽 < min{𝑟, �̂�(𝛼)}, a unique equilibrium exists and is in mixed strategies, where
the seller almost surely sets 𝑘 = 1 and immediately serves all leaders.

3. If 𝛽 ≥ �̂�(𝛼), a unique equilibrium exists and is in pure strategies, where the seller sets 𝑘 = 1
immediately serves all leaders.

Corollary 1 is very similar to Proposition 1 from the baseline. For ease of comparison,
Figure 2 depicts both scenarios. The only difference is that a pure strategy equilibrium
with 𝑘 = 1 now exists whenever 𝛽 ≥ �̂�(𝛼). The smaller the value of 𝑚0, the less that
delayed leaders talk, and hence the less tempted the seller is to delay them. As such, the
parameter region with the pure strategy equilibrium 𝑘 = 1 grows larger as 𝑚0 decreases.
This is the mechanism described after expression (9) and Lemmas 4, by which increasing
service speed leads to increased sales via extra word of mouth when the state turns out
to be good, but reduced sales when the state turns out to be bad. In situations where
all unconnected followers act according to their private signals, this is the only way that
seller behavior in the general case differs from that in the baseline.

Now consider a situation where delayed leaders never talk, 𝑚0 = 0. Cutoff values are
then �̃�(𝛼) = 0; 𝛽0(𝑟, 𝛼) =

(1−𝛼)𝑟
(1−𝛼)𝑟+𝛼(1−𝑟) , which is equivalent to the participation constraint;
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Figure 3: Level effect when delayed leaders do not talk

�̂�(𝛼) = 1 − 𝛼.
Hence, only Case 1, Case 2, and parts (a) and (b) of Case 3 are relevant in Proposition

2. We can can reformulate in terms of this corollary:

Corollary 2. In large markets, where delayed leaders do not engage in word of mouth, 𝑚0 = 0, the
following equilibria exist:

1. If 𝛽1(𝑟, 𝛼) < 𝛽 < 1−𝛼, a unique equilibrium exists and is in pure strategies, where the seller
sets 𝑘 = 0 and delays all leaders.

2. If 𝛽 ≥ 1− 𝛼, a unique equilibrium exists and is in pure strategies, where the seller sets 𝑘 = 1
immediately serves all leaders.

3. If 𝛽 < min{𝛽1(𝑟, 𝛼), 1 − 𝛼} then the following equilibria exist: a pure strategy equilibrium
with 𝑘 = 0, a pure strategy equilibrium with 𝑘 = 1, and a mixed strategy equilibrium in
which 𝑞 ∈ (0, 1).

Taking 𝑚0 → 0 maximizes the strength of the effect that was isolated in Corollary 1.
As leaders talk less and less, the region where the pure strategy equilibrium 𝑘 = 1 exists
gets larger, until it eventually covers all of 𝛽 ≥ 1 − 𝛼 when 𝑚0 = 0, as shown in Figure 3.

As 𝑚0 drops, unconnected followers also become less and less pessimistic about the
state, but only if they believe the seller has engaged in delay. Thus, unlike in the baseline,
there is a region where the behavior of unconnected follower depends on their beliefs
about the seller’s chosen service speed, i.e. for 𝛽0(𝑟, 𝛼) < 𝛽 < 𝛽1(𝑟, 𝛼). The function
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𝛽0(𝑟, 𝛼) is decreasing in 𝑚0, and coincides with the participation constraint when 𝑚0 = 0,
so that the relevant constraint becomes 𝛽 < 𝛽1(𝑟, 𝛼), the blue line in the Figure.

The fact that the optimal behavior of unconnected followers depends on their beliefs
about the service speed is what gives equilibrium multiplicty in the general case. If a
high service speed is expected, then unconnected followers will not buy, which pushes
the seller to increase service speed to minimize the number of unconnected followers. If
instead a low speed is expected, then unconnected followers will buy if they receive good
signals, which makes it more attractive for the seller to reduce service speed and leave
more followers unconnected.

Notice, in particular, that equilibrium multiplicity is not an issue when 𝑛 → ∞ (see
Corollary 1). There optimal follower behavior does not depend on their beliefs about
the service speed which results in equilibrium uniqueness. Put another way, we expect
equilibrium multiplicity to be most relevant in markets where there are many (or at least
not too few) opinion leaders relative to followers.

4 Word of mouth and product awareness

How would seller strategic behavior change if unconnected followers were simply unable
to buy? This could reasonable for situations where the seller launches a product that
leaders are aware off, but where followers only become aware if they hear from leaders.
Many of the works surveyed in the Introduction assume that word of mouth has precisely
this role. Intuitively, we might expect that delay becomes less attractive if unconnected
followers are unable to buy, because delaying leaders means more followers end up
unconnected.

To model consumer awareness we assume that unconnected followers never buy, i.e.
𝛿𝐺 = 𝛿𝐵 = 0. Moreover, we assume that followers who meet delayed leaders then also
get a private signal with accuracy 𝛼, which implies that 𝛾𝜔 is defined in the same way as
in the main analysis. The interpretation is that it may be straightforward to access noisy
information about product quality, but only for consumers who first become aware of the
product. At the end of the section we discuss how the absence of any follower private
signals would affect the results.

We start our analysis with the case 𝛽 ≥ 𝑟, so followers who meet delayed leaders always
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buy, regardless of the service speed they expect. Profits from setting 𝑘 = 0 are

𝜋(0) = 𝛽 [𝛼(𝑚0 + 1)] + (1 − 𝛽)(1 − 𝛼)(𝑚0 + 1),

whereas profits from setting 𝑘 = 1 are

𝜋(1) = 𝛽 [𝛼(𝑚1 + 1)] + (1 − 𝛽)(1 − 𝛼).

Thus, we have 𝜋(0) ≥ 𝜋(1) if and only if

𝛽 ≤ 𝑚0(1 − 𝛼)
𝑚0(1 − 𝛼) + (𝑚1 − 𝑚0)𝛼

= �̃�(𝛼).

Now consider 𝛽 < 𝑟. Since unconnected followers do not buy, regardless of the
candidate equilibrium in question, we can use our earlier results from Case 4 of Proposition
2. There we had 𝛽 < 𝛽0(𝑟, 𝛼) ≤ 𝛽1(𝑟, 𝛼), so unconnected followers never found it optimal
to buy. Taken together, we have the following.

Proposition 3. In large markets, where unconnected followers cannot buy, the following equilibria
exist:

1. If 𝛽 ≥ 𝑟 then

(a) if 𝛽 ≥ �̃�(𝛼) then 𝑘 = 1;

(b) if 𝛽 ≤ �̃�(𝛼) then 𝑘 = 0.

2. If 𝛽 < 𝑟 then

(a) if 𝛽 ≥ �̃�(𝛼) then 𝑘 = 1;

(b) if (1−𝛼)�̃�(𝛼) ≤ 𝛽 ≤ �̃�(𝛼) then there is a mixed strategy equilibrium with 𝑘 = 1 almost
surely;

(c) if 𝛽 ≤ (1 − 𝛼)�̃�(𝛼) then 𝑘 = 0

For the interpretation, first consider the case of 𝛽 > 𝑟. It follows from �̃�(𝛼) ≤ �̂�(𝛼)
that the parameter region with 𝑘 = 1 has increased in size, whereas the parameter region
with 𝑘 = 0 has decreased in size, compared to the main analysis. Intuitively, profits drop
compared to our main analysis, but they drop to a larger extent when the seller delays
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Figure 4: Unmatched followers do not buy

leaders, since then more followers end up unconnected. This makes it less attractive for
the seller to use delay.

A broadly similar story holds for 𝛽 < 𝑟. As 𝛽1(𝑟, 𝛼) is not relevant when unmatched
followers never buy, the region that had multiple equilibria now only has 𝑘 = 0. At
the same time, the constraint 𝛽 < (1 − 𝛼) is now replaced by 𝛽 < (1 − 𝛼)�̃�(𝛼), thus for
intermediate 𝛽 the seller now prefers to set 𝑘 = 1 almost surely.

These ideas are illustrated in Figure 4. Panel (a) depicts the seller’s equilibrium behav-
ior for particular parameter values, assuming that unconnected followers cannot buy. For
the sake of comparison, Panel (b) depicts seller behavior from Corollary 1 in the general
analysis, where unconnected followers always act on their private signals, and where
setting 𝑘 = 0 is more attractive.

Now we consider two special cases. First, suppose that 𝑚0 = 0, so delayed leaders
don’t talk at all. In this case �̃�(𝛼) = 0 and so the seller always sets 𝑘 = 1. Clearly, it does
not pay off to delay leaders if they never talk to followers, who therefore can never buy.

Second, consider the case of 𝑚0 = 𝑚1, so immediately-served and delayed leaders
talk to the same extent. Then �̃�(𝛼) = 1, and we can verify that Proposition 3 reduces to
Proposition 1, so we get our baseline results. The total level of word of mouth, and hence
the total number of unconnected followers, is then independent of service speed, and so
the seller’s strategic behavior does not depend on whether unconnected follower do or do
not buy.

We can conclude that if word of mouth spreads awareness, for example with the launch
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of a new product, and hence both shapes beliefs and expands the size of the market, the
seller will use delay less often, but only when 𝑚0 < 𝑚1.

Finally, we explore what happens if leaders are the only source of information of the
followers, i.e. if followers never receive any private signals. In this situation followers
who meet delayed leaders will all buy, since meeting a delayed leader is just as convincing
as receiving a good signal. It follows that Case 1 of Proposition 3 then applies for both
𝛽 ≥ 𝑟 and 𝛽 < 𝑟. Looking at Figure 4, instead of setting 𝑘 = 1 almost surely in the red
region of panel (a), the seller would prefer to set 𝑘 = 0, as meeting a delayed leader has
a larger impact when followers cannot receive bad private signals. This implies that the
comparison with Corollary 1 is not as clear-cut as before: if quality is ex ante high, then
the inability of unconnected followers to buy will push the seller to set 𝑘 = 1 more often,
but the opposite is true if quality is ex ante lower, where setting 𝑘 = 0 now becomes more
attractive.

5 Conclusions

In this paper, we explored how a seller can strategically use product delay to influence
consumer learning about the quality of its product through word of mouth. The effect of
service speed on learning can be decomposed into the content effect and the level effect.

The content effect influences the behavior of consumers who encounter either served
or delayed leaders. If expected product quality is high, then meeting a delayed leader
is sufficiently good news for these followers to buy. The seller then prefers to conceal
information about quality by delaying, rather than revealing quality to leaders who are
served. If expected quality is not high, then meeting a delayed leader does not significantly
impact followers’ behavior. In this case the seller prefers to hide information by delaying
leaders if signals are inaccurate, and otherwise to serve all leaders almost surely. Broadly,
if the seller mainly cares about influencing those followers who encounter leaders, and if
the total amount of word of mouth depends little on how many leaders are immediately
served, then it is often optimal for the seller to delay.

The level effect plays a significant role in determining how many consumers receive
information from leaders, and it also affects the behavior of consumers who do not hear
from leaders at all. This effect becomes evident in situations where immediately-served
leaders engage in more word-of-mouth communication than leaders who are delayed. The
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service delay reduces the likelihood that a consumer will hear from a leader, prompting
the seller to increase service speed when expected product quality is high. Moreover, the
seller may choose to set a high service speed even when expected quality is moderate,
because consumers who expect this service speed will perceive the lack of communication
from leaders as particularly negative news. Thus, the seller has an incentive to increase
service speed to reduce the number of consumers who do not receive any news. If word-
of-mouth communication is crucial for spreading product awareness, then the level effect
is amplified. Nonetheless, the seller may still use delay to influence consumer word-of-
mouth communication.
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6 Appendix: Proofs

Proof of Lemma 1. Let us again denote the number of leaders served in state 𝜔 as 𝑆𝜔(𝐾),
and the number of leaders delayed as 𝐷𝜔(𝐾), where

𝑆𝜔(𝐾) =
𝑁∑
𝑗=0

min{ 𝑗 , 𝐾}𝑄𝜔(𝑗), 𝐷𝜔(𝐾) =
𝑁∑
𝑗=0

max{ 𝑗 − 𝐾, 0}𝑄𝜔(𝑗).

For notational simplicity we denote 𝑆𝜔(−1) = 0 and 𝐷𝜔(−1) = 𝐷𝜔(𝐾) =
∑𝑁
𝑗=0 𝑗𝑄𝜔(𝑗), i.e.

when the firm sets 𝐾 = 0 downward tremble is not possible and all consumers are delayed.
Let 𝛾𝜔 be the probability that a consumer who met a delayed leader buys the product,

and let 𝛿𝜔 be the probability that a consumer who did not meet anyone buys the product.
Profits from implementing service speed 𝐾 are then

𝜋(𝐾) = 𝛽

𝑁


𝑁∑
𝑗=0

𝑗𝑄𝐺(𝑗) + (1 − �) (𝑚1𝑆𝐺(𝐾) + 𝑚0𝛾𝐺𝐷𝐺(𝐾) + 𝛿𝐺 (𝑛𝑁 − 𝑚1𝑆𝐺(𝐾) − 𝑚0𝐷𝐺(𝐾)))

+ � (𝑚1𝑆𝐺(𝐾 − 1) + 𝑚0𝛾𝐺𝐷𝐺(𝐾 − 1) + 𝛿𝐺 (𝑛𝑁 − 𝑚1𝑆𝐺(𝐾 − 1) − 𝑚0𝐷𝐺(𝐾 − 1)))]

+ 1 − 𝛽

𝑁


𝑁∑
𝑗=0

𝑗𝑄𝐵(𝑗) + (1 − �) (𝑚0𝛾𝐵𝐷𝐵(𝐾) + 𝛿𝐵 (𝑛𝑁 − 𝑚1𝑆𝐵(𝐾) − 𝑚0𝐷𝐵(𝐾)))

+ � (𝑚0𝛾𝐵𝐷𝐵(𝐾 − 1) + 𝛿𝐵 (𝑛𝑁 − 𝑚1𝑆𝐵(𝐾 − 1) − 𝑚0𝐷𝐵(𝐾 − 1)))] .

We now show that the profit-maximizing service speed 𝐾 cannot take on any value
1 ≤ 𝐾 ≤ 𝑁 − 1. Consider the difference 𝜋(𝐾 + 1) − 𝜋(𝐾). Note that

𝑆𝜔(𝐾 + 1) − 𝑆𝜔(𝐾) =
𝑁∑
𝑗=0

(min{ 𝑗 , 𝐾 + 1} − min{ 𝑗 , 𝐾})𝑄𝜔(𝑗) =
𝑁∑

𝑗=𝐾+1
𝑄𝜔(𝑗),

and

𝐷𝜔(𝐾 + 1) − 𝐷𝜔(𝐾) =
𝑁∑
𝑗=0

(max{ 𝑗 − 𝐾 − 1, 0} − max{ 𝑗 − 𝐾, 0})𝑄𝜔(𝑗) = −
𝑁∑

𝑗=𝐾+1
𝑄𝜔(𝑗).

which implies
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Δ(𝐾) ≡𝜋(𝐾 + 1) − 𝜋(𝐾) =

𝛽

𝑁
[𝑚1(1 − 𝛿𝐺) − 𝑚0(𝛾𝐺 − 𝛿𝐺)] ©«

𝑁∑
𝑗=𝐾+1

𝑄𝐺(𝑗) + �𝑄𝐺(𝐾)ª®¬
1 − 𝛽

𝑁
[−𝑚1𝛿𝐵 − 𝑚0(𝛾𝐵 − 𝛿𝐵)] ©«

𝑁∑
𝑗=𝐾+1

𝑄𝐵(𝑗) + �𝑄𝐵(𝐾)ª®¬ ,
where the expression in the second set of square brackets is non-positive, by𝑚1 ≥ 0. Thus,
we have that

signΔ(𝐾) = sign

(
𝛽[𝑚1(1 − 𝛿𝐺) − 𝑚0(𝛾𝐺 − 𝛿𝐺)]
(1 − 𝛽)([𝑚1𝛿𝐵 + 𝑚0(𝛾𝐵 − 𝛿𝐵)])

∑𝑁
𝑗=𝐾+1 𝑄𝐺(𝑗) + �𝑄𝐺(𝐾)∑𝑁
𝑗=𝐾+1 𝑄𝐵(𝑗) + �𝑄𝐵(𝐾)

− 1

)
Note, that ifΔ(𝐾0) > 0 holds for some𝐾0 it must be the case that𝑚1(1−𝛿𝐺)−𝑚0(𝛾𝐺−𝛿𝐺) > 0.
As such, Δ(𝐾0) > 0 must also hold for all 𝐾 > 𝐾0, since 𝑄𝐺(𝐾)/𝑄𝐵(𝐾) is increasing in 𝐾.
Therefore, 𝜋(𝐾) attains its maximum either at 𝐾 = 0 or at 𝐾 = 𝑁 . □

Proof of Lemma 2. Part 1. Note that

𝐷𝜔(𝑞) = (1 − 𝑞)
𝑁∑
𝑗=0

𝑗𝑄𝜔(𝑗) + 𝑞�𝑄𝜔(𝑁)

�(1, 𝑁) =
𝛽(1 − 𝛼)𝐷𝐺(1)

𝛽(1 − 𝛼)𝐷𝐺(1) + (1 − 𝛽)𝛼𝐷𝐵(1)

=
𝛽(1 − 𝛼)�𝑄𝐺(𝑁)

𝛽(1 − 𝛼)�𝑄𝐺(𝑁) + (1 − 𝛽)𝛼�𝑄𝐵(𝑁) =
1

1 + (1−𝛽)(1−𝛼)
𝛽𝛼

𝑄𝐺(𝑁)
𝑄𝐵(𝑁)

Now, due to lim𝑁→∞𝑄𝐺(𝑁)/𝑄𝐵(𝑁) = 0 we get that lim𝑁→∞ �(1, 𝑁) = 1. Part 2. For any

fixed 𝑞 we get

�(𝑞, 𝑁) =
𝛽(1 − 𝛼)

(
(1 − 𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐺(𝑗) + 𝑞�𝑄𝐺(𝑁)
)

𝛽(1 − 𝛼)
(
(1 − 𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐺(𝑗) + 𝑞�𝑄𝐺(𝑁)
)
+ (1 − 𝛽)𝛼

(
(1 − 𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐵(𝑗) + 𝑞�𝑄𝐵(𝑁)
)
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Thus, for 𝑞 < 1 we get

lim
�→0

�(𝑞, 𝑁) =
𝛽(1 − 𝛼)∑𝑁

𝑗=0 𝑗𝑄𝐺(𝑗)

𝛽(1 − 𝛼)∑𝑁
𝑗=0 𝑗𝑄𝐺(𝑗) + (1 − 𝛽)𝛼∑𝑁

𝑗=0 𝑗𝑄𝐵(𝑗)

and is independent of 𝑞. Using
∑𝑁
𝑗=0 𝑗𝑄𝐺(𝑗) = 𝛼𝑁 and

∑𝑁
𝑗=0 𝑗𝑄𝐺(𝑗) = (1− 𝛼)𝑁 we get that

lim
�→0

�(𝑞, 𝑁) =
𝛽(1 − 𝛼)𝛼

𝛽(1 − 𝛼)𝛼 + (1 − 𝛽)𝛼(1 − 𝛼) = 𝛽

Part 3. We can rewrite consumer belief in the form

�(𝑞, 𝑁) =
𝛽(1 − 𝛼)

𝛽(1 − 𝛼) + (1 − 𝛽)𝛼
(1−𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐵(𝑗)+𝑞�𝑄𝐵(𝑁)
(1−𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐺(𝑗)+𝑞�𝑄𝐺(𝑁)

Note that

𝜕

𝜕𝑞

(
(1 − 𝑞)∑𝑁

𝑗=0 𝑗𝑄𝐵(𝑗) + 𝑞𝜖𝑄𝐵(𝑁)

(1 − 𝑞)∑𝑁
𝑗=0 𝑗𝑄𝐺(𝑗) + 𝑞𝜖𝑄𝐺(𝑁)

)
=
𝑄𝐵(𝑁)∑𝑁

𝑗=0 𝑗𝑄𝐺(𝑗) −𝑄𝐺(𝑁)∑𝑁
𝑗=0 𝑗𝑄𝐵(𝑗)[

(1 − 𝑞)∑𝑁
𝑗=0 𝑗𝑄𝐺(𝑗) + 𝑞𝜖𝑄𝐺(𝑁)

]2 � < 0

and therefore�(𝑞, 𝑁) is increasing in 𝑞. Moreover, �(0, 𝑁) = 𝛽 and lim𝑁 → ∞�(1, 𝑁) = 1.
Thus, for any 𝑟, there exists 𝑁(𝑟) such that �(1, 𝑁) > 𝑟 holds for all 𝑁 > 𝑁(𝑟). Thus, for
any 𝑟 ∈ (𝛽, 1), and any 𝑁 > 𝑁(𝑟), there exists a unique 𝑞∗(𝑁) such that �(𝑞∗(𝑁), 𝑁) = 𝑟.

Now we prove that lim𝑁→∞ 𝑞∗(𝑁) = 1. To do so, we proceed by contradiction. Suppose
that 𝑞∗(𝑁) < 𝑞 for all 𝑁 . Then, using monotonicity of belief in 𝑞 we get

lim
𝑁→∞

�(𝑞∗(𝑁), 𝑁) < lim
𝑁→∞

�(𝑞, 𝑁) = 𝛽 < 𝑟

which is not possible as �(𝑞, 𝑁) is continuous in 𝑞. □
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