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Abstract

This paper investigates the dynamic efficiency of policy uncertainty in the US wind energy
industry. Policy expiration embedded in the Production Tax Credit induced uncertainty among
wind farm investors and expedited investment. I compile a comprehensive data set of the in-
vestment, production, and long-term contracts on the USwind energymarket. I find significant
bunching in the number of new wind farms at the expiration dates of the short policy windows
and a large mismatch among wind farm investment timing, continuously improving upstream
turbine technology, and evolving demand for wind energy. I then develop an empirical model
featuring the bilateral bargaining of long-term contracts, endogenous buyer matching, and dy-
namic wind farm investment under policy uncertainty. Model estimates reveal that a lapse in
policy extension reduced the perceived likelihood of policy renewal to 30%, and counterfac-
tual simulations demonstrate that removing policy uncertainty postpones the entry of 53% of
the affected cohort by 3.5 years. Removing policy uncertainty increases the net social surplus
by 5.9 billion dollars and could save fiscal expenditure without sacrificing social welfare.

*I am deeply indebted to my committee members Panle Jia Barwick, Kenneth Hendricks, Jean-François Houde, and
Shanjun Li for their invaluable support and guidance. I thank Tom Eisenberg, Todd Gerarden, Sarah Johnston, Karam
Kang, Hyuk-soo Kwon, Ashley Langer, Jaepil Lee, Lorenzo Magnolfi, Martin O’Connell, Michael Ricks, Ivan Rudik,
Christopher Sullivan, Ashley Swanson, Richard Sweeney, Christopher Timmins, Jingyuan Wang, Tianli Xia, Nahim
Bin Zahur, and participants at UW-Madison, Cornell, AERE Annual Summer Conference, AMES, Camp Resources,
Harvard Climate Economics Pipeline Workshop, IIOC, NASMES, and Northeast Workshop on Energy Policy and
Environmental Economics for their helpful comments. All errors are my own.

†Department of Economics, UW-Madison. Email: luming.chen@wisc.edu. Website: lumingchen.com.

https://lc929.github.io/workingpaper/Chen_Luming_JMP.pdf
mailto:lchen598@wisc.edu
www.lumingchen.com


1 Introduction

Industrial policies have been widely adopted to boost infant industries. However, given limited
government resources, political cycles, or uncertainty, many industrial policies start off by commit-
ting to a short period with expiration dates and might get renewed later. This common implemen-
tation pattern of “enactment – expiration – renewal” segments the policy into short time windows,
induces policy uncertainty at the expiration time, and steers investors to near-term incentives who
should otherwise plan for longer.

This paper explores the dynamic efficiency of policy uncertainty, using the US wind energy
industry as the empirical setting. Wind energy grew from a marginal share in 2000 to the biggest
renewable energy source in 2019. This industry is characterized by a huge irreversible investment
cost, and the boom of wind energy has been heavily supported by federal tax incentives, known
as the Production Tax Credit (PTC) in a form similar to long-term output subsidies. The PTC has
been active since 1992, but when implemented, it was segmented into a series of shorter policy
windows with expiration dates.1 A lack of government commitment, combined with occasional
lapses between expiration and renewal, caused policy uncertainty among wind farm investors about
the future extension.2 Under policy uncertainty, investors expedited their investment and bunched
investment timing near the expiration time. Consequently, it leads to two opposing forces shaping
social welfare. On the one hand, the expedited investment reaps environmental benefits earlier.
On the other hand, the bunching of investment approaching policy expiration creates a mismatch
among wind farm investment timing, continuously improving upstream turbine technology, and
evolving demand for wind energy. The overall welfare effect is ex-ante ambiguous.

I compile a comprehensive data set of the investment, production, and long-term contracts on
the US wind energy market and document three key stylized facts. First, I find significant bunch-
ing of the investment timing for wind farms at the expiration dates of the short policy windows,
especially in 2012, mainly due to a lapse between expiration and renewal. Second, while the in-
vestment bunched at expiration dates in earlier years, the upstream wind turbine technology is
quickly improving and becoming cheaper. This creates a large mismatch between the timings of
investment and technological advancement. Third, utilities, an important group of buyers of wind
capacity, have a shrinking unfulfilled demand as they procure more wind energy over time and
meet state-level regulations. Consequently, the expedited entry of wind farms that are equipped
with old technology preempts utilities of a larger unfulfilled demand, while more recent entrants
with better technology sell wind capacity to utilities of a smaller unfulfilled demand, suggesting a

1As noted in Bistline et al. (2023), the continual expiration and extension of PTC in the wind industry created an
‘on-again/off-again’ status of the policy and resulted in a boom-bust cycle of wind development. The industry calls
for “strong long-term policy support” according to the Union of Concerned Scientists.

2“Wind farm” and “wind project” are used interchangeably.
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matching efficiency loss between utilities and wind farms due to policy uncertainty.
Motivated by the stylized facts and institutional details, I next develop a structural model of the

wind energy market in the US, which consists of a dynamic part and a static part. In the dynamic
part, the wind farm investors form beliefs about the probability of the future renewal of PTC. Given
that turbine technology and turbine procurement costs are exogenously evolving, those investors
decide whether to invest in the current period or wait until the next period. If they decide to invest
in this period, there are two channels to sell wind capacity, and the discounted sum of flow profits
from selling wind energy is determined in the static part of the model. The first channel is for wind
farms to sell capacity to utilities over a long-term Power Purchase Agreement, while the second
channel is for wind farms to sell their capacity to other non-utility buyers such as corporations or
to sign merchant/hedge contracts.

In the static part of the model, wind farms first choose which type of buyer to sell wind capacity
to. If they decide to sell to utilities, they choose which utility to match with, weighing the profit
from a potential negotiation against the pairwise matching cost. Wind farms then negotiate with the
matched utility over the power purchase prices, total procured capacity, and whether to choose the
Production TaxCredit or an alternative cash grant as the subsidy type.3 Alternatively, for thosewind
farms that sell capacity to non-utility buyers, I model a linear demand curve, combining information
for both the corporate buyers and merchant/hedge contracts. For the bilateral bargaining, I model
the detailed profit functions for both utilities (the buyer) and wind farms (the seller). Utilities obtain
profits with procured wind energy from both selling electricity and obtaining renewable credits, net
the costs they pay to wind farms as negotiated in the Power Purchase Agreement, while the profits
for wind farms combine the revenues generated from the Power Purchase Agreement and total
government subsidies, net total turbine expenditures. The optimal procured wind capacity and
the subsidy type choice maximize the joint profit, and the negotiated price splits the total surplus
between the two parties.

I estimate the static model in three steps. First, I estimate the bilateral bargaining model, com-
bining the optimality conditions for the power purchase prices, total capacity, and subsidy type
choice. I recover parameters governing utility willingness to pay and wind farm turbine costs, con-
ditional on a rich set of controls of unobserved demand shocks. I estimate a bargaining weight
parameter, which is identified by the relative path-through ratio of utilities’ willingness-to-pay as
well as wind farms’ turbine cost to the negotiated price. Overall, I find that utilities value wind
energy more, especially if they are further away from the state-level standard, and they have two-
thirds of the bargaining weight relative to wind farms. Wind farms have a convex cost function with

3The Section 1603 Grant provided an upfront investment subsidy equal to 30 percent of the investment costs.
Between 2009-2012, investors could opt in for either PTC or Section 1603 Grant. I explain details of this alternative
subsidy option in later sections and in Appendix Section C.4.
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respect to the total capacity, and they value one-dollar tax credit as only 83.9 cents of cash grants.
Using the parameter estimates, I find that around 22.4% of wind farms will earn a zero or negative
profit without the Production Tax Credit. Even conditional on positive profits, the average profit
without PTC is 47.0% smaller than the average profit with PTC. This result highlights the potential
cost of missing deadlines and losing the qualification of PTC and explains the rushed entry when
there is a lower belief for PTC renewal.

Second, I estimate a linear demand curve for non-utility buyers and I instrument the wind en-
ergy price with supply-side shifters as well as state policies to identify the price coefficient. The
estimated average elasticity is around -1.59. Third, I estimate the buyer type choice and the utility
matching model. I find that the mean likelihood of selling capacity to a non-utility buyer is around
24.2%. The matching cost between a wind farm and a utility is much larger if they are located in
different states, and increases with their geographical distances.

The static model quantifies the profit for wind farms if they enter the market, and captures rich
forces underlying the profit function. In the dynamic part of the model, potential entrants make en-
try decisions comparing the option value of waiting and the expected profit from the investment net
the entry cost. The option value of waiting subsumes the perceived likelihood of policy extension.
I treat the perceived likelihood of policy extension as the parameter in the model and allow it to
vary over time, and thus the dynamic problem is non-stationary. As the belief structure will be of
infinite dimension without any restrictions, I impose two assumptions to make the estimation feasi-
ble. First, I assume that if the policy is eliminated, wind farm investors will hold the belief that the
policy will be terminated forever. Second, the perceived likelihood of a one-year policy extension
will carry over for future years in expectation for each cohort. Under these two assumptions, the
non-stationary dynamic problem is transformed into a sequence of cohort-specific stationary prob-
lems. The policy belief parameter acts as a weight between two boundaries of the optional value of
waiting. The lower bound is the continuation value when the subsidy is terminated forever, while
the upper bound is the continuation value when the subsidy is renewed according to the perceived
likelihood of policy extension in the next year.

For the dynamic part of the model, the key empirical challenge is how to separately identify the
distribution parameters of entry cost and the policy belief parameters. My identification argument
hinges on the temporal structure of the policy. I rely on a more recent policy window when there
was no policy uncertainty to identify parameters of entry cost distribution, given the perceived
likelihood of policy renewal to be one for the next year, while the magnitude of the investment
bunching would be rationalized by the belief parameters. The key identification assumption for the
policy belief parameters is that conditional on observables, the residual variation in the entry cost
moves smoothly across policy windows.

I estimate the dynamic part of the model in two steps. First, I focus on a recent policy win-
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dow when the policy was announced to cover a relatively long period. I assume the problem to
be stationary for the policy window, solve the dynamic model using functional approximation and
estimate the entry cost parameters by matching model-predicted entry rates with data. Second, I
use the estimated cost parameters to solve the dynamic model in earlier years with policy uncer-
tainty. I solve the perceived likelihood of policy extension year by year while allowing the belief
of endogenous state variables to be determined in the equilibrium.

I estimate the mean realized entry cost to be 17.94-19.19 million dollars, and I find the mean
entry cost increases with the land price. More importantly, there was enormous uncertainty with
respect to the policy renewal especially for the 2011 cohort. The average perceived probability of
policy renewal is around 0.3 due to the pessimism about the policy extension as well as the delayed
renewal action, which largely explains the investment spike that year.

With estimated model primitives, I implement four counterfactual analyses. In the first counter-
factual exercise, I simulate the investment decision when the perceived likelihood of policy renewal
is one such that policy uncertainty is eliminated, and then calculate the welfare consequences. Re-
moving policy uncertainty reduces the number of newwind projects in 2011 by 52.7% and increases
the number of new wind projects in 2012-2018 by 24.1% on average annually. Those delayed wind
farms would postpone their entry by 3.56 years.

Overall, the numbers of total wind projects are roughly the same, suggesting that removing pol-
icy uncertainty mainly delays the entry timing but keeps the total number of entrants constant over
an 11-year horizon. However, the total wind capacity increases by 6.3% once policy uncertainty is
removed and the total output increases by 8.7%, as more wind farms enter when turbine technology
is more advanced. I calculate the total social surplus of wind energy from the twenty-year oper-
ations of those wind farms. Wind energy substitutes the production of coal- or gas-fueled power
plants and brings three social benefits: 1) it reduces carbon emissions; 2) it saves fossil fuel costs;
and 3) it brings capacity values as it lowers the amount of new investment required to keep the
electricity grid reliable and safe. The total social surplus of wind energy is the sum of these three
benefits minus the turbine costs and entry costs paid by wind farm investors. I follow Callaway
et al. (2018) and estimate the average marginal operating emissions rate (MOER) of coal- or gas-
fueled power plants in each state and year, which measures the saved carbon emissions due to more
renewable energy. I find the total social surplus increases by 6.8 billion dollars and 18.4% after
eliminating policy uncertainty. This result demonstrates that although the delayed entry of wind
farms reduces the total benefits of wind energy, this negative effect can be completely offset by a
better timing alignment among investment, technology, and wind demand. The net social surplus,
which is the total social surplus further subtracted by the government subsidies, increases by 5.9
billion dollars and by 28.9% compared with the baseline scenario under policy uncertainty.

In the second counterfactual exercise, I investigate how the welfare effects of policy uncer-
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tainty change under different subsidy levels. I find that if policy uncertainty is fully removed, the
subsidy level could be reduced by $2/MWh (around 9%) without sacrificing social welfare, which
demonstrates the fiscal burden brought by policy uncertainty. In the third counterfactual exercise,
I quantify the welfare effects when policy uncertainty is resolved early. Following the same intu-
ition as in Gowrisankaran et al. (2023), I find that resolving policy uncertainty before wind farms
make their entry decision will reduce the rushed entry and alleviate the negative impact of policy
uncertainty, even holding the mean likelihood of policy extension constant. In the last counterfac-
tual exercise, I find that if turbine technology or utility demand is held constant, removing policy
uncertainty still improves social welfare but the effect shrinks to less than 30% of the full dynamic
results, which indicates that the dynamic market environment greatly exacerbates the efficiency
loss from policy uncertainty.

This paper contributes to the following four strands of literature. First, this paper contributes to
the literature on the measurement and evaluation of policy uncertainty. Policy uncertainty is per-
vasive and broadly studied in both macroeconomics and microeconomics. Examples include un-
certainty in economic policy (Baker et al., 2016), fiscal policy (Fernández-Villaverde et al., 2015),
trade policy (Handley and Limão, 2017), and environmental policy (Gowrisankaran et al., 2023;
Dorsey, 2019). Compared to the existing literature, this paper focuses on the US wind industry as a
specific empirical setting and studies the consequences of policy uncertainty with micro evidence.
Policy uncertainty in the Production Tax Credit in the US wind industry has also been recognized
by earlier work such as Barradale (2010) and Johnston and Yang (2019). My paper structurally
quantifies the extent of policy uncertainty and evaluates the dynamic inefficiency through the lens
of a structural model.

Gowrisankaran et al. (2023) is most closely related to my paper and studies the welfare conse-
quences of policy uncertainty in the Air Toxics Standards on the coal power industry. Compared to
Gowrisankaran et al. (2023), my paper focuses on a different empirical setting and exploits a differ-
ent strategy to identify policy belief parameters. Moreover, my paper highlights two new channels
through which policy uncertainty shapes social welfare: the misalignment between the timings of
investment and technology, as well as the matching efficiency between buyers and sellers.

Second, this paper relates to the literature on the renewable energy market. Recent work has
covered a wide range of topics, including intermittency (Gowrisankaran et al., 2016; Petersen et al.,
2022), spatial misallocation (Callaway et al., 2018; Sexton et al., 2021), values of wind energy
(Cullen, 2013; Novan, 2015), upstream innovation (Covert and Sweeney, 2022; Gerarden, 2023),
storage technology (Butters et al., 2021), transmission congestion (Fell et al., 2021), carbon taxes
(Elliott, 2022), contract risks (Ryan, 2021), interconnections (Gonzales et al., 2023; Johnston et al.,
2023), Renewable Portfolio Standards (Hollingsworth and Rudik, 2019; Abito et al., 2022), and
renewable subsidies (De Groote and Verboven, 2019; Kay and Ricks, 2023; Bistline et al., 2023;
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Banares-Sanchez et al., 2023). My paper develops a new empirical structural model for the wind
energy market in the US, which features the bilateral bargaining of Power Purchase Agreements,
the matching between utilities and wind farms, as well as dynamic entry of wind farms under policy
uncertainty, incorporating rich heterogeneity motivated by policies and a set of endogenous choices
of wind farms.

Third, this paper directly speaks to the empirical literature about industrial policy implemen-
tation. Specific to the power and clean energy sector, there are recent papers about the timing of
subsidies (Langer and Lemoine, 2018; Armitage, 2021), subsidy design (Barwick et al., 2023), and
subsidy types (Johnston, 2019; Aldy et al., 2023). Different from the previous papers, I focus on
policy continuity and demonstrate the potential welfare loss from the “on-again/off-again” renewal
pattern of subsidies, especially when the market environment is dynamic.

Last, this paper also contributes to the literature on the dynamic model and firm beliefs (Do-
raszelski et al., 2018; Jeon, 2022; Gowrisankaran et al., 2023). I develop a tractable industrial
dynamic model with evolving policy beliefs under policy uncertainty and I empirically estimate
investors’ belief parameters utilizing the temporal structure in the policy design.

The rest of this paper is organized as follows. Section 2 provides background information on
wind industry and government policies in the US. Section 3 summarizes the data as well as the key
stylized facts. Section 4 presents the empirical model, and Section 5 discusses the identification
assumptions and the estimation procedures. Section 6 provides model estimates and Section 7
presents counterfactual results. Section 8 concludes.

2 Wind Industry and Government Policies in the US

2.1 Wind Industry in the US

Wind energy has become America’s biggest renewable energy source. It provided 8.3% of the to-
tal electricity generation and 42% of new power plant installation in 2020 (Wiser and Bolinger,
2021). As shown in Figure 1, wind energy grew from a very marginal share in 2000 to the fourth
most important energy source in the US in 2020. The renewable energy boom, together with the
fast-growing gas-fired power, gradually takes up the market share of coal-fired power plants. Ge-
ographically, wind energy is concentrated in Texas, the Midwest, and the Plains. Texas enjoyed
the largest wind generation, taking up around 28% of the total wind power generation of the entire
nation in 2019. Meanwhile, Iowa and Kansas have the highest wind energy penetration rates of
more than 40% in their state-level total electricity generation.

A wind farm requires enormous upfront investment. For example, investors had to spend more
than 100 million dollars to construct an average-sized wind farm in 2019 just for the turbine pro-
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curement, leaving alone the transportation cost of wind turbines, the construction cost of the wind
farm, the land lease cost, and the expenditures to obtain permits and access to the power grid.4 It
also takes a long time to plan and construct a wind farm as summarized in Figure 2. First, investors
need to sign up for a land lease, acquire government permits, and apply for the interconnection
agreement after lengthy waiting in the interconnection queue. Next, investors negotiate with the
upstream wind turbine manufacturers for equipment procurement, negotiate with utilities or corpo-
rations to sell outputs, and seek financing for the projects. Finally, with contracts secured, investors
can start the construction process. The typical wind development process takes a total of 3-4 years,
and the construction process alone takes around 6-9 months. Once the wind farm starts operation,
it will typically be in service for around 30 years. Large sunk costs, together with a long time to
build, indicate the importance of dynamic incentives in wind investment.

Figure 1: Share and Penetration Rate of Wind Energy
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Notes: This figure shows the electricity generation share and penetration rate of wind energy. Panel (a) presents the
share of electricity generation in 2000-2020 by different energy sources based on data from EIA-906, EIA-920, and
EIA-923. The red line denotes the time trend of the share of electricity generation from wind farms, while the blue
line denotes the time trend of the share of electricity generation using solar thermal and photovoltaics. Panel (b)
presents the wind penetration rate in 2019 for each contiguous state. Wind penetration rate is defined as the fraction
of electricity produced by wind compared to the total generation.

There are two types of investors on the market, independent power producers and utilities,
and they together own over 99% of wind energy. On the one hand, the wind farms owned by
independent power producers take up around 80% of the total capacity. They typically sign a long-
term wind procurement contract with utilities or non-utility buyers (for example, corporations).
These contracts are known as the Power Purchase Agreements (PPA). Negotiating and signing a
PPA is critical for project financing as it secures a long-term revenue stream. A typical PPA includes

4In 2019, an average wind farm had 65 turbines with an average turbine nameplate capacity of 2,550 kW. The
market price of wind turbines is $700/kW, and thus the turbine cost alone would be $116 million.
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Figure 2: Timeline of Building a Wind Farm
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Notes: The main source of the time statistics is the Wind Powers America Annual Report 2019 by AWEA.

the price term, the procured capacity, and the time length of the agreement, among other details.
Moreover, wind energy owned by independent power producers could also sign merchant or hedge
contracts.5 As shown in Appendix Figure A.1, utility PPAs are the most common channel to sell
wind power, while more non-utility PPAs emerged in the market after 2015.

On the other hand, wind capacity directly owned by utilities is around 20% of the total capacity,
and they will supply electricity to the wholesale market (in restructured states) or the consumers
(in regulated states). This paper focuses mainly on wind farms invested by independent power
producers due to their dominant shares of the market. As utilities can either own wind farms or
procure wind energy from independent power producers, endogenizing wind capacity under direct
utility ownership requires a model of make-or-buy choices of utilities, which is beyond the scope
of this paper.

2.2 Government Policies

The wind power industry in the US crucially relies on the tax credit from the federal government,
as well as upon numerous state-level policies. The most influential and long-standing tax credit is
the production tax credit (PTC), which was initially established in 1992. It provided qualified wind
farms with a 10-year inflation-adjusted tax credit for wind power generation and stood at $24/MWh
in 2018. Although PTC has been in effect for most of the time since 1992, the incentives provided
by PTC were segmented into smaller policy windows, with an explicit expiration date at the end
of each time window. The essential condition to quality for PTC is tied to these expiration dates:
before 2012, a wind farm was required to start operation before policy expiration, while after 2013,
a wind farm is required to demonstrate that five percent or more of the total cost of the project has

5One of the most common forms of merchant/hedge contracts in ERCOT is a physical fixed-volume hedge. Under
this contract, the wind project owner sells its actual energy generated at the floating price at the node, and the hedging
counter-party pays the wind project owner for the fixed signed energy amount at the price difference between the
pre-negotiated fixed price and the floating price at the node (Bartlett, 2019).

8



been incurred before policy expiration with a two-year (four-year after 2016) safe harbor to start
operation.6 As shown in Figure 3, the PTC is enforced by different acts during different sample pe-
riods. For example, from February 2009 to December 2012, the PTC was enacted in the American
Recovery and Reinvestment Act. Subsequently, the PTC was enacted in the American Taxpayer
Relief Act (2013), the Tax Increase Prevention Act (2014), and the Consolidated Appropriations
Act (after 2015).

Since 2005, there have been seven different acts enacting PTC sequentially, which segments
the policy into windows of 1-5 years. Before 2009, the renewal of PTC in the next act was an-
nounced several months before its expiration. However, at the end of 2012, 2013, and 2014, the
renewal of PTC was announced after the deadline had passed. Although the lapse between policy
expiration and renewal could be as short as two days at the beginning of 2013, it still disturbed
the market incentives and created policy discontinuities. With a lack of government commitment,
wind investors were faced with policy uncertainty before policy expiration about whether the PTC
would be extended or not. The delay in policy action from Congress as well as political debates
about renewable subsidies exacerbated the uncertainty in the market.7 8

The 2011 Wind Technologies Market Report (Wiser and Bolinger, 2012), published by the
Department of Energy in August 2012, suggested that investors were uncertain about the renewal
of the PTC, and tended to rush into the market in order to qualify for the tax credit. According to
the report, “...the wind energy sector is currently experiencing serious federal policy uncertainty,
and therefore rushing to complete projects by the end of the year. Moreover, 2011 saw another year
pass without any concrete Congressional action on what are seemingly the wind power industry’s
two highest priorities – a longer-term extension of federal tax (or cash) incentives and passage of a
federal renewable or clean energy portfolio standard...”

The concerns about the expired PTC were ex-post proven to be unnecessary, as only 2 days
after the expiration of the PTC, it was extended again in the American Taxpayer Relief Act and the
subsidy was retroactive. Similar things happened again in 2014 and 2015, although the lapses were
much longer, and wind farms that started construction during those lapses were always granted
PTC as long as they made enough progress before deadlines thanks to the safe harbor period. From
2015 on, the incentives provided by the PTC gradually stabilized despite the decreasing magnitude
of the tax credit.

Along with the production tax credit, there was also the Section 1603 Grant, which provided
6More recent change in the safe harbor can be found here.
7For example, Republican US presidential candidate Mitt Romney declared that he would let wind power tax

credits expire (see The Guardian).
8American Taxpayer Relief Act of 2012 was introduced in the House on July 24, 2012, as a partial resolution

to the US fiscal cliff. The passing of the bill involved days of negotiations between Senate leaders and the Obama
administration (see Star Tribune).
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an upfront investment subsidy equal to 30 percent of the investment costs. Between 2009-2012,
investors could opt in for either PTC or Section 1603 Grant. Unlike PTC, the Section 1603 Grant
was announced to expire for sure after 2012. Johnston (2019) and Aldy et al. (2023) study the se-
lection and efficiency consequences of having both production tax credits and investment subsidies
on the market. Since there were many wind farms under either subsidy, I assume that these two
policies provided similar incentives to new wind farms on average and study the uncertainty and
discontinuity under this federal policy bundle.

Figure 3: Timeline of Production Tax Credit
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Notes: This figure shows the timing of the production tax credit. The starting points of blue/red arrows indicate the
announcement time of the renewal for the next act, while the endpoints are the start time of the new act. There were
2-day, 11-month, and 11-month lapses between the expiration of the previous act and the announcement of the next
act at the end of 2012, 2013, and 2014, respectively, though the policy was retroactive.

Apart from federal policies, there are also various state-level policies. One important state-level
policy is the Renewable Portfolio Standards (RPS). RPS stipulates the minimum share of electricity
generation using qualified renewable energy for utilities. If utilities fail to satisfy the requirement,
they have to buy renewable credit from the credit market. Otherwise, they can also sell credits for
profits. RPS provides important incentives to utilities to procure wind energy. Abito et al. (2022)
studies the consequences of cross-state trading restrictions and state-specific interim annual targets
under RPS. States could also have corporate/sales tax incentives, property tax incentives, feed-in
tariffs, bond/loan programs, and other industry recruitment policies for wind farms. As shown in
Appendix Figure A.2, states with RPS are also more likely to have different kinds of state incentives
for wind energy.

This paper focuses on the expiration and renewal patterns of federal incentives and studies the
dynamic consequences of policy uncertainty introduced by temporal policy segmentation. Policy
uncertainty disrupts the dynamic decision of wind investors, especially given that wind energy
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requires large irreversible investment costs, a long time to build, and is highly reliant on the support
of federal subsidies.

3 Data and Stylized Facts

3.1 Data

I compile several data sets in the US wind industry. The first two data sets come from the United
States Wind Turbine Database (USWTDB) maintained by USGS and the EIA-860 maintained by
the Department of Energy’s Energy Information Administration, respectively. These two data sets
provide universal information on the investment and the characteristics of utility-scale wind farms
that were online between 2003 and 2019. USWTDB has more comprehensive coverage and is more
accurate in terms of detailed wind turbine characteristics, while EIA-860 also includes information
about the owners and interconnections for wind farms as well as rich information for other energy
sources. Moreover, I supplement these two data sets with EIA Form-923, which covers the monthly
electricity generation and enables me to measure the production efficiency of wind projects.

One key piece of information missing from USWTDB and EIA-860 is the time of investment
for wind farms. Both USWTDB and EIA-860 record the month when a wind farm starts to supply
electricity, however, as illustrated in Figure 2, there is a lag between finalizing the investment de-
cision and starting operation, including a construction period of 6-9 months. I follow Johnston and
Yang (2019) to use the information from the Federal Aviation Administration (FAA) Obstruction
Evaluation/Airport Airspace Analysis (OE/AAA) database. The FAA data reports the scheduled
dates of starting construction. I match the FAA data with EIA-860 and measure the time of invest-
ment as the time when a wind farm starts construction.9

The second data set is the detailed Power Purchase Agreement (PPA) data from the American
Clean Power Association (formerly American Wind Energy Association). The PPA data includes
long-term contract information such as the amount of capacity, negotiated price, term length, and
buyer and seller information. The data is at the contract level and covers the universe of wind
capacity as compared with EIA Form-860 data. The modal contract length of Power Purchase
Agreements is 20 years. For more detailed data processing, please refer to Appendix Section B.

Apart from these main data sets, I collect the interconnection queue data from the websites of
ISOs/RTOs. I use the renewable credit price data from a financial service platform Marex. I also
use retail electricity price data from EIA-861, agricultural land price data from the USDA National

9FAA data started from 2008 and many projects didn’t report the scheduled time to begin construction. Overall,
for wind farms online between 2003 and 2018 from EIA-860, around 42% can be matched with the FAA data. For the
rest of the sample, I calculate the average length of the construction period by the online year and impute the scheduled
time to begin construction by subtracting the construction period from its online time.
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Agricultural Statistics Service, and the annual turbine procurement price from Lawrence Berkeley
National Laboratory. I hand-collected the state-level policies including RPS from DSIRE.

3.2 Stylized Facts

3.2.1 The Timing of Investment

I first investigate the time trend of wind farm investment. Figure 4 presents the annual and monthly
numbers of wind farms that are newly online. There was significant bunching in wind farm invest-
ment whenever the policy was scheduled to expire. Amass of wind farms started operation between
2008 and 2012, especially in 2012. There were 174 new wind projects in 2012 with a total capacity
of around 13,400 MW, which exceeds the sum of investment in 2001-2006. Following the huge
investment spike in 2012, there was a significant dip in new investment in 2013. It was only after
2015 that the annual level of investment recovered, and the time trend stayed stable afterward.

Figure 4: Time Trend for Wind Projects Newly Online
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Notes: This figure shows the annual and monthly time trends of the number of wind projects that are newly online.
We construct the annual and monthly time trends based on the data from EIA-860. The red bars in Panel (a) represent
the deadlines of policy windows, while the red square in Panel (b) represents the new projects that are online in
December.

This time pattern aligns well with the timing of policy implementation as well as the time to
build required in the wind industry. As shown in Figure 3, the Emergency Economic Stabilization
Act and the American Recovery and Reinvestment Act were enacted in October 2008 and February
2009 respectively. During the years between 2009 and 2012, in addition to the Production Tax
Credit, there was also the Section 1603 Grant, which provided extra funding flexibility to investors
and partly explained the surge of wind projects during this time period. By the end of 2012, it
was clear that the Section 1603 Grant would be discontinued, but there was enormous uncertainty
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about whether the Production Tax Credit would be extended or not due to the time lapse in renewal.
Consequently, there was a rushed inflow of new wind projects before policy expiration to secure
a flow of subsidies for the next 10 years of operation, as we observe the bunching in the number
of projects newly online in 2012. This distortion owing to the subsidy expiration is more obvious
when we examine the monthly trend of new wind projects. As shown in Panel (b) of Figure 4, the
bunching in 2012 was mainly driven by a massive entry in December of 2012, which was ten times
as large as the average monthly investment from January 2001 to November 2012.10

Although the Production Tax Credit was renewed shortly after its expiration in 2013, the in-
vestment flow didn’t recover immediately. The main reason is that it takes a relatively long time
to build new wind farms. After 2015, the PTC was planned for relatively longer terms, and the
incentives provided by the PTC were also stabilized. Therefore, there has been a steady time trend
of new wind projects since 2015. I plot the time trend of new wind capacity in Appendix Figure
A.4, and find the bunching pattern robust for the aggregate capacity as well. The average capacity
per wind farm was stable in 2012 and displays an increasing trend over time.

There could be different channels for the bunching in the online timing. First, wind farms might
expedite the construction process to meet the expiration dates of PTC, which was tied to the online
time of wind projects before 2012. However, as shown in Panel (a) of Appendix Figure A.5, the
average construction time remains stable at around 9months across different online years. Panel (b)
further plots the average construction time across years when wind farms start construction. There
was suggestive evidence that wind projects starting construction in 2012 were more likely to have
a shorter construction period to meet the end-of-year expiration date. However, this difference is
relatively small in magnitude, and thus the rushed construction is unlikely to be the main driver in
the bunching.

Alternatively, the massive entry in 2012 might reflect the expedited waiting process in the in-
terconnection queue. However, as shown in Panel (a) of Appendix Figure A.6, the total years spent
between entering into the interconnection queue and starting construction are also stable across
years when wind farms start construction. Moreover, Panel (b) shows that many projects that
started construction in 2011 entered the interconnection queue as early as before 2006. Therefore,
the bunching in the online years is achieved mainly through the expedited investment decision,
instead of merely reflecting the shortened construction time or the interconnection approval time.

3.2.2 Timing Mismatch

In contrast to the bunched timing of investment, the technology of wind turbines is continuously
improving over time. There are three key components of a typical horizontal-axis wind turbine, a

10I exclude the month without any wind farm investment in this calculation.

13



tower, a nacelle, and three rotor blades. The potential of wind power generation crucially depends
on the height of the tower and the length of the rotor blades. Taller towers enable the turbine to
access better wind resources up in the air, while longer rotor blades lead to larger swept areas and
capture more wind energy inputs (Covert and Sweeney, 2022). I present the time trend of average
tower heights and rotor diameters of new wind farms in Figure 5. As is evident from Panels (a)
and (b), the hub heights and rotor diameters are getting larger, and almost follow linear trends after
2009. The average hub height for newly invested wind farms in 2008-2013 was 80.13 meters,
while the average hub height for newly invested wind farms in 2014-2019 increased by 6.5% to
85.30 meters. Similarly, the average rotor diameter for newly invested wind farms in 2008-2013
was 88.04 meters, while the average rotor diameter for newly invested wind farms in 2014-2019
increased by 24.6% to 109.69 meters.

Figure 5: Time Trend of Wind Turbine Technology
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(b) Rotor Diameters
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Notes: This figure shows the annual time trends of turbine technologies for new wind projects. We construct the
annual time trends of hub heights and rotor diameters from The U.S. Wind Turbine Database (USWTDB) published
by USGS.

Bunched investment timing and improving turbine technology lead to a mismatch between
the timings of investment and technology. Panel (a) of Figure 6 plots the contrast of these time
trends. I plot the number of new wind farms according to their construction start years as well
as the technological efficiency of each cohort. I measure the technological efficiency with the
capacity factor (the ratio of average power output and maximum power production) at the age of
one.11 Newly invested wind farms in 2008-2013 had an average capacity factor of 0.32, while that
number in 2014-2018 rose to 0.41, increasing by 27.2%. While the investment bunched in earlier

11According to EIA, capacity factor is defined as “the ratio of the electrical energy produced by a generating unit for
the period of time considered to the electrical energy that could have been produced at continuous full-power operation
during the same period.”
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years, the upstream wind turbine technology is continuously and quickly improving, thus there
were many wind farms equipped with less productive turbines as a result of policy uncertainty.12

Figure 6: Mismatch between Investment and Turbine Technology
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(b) Turbine Price
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Notes: This figure shows the time trend of turbine technology for newly installed wind projects. Panel (a) shows the
time trend of the capacity factor, measured as the ratio of total output to the nameplate capacity scaled by 24× 365,
based on the data from EIA Form 923. I plot the investment time trend as the gray dashed line for comparison. Panel
(b) shows the time trend of the turbine price, based on the data from Lawrence Berkeley National Laboratory.

Moreover, the average turbine prices are also decreasing over time. As shown in Panel (b),
since peaking in 2008-2009 at around 1,700 dollars per kilowatt, the average turbine price has been
declining. On average, the turbine price fell below 1,000 dollars per kilowatt after 2015. Therefore,
early investment in 2008-2011 largely foregoes later cheaper technology. Decreasing turbine pro-
curement prices and increasing turbine production efficiency together indicate a substantial option
value of delaying entering the market for better and cheaper technology. However, policy uncer-
tainty expedited wind farm entry, foregoing the benefits of technological improvement and leading
to inefficiency in the investment timing.

3.2.3 Matching Efficiency between Wind Farms and Utilities

Utilities are important buyers of wind power, as they procure wind capacity through long-term
contracts from wind farms. One key incentive for them to procure wind capacity is to satisfy
state-level Renewable Portfolio Standards (RPS), which require utilities to have a certain share of
total electricity generation from renewable energy. I construct a variable, renewable portfolio gap

12One concern is that the average productivity of a wind farm is also affected by the wind resources of its location,
and later entrants might be faced with locations with worse wind resources. However, as shown in Appendix Figure
A.7, the average wind speed for each cohort is generally stable over time. The wind resources are more stable for later
entrants, as the standard deviation of the daily average wind speed is lower.
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(RPG), which is defined as the difference between renewable energy generation and the amount
stipulated by Renewable Portfolio Standards. It measures the unfulfilled demand of each utility
for renewable energy in order to meet the RPS. The details of how this variable is constructed and
estimated can be found in Section 4 and Appendix Section C.3.

I find that utilities with a larger renewable portfolio gap, and thus more unfulfilled demand,
are more likely to procure a larger amount of wind capacity through long-term contracts as shown
in Panel (a) of Figure 7. This relationship is robust conditioning on a set of controls including
electricity prices, turbine productivity, and time trends. I further plot the time trend for average
renewable portfolio gaps of utilities in Panel (b). The average renewable portfolio gaps of utilities
increased before 2011 as more states implemented Renewable Portfolio Standards. However, with
more wind energy online, the average unfulfilled demand for utilities has decreased sharply since
2011, which contrasts with increasing turbine productivity over time. Consequently, a mass of
wind farms rushed into the market due to policy uncertainty in the early years of the industry and
matched with utilities of larger unfulfilled demand. Those utilities require a larger amount of wind
capacity but match with wind farms using turbines of lower productivity. For more recently entered
wind farms, although the turbine technology has been much better, they could only sell capacity to
utilities which have a smaller unfulfilled demand. This results in the overall matching efficiency
loss between the utilities and wind farms.

Motivated by industry background and descriptive data patterns, I build an empirical model of
US wind energy in which I model the dynamic investment timing decision of wind farms under
changing technology and buyer characteristics, as well as policy uncertainty. Through the lens of
the model, I explore the key determinants of profitability of wind farms, and how policy beliefs
held by investors evolve over time.

4 Model

The structural model consists of a dynamic part and a static part as shown in Figure 8. Wind farm
investors form beliefs about the future probability of federal subsidy renewals in the dynamic part.
They incur a random entry cost drawn from a common distribution at the beginning of each period.
Wind farm investors will enter the market if the discounted sum of flow profits from investment net
the entry cost exceeds the option value of waiting, and will choose to wait otherwise. Under policy
uncertainty, wind farm investors secure a flow of future federal subsidies if they enter before the
subsidy expires, but they forego better and cheaper technology in the future.

The discounted sum of flow profits from investment is determined in the static part of the
model. There are two different channels for wind farms to sell their capacity. First, a wind farm
could negotiate with a utility about a long-term power purchase agreement, in which the wind farm
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Figure 7: Matching Efficiency between Utilities and Wind Farms
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Notes: This figure provides descriptive evidence about the matching efficiency between utilities and wind farms.
Panel (a) shows the binned scatter plot of wind capacity to the Renewable Portfolio Gaps (RPG) of utilities.
Renewable Portfolio Gap measures the unfulfilled demand of each utility for renewable energy in order to meet the
RPS. I control electricity prices, turbine productivity, and time trends. Panel (b) shows the time trend of the average
RPG of utilities that procured wind capacity each year, as well as the mean turbine capacity factor for each new
cohort of wind farms.

and the utility jointly decide three endogenous objects simultaneously: the power purchase price,
the procured capacity, and which type of subsidies to select. Second, wind farms could also sell
capacity to buyers other than utilities such as corporations, or sign financial agreements such as
hedge and merchant contracts.

I assume time t is discrete at the yearly level. I denote a wind farm as i and a utility as j. Wind
farm investors make the dynamic decision about when to enter the market, while utilities procure
capacity from wind farms through long-term power purchase agreements.

4.1 Static Part

Profit Function for Utilities Utility j generates electricity using different fuel sources, includ-
ing fossil fuels (f ), procured wind (w), other renewable sources (or), or other sources (o). I denote
generation capacity as kajt for utility j, year t, and type a, and the corresponding electricity genera-
tion as Qa

jt. I endogenize the procured wind capacity kwjt in the model but leave the capacity of the
other three types of fuel sources exogenous. The total electricity generation Qjt can be expressed
as Qjt = Qw

jt +Qf
jt +Qor

jt +Qo
jt.

Utility j could obtain revenues from selling electricity generated by the procured wind capacity
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Figure 8: Overview of Structural Model
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Notes: This figure provides an overview of the structural model.

and fulfilling the requirement of Renewable Portfolio Standards, but it has to pay the procurement
cost to wind farms according to the power purchase agreement price. I define the state as the
geographical market m and assume both the electricity market and the renewable credit market
to be competitive. Therefore, utility j is faced with the retail electricity price rmt, the Renewable
Portfolio Standards requirement zmt, and the renewable credit price λmt. If the share of electricity
generation using renewable energy Qw

jt+Qor
jt

Qjt
falls short of zmt, utilities need to buy renewable credits

at the price λmt to fulfill the requirement; otherwise, they can also sell renewable credits to earn
revenues. I suppress the subscriptm for the remainder of the section.

Suppose utility j begins a power purchase agreement with wind farm i in year t for a length of
T years at the negotiated price of pij .13 The profit function for utility j from this contract is

πU
t (pij , k

w
ij) =

t+T∑
s=t+1

Etβ
s−t{rsQjs − pijαisk

w
ij − c(Qf

js, Q
or
js, Q

o
js)︸ ︷︷ ︸

profit from electricity generation

+λs(αisk
w
ij +Qor

js − zsQjs)− hjs︸ ︷︷ ︸
profit from renewable credits

}.

(1)

Profit flow starts from year t+1 as it takes one year on average between the finalization of the
investment decision and the beginning of service of wind farms. I assume the production function
for wind farm i as Qw

ijt = αitk
w
ij , where αit is the annualized capacity factor. The linear functional

form fits the data well as shown in Appendix Figure A.9. I define c(·) as the annual cost function
for using the rest three types of fuel sources. Another feature I add to the profit function is the
hassle cost hjt, which captures the frictions on the renewable credit market as well as the dynamic
incentives of credit banking that I abstract from. The hassle cost is higher for utilities that are further
away from the Renewable Portfolio Standards requirement and thus need to transact a larger number

13t denotes the year when the negotiation happens, which I assume to be determined in the dynamic part of the
model. Consequently, for each pair of bargaining, t is predetermined.
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of renewable credits. If a utility doesn’t have any newly procured wind energy, the hassle cost hjt
is assumed to be a quadratic function of the gap between the current renewable energy generation
and the state requirement for utility j in year t. Moreover, procuring wind capacity saves the hassle
cost, especially when the utility is further away from the state-level goal. Therefore, incorporating
hjt fits the data pattern that utilities that are further away from the Renewable Portfolio Standards
goals tend to procure more wind capacity.

hjt = δ × (αitk
w
ij −Qgap

jt )×Qgap
jt , Qgap

jt = zs(Q
f
jt +Qor

jt +Qo
jt)−Qor

jt .

Profit Function for Wind Farms The profit that the wind farm i receives equals the sum of the
total revenues from the power purchase agreements and the total subsidies from the government,
minus the turbine cost it has to pay. Wind farms receive flow revenues from the power purchase
agreements for the contract length of T years. The total subsidies TSijt depends on the subsidy
type choice which I denote as Dij . Dij equals 1 for PTC and 0 for Section 1603 Grant since both
two options were available during 2009-2012. The wind farm receives the production tax credit
for the first 10 years of its production under PTC, while 30% of the total upfront investment cost
would be subsidized under Section 1603 Grant in the form of cash grants. As the grant amount is
approximately linear with respect to the total capacity, I assume that the investment subsidy is a
linear function of total capacity ηkwij , where η denotes the unit investment cost.

Wind farms might value PTC and grant less than their face values. On the one hand, wind
farms usually partner with large investors who finance part of the investment cost of the wind
farm in exchange for tax credits received by it. Consequently, wind farms typically discount the
values of tax credits compared to the cash subsidies due to the transaction cost and asymmetric
information problem that occurred in the partnership process as well as the market power of those
large investors as tax equity providers (Johnston, 2019). On the other hand, wind farms could
deduct the investment cost from their tax liability, but receiving the grant reduces the tax deduction
they could have obtained. Following Johnston (2019), the overall schedule of the total subsidy
TSijt can be defined as follows.

TSijt(k
w
ij,Dij) = Dij × τ × dt × (

t+10∑
s=t+1

Etβ
s−tαisk

w
ij) + (1−Dij)× (30%− τC1)× ηkwij

dt denotes the amount of tax credit per unit of wind energy generation under PTC. τ represents
the value discount of tax credits compared with an equal dollar amount of grants. C1 is a constant
term to calculate the depreciation deductions combining the marginal tax rates, the discount factor,
as well as the depreciation deduction rule.
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The profit of the wind farm i, given the power purchase agreement price pij , the total subsidy
schedule TSijt, and the turbine cost per capacity cit, can be expressed as the follows.

πW
t (pij, k

w
ij,Dij) =

t+T∑
s=t+1

Etβ
s−tpijαisk

w
ij + TSijt(k

w
ij,Dij)− citk

w
ij. (2)

I allow for the turbine cost per unit of capacity cit to depend on a set of turbine cost shifters Xit

including the average annual turbine price and turbine brands, and ξit denotes the unobserved cost
shocks. Moreover, I allow the convexity of the total turbine cost, and thus cit will also be a function
of kwij . If γ2 > 0, the total turbine cost is convex in capacity.

cit = γ1Xit +
kwij
2γ2

+ ξit. (3)

Bilateral Bargaining Wind farm i and utility j participate in the bilateral bargaining process to
negotiate simultaneously over the procured capacity kwij , the contracted price pij , and which subsidy
type to takeDij . Under the assumption of Nash bargaining, the optimal capacity kwij and the policy
choice Dij maximize the joint surplus, and the optimal price pij divides the joint surplus between
two parties (Chipty and Snyder, 1999). If the negotiation fails, I assume that wind farms would earn
a payoff from waiting for another year to enter the market, while utilities would generate electricity
with their current energy production portfolios. The optimization problem can be formulated as
follows.

{D∗
ij, k

w∗
ij } = argmax [πU

t (pij, k
w
ij) + πW

t (pij, k
w
ij,Dij)] + σ1ϵ

D
it

ϵDit follows the extreme value type-I distribution and σ1 is the standard deviation of the random
shock. ϵDit captures the random shock unrelated to the payoff, such as the tax liability of investors
that finance wind farm construction and the credit constraints faced by the wind farm investor.
Meanwhile, the negotiated price p∗ij will maximize the Nash product of their surpluses from con-
tracting such that

p∗ij = argmax [πU
t (pij, k

w
ij)− πU

t (pij = ∞)]ρ × [πW
t (pij, k

w
ij,Dij)− πW

t (pij = ∞)]1−ρ.

ρ denotes the bargaining weight of utilities. πU
t (pij = ∞) and πW

t (pij = ∞) denote the threat
points for utilities and wind farms respectively.

Solving the first-order condition to maximize the joint surplus πU
t (pij, k

w
ij) + πW

t (pij, k
w
ij,Dij)
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with respect to the capacity kwij yields an equation about the optimal capacity function as follows.

t+T∑
s=t+1

Etβ
s−t[rs + λs(1− zs) + δQgap

js ]αis +
TSijt

kw∗
ij

− γ1Xit −
kw∗
ij

γ2
− ξit = 0. (4)

I leverage the fact that capacity factors vary by the cohort of wind projects, but remain stable
with respect to the ages of projects even 10 years after entry. Therefore, I use the capacity factor
upon entry to measure turbine productivity αi and assume it to be constant as the turbine ages
(see Appendix Section C for detailed discussion). I summarize the government subsidy per unit of
capacity as Ωit.

Ωit = Dij ×
β(1− β10)

1− β
τdtαi + (1−Dij)× (0.3− τC1)η. (5)

I use Θjt to represent the discounted sum of the effective market price, which combines the re-
tail electricity price and renewable credit price. Moreover, I denote the utility’s total renewable
portfolio gap as Φjt.

Θjt =
t+T∑

s=t+1

Etβ
s−t[rs + λs(1− zs)]. Φjt =

t+T∑
s=t+1

Etβ
s−tQgap

js . (6)

BothΘjt andΦjt are important shifters of utilities’ willingness to pay for procured wind energy.
If wind energy is more valuable due to either higher electricity prices or higher renewable credit
prices, or if the utilities have relatively lower shares of renewable capacity compared with the state-
level Renewable Portfolio Standards requirement, utilities are willing to pay more for additional
wind capacity. As the Renewable Portfolio Standards are typically announced for a long periodwith
interim targets, I also assume utilities have perfect foresight of the future state-level requirements.

Combining Equations (4), (5), and (6), we could derive Equation (7) which has intuitive eco-
nomic interpretations. The marginal benefit of wind capacity comes from the willingness to pay
for utilities as well as the federal subsidy. However, the marginal benefit needs to be balanced with
the marginal cost of wind capacity. ξ̃ijt is a random shock that includes the measurement errors in
Θjt and Φjt, as well as the unobserved turbine cost shifters ξit.

(Θjt + δΦjt)︸ ︷︷ ︸
willingness to pay

αi + Ωit︸︷︷︸
subsidy

= γ1Xit +
kw∗
ij

γ2︸ ︷︷ ︸
turbine cost

+ ξ̃ijt. (7)

Equation (7) yields the optimal capacity kw∗
ij as a function of the subsidy choiceDij sinceDij is

embedded inΩit. We could derive the optimal choice probability of the subsidy type P subsidy
ij (D∗

ij =
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1) as follows. I abbreviate the profit function of the utility as πU
ij(Dij) and the profit function of the

wind farm as πW
ij (Dij).

P subsidy
ij (D∗

ij = 1) =
exp{[πU

ij(1) + πW
ij (1)]/σ1}∑

Dij={0,1}
exp{[πU

ij(Dij) + πW
ij (Dij)]/σ1}

. (8)

Moreover, solving the first-order condition of the Nash product of profits from two parties with
respect to the price pij yields the optimal price function.

β(1− βT )

1− β
p∗ij = (1− ρ)(Θjt + δΦjt) + ρ[

cit
αi

− Ωit

αi

+
πW
t (pij = ∞)

αikw∗
ij

]. (9)

The optimal pricing equation (9) has intuitive interpretations. If the utility has a larger bar-
gaining power, the negotiated price will be low enough to only cover the rescaled turbine cost net
government subsidies. If the wind farm has a bigger bargaining power, the negotiated price will be
closer to the willingness to pay for utilities. Higher outside option πW

t (pij = ∞) gives wind farms
better bargaining positions such that the negotiated price will be larger.

Demand of Non-Utility Buyers An alternative channel for selling wind capacity is to sell to
non-utility buyers such as corporations or to sign hedge and merchant contracts. Due to a lack
of data on the characteristics of both corporate buyers and these financial contracts, I model this
second channel using a linear demand curve. I assume non-utility buyers demand capacity knui at
the wind energy price of pnui from the wind farm i. The demand function is

knui = −ζ1pnui + ζ2αi + ζ3Xi + ζ4Z
nu
i + υi. (10)

Similar to Equation (7), Xi includes average turbine prices as well as dummies for turbine
brands. Znu

i denotes a set of demand shifters including dummies for different balanced authori-
ties and different types of contracts (long-term contracts with corporate buyers, hedge contracts, or
merchant contracts). υi represents unobserved demand shifters. I define the profit of wind farms
that sell capacity to non-utility buyers as πnu

t (knui , pnui ).

Buyer Type Choice and Utility Matching Wind farms choose which channel to sell wind ca-
pacity, and if they decide to sell capacity via utility Power Purchase Agreements, which utility to
be matched with. I model the choice of whether to sell capacity to non-utility buyers as a random
variable following a binary distribution with mean µm that varies across markets. If the realized
value of this random variable equals zero, which indicates that wind farm i chooses a utility Power
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Purchase Agreement to sell its capacity, it will have a discrete choice of which utility to be matched
with. I denote the matched utility as j∗. I define the potential buyers Jit as those utilities that had
signed wind PPA before 2019 and are within 400 miles from the focal wind farm i. They have
different renewable portfolio gaps and are located at different distances from the wind farm. Some
utilities in the potential buyer pool might even be located in a different state from the focal wind
farm. The choice of the matched utility can be formalized as the following problem.

max
j∈J it

πW
t (p∗ij, k

w∗
ij ,D∗

ij)− (γ31{mi ̸= mj}+ γ4Distij)︸ ︷︷ ︸
matching cost

+σ2ϵij (11)

I use πW
t (p∗ij, k

w∗
ij ,D∗

ij) to denote the profit for wind farm i with each potential buyer j via
bilateral bargaining. Moreover, I use mi and mj to represent the state of wind farm i and utility
j respectively, and Distij the distance between them. I assume the matching cost depends on
whether wind farm i and utility j are from the same state and how far away they are geographically.
ϵij denotes the i.i.d. random shock following the extreme value type I distribution. The standard
deviation of the error term is σ2. Consequently, the optimal probability of choosing j∗ can be
defined as follows.

P buyer
it (j = j∗) = (1− µm)×

exp{[πW
t (p∗ij∗ , k

w∗
ij∗ ,D∗

ij∗)− γ31{mi ̸= mj∗} − γ4Distij∗ ]/σ2}∑
j∈Jit

exp{[πW
t (p∗ij, k

w∗
ij ,D∗

ij)− γ31{mi ̸= mj} − γ4Distij]/σ2}
.

(12)
The ex-ante profit function πit of wind farm i, if it enters the market in year t, would be defined

as follows, where κ represents Euler’s constant.

πit =µm × πnu
t (knui , pnui )+

(1− µm)× σ2 × {log[
∑
j∈Jit

exp(
πW
t (p∗ij, k

w∗
ij ,D∗

ij)− γ31{mi ̸= mj} − γ4Distij

σ2
)] + κ}.

(13)

Summary of the Static Part and Discussion The static part of the model can be summarized
by five equations. The capacity function (7), subsidy choice function (8), and pricing function (9)
together define the optimal solution to the bargaining problem. The demand of non-utility buyers
is defined in (10), and the choice of the buyer is given by (12). The static part of the model yields
a measure of profit if the wind farm i decides to enter in year t given by (13), which is a key input
to the dynamic model.

However, there are caveats to the model. First, I only endogenize the capacity of procured
wind energy but abstract away the responses of other fuel sources. The wind penetration rate was
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low during my sample period in most states, and the massive exit of coal power plants in the later
period of my sample was mainly due to cheaper gas prices instead of wind investment. Since
the main purpose of the static model is to construct a measure of profit if wind farms enter the
market and capture the interactions among technological improvement, government subsidies, and
buyer characteristics, I assume the responses of other fuel sources as exogenous to keep the model
tractable.

Second, I model the matching between wind farms and utilities as a discrete choice of buyers
for wind farms, but abstract utilities’ dynamic decisions away. I assume utilities are myopic and
their choices of when to procure wind capacity are exogenous in my model. As utilities could sign
contracts with multiple wind farms and a wind farm is faced with many buyers in their choice set,
search friction might not be a primary concern and one-sided decisions could capture the matching
pattern well. Moreover, since wind turbine productivity and unfulfilled demand of utility are com-
plements in generating total profit, a one-sided discrete choice based on profits from each potential
pair of matching is sufficient to capture the complementarities, without complicating the model by
introducing utilities’ dynamic problem.

4.2 Dynamic Part

Dynamic Decision of Potential Entrants Potential entrant i decides whether to enter in year
t or wait until later. If it decides to enter, the expected total profit will be the gross profit πit as
illustrated in the Equation (13) from the static model, net the entry cost ψit. I assume that

ψit = κWit + νit, νit ∼ F (ν) = 1− e−
νit
ϕ ,

whereWjt denotes the observed entry cost shifter. νit is the i.i.d. entry cost shock, which follows
an exponential distribution with a mean parameter ϕ.

I denote the state variables potential entrant i condition for the dynamic decision as sit. The state
variables sit include the shifters for buyers’ willingness to pay, turbine technology, turbine cost,
subsidy level, and entry cost shifterWjt. Another important state variable besides sit is the status
of the policy ωt. ωt is a dummy variable representing the policy status in year t. ωt = 1 indicates
that the federal subsidy is enacted in year t, while ωt = 0 indicates that the federal subsidy is absent
in year t. ωt is always 1 ex-post in the wind industry as the PTC was always extended. The wind
procurement price pij , the wind capacity kwij , and the subsidy choice Dij all depend on both state
variables sit as well as the policy status ωt. Therefore, the net profit for wind farm i if it decides to
enter in year t is defined as

Π(sit, ωt) = πit − κWit.

24



The dynamic optimization problem is as follows.

Vt(sit, ωt, νit) = max{Π(sit, ωt)− νit, βEt[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt]}. (14)

Vt(sit, ωt, νit) is the value function of wind farm i in year t conditional on state variables sit,
policy status ωt, as well as the i.i.d. entry cost shock νit. Et[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt] is the
option value of waiting in year t. If the net profit of entry in year t, Π(sit, ωt) − νit, exceeds the
discounted option value of waiting βEt[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt], the potential entrant i will
choose to enter the market in year t. Otherwise, potential entrant i will wait for one more year and
face the same decision again next year.

The option value of waiting Et[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt] depends on the distribution of
unobserved entry cost shock F (νit) and the transition dynamics of state variables G(sit+1|sit).
Moreover, it depends crucially on an ex-ante belief for the policy evolution due to policy uncer-
tainty, denoted by bt(ωt+1|ωt). I allow bt(ωt+1|ωt) to vary by time to capture the fact that wind
farm investors form different policy beliefs depending on the actions taken by the government as
well as other political and economic shocks. bt(ωt+1|ωt) is the source of the non-stationarity of this
dynamic problem. Therefore, the option value of waiting can be expressed as follows.

Et[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt] =
z

sit+1,νit+1

Et[Vt+1(sit+1, ωt+1, νit+1)|ωt]dG(sit+1|sit)dF (νit+1).

Et[Vt+1(sit+1, ωt+1, νit+1)|ωt] = Vt+1(sit+1, ωt+1 = 1, νit+1)× bt(ωt+1 = 1|ωt)

+ Vt+1(sit+1, ωt+1 = 0, νit+1)× bt(ωt+1 = 0|ωt)

bt(ωt+1|ωt) allows flexible beliefs about future policy evolution but also imposes identifica-
tion challenges if arbitrary policy belief is permitted, as multiple streams of policy beliefs could
rationalize one single investment decision. Moreover, with T years there could be 2T different
policy paths with subsidies switching on and off, making the policy belief parameters bt(ωt+1|ωt)

under-identified given the infinite horizon of the dynamic problem here. In light of the identifica-
tion challenges, I impose the following two assumptions to discipline policy belief bt(ωt+1|ωt) and
make the problem feasible for estimation.

Assumption 1 (Absorbing state) b(ωt+1 = 0 | ωt = 0) = 1.

Assumption 1 indicates that the policy status is absorbing once terminated. If the policy is
eliminated in year t, wind farm investors will hold the belief that the policy is terminated forever.
This assumption is consistent with the reality that Section 1603 Grant was discontinued after 2012
and hasn’t been rebooted ever since. Consequently, the continuation values when ωt = 0 can be
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simplified as follows.

Et[Vt+1(sit+1, ωt+1, νit+1)|ωt = 0] = Vt+1(sit+1, ωt+1 = 0, νit+1)

As ωt = 0 is the absorbing state, the continuation value doesn’t depend on time-varying policy
beliefs and can be simplified as a stationary function V 0(sit, νit). I further denote Π(sit, ωt = 0)

as Π0(sit), which leads to the following equation.

Vt(sit, ωt = 0, νit) = V 0(sit, νit) = max{Π0(sit)− νit, βE[V 0(sit+1, νit+1)|sit]}. (15)

Assumption 2 (Simple forecast) bt(ωt+s+1 = 1 | ωt+s = 1) = bt(ωt+1 = 1 | ωt = 1) = bt, ∀s ⩾
0.

Assumption 2 indicates that the perceived likelihood of a one-year policy extension will be
constant for future years. As I only allow the policy to be extended year by year, this assumption
precludes the possibility that wind investors have more information about future policy extensions
beyond the next year. However, I allow the expectation to change across the years and I allow
the investors to revise their beliefs according to the new information. Consequently, bt(ωt+s+1 =

1 | ωt+s = 1) and bt+s(ωt+s+1 = 1 | ωt+s = 1) could be different to reflect unanticipated shock
realized in year t + s. bt(ωt+1|ωt) is henceforth an index that summarizes the policy uncertainty
faced by wind farm investors in year t.14 Instead of imposing Assumption 2, the belief evolution
could be parameterized as a first-order Markov process, but a longer time series will be required to
make the estimation feasible. An alternative model with the policy belief will be to use a mixture
distribution as described in the Appendix Section D.1. However, without underlying time-varying
beliefs, this model cannot rationalize the bunches in the investment time trend; with underlying
time-varying beliefs, this alternative model is essentially isomorphic to the baseline model.

Under Assumption 2, we construct Et[Vt+1(sit+1, ωt+1, νit+1)|ωt = 1] as follows.

Et[Vt+1(sit+1, ωt+1, νit+1)|ωt = 1] = Vt+1(sit+1, ωt+1 = 1, νit+1)× bt

+ V 0(sit+1, νit+1)× (1− bt)

I define Π(sit, ωt = 1) as Π1(sit) and Vt(sit, ωt = 1, νit) as V 1(sit, νit; bt), and V 1(sit, νit; bt)

14An intuitive alternative of Assumption 2 is that bt(ωt+s+1 = 1 | ωt+s = 1) = bt(ωt+1 = 1 | ωt = 1)× qs, ∀s ⩾
0. Therefore, the perceived likelihood of a one-year policy extension will be exponentially discounted with the decay
parameter q. However, this assumption will yield a model isomorphic to the baseline model with a discount factor βq.
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can be solved from the following equation.

V 1(sit, νit; bt) = max{Π1(sit)− νit, β{Et[V
1(sit+1, νit+1; bt)|sit]× bt

+ E[V 0(sit+1, νit+1)|sit]× (1− bt)}}
(16)

Therefore, the dynamic model could be expressed as follows where I rewrite Vt(sit, ωt, νit) as
V (sit, ωt, νit; bt) to emphasize the source of non-stationarity.

V (sit, ωt, νit; bt) = max{Π(sit, ωt)− νit,
z

sit+1,νit+1

βEt[V
1(sit+1, νit+1; bt)× bt

+ V 0(sit+1, νit+1)× (1− bt)]dG(sit+1|sit)dF (νit+1)}
(17)

I denote the entry decision as a dummy variable Eit such that

Eit = 1 ⇔ Π(sit, ωit)− νit ⩾ βEt[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt]

The entry probability function (the policy function) is denoted by PE
t (sit, ωt)

PE
t (sit, ωt) = 1− exp(−Π(sit, ωit)− βEt[Vt+1(sit+1, ωt+1, νit+1)|sit, ωt]

ϕ
)

As PTC shifts up firm value such that V 1(sit, νit; bt) > V 0(sit, νit), if potential entrants believe
there is a low possibility of policy renewal, the option value of waiting would be small and potential
entrants are more likely to enter in the current period. The entry cost distribution parameters κ and
ϕ, as well as policy belief parameters bt, are key primitives I want to identify and estimate in the
dynamic model.

5 Identification and Estimation

I describe the identification assumptions and discuss how data variations identify the model in this
section. I also discuss the estimation procedures undertaken to uncover model parameters. I start
with the static part of the model and the key primitives include the turbine cost function, utilities’
bargaining power parameter, the demand function for non-utility buyers, as well as the matching
cost in utility choices. Based on the parameter estimates from the static part, I then discuss how
to identify and estimate model primitives in the dynamic part, including parameters governing the
entry cost distribution and the policy beliefs.
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5.1 Static Part

Bilateral Bargaining There are three key equations from the bilateral bargaining problem: the
optimal capacity function (7), the optimal subsidy type choice (8), and the optimal pricing function
(9). In the optimal capacity function, ξ̃ijt mainly captures the measurement errors in the willingness
to pay, as well as the unobserved turbine cost shifters, both of which are assumed exogenous to the
observables. I rewrite Equation (7) as follows for estimation.

kw∗
ij =β1(Θjt + δΦjt) + β2(Θjt + δΦjt)× αi + γ2Ωit+

(β3 + β31GEi + β32Siemensi + β33Othersi)× TPVestast + β4Z
U
jt + ξ1,ijt

(18)

Compared to Equation (7), I include both utilities’ willingness to pay (Θjt + δΦjt) and its
interaction with turbine capacity factor (Θjt + δΦjt) × αi to the estimation equation to deal with
the colinearity issue, as the government subsidy per unit of capacityΩit is also a function of turbine
capacity factor αi. The cost convexity γ2 is identified by the effect of the unit subsidy on the
negotiated capacity. A more generous subsidy brings a higher marginal benefit to wind capacity,
which will be balanced by a larger marginal cost. If the total turbine cost is steeper in capacity,
utilities and wind farms will negotiate for a smaller wind farm size in response to a higher subsidy.
Moreover, the hassle cost coefficient δ is identified from the relative importance of the renewable
portfolio gap Φjt to the effective market price Θjt. I include the average turbine price of Vestas,
TPVestast , as the main shifter of the turbine cost, and I allow the effect to vary across different turbine
brands, including GE, Vestas, Siemens Gamesa, and others. I further control a set of demand
shifters ZU

jt to identify the cost parameters, including the fixed effects of the states of the utility,
the utility type (cooperative, investor-owned, or others), as well as term lengths (less than 15 years,
15-20 years, or more than 20 years). The total turbine cost can be backed out as

ĉit = −(β̂3 + β̂31GEi + β̂32Siemensi + β̂33Othersi)× TPVestast

γ̂2
+
kw∗
ij

2γ̂2
.

The subsidy choice function (8) also incorporates the optimal capacity function (7), which in
turn depends on the subsidy choice throughΩit. Therefore, the total surplus from the subsidy choice
Dij can be expressed as follows.

πU
ij(Dij) + πW

ij (Dij) = (Θjt + δΦjt)αik
w∗
ij (Dij) + Ωit(Dij)k

w∗
ij (Dij)− cit(Dij)k

w∗
ij (Dij)

However, as discussed in detail in Appendix Section C.4, a back-of-envelope calculation sug-
gests that Section 1603 Awardees on average were better off by selecting the grant, while many
wind farms that opted into Production Tax Credit could have earned more if they had adopted the
grant. This data pattern suggests a challenge in explaining the policy choice only through the sub-
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sidy payoffs. The fact that wind farms selected the Production Tax Credit despite the availability
of a more profitable alternative might be due to unobserved benefits to tax equity providers or be-
havioral inertia to stick to the default option. Therefore, I assume there is a ς likelihood that the
wind farm investors would take the default option regardless of the payoffs, while for a probability
of 1− ς the wind farm investors would make a discrete choice of the subsidy according to the total
surplus and the i.i.d. preference shock.

As I assume the choice-specific random shock to follow the extreme value type-I distribution,
the log-likelihood function can be expressed as follows.

llf1,ij =
∑

Dij={0,1}

Dij log{ς ×Dij + (1− ς)×
exp{[πU

ij(Dij) + πW
ij (Dij)]/σ1}∑

Dij={0,1}
exp{[πU

ij(Dij) + πW
ij (Dij)]/σ1

}}.

I use the sample in 2008-2012 to form the likelihood function.15 The key parameter σ1 is iden-
tified as the magnitude of the residual variation in the subsidy choice that cannot be explained by
the total surplus gap between choosing Section 1603 Grant and the PTC, while ς is identified by the
share of wind projects that opted into Production Tax Credit when the grant was more profitable.16

In the optimal pricing function, I assumed πW
t (pij = ∞) as the payoff that wind farms would

have earned from waiting for another year to enter and selling capacity to a utility from the rest of
the potential buyer pool. I find that conditional on all other observables in Equation (9), the residual
variation in negotiated prices is positively correlated with the average effective market prices of the
potential buyer pool Θ̄it, and their average renewable energy gap Φ̄it, as shown in Panels (a) and (b)
of Appendix Figure A.8. This data pattern is intuitive as πW

t (pij = ∞) increases with the average
willingness to pay for nearby alternative utilities. Panel (c) also displays a large variation of average
pij across time. Motivated by the data fact, I rewrite Equation (9) for estimation as follows, where
πW
t (pij = ∞) is expressed as a flexible control function f(·) with quadratic bases and year fixed

effects.

β(1− βT )

1− β
p∗ij = (1− ρ)(Θjt + δΦjt) + ρ[

ĉit
αi

− Ωit

αi

+
f(Φ̄it, Θ̄it, αi,TPVestast ,1(t))

αikw∗
ij

] + ξ2,ijt.

The key parameter in the optimal pricing function (9) is the bargaining parameter ρ. The identi-
fication of ρ comes from the relative pass-through ratios of utility willingness-to-pay (Θjt + δΦjt)

and net turbine cost per unit ( ĉit−Ωit

αi
) on the negotiated price. If the utility has a larger bargain-

15Some wind projects that selected the Section 1603 Grant started construction in 2008.
16When σ1 is large, the choice predicted by the logit model is close to a random choice guided by a coin flip, and

ς is identified by how much the choice probability of PTC is above 50%. When σ1 is small, the choice predicted by
the logit model is close to the choice by simply picking a more profitable option, and ς is identified by how much the
choice probability is above the share predicted by the profit difference alone.
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ing power ρ, the negotiated price tends to be low and co-moves closer to the time trend of the net
turbine cost, conditioning on a flexible control for the bargaining leverage.

I jointly estimate the optimal capacity function (7), the optimal subsidy type choice (8), and the
optimal pricing function (9) by optimizing the following problem

minE(ξ21,ijt) + E(ξ22,ijt)− E(llf1,ij).

Demand for Non-Utility Buyers I estimate the linear demand function for non-utility buyers
(10) with instruments. As υi captures unobserved demand shifters, it’s correlated with the price
pnui , which introduces bias to the price coefficient ζ1.

I use three sets of instruments to tackle the identification challenge. The first instrument is the
renewable credit price in each state. As renewable credit is a product of the Renewable Portfo-
lio Standards which targets utilities, its price is less likely to be correlated with demand shifters
for non-utility buyers. The second instrument is the average land price. As the locations of wind
farms are exogenously given in the model, land prices are orthogonal to the demand shifters for
non-utility buyers, but might be incorporated into the wind energy price for wind farm investors
to break even. The third set of instruments are dummy variables indicating whether a state im-
plemented wind power recruitment policies, property tax incentives, or sales tax incentives in the
wind industry. These policies are implemented by the state government to boost renewable energy.
As wind energy is only part of the renewable energy mix, and non-utility buyers demand no more
than 30% of the total wind capacity, these supply-side policies are unlikely to be correlated with
the unobserved demand shifters of non-utility buyers.

Buyer Type Choice and Utility Matching I back out matching cost coefficients γ3 and γ4, the
scale parameter σ2, and the mean parameters of the buyer type choice µm from the buyer choice
problem (12). I allow µm to vary across Texas, Illinois, New York, and the rest of the states, as
the former three states are major markets where non-utility contracts prevail. I construct the profit
from matching with each potential buyer from the buyer pool Jit using estimates from the bilateral
bargaining model. I formulate the log-likelihood function as follows, where I denote the choice
1(j∗ = 0) as selling capacity to non-utility buyers.

llf2 =
∑
it

{
∑
l∈Jit

1(j∗ = l) log{(1− µm)×

exp{[πW (p∗il, k
w∗
il ,D∗

il)− γ31{mi ̸= ml} − γ4Distil]/σ2}∑
j∈Jit

exp{[πW (p∗ij, k
w∗
ij ,D∗

ij)− γ31{mi ̸= mj} − γ4Distij]/σ2}
}+ 1(j∗ = 0) log(µm)}.

(19)
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The standard deviation of the error term σ2 is identified as the magnitude of the residual variation in
the utility choice that cannot be explained by the profit gap between choosing the matched utility j∗

and an alternative utility. The matching cost coefficients γ3 and γ4 are identified by the magnitudes
of the gradient of matching likelihood with respect to the shifters. The mean parameters of the
buyer type choice µm are pinned down by the frequency of non-utility contracts observed across
markets.

5.2 Dynamic Part

The key identification challenge in the dynamic part of the model is how to separately identify the
parameters of the entry cost distribution (κ and ϕ) and the policy belief parameters bt. The main
identification strategy is to exploit the temporal structure of the policy. There are years when the
policy extension was certain, which helps identify parameters of entry cost distribution κ and ϕ
given bt = 1. Moreover, any deviation in those deadline years from the “smooth” trend of wind
investment predicted by the model would be rationalized by bt. The key identification assumption
for the policy belief parameters is that conditional on observables, the entry cost distribution moves
smoothly in the deadline years of the policy windows.

Following the identification strategy, I take two steps to estimate the dynamic model. First, I
focus on policy windows when there is no policy uncertainty, and estimate entry cost parameters by
matching model-predicted entry rates with data. Second, I use the estimated entry cost parameters
to solve the dynamic programming problem and focus on policy windows with policy expiration
to estimate the policy belief parameters. As policy uncertainty leads to the non-stationarity of the
dynamic problem, I solve the dynamic model year by year.

Definition of Potential Entrants As pointed out by Fan and Xiao (2015), it’s crucial to model
potential entrants as long-run players and incorporate the identities of potential entrants to recover
the distribution of the entry cost in the optimal stopping problem. The identities of potential en-
trants are observed as wind farm investors need to enter the interconnection queue, get approved
by all studies, and sign the interconnection agreements before they are eligible to enter the market.
Therefore, I define projects that have been in the interconnection queue for two or more years as
the set of potential entrants and model their optimal investment decisions.17 For more details about

17For example, PJM has one of the most congested interconnection queues, and the minimum and maximum time
between entering the queue and obtaining an interconnection agreement are 2.25 and 2.54 years respectively in 2010,
according to the PJM website. Anecdotes suggest that a typical project completed in 2008 spent fewer than two years
in the queue for interconnection approval compared to three years in 2015, according to the news. As I explained in
detail in Appendix Section B.3, although the backlog and congestion issues are salient in recent years, two-year waiting
time might be a reasonable assumption because it is roughly a median in my sample period (2003-2018). Assuming
increasing waiting time across years is challenging as it introduces large jumps in the number of potential entrants year
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the interconnection queue data and how I construct the measure of potential entrants, please refer
to Appendix Section B.3.

Equilibrium and State Space I adopt an equilibrium concept similar to the moment-based
Markov Equilibrium (Ifrach and Weintraub, 2017) and assume that each wind farm keeps track
of its own states and some moments of the industry state. This equilibrium concept is widely used
in recent empirical papers such as Barwick et al. (2021), Jeon (2022), and Vreugdenhil (2023). Note
that the equilibrium concept I adopt is different from the Approximate Belief Oligopoly Equilib-
rium (ABOE) introduced in Gowrisankaran et al. (2023), as I assume that each wind farm is atomic
and the impact of its action on the aggregate state variable is negligible. I define a set of state
variables, including the annual average productivity of wind turbines ᾱt, the average turbine prices
TPVestast , the effective market price Θit, and the subsidy levels dt.18 I use the annual average pro-
ductivity of wind turbines ᾱt instead of the realized productivity for each individual wind farm to
ease the concern of the selection issue. The transition processes of these four time-varying state
variables are exogenous in the model, and I recover G(sit+1|sit) from the data with AR(1) models
following Barwick et al. (2021). I further construct a linear combination β4Z

U
jt as in Equation (18)

to control for time-invariant variations in the utility demand. I project pnui on Znu
i as in Equation

(10) to construct another time-invariant state variable for the demand of non-utility buyers.
Moreover, I construct a proxy to measure the changing renewable portfolio gap of the utilities

in the buyer pool. Each wind farm has on average 18 buyers in its choice set, and keeping track of
the renewable portfolio gap for each individual utility is computationally challenging. Motivated
by Gowrisankaran and Rysman (2012) and Hendel and Nevo (2013), I use the inclusive value for
wind farms that can be attributed to the changing renewable portfolio gaps for buyers. I construct
the inclusive values according to Equation (13) with the realized renewable portfolio gap for each
utility, simulate the inclusive values again but set all renewable portfolio gaps to be zeros, and then
take the difference between these two. The inclusive value that can be attributed to the changing
buyer characteristics is defined as follows.

IVit(Φit) = πit(Φit)− πit(Φit = 0),Φit = {Φjt}j∈Jit
.

The transition of IVit(Φit) is endogenous in the model because the renewable portfolio gaps
of utilities shrink after they procure additional new wind capacity. Therefore, more entries of

by year. Johnston et al. (2023) provide a thorough overview of the interconnection queue and the congestion issues in
PJM.

18I use the effective market price for the state where the wind farm i is located. Given that most of the utilities
are in the same state as the focal wind farm, Θit is a close approximation for the average effective market price of the
buyer pool.
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wind farms today will reduce the future value of IVit(Φit). I approximate the transition process
of IVit(Φit) as an AR(1) model with the amount of new wind capacity online NewCapmt−1 in the
state m and year t − 1 as an endogenous shifter. I further allow the constant term in the AR(1)
model to vary across wind farms.

IVit(Φit) = ρΦ1 IVit−1(Φit−1) + ρΦ2NewCapmt−1 + ξΦi + ϵΦit (20)

The amount of new wind capacity online NewCapmt in the state m and year t is thus another
endogenous state variable in the dynamic problem. It captures a preemptive incentive of wind
farms such that they would like to enter early to access buyers with a higher willingness to pay,
counteracting incentives to delay their entry for better and cheaper technology. I assumeNewCapmt

to follow another AR(1) process as follows.

NewCapmt = ρnc1 NewCapmt−1 + ρnc0 + ϵncmt (21)

Estimation Step 1: Entry Cost Parameters I focus on the policy windows in which there was
no policy uncertainty such that bt = 1. As the main source of non-stationarity is policy uncer-
tainty, I exploit the feature that the Consolidated Appropriations Act was announced at the end of
2015 to cover through at least 2019. Moreover, the government also included a two-year “safe
harbor” window in 2013 and extended that to four years in 2016, which effectively softened the
requirements from subsidy expiration dates and reduced the incentives for wind farms to rush into
the market. The stable investment trend between 2013 and 2018 as shown in Figure 4, in contrast
to the jumping trend in earlier years, provides another piece of supporting evidence that the policy
environment was largely stationary in this period.

The stationary dynamic problem can be formulated as follows.

V (sit, νit) = max{Π(sit)− νit, βE[V (sit+1, νit+1)|sit]}.

E[V (sit+1, νit+1)|sit] =
z

sit+1,νit+1

V (sit+1, νit+1)dG(sit+1|sit)dF (νit+1).

I use the policy window between 2014 and 2018 to estimate the stationary dynamic problem
and use the policy window between 2013 and 2018 as a robustness check. Since the amount of new
wind capacity was stable over time in 2013-2018 and the dynamic problem is stationary, I estimate
Equations (20) and (21) directly from the data as a first step. I solve the profit of wind farms if
they enter the market as Πit from the static model, and approximate the profit surface as a function
of the quadratic basis of the state space {ul(sit)}Ll=1 following Gowrisankaran et al. (2023) such
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that Π̂(sit) =
L∑
l=1

γ̂Πl ul(sit). I approximate the value function as E[V (sit, νit)] =
L∑
l=1

γvl ul(sit) and

solve the dynamic programming problem via value function iteration, similar to Sweeting (2013)
and Barwick and Pathak (2015). Moreover, I include the annual state-level land price as the entry
cost shifter Wit to capture the time trend in the entry cost. Since I assume the random entry cost
shock follows an exponential distribution, solving the dynamic programming problem is equivalent
to estimating the coefficients {γvl }Ll=1 as follows.

{γvl }Ll=1 = argmin
∑
it

{
L∑
l=1

γvl ul(sit)− [Π̂(sit)− κWit − ϕ× P̂E
t (sit)]}2

where P̂E
t (sit) = 1− exp{−

Π̂(sit)− κWit − β
L∑
l=1

γvl E[ul(sit+1)|sit]

ϕ
}

I solve entry cost parameters κ and ϕ by matching the model-predicted state-level entry rate
with the data where Nmt is the observed number of entrants in statem and year t from the data.

{κ, ϕ} = argmin
∑
mt

(P̂E
mt − PE

mt)
2, P̂E

mt =

Nmt∑
i=1

P̂E
t (sit, κ, ϕ)

Nmt

.

Estimation Step 2: Policy Belief Parameters I use the estimated cost parameters to solve the
upper bound and lower bound of the continuation value. The value function when the PTC is
certain to be terminated is the lower bound of the continuation value, which can be approximated

as V 0(sit) =
L∑
l=1

γv0l ul(sit). I solve {γ
v0
l }Ll=1 from Equation (15) and the firm profit Π0

it when the

PTC is absent is constructed using static model estimates. For the upper bound of the continuation

value, I approximate it as V 1(sit, bt) =
L∑
l=1

γv1l (bt)ul(sit). For each given guess of policy belief

parameter bt, I solve {γv1l }Ll=1 from Equation (16).
I allow the belief of the transition dynamics for NewCapmt to endogenously adjust according

to the perceived likelihood of policy extension bt. A low bt induces a large amount of new wind
capacity online and reduces the future renewable portfolio gaps of utilities more drastically. There-
fore, solving the value function V 0(sit) and V 1(sit, bt) involves solving the correct belief of ρnc0
and ρnc1 in the equilibrium. I solve for bt year by year to match the model-predicted state-level entry
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rate with the data. The model-predicted entry rate is as follows.19

P̂E
t (sit) = 1− exp{−Π̂(sit)− κ̂Wit − β[V̂ 1(sit, bt)× bt + V̂ 0(sit, bt)× (1− bt)]

ϕ̂
}

The policy belief bt is the solution to the following optimization problem.

bt = argmin
∑
m

(P̂E
mt − PE

mt)
2, P̂E

mt =

Nmt∑
i=1

P̂E
t (sit, bt)

Nmt

.

A simple summary of the estimation algorithm is as follows.

1. A initial guess of bt is given.

2. Guess ρnc0 and ρnc1 , solve the value functions V 0(sit) and V 1(sit, bt).

3. Simulate the trajectory of NewCapmt.

4. Solve for new ρnc0 and ρnc1 and update the belief.

5. Repeat steps 2-4 until the values of ρnc0 and ρnc1 converge.

6. Solve the value functions V 0(sit) and V 1(sit, bt). Predict the state-level entry rates andmatch
them with data.

7. Iterate on bt until the sum of squared errors is minimized.

For more details of the dynamic estimation, please refer to the Appendix Section D.

6 Results

6.1 Static Parameters

I first estimate turbine productivity αi, utilities’ effective market price Θjt, and total renewable
portfolio gap Φjt directly from the data. I find that capacity factors evolve systematically with the
cohort but display limited variation with respect to the age of wind farms (in Panels (a) and (b)
of Appendix Figure A.9), and that the annual total output on average is linearly increasing with
the nameplate capacity (in Panel (c) of Appendix Figure A.9). Therefore, I treat the annualized

19For a given guess of bt, the lower bound V̂ 0(sit, bt) will also depend on bt through ρnc0 and ρnc1 solved in the
equilibrium.

35



capacity factor as constant and calculate it at the age of one for each wind farm for the best data
coverage. I take the inflation-adjusted Production Tax Credit as $22/MWh for its 2011 value. The
unit government subsidy Ωit is then calculated according to Equation (5) and the discount factor β
is assumed as 0.95. Moreover, for utilities’ effective market price Θjt and total renewable portfo-
lio gap Φjt, I assume utilities to hold rational expectations with respect to the transition dynamics
of electricity price, renewable credit price, and their energy source composition, and utilities have
perfect foresight of the state-level Renewable Portfolio Standards. I estimate the transition dynam-
ics of each component using AR(1) models with trend breaks as well as heterogeneous time trends
across states and then aggregate them according to Equation (6). I defer a detailed discussion of
the estimation of αi, Θjt, and Φjt to Appendix Section C.

I proceed to estimate the static model using these estimated shifters. Table 1 presents the esti-
mation results of the bilateral bargaining model. I estimate the optimal capacity Equation (7), the
optimal subsidy type choice (8), and the optimal pricing Equation (9) simultaneously. I control
for a rich set of fixed effects Zjt in Equation (7), including state effects, contract term length fixed
effects, as well as the utility type fixed effects.20 I incorporate these rich fixed effects to control
for unobserved demand shifters. Moreover, as I explained in Section 5.1, I include a saturated
quadratic function of the average effective market prices of nearby alternative utilities Θ̄−jt and
their average renewable portfolio gaps Φ̄−jt as well as year fixed effects in Equation (9) as controls
for πW

t (pij = ∞). I assume away the choice-specific random shock in the subsidy type decision in
columns (1)-(3) and let the bargaining pair pick the subsidy type that gives a higher total surplus if
the wind farm investor is the non-default type.

I calibrate the discount on tax credit τ as 0.85 according to Johnston (2019). The estimated
coefficient β1 of utilities’ willingness to pay is positive, as utilities with a higher willingness to pay
for wind energy will demand a larger capacity. The estimated hassle cost parameter δ is positive,
which captures the incurred frictions for utilities to participate in the renewable credit market, as
well as the dynamic incentives of credit banking that I don’t explicitly model. Columns (2) and
(3) include the interactions between utilities’ willingness to pay (Θjt + κΦjt) and the annualized
capacity factor (αi) in the capacity function. I find that utilities with a higher willingness to pay
tend to procure a smaller wind farm if the wind farm is very productive, as a more productive wind
farm will be more effective in filling their renewable portfolio gaps.

For cost parameters, γ2 is estimated to be positive, which indicates that the total capacity cost
is convex in the total amount of procured capacity. Therefore, it would be disproportionately more
costly to construct a larger wind farm, since the challenges to transport, install, operate, and main-
tain wind turbines escalate with taller towers and longer blades. Moreover, I find higher turbine

20I categorize the contract lengths into three groups: shorter than 15 years, between 15-20 years, and longer than
20 years. I also group utilities into three types: investor-owned, cooperatives, and others (such as municipal, etc).
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Table 1: Parameter Estimates for Bilateral Bargaining

(1) (2) (3) (4) (5)
Panel A: Utility Willingness to Pay

Hassle Cost, δ 6.288 5.510 4.789 6.198 6.459
(2.581) (2.550) (2.605) (2.519) (2.545)

Willingness to Pay, β1 0.094 0.109 0.103 0.109 0.106
(0.004) (0.007) (0.007) (0.007) (0.007)

Interaction: WTP and Capacity Factor, β2 -0.004 -0.004 -0.004 -0.003
(0.002) (0.002) (0.002) (0.002)

Panel B: Wind Farm Cost

Unit Capacity Cost Convexity, γ2 0.109 0.115 0.127 0.114 0.114
(0.012) (0.012) (0.014) (0.011) (0.012)

Turbine Price, β3 -0.064 -0.072 -0.069 -0.072 -0.069
(0.008) (0.008) (0.008) (0.008) (0.008)

GE, β31 0.000 0.002 0.002 0.001 0.001
(0.006) (0.006) (0.006) (0.006) (0.006)

Siemens, β32 -0.009 -0.008 -0.008 -0.008 -0.008
(0.007) (0.007) (0.007) (0.007) (0.007)

Others, β33 -0.018 -0.018 -0.018 -0.019 -0.020
(0.006) (0.006) (0.006) (0.006) (0.006)

Panel C: Bargaining and Policy Choice

Bargaining Weight, ρ1 0.673 0.672 0.617 0.678 0.675
(0.023) (0.023) (0.025) (0.023) (0.024)

Default Probability, ς 0.385 0.385 0.385 0.113 0.136
(0.058) (0.058) (0.058) (0.054) (0.108)

Policy Choice, σ1 0.057 0.054
(0.016) (0.021)

Credit Valuation, τ 0.839
(0.047)

Observations 416 416 416 416 416
Calibrated τ 0.850 0.850 0.850 0.850 -
Control for πW (pij = ∞) ✓ ✓ ✓ ✓
Utility-State, Term-Length, Utility-Type FE ✓ ✓ ✓ ✓ ✓

Notes: This table shows the estimation results of the bilateral bargaining model (Equations (7), (8) and (9)). Columns
(1)-(3) estimate Equations (7) and (9) jointly under the calibrated τ and then estimate Equation (8), while columns
(4)-(5) estimate Equations (7), (8) and (9) jointly. As discussed in Section 5.1, I include a saturated quadratic function
of the average effective market prices of nearby alternative utilities Θ̄−jt and their average renewable portfolio gaps
Φ̄−jt as well as year fixed effects in Equation (9) as controls for πW

t (pij = ∞). Standard errors are in parentheses.
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prices significantly reduce the optimal negotiated capacity. Although GE and Siemens-Gemasa
seem to share similar turbine prices with Vestas, the unit capacity cost is significantly higher for
other smaller brands, conditional on the turbine efficiency.

I estimate the bargaining weight of utilities ρ to be around 0.67. Therefore, utilities have two-
thirds of the bargaining power compared with wind farms. ρ is also significantly different from 1,
thus the change in PTC will not be perfectly passed through on the negotiated price, and assum-
ing a take-it-or-leave-it model and imposing full rent extraction by utilities will underestimate the
importance of PTC to the industry. Column (3) leaves out the controls for πW (pij = ∞), which
essentially assumes that the threat point is zero for all wind farms. The bargaining weight param-
eter estimate decreases by around 10%, but the estimation results are stable, which illustrates the
robustness of the estimation results with respect to the assumptions on the threat points.

I allow for the choice-specific random shock in the policy-type decision in columns (4)-(5) as
in Equation (8). The standard deviation of the random shock is estimated to be large, which is
roughly the same magnitude as the average subsidy received by the wind farm. This is consistent
with the fact that many wind farms that chose the PTC could have obtained a larger amount of
federal subsidy if they had opted into the Section 1603 Grant as discussed in Appendix Section
C.4. I further estimate the discount on tax credit τ in column (5) instead of calibrating the value.
However, I find that wind farms perceive one dollar of the tax credit as 83.9 cents of cash transfer,
which is close to the estimate by Johnston (2019). As a consequence of the large standard deviation
of the random shock in the subsidy choice problem, I use parameter estimates in column (2) as the
baseline for the subsequent model simulation.

Figure 9: Estimated Profit and Price w/o PTC
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Notes: This figure shows the distributions of profits and negotiated prices when the PTC is present or absent.

I calculate the discounted sum of profit πW
ij for each wind farm and construct the counterfactual
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negotiated price p∗ij(dt = 0) and the discounted sum of profit πW
ij (dt = 0)when PTC is absent. The

distributions are shown in Figure 9. The discounted sum of profit πW
ij is 89.6 million dollars on

average, 124.5 million dollars at the 75th percentile, and 172.1 million dollars at the 90th percentile.
Only 1.9% of wind farms earn a negative profit. When PTC is removed, bilateral bargaining will
yield a lower negotiated capacity, but a higher negotiated price. The negotiated price without PTC
p∗ij(dt = 0) is 9.0% higher compared with p∗ij . I assume that a negative negotiated capacity will
lead to the failure of the project such that kwij∗ = 0. Around 22.4% of wind farms will fail or earn a
negative profit (I normalize as zero profit) without PTC, which further corroborates the importance
of this federal incentive in supporting the industry. Even conditional on positive profits, πW

ij (dt = 0)

on average is 47.0% smaller than πW
ij . This result highlights the potential cost of missing deadlines

and losing the qualification of PTC and explains the rushed entry when there is a lower perceived
likelihood for PTC extension.

I also simulate the profits under only PTC or Section 1603 Grant as shown in Panel (a) of Table
A.10. The variation for a given wind farm under either subsidy type is one-order magnitude smaller
compared to the variation across wind farms. I present the aggregate time trend for the profit when
both subsidies are available, when only PTC is available, and when both subsidies are removed in
Panel (b). The profits are increasing over time as a consequence of improving turbine technology.
As the PTC phased out after 2016, the gap between profits with or without subsidies also got closer.
During 2008-2012, the availability of both subsidies increased the profit by around 8.8%.

The estimation results of the demand function for non-utility buyers are shown in Table 2. I
control for the balancing authority fixed effects as well as the contract type fixed effects as Xi

in Equation (10).21 Column (1) presents the OLS estimates. The price coefficient ζ1 is around
-0.769. Conditional on wind energy prices, the average turbine price is negatively correlated to
the procured wind capacity. I use three sets of instruments to deal with the endogeneity issues
associated with the wind price: the renewable credit price in each state, the annual agricultural
land price at the state level, dummy variables indicating whether a state implemented wind power
recruitment policies, property tax incentives, or sales tax incentives. I present the IV estimate using
only the renewable credit price for utility as the baseline and discuss the results using different
combinations of instruments in Appendix Section C.6. The IV estimate of the price coefficient is
larger in magnitude than the OLS result by around 20%. I further regress log capacity on log price,
and the estimated average elasticity is around -1.59. There is a sparse reference for the demand
elasticity in the wind capacity, but the magnitude roughly aligns with the previous estimates in the
liquefied natural gas industry (Zahur, 2022) and solar panel industry (Gerarden, 2023).

21I categorize all balancing authorities into four groups: ERCOT (37%), PJM (17%), SPP (15%), and the rest
(31%). I also group the contract type into four groups: merchant contracts (44%), Power Purchase Agreements with
non-utilities (27%), hedge contracts (10%), and the rest (19%).
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Table 2: Demand Function for Non-Utility Buyers

Capacity log(Capacity)
OLS IV OLS IV
(1) (2) (3) (4)

Price -0.769 -0.922
(0.108) (0.239)

log(Price) -1.181 -1.590
(0.132) (0.266)

Productivity (αi) -12.124 -13.513 0.003 -0.052
(10.316) (10.246) (0.170) (0.180)

GE 11.738 12.673 -0.097 -0.102
(13.765) (13.394) (0.220) (0.222)

Siemens -6.636 -6.465 -0.016 -0.053
(13.786) (13.721) (0.219) (0.230)

Other Brands -40.355 -38.247 -1.002 -0.942
(14.947) (15.347) (0.273) (0.282)

Turbine Price -4.789 -4.831 0.011 0.023
(1.999) (2.019) (0.034) (0.035)

Observations 309 309 309 309
R2 0.387 0.151 0.585 0.336
F Stat. for Exc. IV 60.340 87.427
Balance-Authority Dummies ✓ ✓ ✓ ✓
Contract-Type Dummies ✓ ✓ ✓ ✓

Notes: This table shows the estimation results of the linear demand curve for non-utility buyers (Equation (10)).
Column (1) shows the OLS estimates, while column (2) shows the IV estimates. I use the renewable credit price for
utilities as the instrument for the wind price faced by non-utility buyers. Robust standard errors are in parentheses.

I further estimate the utility matching model and the buyer type choice model as shown in
Table 3. The matching cost between a wind farm and a utility is much larger if they are located
in different states. The matching cost also increases with their geographical distance. Being in
different states is equivalent to increasing distance by 470 miles on average in raising the matching
cost. The estimated scale of choice-specific random shock is 0.049, which is equivalent to 54.7%
of the average profit from bilateral bargaining. The mean likelihood of selling capacity to a non-
utility buyer is around 24.2%. However, this probability is much larger in Texas, Illinois, and New
York, as these markets are where the hedge and merchant contracts concentrated geographically.
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Table 3: Parameter Estimates for Utility Matching and Buyer Type Choice

Coefficients Parameters Estimates

Matching Cost, Different States µ1 0.101
(0.013)

Matching Cost, Distance µ2 0.215
(0.039)

Scale of ϵijt σ2 0.049
(0.006)

Non-utility Probability ζ3 0.242
(0.019)

Non-utility Probability, Texas ζ3,TX 0.795
(0.033)

Non-utility Probability, Illinois ζ3,IL 0.541
(0.082)

Non-utility Probability, New York ζ3,NY 0.950
(0.049)

Notes: This table shows the estimation results of the utility matching and buyer type choice (Equation (12)). Standard
errors are in parentheses.

6.2 Dynamic Parameters

I present the estimation results for dynamic parameters in Table 4. I use the policy window between
2013 and 2018 to estimate entry cost parameters in column (1), and use the policy window between
2014 and 2018 to estimate entry cost parameters in column (2). I use column (2) as the baseline
result. The mean parameter ϕ of the entry cost distribution is estimated to be around 290.87, and
thus the mean entry cost conditional on entry is simulated to be 17.94-19.19 million dollars. More-
over, I include the average state-level annual agricultural land price as Wit after subtracting the
sample mean. The coefficient µ is estimated to be positive, which indicates that higher land price
exacerbates the entry cost for new wind farms. The mean land cost accounts for 53.2%-70% of the
total entry cost.

Next, I use the estimated cost parameters to solve the dynamic programming problem during
the policy windows when there is policy uncertainty and estimate the policy belief parameters. The
results are presented in Panel (b). The average perceived probability of policy renewal is around
0.3 for the 2011 cohort due to the pessimism about the policy extension as well as the delayed
renewal action. The low estimate is also consistent with the investment spike observed in the raw
data. The average perceived probability of policy renewal for the 2012 cohort recovers to around
0.843 as policy uncertainty still hovered. The belief parameters in other years are estimated to be
close to 1, with the exception of 2006-2007, which might be due to a larger extrapolation error
when estimating belief parameters in this early stage using entry cost parameters estimated from a
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much later sample period.

Table 4: Parameter Estimates for Dynamic Model

(1) (2)
Panel A: Entry Cost Parameters

Mean Entry Cost, ϕ 324.201 290.865
(99.301) (105.841)

Land Price, κ 57.119 67.424
(30.245) (34.713)

Panel B: Belief Parameters

Policy Belief 2006, b2006 0.540 0.583
(0.193) (0.147)

Policy Belief 2007, b2007 0.731 0.758
(0.302) (0.220)

Policy Belief 2008, b2008 0.995 0.999
(0.111) (0.013)

Policy Belief 2009, b2009 0.852 0.930
(0.273) (0.306)

Policy Belief 2010, b2010 0.920 0.925
(0.158) (0.150)

Policy Belief 2011, b2011 0.230 0.322
(0.092) (0.230)

Policy Belief 2012, b2012 0.768 0.843
(0.470) (0.363)

Years without Uncertainty 2013-2018 2014-2018

Notes: This table shows the estimation results of the dynamic model. Column (1) estimates entry cost parameters
using the sample window between 2013 and 2018, while column (2) estimates entry cost parameters using the sample
window between 2014 and 2018. Standard errors for entry cost parameters are block-bootstrapped 500 times, while
standard errors for belief parameters are block-bootstrapped 20 times.

I test the model fit by drawing the entry cost shocks randomly 500 times and simulating the
entry decision of wind farms. The results are shown in Appendix Figure A.11. The model fits the
overall investment time trend and captures the investment spikes and dips well, although I over-
predicted entry in the early years. This is likely due to the lumpy nature of the wind farm entry in
specific markets while I impose a relatively restrictive entry cost structure in the model.
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7 Counterfactual Analysis

I present results for three sets of counterfactual exercises. The first counterfactual exercise is to
answer the key research question of how policy uncertainty affects dynamic market efficiency and
social welfare. I simulate the investment decision when the policy uncertainty is eliminated. I
calculate the welfare consequences of policy uncertainty by comparing the baseline scenario with
policy uncertainty and the simulated case without policy uncertainty. I decompose the welfare con-
sequences of policy uncertainty to different channels and explore effect heterogeneity across states.
The second counterfactual exercise is to adjust subsidy generosity. As the Production Tax Credit
was at a fixed value after adjusting for inflation throughout its history until 2016, I investigate how
the welfare effects of policy uncertainty change under different levels of subsidies and explore the
interactions between subsidy generosity and policy uncertainty. The third counterfactual exercise
is to explore the welfare effects under early resolution of policy uncertainty. I simulate the invest-
ment decision when policy uncertainty is resolved before and after wind farm investors make entry
decisions and compare the welfare effects between these two scenarios. The last counterfactual ex-
ercise is to evaluate the welfare effects of policy uncertainty in a more static market environment.
I compare the impacts of investment trajectory and social surplus of policy uncertainty when the
wind turbine technology is constant or the characteristics of the buyer pool are fixed.

7.1 Effects of Policy Uncertainty on Investment and Welfare

I simulate the baseline scenario when policy uncertainty is in place with the estimated belief pa-
rameters in Table 4 and a counterfactual case when policy uncertainty is completely removed such
that bt = 1. I simulate the model between 2006 and 2018 and wind farm investors endogenously
adjust their expectations of the state variables. At the beginning of each year, a wind farm draws
a random entry cost from the estimated common distribution and decides whether to enter in the
current year. If a wind farm decides to wait, it will go back to the potential entrant pool and be
faced with the same dynamic problem next year. The details of counterfactual simulations can be
found in Appendix Section D.

This counterfactual exercise is to quantify the impacts of policy uncertainty on wind farm in-
vestment and social surplus. Removing policy uncertainty completely is an extreme policy sce-
nario, but maintaining a long-term policy is the new direction of policy design. For example, the
Inflation Reduction Act of 2022 extended the Production Tax Credit until 2025 and announced that
the Clean Electricity Production Tax Credit will replace the traditional Production Tax Credit after
2025 which will not be phased out until 2032 or when U.S. greenhouse gas emissions from elec-
tricity are 25% of 2022 emissions or lower.22 Moreover, containing policy uncertainty can also be

22For the Inflation Reduction Act of 2022, please see a summary from the White House and from the EPA.
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achieved by rolling policy windows with a longer gap between the announcement and the imple-
mentation of the renewal.

Investment Trajectory The baseline and counterfactual investment trajectories are shown in
Figure 10. Removing policy uncertainty greatly delays the entry of wind farms. The number of
new wind projects in 2011 is reduced by 52.7% and the total new capacity decreases by 5500 MW.
The wind projects delay their entry to later years and I find that the number of new wind projects
in 2012-2018 increases by 24.1% on average annually. Those delayed wind farms postpone their
entry by 3.56 years and the average entry year of all new projects between 2011-2018 is delayed
by 0.72 years.

Social Welfare I calculate the welfare change brought by policy uncertainty for the policy win-
dow in 2008-2018. Policy uncertainty induces earlier entry of wind farms and expedites the envi-
ronmental benefits of reducing carbon emissions. However, policy uncertainty creates a mismatch
among investment timing, technological improvement, as well as demand evolution, which leads
to efficiency loss. I first compare outputs under two scenarios. As shown in Panel A of Table 5, the
numbers of total wind projects are roughly the same, suggesting that removing policy uncertainty
mainly changes the entry timing but keeps the total number of entrants constant over an 11-year
horizon. However, the total capacity increases by 6.3% once policy uncertainty is removed. More-
over, the total output increases by 8.7%. As more investment takes place during the policy window
when the turbine productivity is higher and the turbine price is lower, investment timing aligns
better with technology. Utilities with unfulfilled demand also procure more wind capacity when
there is better technology. Consequently, the total capacity and output both increase despite similar
numbers of wind projects, as illustrated in Appendix Figure A.12.

I calculate the profit of wind farms on the market in Panel B of Table 5. Though there is more
wind capacity, the total turbine cost increases only slightly by 1.5% because the new entry timing
takes better advantage of the decreasing turbine price. The entry cost is also lower, mainly due to
a peak of average land price in 2011. Total profit, calculated as the difference between the static
profit Πit and the entry cost, increases by 7.1%.

I evaluate the benefits of wind energy following Callaway et al. (2018). I assume wind farms
operate for 20 years and calculate the total benefits from their twenty-year operations. Wind energy
substitutes fossil fuels in generating electricity and thus there are three sources of benefits from
more wind energy on the grid: reducing carbon emissions, avoiding fossil input costs, and adding
capacity values to the system. I estimate the average marginal operating emissions rate (MOER) of
coal- or gas-fueled power plants in each state and year, which is defined as the marginal response
in the system-wide emissions with respect to the total production change from generators due to

44



Figure 10: Investment Trajectory with and without Policy Uncertainty
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Notes: This figure shows the investment trajectory with and without policy uncertainty. The gray dashed line denotes
the model-predicted new capacity under baseline policy uncertainty, while the red solid line denotes the new capacity
without policy uncertainty. The bottom panel shows the percentage change in the number of new projects when
policy uncertainty is removed compared to the baseline scenario.

more renewable energy.23 I assume the social cost of carbon to be $80 per ton.24 The statistics of
the avoided operating costs and capacity values are taken directly from Callaway et al. (2018). I
abstract away electricity demand responses as they are outside of my model. The social surplus
from wind energy could then be calculated as total benefits, including avoiding carbon emissions,
reducing fossil fuel costs, and increasing capacity values, minus the turbine costs and entry costs
paid by the wind farm investors.

The cost and benefit analysis of policy uncertainty is presented in Panel (c) of Table 5. Total
benefits increase by 5.8 billion dollars in total, a 5.2% increase compared to the baseline. Although
the benefit could only be harvested later due to the delayed entry, a rise in total output dominates
the waiting cost. Among 5.8 billion dollars in total benefit gain, 60% are from the reduced carbon
emission. If I take a more conservative estimate of the social cost of carbon such as $50 per ton,

23Callaway et al. (2018) find that regional average MOERs offer a useful means of “calibrating regional policy
incentives to compensate for external emissions benefits.”

24According to Brookings, the Obama administration estimated the social cost of carbon at $43 per ton globally,
while the Trump administration only considered the effects of carbon emissions within the United States, estimating
the number to be between $3 and $5 per ton. The Biden administration estimated the social cost of carbon to be $51
per ton, but the EPA proposed a nearly fourfold increase to $190 in November 2022. Borenstein et al. (2021) use both
$50 per ton and $100 per ton.
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the total benefits increase by 4.6 billion dollars compared to the baseline.
The social surplus of wind energy, after taking the decreasing turbine costs and entry costs

into consideration, increases by 6.8 billion dollars and 18.4% from the baseline. The total subsidy
increases by 5.2% as the PTC is based on total output.25 The total profit on the market cannot fully
justify subsidies as the net profit is negative, but removing policy uncertainty reduces this deficit
by 0.2 billion dollars. However, the net social surplus increases by 5.9 billion dollars in total, a
28.9% increase from the baseline.

Table 5: Outputs, Benefits and Costs with and without Policy Uncertainty

Baseline No Uncertainty Difference Percentage

Panel A: Output

Number of Projects 464.1 468.8 4.7 1.0%
Total Capacity (MW) 40191.3 42718.7 2527.5 6.3%
Total Output (106 MWh) 1598.5 1738.3 139.8 8.7%

Panel B: Profit (Billion USD)

Turbine Cost TC 43.4 44.1 0.6 1.5%
Entry Cost EC 32.6 31.0 -1.6 -4.9%
Total Profit TP 14.8 15.9 1.0 7.1%

Panel C: Benefit and Cost (Billion USD)

Total Benefit TB 113.1 119.0 5.8 5.2%
Environmental Benefit 68.4 71.9 3.5 5.1%
Others 44.7 47.1 2.4 5.3%

Social Surplus TB-TC-EC 37.0 43.8 6.8 18.4%
Subsidy S 16.5 17.3 0.9 5.2%
Net Profit TP-S -1.6 -1.5 0.2
Net Social Surplus TB-TC-EC-S 20.6 26.5 5.9 28.9%

Notes: This table shows the outputs, benefits, and costs in the wind industry in 2008-2018 comparing the scenario
when the policy uncertainty is removed and the baseline scenario. All the dollar values are discounted to 2008 with a
discount factor of 0.95.

Effect Decomposition The total benefit from removing policy uncertainty increases by 5.8 bil-
lion dollars as well as 5.2% compared to the baseline. There are three channels underlying this
total improvement: the delayed environmental benefits, the improvement of timing alignment be-
tween investment and technology, as well as the matching efficiency gain between utilities and

25Note that the total subsidy increase is smaller in percentage than the output. This is because all the dollar values
are discounted to 2008, while the total quantity is a simple sum.
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wind farms. Removing policy uncertainty reduces total benefits from wind energy through the first
channel, but improves total benefits through the latter two channels. I use Nmt to denote the num-
ber of new wind farms in statem and year t, and the average capacity as kmt, which is a function of
average unfulfilled demand for buyers Φmt. I also use bm to represent the benefit of 1 MWh wind
energy generation for state m, for which I take a sample mean at the state level. αt is the average
annualized capacity factor of wind turbines. TB represents the total benefit, assuming that each
wind farm operates for twenty years.

TB =
∑
mt

1− β20

1− β
αtkmt(Φmt)bmNmtβ

t.

I use X̃ to represent the value in the counterfactual scenario for every variableX under baseline.
ᾱ is the average turbine capacity factor in the sample. Consequently, the change in the total benefits
of wind energy can be decomposed into the following three channels.

T̃B− TB =
1− β20

1− β
[
∑
mt

ᾱkmt(Φmt)bm(Ñmt −Nmt)β
t

︸ ︷︷ ︸
delayed environmental benefits

+

(αt − ᾱ)kmt(Φmt)bm(Ñmt −Nmt)β
t︸ ︷︷ ︸

timing alignment

+

αt(k̃mt(Φ̃mt)− kmt(Φmt))bmÑmtβ
t︸ ︷︷ ︸

matching efficiency gain

]

(22)

The decomposition results are shown in Appendix Figure A.13. Removing policy uncertainty
delays the entry of wind farms as well as the total benefits of wind energy. However, the negative
effect can be completely offset by a better timing alignment between investment and technology.
Moreover, the matching efficiency gain between utilities and wind farms contributes roughly 30%
compared to the welfare effect from timing alignment.

Effect Heterogeneity I explore the heterogeneity in the welfare consequences across states and
find some suggestive evidence that the net social surplus increases more especially in states with
larger wind demand or more generous state-level supports. As shown in Appendix Figure A.14,
the improvement in the net social surplus by removing policy uncertainty is larger for states with
larger unfulfilled demand for utilities (Φjt) or demand shifters (β4Z

U
jt). Moreover, the change in

the net social surplus from removing policy uncertainty is also larger if a state implements more
stringent Renewable Portfolio Standards or more generous state-level subsidies. One interpretation
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is that state subsidies are complements to federal tax incentives. Wind energy will benefit more
from stable federal subsidies in those states where state subsidies are also provided, as state policies
make it easier for wind projects to expedite their entry to qualify for the PTC.

7.2 Effects of Policy Uncertainty under Various Subsidy Levels

I investigate how the welfare effects of policy uncertainty change under different subsidy levels.
The Production Tax Credit was at a fixed value after adjusting for inflation throughout its history
until 2016. Therefore, until 2016, the government set policy windows and decided when to renew
the subsidy, but held the generosity of subsidies constant. However, an alternative level of subsidy
might yield better social surplus under policy uncertainty. I keep the belief parameters as they
are for other years, but simulate the market outcomes by setting the belief parameter in 2011 to 0
(most uncertain), 0.4 (baseline), and 1(most certain) when the subsidy levels vary from $16/MWh
to $28/MWh. I calculate the social surplus and the net social surplus of wind energy for each case,
and the results are summarized in Figure 11.

Overall, the social surplus of wind energy increases with the level of subsidy but decreases with
the extent of policy uncertainty in 2011. The baseline level of net social surplus with a subsidy level
of $22/MWh and policy belief parameter in 2011 as 0.4 is lower than the net social surplus with
a subsidy level of $18/MWh but with full policy certainty in 2011. Similarly, the baseline level
of social surplus with a subsidy level of $22/MWh and policy belief in 2011 as 0.4 is lower than
the social surplus with a subsidy level of $20/MWh but with policy certainty in 2011. Therefore,
we could reduce the level of subsidy without sacrificing social welfare if we could contain policy
uncertainty.

A similar exercise is to compare social welfare under the baseline level of policy uncertainty
and when policy uncertainty is maximized. As shown in Figure 11, if the policy uncertainty is
further exacerbated such that the policy belief parameter is 0 in 2011, the net social surplus of wind
energy is lower than that when the subsidy level is $20/MWh under the current level of policy
uncertainty. The same pattern also holds true for total social surplus. Therefore, if we adjust policy
uncertainty to its maximum in 2011, the social welfare can be sustained by decreasing the subsidy
level by $2-$3/MWh even under the current level of policy uncertainty. This exercise shows the
fiscal cost of policy uncertainty. Removing policy uncertainty could save fiscal expenditure for the
government without sacrificing social welfare.

7.3 Effects of Early Resolution of Policy Uncertainty

The third counterfactual exercise is to quantify the welfare effects when policy uncertainty is re-
solved early. I focus on the policy uncertainty in 2011 and simulate the investment decision under
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Figure 11: Welfare Effects of Policy Uncertainty under Various Subsidy Levels
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Notes: This figure shows the welfare effects of policy uncertainty under various subsidy levels. I keep the belief
parameter as it is for other years, and simulate the market outcomes by setting the belief parameter in 2011 to 0 (most
uncertain), 0.4 (baseline), and 1(most certain) when the subsidy levels vary from $16/MWh to $28/MWh.

two scenarios. First, policy uncertainty was resolved at the beginning of the year 2011 such that
the government had a random draw of whether to extend subsidies from a binary distribution with
a mean of 0.4 and announced the policy extension status to the wind industry. Wind farm investors
would know the future policy status promised by the government before they make the entry de-
cision. This is the early resolution of policy uncertainty. Second, policy uncertainty was resolved
after the wind farm investors made the investment decision and the mean probability is 0.4, which
is similar to the baseline scenario. Both two scenarios have the same mean likelihood of policy
extension, and the only difference is the timing of policy uncertainty resolution. This exercise is in
the same spirit as in Gowrisankaran et al. (2023).

The results are shown in Figure 12. I plot the percentage change in the number of new projects,
total outputs, social surplus, and net social surplus compared to the baseline scenario. I find that
when the policy uncertainty is resolved early, the number of new wind projects will be smaller.
This is consistent with the intuition that early resolution of the policy uncertainty will reduce the
rushed entry of wind farms and alleviate the negative impact of policy uncertainty.26 Overall, the
welfare effect of policy uncertainty under early resolution is positive compared with the baseline
scenario. The total and net social surplus of wind energy increase by 1.4% and 1.9%.

Early resolution of policy uncertainty captures 10.4%-15.2% of the welfare gain under full
removal of policy uncertainty depending on the welfare measures. Despite that the Production Tax

26Mathematically, the key is that entry probability is a concave function of the difference between profits if entry
in the current period and the option values from waiting.
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Credit is always renewed ex-post, the ex-ante uncertainty faced by wind farm investors results in
both a lower expected value of subsidy and a larger variance of realized policy status. Keeping the
expected value of subsidy the same but reducing the variance of realized policy status can recover
15% of welfare loss, while the rest 85% of welfare loss is due to a lower expected value of subsidy
from ex-ante uncertainty. Although the subsidy is in effect on the market at all times, ex-ante policy
uncertainty undermines the role of the subsidy by shifting the expectations of investors and leads
to welfare loss.

Figure 12: Welfare Effects of Early Resolution of Policy Uncertainty
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Notes: This figure shows the welfare effects of policy uncertainty under early policy uncertainty. I keep the belief
parameter as it is for other years, and simulate the market outcomes with the belief parameter in 2011 as 0.4. I
simulate the model when the policy uncertainty is resolved before wind farm investors make the entry decision (early
resolution) and after (baseline). I calculate the change in the number of new projects, total outputs, social surplus, and
net social surplus when policy belief is 0, when policy belief is 1, and when policy uncertainty is resolved early
compared to the baseline scenario.

7.4 Effects of Policy Uncertainty without Dynamic Environment

I explore the welfare consequences of policy uncertainty in a more static market environment.
I consider three scenarios: 1) the turbine productivity is constant at the 2011 level; 2) both the
turbine productivity and price are constant at the 2011 level, and thus the technology is fixed at
the 2011 level; 3) the renewable portfolio gap is fixed for each utility at its 2011 level. I simulate
the investment decision with and without policy uncertainty and compare the total number of wind
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projects, total output, social surplus, and net social surplus in 2008-2018.
The results are shown in Figure 13. Panel (a) presents the number of wind farms. The first

scenario is the baseline full dynamic case where turbine productivity, turbine price, and buyer
characteristics are all changing over time. I set the full dynamic scenario with policy uncertainty
as the benchmark and calculate the percentage change in other cases. I find that keeping turbine
technology constant will increase the entry of new wind farms, as the incentive to wait for better
technology is eliminated. On the contrary, keeping the renewable portfolio gaps constant for every
buyer will eliminate the preemption incentive of wind farms and there will be fewer wind farms
operating on the market.

Figure 13: Outcomes without Dynamic Environment
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Notes: This figure shows the market outcomes when the market environment is more static. There are four scenarios:
1) the baseline full dynamics where turbine productivity, turbine price, and buyer characteristics are all changing over
time; 2) the turbine productivity is constant at the 2011 level; 3) both the turbine productivity and price are constant at
the 2011 level; 4) the renewable portfolio gap is fixed for each utility at its 2011 level. I plot the number of wind
farms, the total outputs, the social surplus, and the net social surplus in 2008-2018.

When market primitives are constant, removing policy uncertainty will reduce the number of
wind farms to various extents for different reasons. If the technology is constant, postponed wind
farms will find it difficult to enter later as they need a longer waiting time to have a favorable entry
cost draw to justify their investment decision with continuously low productivity or high turbine
prices. If the buyer pool is constant, postponed wind farms have incentives to further delay with a
lack of preemption incentives.

I then calculate the change in the social surplus and net social surplus from wind energy by
removing policy uncertainty. As I discussed in Table 5, the social surplus and net social surplus
increase by 18.4% and 28.9%, respectively. When the market environment is more static, the
welfare gain from removing uncertainty will also be smaller. If there is no turbine productivity
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change, the social benefits and net social benefits increase by 3.3% and 7.3% respectively, around
1/5 to 1/4 of the full dynamic results. If there is no buyer characteristics change, the social benefits
and net social benefits increase will also shrink to 30% of the full dynamic results. In the absence
of technological change or demand evolution, removing policy uncertainty still improves social
welfare to reduce entry timing distortion, but the welfare gain will be much smaller. The dynamic
market environment greatly exacerbates the efficiency loss from policy uncertainty.

8 Conclusion

I evaluate the dynamic consequences of policy uncertainty in the US wind industry. Policy un-
certainty in the Production Tax Credit, induced by continual expiration and extension, expedited
wind farm investment and created a bunching of the investment timing at those policy expiration
dates. However, it also caused a large mismatch among wind farm investment timing, continuously
improving upstream turbine technology and the evolving demand for wind energy.

To evaluate whether expedited environmental benefits from wind energy outweigh the effi-
ciency loss from distorted investment timing, I develop an empirical model featuring the bilateral
bargaining of long-term contracts, endogenous buyer matching, and dynamic wind farm investment
under policy uncertainty. I find that a lapse in policy extension reduced the perceived likelihood
of policy renewal to 30%. I implement counterfactual simulations and find that removing policy
uncertainty postpones the entry of 53% of the 2011 wind farm cohort by 3.5 years. The net social
benefits increase by 5.9 billion dollars and 28.9% after removing policy uncertainty. Moreover,
policy uncertainty also imposes fiscal burdens on the government, as the total subsidies can be
partially saved without sacrificing social welfare if the government can manage to contain policy
uncertainty. I also find that the dynamic market environment exacerbates the efficiency loss from
policy uncertainty and early resolution of the policy uncertainty could capture more than 10% of
the welfare gain under full removal of policy uncertainty.

Overall, this paper highlights the importance of containing policy uncertainty under a dynamic
market environment, which is often the case for these nascent industries. After decades of ‘on-
again/off-again’ policy status, the Inflation Reduction Act of 2022 extended the Production Tax
Credit until 2025 and announced that the Clean Electricity Production Tax Credit will replace the
traditional Production Tax Credit after 2025 which will not be phased out until 2032 or when U.S.
greenhouse gas emissions from electricity are 25% of 2022 emissions or lower. Strong long-term
industrial support eliminates interim policy uncertainty and will further boost the development of
wind energy and improve allocative efficiency.
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A Additional Figures and Tables

Figure A.1: Capacity by Offtake Types

(a) Capacity Share
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(b) Capacity Volume
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Notes: This figure shows the capacity distribution by offtake types across years. There are four offtake types: utility
PPA, non-utility offtaker, merchant/hedge contracts, and direct ownership. Panel (a) describes the share of capacity,
while Panel (b) shows the volumes.
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Figure A.2: State-level Policies

(a) Tax Policies
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Notes: This figure shows the frequencies of different types of state policies for states with or without RPS. State
policies, including RPS, are hand collected by the author from DSIRE (https://www.dsireusa.org/).
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Figure A.3: Matching between Utilities and Wind Farms

(a) Number of Matched Wind Farms for Utilities
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(b) Number of Matched Utilities for Wind Farms
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Notes: This figure shows the matching pattern between utilities and wind farms for the PPA sample. Panel (a) plots
the distribution of the number of matched wind farms for each utility and Panel (b) plots the distribution of the
number of matched utilities for each wind farm.

Figure A.4: Time Trend for Investment: Capacity
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Notes: This figure shows the annual trends of the total capacity and average capacity of new wind projects. We
construct the time series based on the data from EIA-860. The red bars in Panel (a) represent the years with policy
deadlines.
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Figure A.5: Construction Time

(a) by Online Years
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Notes: This figure shows the time trends of the construction time for new wind projects by their online years (Panel
(a)) and construction start years (Panel (b)). We construct the annual time trends of the average construction time
from FAA data and EIA-860.

Figure A.6: Interconnection Queues

(a) Average Time
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Notes: This figure shows the descriptive evidence for the interconnection queues. Panel (a) plots the average time
spent between entering into the interconnection queues and starting construction. Panel (b) plots the distribution of
years to start construction and start the queues, where the size of the circles represents the number of wind projects.
The interconnection queue data is from ISOs/RTOs including MISO, SPP, PJM, ISONE, NYISO, and CAISO.
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Figure A.7: Time Trend of Wind Speeds
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(b) Standard Deviation within Locations
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Notes: This figure shows the annual time trends of wind speed at locations of new wind projects. The wind speed is
measured at 80 meters at sites nearest to the wind project location based on the Wind Toolkit Data from National
Renewable Energy Laboratory (NREL). The mean and standard deviation for each wind project is measured using
hourly wind speed in 2007-2013.
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Figure A.8: PPA Price and WTP of Alternative Utilities
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(c) Time Trend of PPA Prices
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Notes: This figure describes the basic pattern of the Power Purchase Agreement (PPA) prices. Panels (a) and (b)
show the conditional relationship between PPA prices and two willingness to pay shifters for the alternative utilities
within 400 miles. Panel (a) shows the relationship between PPA prices and the average effective prices for alternative
utilities, while Panel (b) shows the relationship between PPA prices and the average renewable portfolio gaps for
alternative utilities. Both Panels (a) and (b) control for the utility energy mix, effective market price, estimated unit
capacity price, turbine cost, as well as the total capacity for the wind farm and the utility participating in the bilateral
negotiation. Panel (c) plots the average time trend of the PPA prices.
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Figure A.9: Description of Annualized Capacity Factor

(a) Capacity Factor and Age
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(b) Capacity Factor, Age, and Cohort
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Notes: This figure presents the descriptive data patterns of the annualized capacity factor of wind farms. Panels (a)
and (b) explore the relationship among the capacity factors, ages, and cohorts of wind farms. I rescale the annualized
capacity factor and divide it by 1000. The average annualized capacity factor is 2.82× 103 at the wind farm and year
level. Panel (a) plots the coefficient estimates of βa in Equation (23), controlling for the entry cohort dummies. Panel
(b) plots the coefficient estimates of βc in Equation (23), for the groups of wind farms of age 1 and age 2-5 separately.
For both Panels (a) and (b), the 95% confidence intervals are constructed from the robust standard errors. Panel (c)
shows the relationship between the annual output and the nameplate capacity of wind farms. I residualize both the
annual output and the nameplate capacity on entry cohort dummies and age dummies. The scatter plot is at the wind
farm and year level. The red dashed line is the local polynomial approximation, while the blue solid line is the linear
fit between these two variables.
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Figure A.10: Summary of Simulated Static Profits

(a) PTC and Section 1603 Grant
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(b) Time Trend
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Notes: This figure summarizes the basic patterns of the simulated profit from bilateral bargaining. Panel (a) presents
simulated profits under either PTC or Section 1603 Grant. Each circle represents one wind farm, and the red solid
line is the 45-degree line. Panel (b) plots the average profits with both subsidies, with only PTC, and without
subsidies over time.

Figure A.11: Dynamic Model Fit
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Notes: This figure shows the dynamic model fit. The red line denotes the model-predicted number of wind projects,
while the gray dashed line denotes the number of wind projects in the raw data.
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Figure A.12: New Projects, Capacity, and Output with and without Policy Uncertainty
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Notes: This figure shows the number of new projects, the amount of new capacity, and the total outputs generated by
the new cohort under the baseline scenario and when the policy uncertainty is removed. I set the level in 2011 as the
benchmark and calculate the percentage change in later years.
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Figure A.13: Welfare Decomposition
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Notes: This figure shows the welfare decomposition according to Equation (22). The change in the total benefits
from wind energy can be decomposed into three channels: the delayed environmental benefits, the improvement of
timing alignment between investment and technology, as well as the matching efficiency gain between utilities and
wind farms.
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Figure A.14: Welfare Heterogeneity from Removing Policy Uncertainty
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(b) Utility Demand Shifter
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(c) Renewable Portfolio Standards
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(d) State Subsidies
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Notes: This figure shows the welfare effects when policy uncertainty is removed across states with different
characteristics and state-level policies. Panel (a) plots the net social benefit change against the average renewable
portfolio gap. Panel (b) plots the net social benefit change against the average utility demand shifters. Panel (c) plots
the net social benefit change against the renewable portfolio standards in each state in 2012. Panel (d) plots the mean
net social benefit change among states with or without certain state-level subsidies, including sales tax incentives,
property tax incentives, and industry recruitment supports.
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B Data Cleaning

B.1 PPA Data

Themain data set I use for the static model is from the AWEA (AmericanWind Energy Association,
now American Clean Power Association), which includes the Power Purchase Agreement (PPA)
data in the US wind industry. The wind capacity coverage is complete in the AWEA data, as the
aggregate capacity aligns well with that from the EIA data across years (Panel (a) of Appendix
Figure B.1).

I keep the PPA data with utilities being the power purchasers from 2001 to 2019. The data is
at the contract and purchaser level, and there are in total of 721 observations. However, 13.4% of
the observations don’t have valid utility names and 4.7% of the observations miss valid wind farm
IDs to be matched with the EIA data. Among observations without valid utility names, 20.6%
only label the power purchasers as “City,” and 12.3% are flagged as “Undisclosed.” Among 34
wind farms without valid wind farm IDs, 64.7% has a total capacity of less than 5 MW. Otherwise,
the missing pattern seems quite idiosyncratic. Comparing the total capacity and contract lengths
between sub-samples with and without missing IDs as shown in Panels (c) and (d) of Appendix
Figure B.1, the overall distributions resemble each other, although the contracts with missing IDs
seem to have slightly smaller procured capacity.

There are 36.3% contracts missing price information among all the contracts with valid utility
names and wind farm IDs. My strategy of imputation for PPA prices follows that of Aldy et al.
(2023). I back out the PPA prices from the resale revenues and quantities reported in the EIA Form
923 from 2011 to 2019. By comparing the prices of wind farmswhose price information is available
both from EIA and AWEA as shown in Panel (b) of Appendix Figure B.1, I find they align well
with each other.

B.2 REC Price Data

I obtain the renewable credit price data from a financial service platform Marex in 2006-2019,
and I construct the renewable credit prices following Aldy et al. (2023). I calculate the REC price
estimates in a given state and year by taking the average between bids and asks from all active
state REC markets. However, only 15 states have available information from Marex and the time
coverage also varies across these states. I take two steps to impute REC prices for all active state
REC markets. First, for 15 states covered by Marex, I run the following regression to predict the
REC prices in years with missing values.

ymt = βm × 1(state = m)× t+ ξm + ϵmt
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I use ymt to denote the REC prices in statem and year t. I extrapolate the missing REC prices
from the estimated state-specific time trends.

Second, I extrapolate the REC prices in other active REC states. State-level Renewable Port-
folio Standards (RPS) typically stipulate a minimum share of renewable-sourced electricity out of
the total generation for each utility, and utilities need to purchase additional Renewable Energy
Credits if they fall short of the standards. The demand for renewable energy credit is shifted by the
stringency of RPS as well as the volume of electricity generated by non-renewable sources, while
the supply of renewable energy credit comes from new wind capacity addition and other renew-
able sources. As shown in Appendix Figure B.2, I find REC prices to be positively correlated with
the RPS, as more stringent Renewable Portfolio Standards boost the demand for renewable energy
credits. Meanwhile, REC prices are negatively correlated with existing wind capacity, because
existing wind capacity expands the supply of renewable energy credits. Moreover, REC prices are
also positively correlated with the share of electricity generated from non-renewable sources such
as fossil fuels and nuclear energy. A higher non-renewable share of electricity generation shifts the
demand curve of renewable energy credits outwards.

Moreover, the trading of renewable credits is fragmented into different markets, and the credits
are registered to be traded in different tracking systems as shown in Table B.1 based on Table 1
in Abito et al. (2022). The variation in the tracking systems could explain around 60% of the data
variation in the REC prices. Therefore, I estimate the following regression model and predict the
REC prices in the rest of the active REC states (with a slight abuse of the notations).

ymt = βXmt + γkt + ϵmt

I use ymt to denote the REC prices in statem and year t. The tracking system of statem is denoted
by k, and Xmt includes the RPS in year t, the cumulative wind capacity in state m and year t, as
well as the share of electricity generated out of non-renewable sources. Therefore, I extrapolate
the REC prices based on observables as well as the time trend specific to the tracking system. For
states where no price in the corresponding tracking system is available, I impute the REC prices
with a national average in that year excluding the New England Power Pool (NEPOOL) because
the REC prices in NEPOOL are one order of magnitude larger than the rest of the markets.
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Table B.1: REC Tracking System and Price Imputation (Table 1 from Abito et al. (2022))

State Established year Tracking system Imputation
Arizona 2006 None national average
California 2002 WREGIS No
Colorado 2004 WREGIS WREGIS

Connecticut 1998 NEPOOL-GIS No
Delaware 2005 PJM-GATS No
Hawaii 2001 None national average
Illinois 2007 M-RETS, PJM-GATS No
Indiana 2011 Not designated national average
Iowa 1983 M-RETS M-RETS
Kansas 2015 NAR national average
Maine 1999 NEPOOL-GIS No

Maryland 2004 PJM-GATS No
Massachusetts 1997 NEPOOL-GIS No
Michigan 2008 MIRECS No
Minnesota 2007 M-RETS M-RETS
Missouri 2007 NAR national average
Montana 2005 M-RETS, WREGIS M-RETS
Nevada 1997 NVTREC, WREGIS M-RETS

New Hampshire 2007 NEPOOL-GIS No
New Jersey 1991 PJM-GATS No
New Mexico 2002 WREGIS WREGIS
New York 2004 NYGATS national average

North Carolina 2007 NC-RETS national average
North Dakota 2007 M-RETS M-RETS

Ohio 2008 M-RETS, PJM-GATS No
Oklahoma 2010 None national average
Oregon 2007 WREGIS WREGIS

Pennsylvania 2004 PJM-GATS No
Rhode Island 2004 NEPOOL-GIS No
South Carolina 2014 None national average
South Dakota 2008 None national average

Texas 1999 ERCOT No
Utah 2008 WREGIS WREGIS

Vermont 2015 NEPOOL-GIS NEPOOL-GIS
Washington 2006 WREGIS WREGIS
Wisconsin 1998 M-RETS M-RETS

Notes: This table records the establishment year as well as the tracking system of the Renewable Energy Credit
market in relevant states based on Table 1 from Abito et al. (2022). The column “Imputation” indicates how I impute
missing REC prices in those states. Generally, I impute REC prices using observables including the Renewable
Portfolio Standards, cumulative wind capacity, and the share of electricity generated by non-renewable resources, as
well as time trends specific to the relevant tracking system. “National average” indicates that I impute the REC prices
with a national average in that year excluding the NEPOOL because no price in the corresponding tracking system is
available, while “No” indicates that the data is not missing and no imputation is required.
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Figure B.1: Data Description of the PPA Sample

(a) Data Comparison: Aggregate Capacity
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(b) Data Comparison: PPA Prices
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Notes: This figure presents the results of the data description for the PPA sample. Panels (a) and (b) show the results
of the data quality cross-check between AWEA and EIA. Panel (a) plots the annual aggregate new capacity from EIA
and AWEA. The red solid line denotes the 45-degree line. Panel (b) plots the PPA prices from EIA and AWEA for
each wind farm. The red solid line denotes the linear fit, while the gray dashed line denotes the 45-degree line. I
calculate the average price from EIA 923 using the resale price in 2011-2019 for each wind farm following Aldy et al.
(2023). Panels (c) and (d) show the distributions of the log procured wind capacity and the contract term length for
two sub-samples respectively. The “non-missing” sub-sample denotes the one that matches both utility IDs and wind
farm IDs with EIA, and the “missing” sub-sample denotes the one with either unmatched utility IDs or unmatched
wind farm IDs.
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Figure B.2: Renewable Energy Credit Prices and Other Market Outcomes

(a) Renewable Portfolio Standards
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(b) Cumulative Wind Capacity
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(c) Electricity Share by Non-Renewables
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Notes: This figure shows the relationships between state-level annual renewable energy credit (REC) prices and state
Renewable Portfolio Standards (RPS) (Panel (a)), cumulative wind capacity (Panel (b)), and the share of electricity
generated by non-renewable sources including fossil fuels and nuclear energy (Panel (c)). The gray circle denotes the
binned scatter plot, while the red solid line is the linear fit.
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B.3 Interconnection Queue Data

I access the interconnection queue data from different Regional Transmission Organizations (RTO)
and Independent System Operators (ISO), including MISO, CAISO, PJM, ISO-NE, NYISO, and
SPP.27 Since I observe the time when a project entered the queue and withdrew from the queue, I
define the former as entry and the latter as exit. I assume that on average wind projects stayed for
two years in the queue before obtaining all the approvals and signing the interconnection agree-
ments.28 Another way to leave the queue is to successfully build a wind farm, which I back out
using the EIA data.

I calculate the number of potential entrants for the wind industry for each state as a cumulative
number of projects that had entered the queue at least two years ago and had not built a wind
farm or withdrawn from the queue. I denote the number of potential entrants in state m and year
t as PotentialEntrantsmt. The number of projects that entered into the queue, withdrew from the
queue and built a new wind farm as Entrymt, Exitmt and NewBuiltmt, respectively. Therefore,
PotentialEntrantsmt can be recursively defined as follows.

PotentialEntrantsmt = PotentialEntrantsmt−1 + Entrymt−2 − Exitmt − NewBuiltmt−1.

I define PotentialEntrantsm,2002 as twice as large as the maximum of NewBuiltmt in the statem,
serving as an initial value. I adjust PotentialEntrantsmt to be equal to NewBuiltmt if the former falls
below the latter. I describe the time trend for Entrymt, Exitmt, and PotentialEntrantsmt in Appendix
Figure B.3. The total number of projects that entered the queue initially increased but fell between
2008 and 2012. After 2012, the trend reversed until 2016. The total number of projects that with-
drew from the queue experienced a peak in 2012 and displayed a hump shape. As a consequence
of the time trend for entry, exit, and successful new-built which peaked in 2011, the number of
total potential entrants is also hump-shaped and peaked in 2010. The entry and withdrawal from
the queue are both assumed to be exogenous to my model.

One complication is a lack of interconnection queue data for states that are not part of the ISOs
or RTOs. Moreover, I only access ERCOT interconnection queue data between May 2014 and
July 2018, in which the number of projects that had signed the interconnection agreement could
be calculated. As shown in Appendix Figure B.4, the number of newly built wind farms is stable

27MISO interconnection queue is accessed at this link on Oct 31st, 2022. CAISO interconnection queue is accessed
at this link on Oct 31st, 2022. PJM interconnection queue is accessed at this link on Nov 1st, 2022. ISO-NE intercon-
nection queue is accessed at this link on Nov 2nd, 2022. NYISO interconnection queue is accessed at this link on Nov
2nd, 2022. SPP interconnection queue is accessed at this link on Nov 5th, 2022.

28Anecdotes suggest that a typical project completed in 2008 spent fewer than two years in the queue for intercon-
nection approval compared to three years in 2015, according to the news. Although the backlog and congestion issues
are salient in recent years, two-year waiting time might be a reasonable assumption because it is roughly a median in
my sample period (2003-2018).
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compared to the rest of the US, and the number of potential entrants in 2014-2018 was also stable
within the range between 40 and 50. Therefore, I assume that the number of potential entrants is
constant at 50 across years for ERCOT. For the rest of the states that lack interconnection queue
data, I assume that the number of potential entrants in 2002 was twice as large as the maximum
number of newly built wind farms annually in that state, which is the same as what I assume for the
ISOs and RTOs. For later years, I assume the number of projects that enter the queue or withdraw
from the queue follow the aggregate time trend in MISO, CAISO, PJM, ISO-NE, NYISO, and SPP,
and the level is adjusted proportionally to the number of potential entrants in 2002.

Figure B.3: Entry, Exit, and Potential Entrants in Queues
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Notes: This figure shows the aggregate time trend for the interconnection queue in MISO, CAISO, PJM, ISO-NE,
NYISO, and SPP. “Entry” denotes the number of projects that entered the queue, and “exit” denotes the number of
projects that withdrew from the queue. The number of potential entrants for the wind industry for each state is a
cumulative number of projects that had entered the queue at least two years ago and had not built a wind farm or
withdrawn from the queue.
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Figure B.4: Newly Built Projects and Potential Entrants in ERCOT

0

10

20

30

40

50

60

N
um

be
r o

f p
ro

je
ct

s

2006 2008 2010 2012 2014 2016 2018
Year

newly built potential entrants

Notes: This figure shows the aggregate time trend for the interconnection queue in ERCOT. The number of newly
built projects is calculated from the EIA data. The number of potential entrants is directly calculated from the queue
data in ERCOT in each July between 2014 and 2018 as the number of projects that had signed the interconnection
agreement.
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C Estimation Details for Static Part

C.1 Estimation of Annualized Capacity Factor αit

I parameterize the wind power generation Qw
ijt as a linear function of the procured capacity kwij .

Though it is a simplification to assume a linear functional form, I find that the annual total output
on average is linearly increasing with the nameplate capacity. I residualize both the annual total
generation and the nameplate capacity on the entry cohort dummies and age dummies and then
plot the linear fit and local polynomial approximation between these two variables. As shown in
Appendix Figure A.9, the non-parametric relationship is very close to the linear fit, and the linear
function has explanatory power as high as 0.83. Under the assumption of the linear production
function, I define the annualized capacity factor αit =

Qw
ijt

kwij
.

I then explore how the annualized capacity factor evolves with age by estimating the following
model, where ageit denotes the age of wind farm i in year t. I further control the entry cohort of
wind farms cohorti. I set the group of age one as our baseline group, and βa measures the differences
in capacity factors between other age groups and the baseline group within an entry cohort.

αit =
10∑
a=2

βa × 1(ageit = a) +
2018∑

c=2004

βc × 1(cohorti = c) + ϵit (23)

I plot the age effects βa in Panel (a) of Appendix Figure A.9. The overall average capacity factor is
relatively stable even for the 10 years after entry. The capacity peak arrives at age 5. However, the
difference is only around 5% compared to the level of the baseline group. Moreover, I divide the
sample into two groups: wind farms of age 1 and wind farms of age 2-5. I estimate the Equation
(23) without age dummies and plot βc for two age groups in Panel (b) of Appendix Figure A.9. I
find that capacity factors evolve systematically with the cohort, but display limited variation with
respect to the age of wind farms. This is further corroborated by the fact that the cohort dummies
alone explain 84.3% of the variations of the average capacity factor at the cohort-age level, while
the age dummies alone only explain 5.5%. Therefore, I treat the annualized capacity factor to be
constant as the wind farm ages and calculate it at the age of one for each wind farm for the best
data coverage such that

αi = αit, when ageit = 1.

C.2 Estimation of Effective Market Price Θjt

I denote the effective market price as Θjt, which is a combination of retail electricity prices and
renewable energy credit (REC) prices. I assume that utilities have a rational expectation of the
future evolution of both retail electricity prices and renewable energy credit (REC) prices. I use
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the annual average retail electricity price at each state m to measure rmt. As shown in Appendix
Figure C.1, the average inflation-adjusted electricity price, weighted by the annual sales in each
state, increased before 2009 but has declined since then due to plummeting natural gas prices. In
order to capture the time trend, I model the evolution of electricity prices using an AR(1) process.

rmt = γ1rmt−1 × 1(t ⩽ 2009) + γ2rmt−1 × 1(t > 2009) + γ3t× 1(t ⩽ 2009)

+ γ4t× 1(t > 2009) + γ51(t > 2009) + ξm + ϵmt

(24)

I allow the AR(1) coefficient and the time trend to vary before and after 2009. ξm is the state
dummy. The estimation results are shown in Appendix Table C.1. The time trend of electricity
prices varies sharply before and after 2009, and the empirical model captures the data variation in
prices adequately as the R2 is as high as 0.963. I assume that utilities have rational expectations
with respect to the evolution of retail electricity prices but for two separate periods, and the trend
break in 2009 wasn’t anticipated.

Figure C.1: Time Trend of Aggregate Electricity Price
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Notes: This figure shows the time trend of average electricity price. I measure the average electricity price with the
state-level annual retail electricity price from EIA 861, weighted by the state-level annual electricity sales and
adjusted by inflation.

Similarly, I estimate an AR(1) model for the renewable energy credit prices λmt as shown in
Appendix Table C.2. I take the coefficient estimates from column (1) and assume utilities have
rational expectations with respect to the evolution of both the renewable energy credit prices and
have perfect foresight with respect to the Renewable Portfolio Standards zmt.
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The effective market price Θjt therefore can be constructed as

Θjt =
t+T∑

s=t+1

Etβ
s−t[rs + λs(1− zs)].

Table C.1: Transition Dynamics of Electricity Prices

Electricity Price
(1) (2) (3)

Lagged Electricity Price 0.989∗∗∗ 0.706∗∗∗
(0.003) (0.057)

Time Trend -0.057
(0.087)

Lagged Electricity Price ×1(Year ⩽ 2009) 0.688∗∗∗
(0.096)

Lagged Electricity Price ×1(Year > 2009) 0.678∗∗∗
(0.045)

Time Trend ×1(Year ⩽ 2009) 0.934∗∗∗
(0.297)

Time Trend ×1(Year > 2009) -0.138
(0.176)

1(Year > 2009) 6.252∗∗
(2.749)

Observations 765 765 765
Adjusted R2 0.955 0.962 0.963
State Dummies ✓ ✓

Notes: This table shows the transition dynamics of electricity prices at the state and yearly levels. The empirical
model is specified in Equation (24). Standard errors are clustered at the state level. *p < 0.10; **p<0.05; ***p<0.01.

C.3 Estimation of Total Renewable Portfolio Gap Φjt

I denote the utility’s total renewable portfolio gap as Θjt, which is the discounted sum of the flow
differences between electricity generation using renewable energy sources (excluding the procured
wind energy) and the requirement stipulated by the state Renewable Portfolio Standards.

I first describe the overall time trend of electricity generation by energy source, for all the
utilities and utilities in the Power Purchase Agreement (PPA) sample, respectively. The share of
coal-fired electricity is decreasing over time, while the share of gas-fired electricity is increasing
at the national level as shown in Appendix Figure C.2. Despite limited volumes, procured wind
and other renewables (including solar, biomass, geothermal, and utility-owned wind) are both in-
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Table C.2: Transition Dynamics of Renewable Energy Credit Prices

REC Price
(1) (2) (3) (4)

Lagged REC Price 0.886∗∗∗ 0.610∗∗∗ 0.880∗∗∗ 0.581∗∗∗
(0.019) (0.044) (0.020) (0.051)

Time Trend -0.170∗∗∗ -0.248∗∗∗
(0.041) (0.072)

Observations 417 417 417 417
Adjusted R2 0.841 0.847 0.843 0.852
State Dummies ✓ ✓

Notes: This table shows the transition dynamics of renewable energy credit (REC) prices at the state and yearly
levels. The empirical model is specified in Equation (24). Robust standard errors are reported. *p < 0.10; **p<0.05;
***p<0.01.

creasing. Meanwhile, total generations from nuclear, petroleum, hydroelectric, and other energy
sources are mostly stable. Compared to the entire sample of utilities, those from my Power Pur-
chase Agreement sample have a much larger coal power share compared to the national average
and a smaller natural gas power share.

I next estimate the transition process of electricity output portfolios at the utility level. I cat-
egorize different energy sources into four types: coal, natural gas, other non-renewables (includ-
ing nuclear, petroleum, and others), and other renewables (including solar, biomass, geothermal,
and wind directly owned by utilities). I exclude hydroelectric power following Hollingsworth and
Rudik (2019), as many Renewable Portfolio Standards excluded hydroelectric power built before
the implementation. I use the AR(1) model to capture the evolution process of net generations
from these four different energy sources. As the capacity investment is lumpy, I exclude utilities
that have never used a certain fuel type from the corresponding regression. I take the coefficient
estimates from the AR(1) model with utility dummies and a time trend. The results are shown in
Appendix Table C.3.

I assume utilities have rational expectations with respect to the evolution of their own electric-
ity generation from each type of fuel source, and they have perfect foresight with respect to the
Renewable Portfolio Standards. If a utility has never used a certain fuel type during the sample
period, I assume that its expectation of future usage remains zero. The utility’s total renewable
portfolio gap Φjt therefore can be constructed as

Φjt =
t+T∑

s=t+1

Etβ
s−t[zs(Q

f
js +Qor

js +Qo
js)−Qor

js].
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Figure C.2: Time Trend of Output Share by Energy Source
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(b) PPA Sample
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Notes: This figure shows the time trend of the shares of electricity generated by different energy sources. Panel (a)
displays the time trend for all utilities, while Panel (b) shows the time trend for utilities from the Power Purchase
Agreement sample. Other renewables include solar, biomass, geothermal, and utility-owned wind.
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Table C.3: Transition Dynamics of Electricity Generation by Sources

Net Generation
Panel A: Coal and Natural Gas

Coal Natural Gas
(1) (2) (3) (4)

Lagged Variable 0.868∗∗∗ 0.955∗∗∗ 0.936∗∗∗ 1.039∗∗∗
(0.067) (0.011) (0.020) (0.007)

Time Trend -0.067∗∗∗ 0.011∗∗∗
(0.013) (0.003)

Observations 2459 2460 7488 7491
Adjusted R2 0.969 0.969 0.977 0.976
Utility Dummies ✓ ✓
State Dummies × Time Trend ✓ ✓

Panel B: Other Renewable and Non-Renewable Sources
Other non-Renewables Other Renewables

(5) (6) (7) (8)
Lagged Variable 0.691∗∗∗ 0.994∗∗∗ 1.019∗∗∗ 1.103∗∗∗

(0.053) (0.008) (0.033) (0.022)
Time Trend 0.000 0.001

(0.002) (0.001)

Observations 9602 9607 2382 2388
Adjusted R2 0.987 0.985 0.978 0.975
Utility Dummies ✓ ✓
State Dummies × Time Trend ✓ ✓

Notes: This table shows the transition dynamics of net electricity generation using coal, natural gas, other
non-renewable sources (including nuclear, petroleum, and others), and other renewable sources (including solar,
biomass, geothermal, and wind directly owned by utilities) at the state and yearly levels. The empirical model is
similar to Equation (24). Standard errors are clustered at the state level. *p < 0.10; **p<0.05; ***p<0.01.
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C.4 Subsidy Choice

Section 1603 of the American Recovery and Reinvestment Tax Act was implemented as part of the
2009 stimulus package, providing cash grants to qualified energy properties in lieu of tax credits.
According to the program guideline, qualified wind farms must be “originally placed in service
between January 1, 2009, andDecember 31, 2011, or placed in service after 2011 and before January
1, 2013, if construction of the property begins between January 1, 2009, andDecember 31, 2011.” 29

If wind projects selected the Section 1603 Grant instead of the Production Tax Credit, they would
receive an upfront cash grant that was equal to 30% of total investment costs. I accessed the list
of Section 1603 awardees from the U.S. Department of the Treasury web page and matched it
with EIA data manually according to the wind project names.30 I constructed a dummy variable
indicating whether the project opted into the Section 1603 Grant.

Figure C.3: Section 1603 Award and PTC
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Notes: This figure shows the data patterns of the Section 1603 Grant and the subsidy choice. Panel (a) displays a
scatter plot between the Section 1603 award received by each wind farm and its total capacity. The red solid line
denotes the linear fit. Panel (b) shows the total subsidy under the Section 1603 Grant and the PTC for each wind
farm, calculated following equations (25) and (26). I split the sample into Section 1603 Awardees (red circles) and
PTC recipients (blue pluses) and the dashed gray line is the 45-degree line.

The list of Section 1603 awardees also includes the amount of the Section 1603 award. As is
evident from Panel (a) of Appendix Figure C.3, the amount of the award can be closely approxi-
mated as a linear function of the total capacity (R2 = 0.932). Consequently, I model the total grant
as a linear function of capacity 0.3×ηkwij . I calibrate η by running a regression of the total grant on

29The detailed program guideline can be found here.
30The detailed list of awardees can be found here.
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the capacity without an intercept, and the coefficient is around 0.586 million dollars per megawatt
as shown in Appendix Table C.4. I further explore the heterogeneity of η across years in column
(2), and I find that heterogeneity is negligible.

Another important question that is relevant to my modeling assumption is what determines the
subsidy choice. I estimate a logit model of subsidy choice on the productivity and capacity of
wind farms as shown in columns (1)-(2) in Appendix Table C.5. More productive wind farms are
more likely to select the output-based tax credit conditional on the size of the projects. Moreover,
medium-sized wind farms are more likely to choose the Section 1603 Grant, as smaller wind farms
have lower total investment costs to claim subsidies and larger wind farms might be less financially
constrained and prefer tax credits for the tax equity providers. Since the wind farm size is an impor-
tant predictor for the subsidy choice and the wind farm size is negotiated in the bilateral bargaining,
I also model the subsidy choice as a joint decision of both parties in the bilateral bargaining process.

Table C.4: Calibration of η

Section 1603 Award Amount
(1) (2)

Capacity 0.586∗∗∗
(0.007)

Capacity ×1(Year == 2008) 0.583∗∗∗
(0.017)

Capacity ×1(Year == 2009) 0.594∗∗∗
(0.012)

Capacity ×1(Year == 2010) 0.623∗∗∗
(0.023)

Capacity ×1(Year == 2011) 0.574∗∗∗
(0.012)

Capacity ×1(Year == 2012) 0.572∗∗∗
(0.026)

Observations 229 229
Adjusted R2 0.969 0.969
Year Dummies ✓

Notes: This table shows the calibration results of η. I regress the Section 1603 Grant Amount (in million dollars) on
the total capacity (in MW) for each wind farm without an intercept. I further explore the heterogeneity of η across
years in column (2). Standard errors are in parentheses. *p < 0.10; **p<0.05; ***p<0.01.

I calculate the total subsidies for each wind farm under both subsidy types. On the one hand, I
impute the total subsidy under the Section 1603 Grant for each wind farm i that had chosen PTC,
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according to the calibrated η and the observed capacity as shown follows.

TS(kwi | Section 1603 Grant) = 30%× η × kwi . (25)

On the other hand, I calculate the 10-year discounted sum of total subsidy under PTC for each wind
farm i using its annualized capacity factor αi, the amount of tax credit per unit of output dt, and the
observed capacity kwi .

TS(kwi | PTC) = β(1− β10)

1− β
dtαik

w
i . (26)

I summarize the results in Panel (b) of Appendix Figure C.3. Wind farms that chose the Section
1603 Grant on average received a larger amount of federal subsidies under the Section 1603 Grant
compared with PTC. However, wind farms that chose the PTC do not seem better off, as many of
them could have obtained a larger amount of federal subsidies if they had opted into the Section
1603 Grant. That wind farms selected the Production Tax Credit even though there was a more
profitable alternative available might be due to unobserved benefits to tax equity providers or be-
havioral inertia to stick to the default option. In columns (3)-(4), I include the difference in the
total subsidies between these two choices in the logit model and find that on average, if the Section
1603 Grant yields a higher payoff, wind farms are more likely to choose it. However, the coeffi-
cient is relatively small, which indicates a large standard deviation of the unobserved i.i.d. shock
and implies difficulty in rationalizing the subsidy choice in the model. Therefore, as discussed in
Section 5.1, I assume there is a ς likelihood that the wind farm investors would take the default
option regardless of the payoffs, while for a probability of 1 − ς the wind farm investors would
make a discrete choice of the subsidy according to the total surplus and the i.i.d. preference shock.
This modeling approach not only allows me to partially rationalize the subsidy choice through the
payoffs to two parties in the bilateral bargaining but also allows unobserved preference shocks of
wind farms to explain the residual variations.
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Table C.5: The Determinants of the Subsidy Choices

Whether Opt to Section 1603
(1) (2) (3) (4)

Productivity -0.312∗∗ -0.421∗∗∗
(0.137) (0.144)

log(Capacity) 0.585∗∗ 0.647∗∗
(0.273) (0.281)

log(Capacity)2 -0.086∗ -0.088∗
(0.044) (0.045)

Difference between Grant and PTC 0.032∗∗∗ 0.040∗∗∗
(0.008) (0.008)

Observations 454 454 454 454
Pseudo R2 0.014 0.054 0.031 0.077
Year Dummies ✓ ✓

Notes: This table shows the estimation results of subsidy choices. The regression model is logit and the dependent
variable is defined as a dummy, which takes the value 1 if a wind farm chooses to receive the Section 1603 Grant. I
calculated the difference in total subsidies (in million dollars) between these two choices following equations (25)
and (26). Standard errors are in parentheses. *p < 0.10; **p<0.05; ***p<0.01.
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C.5 Model Fit

I check the model fit of the bargaining model using estimates from Table 1. The binned scatter
plots of the raw and predicted capacity and price according to Equation (7) and (9) are shown in
Appendix Figure C.4. The model explains around 42% of the data variation for capacity, and 67%
of the data variation for price. I further explore the model fit for the subsidy choice as shown in
Appendix Table C.6. Among 301 wind projects that chose the Section 1603 Grant in the data, I
predicted 79.7% correctly, while 85.2% of wind projects are correctly classified as choosing the
Production Tax Credit.

Figure C.4: Model Fit for the Bilateral Bargaining Model
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Notes: This figure shows the static model fit for the capacity function (7) and the negotiated price equation (9).

Table C.6: Model Fit for the Policy Choice

Section 1603 Grant PTC
(predicted) (predicted)

Section 1603 Grant 240 61
(0.797) (0.203)

PTC 17 98
(0.148) (0.852)

Notes: This table shows the comparison of the predicted and raw policy choices. The shares of each policy type that
is correctly predicted are included in parentheses.
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C.6 Demand for Non-Utility Buyers

I test the robustness of the demand curve estimation for non-utility buyers. I use the renewable
credit price for utilities as the instrument for the wind energy price faced by non-utility buyers, as
shown in Table 2. Column (1) in Appendix Table C.7 replicates column (4) in Table 2. Moreover, I
further use different combinations among three sets of instruments, including the renewable credit
price for utilities, the state-level subsidy dummies, and the state-level annual land prices. Overall,
the estimated mean elasticity of the demand curve is between -1.690 and -1.389, and the baseline
estimate (-1.590) is within this range.

I estimate the wind price function for non-utility buyers as a linear projection on the utility re-
newable credit price, turbine productivity, turbine brand dummies, balance-authority dummies, as
well as the contract-type dummies. The choice of variables is consistent with the model specifica-
tion for the demand function (10). Moreover, wind farms that choose to sell capacity to non-utility
buyers are also involved in the subsidy type choice. I replicate Appendix Table C.5 on the sub-
sample that had chosen the non-utility buyers, and there is no strong empirical pattern as shown
in Appendix Table C.8. Therefore, I assume that wind farms simply choose the subsidy type that
gives a larger total subsidy amount when I construct the profits from selling capacity to non-utility
buyers.

Table C.7: Robustness Checks: Demand for Non-Utilities

log(Capacity)
(1) (2) (3) (4)

log(Price) -1.590∗∗∗ -1.389∗∗∗ -1.690∗∗∗ -1.423∗∗∗
(0.266) (0.230) (0.262) (0.255)

Observations 309 309 309 309
R2 0.336 0.355 0.323 0.352
Balance-Authority Dummies ✓ ✓ ✓ ✓
Contract-Type Dummies ✓ ✓ ✓ ✓
Instruments:
Renewable Credit Price ✓ ✓ ✓ ✓
Land Price ✓ ✓
State Policies ✓ ✓

Notes: This table shows the estimation results of the linear demand curve for non-utility buyers (Equation (10)). I use
a combination of three instruments for the price: the renewable credit price for utilities, the annual agricultural land
price at the state level, and whether the state offers subsidy policies to wind farms. State policies include sales tax
incentives, property tax incentives, and industry recruitment support for the wind industry. Column (1) replicates
column (4) in Table 2. Robust standard errors are in parentheses.
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Table C.8: Estimation Results: Subsidy Choice for Wind Farms Selling to Non-Utilities

1(Section 1603 Grant)
(1) (2) (3) (4) (5)

Capacity 0.005 0.003
(0.003) (0.004)

Price -0.009∗ -0.008
(0.005) (0.006)

Productivity (αi) 0.148 0.037
(0.257) (0.275)

Turbine Price -0.117 -0.229
(0.162) (0.174)

Observations 111 111 111 111 111
Pseudo R2 0.016 0.022 0.002 0.003 0.037

Notes: This table shows the estimation results of subsidy choice using the sub-sample of wind farms that chose to sell
capacity to non-utility buyers in 2008-2012. The regression model is logit and the dependent variable is defined as a
dummy, which takes the value 1 if a wind farm chooses to receive the Section 1603 Grant. Standard errors are in
parentheses. *p < 0.10; **p<0.05; ***p<0.01.
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C.7 Buyer Choice

I match each wind farm in the sample with utilities that were active in the EIA 860 data when that
wind farm started construction. The geographical distance between each wind farm and utility pair
is calculated using the coordinates of the wind farm and the closest power plant that’s owned by
the utility. I first summarize the matching patterns between utilities and wind farms in Appendix
Figure C.5. Panel (a) shows the raw distribution of the geographical distance between the matched
utility and the focal wind farm. The distribution is truncated at 600 miles. The distribution displays
a long tail but most of those matched pairs are within 400 miles of each other. Panel (b) shows the
distribution of the relative distance of the matched utility and the focal wind farm, which measures
how far away the matched utility is compared to the rest of the utilities in the buyer pool. This
variable takes the value zero if the matched utility is the closest option, while it takes the value
one if the furthest. Panel (b) shows that the wind farm tends to match with a utility that’s closer
geographically, suggesting that geographical distance might be an important shifter in the matching
cost. Panel (c) explores whether a matched utility is likely to be in the same state as the focal wind
farm. Around 80% of the pairs of a wind farm and its matched utility are from the same state, while
fewer than 5% of the rest of the pairs are from the same state. Panel (d) presents a similar pattern
for whether a utility and wind farm pair is in the same balancing authority. Overall, a wind farm
is more likely to be matched to a utility that is geographically closer and within its own state or
balancing authority.

Motivated by the empirical pattern, I restrict the buyer set to those utilities that are within
400 miles of the focal wind farm.31 I next explore the determinants of buyer choice as shown in
Appendix Table C.9. The dependent variable 1(Match) is a dummy variable that takes the value
one if the utility is the chosen buyer for the wind farm. I find that utilities with a larger renewable
portfolio gap, defined as the difference between their current renewable generation and the state-
level goal, have more unfulfilled demand and are more likely to be matched. Moreover, utilities
that are in the same state as the focal wind farm, or that are closer geographically, are more likely
to be chosen. Consequently, I include both a dummy indicating whether the utility and wind farm
are from the same state, and the distance between the utility and wind farm in the matching cost
function as shown in Equation (12).

31Some matched utilities fall out of this range, and I add those back to the choice set for the focal wind farm.
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Table C.9: Determinants of the Utility Matching Choice

1(Match)
(1) (2) (3)

Renewable Portfolio Gap (109 MWh) 1.516∗∗∗ 1.545∗∗∗ 1.589∗∗∗
(0.191) (0.211) (0.219)

1(Same States) 0.063∗∗∗ 0.068∗∗∗ 0.068∗∗∗
(0.004) (0.004) (0.004)

Distance (103 Miles) -0.123∗∗∗ -0.111∗∗∗ -0.112∗∗∗
(0.023) (0.024) (0.024)

Observations 15109 15109 15109
R2 0.053 0.098 0.098
Wind Farm Dummies ✓ ✓
Utility Type Dummies ✓

Notes: This table explores the determinants of utility choice of wind farms if they sell capacity through utility Power
Purchase Agreements. The dependent variable 1(Match) is a dummy variable that takes the value one if the utility is
the chosen buyer for the wind farm. Dummies for utility types include whether a utility is investor-owned, a
cooperative, or of other types (such as municipal, etc). Standard errors are clustered at the wind farm level. *p <
0.10; **p<0.05; ***p<0.01.
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Figure C.5: Matching Patterns between Utilities and Wind Farms
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Notes: This graph summarizes the matching pattern between utilities and wind farms. Panel (a) shows the raw
distribution of the geographical distance between the matched utility and the focal wind farm. The distribution is
truncated at 600 miles. Panel (b) shows the distribution of the relative distance of the matched utility and the focal
wind farm, which measures how far away the matched utility is compared to the rest of the utilities in the buyer pool.
This variable takes the value zero if the matched utility is the closest option, while it takes the value one if the
furthest. Panel (c) explores whether a matched utility is likely to be in the same state as the focal wind farm and panel
(d) explores whether a utility and wind farm pair is in the same balancing authority.
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D Dynamic Model and Computational Details

D.1 An Alternative Dynamic Model

There is an alternative dynamic model for the evolving policy beliefs, which preserves the station-
arity of the problem.32 The notations are the same as in Section 4.2. ωt represents the policy status
in year t, which could take three values: (1) ωt = H , which indicates that the federal subsidy is
enacted in year t and the probability of policy renewal is 1; (2) ωt = L, which indicates that the
federal subsidy is enacted in year t, but the probability of policy renewal is only b < 1; (3) ωt = 0,
which indicates that the federal subsidy is terminated. In each period, the ex-ante likelihood of
ωt = H conditional on policy renewal is equal to ρH . Therefore, the dynamic problem can be
reformulated as follows.

V (sit, ωt, νit) = max{Π(sit, ωt)− νit, βE[V (sit+1, ωt+1, νit+1)|sit, ωt]}.

E[V (sit+1, ωt+1, νit+1)|sit, ωt] =
z

sit+1,νit+1

E[V (sit+1, ωt+1, νit+1)|ωt]dG(sit+1|sit)dF (νit+1).

I maintain the Assumption 1 that policy elimination will be perceived as perpetual. The option
value when the realized state variable is sit+1 and entry cost shock is νit+1 conditional on different
policy status ωt can be written as follows.

E[V (sit+1, ωt+1, νit+1)|ωt = H] = V (sit+1, ωt+1 = H, νit+1)× ρH

+ V (sit+1, ωt+1 = L, νit+1)× (1− ρH)

E[V (sit+1, ωt+1, νit+1)|ωt = L] = V (sit+1, ωt+1 = H, νit+1)× ρH × b

+ V (sit+1, ωt+1 = L, νit+1)× (1− ρH)× b

+ V (sit+1, ωt+1 = 0, νit+1)× (1− b)

E[V (sit+1, ωt+1, νit+1)|ωt = 0] = V (sit+1, ωt+1 = 0, νit+1)

The advantage of this model is to preserve the stationarity of the dynamic problem and use two
parameters b and ρH to capture evolving policy beliefs. ρH can be identified from the frequency of
investment spikes, while b can be identified from the magnitude of investment spikes. However,
the stationarity of the problem conflicts with the data pattern of jumping investment spikes across
years such that the model fails to predict when the investment spikes will occur. The only solution
is to index ρH and b by t, but the model will be isomorphic as my baseline model.

32I thank Ken Hendricks and JF Houde for bringing up this modeling option and for the extensive discussion of its
feasibility.
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D.2 Estimation Details of the Dynamic Model

State Space and Basis Function I define a set of state variables, including (1) the annual average
productivity of wind turbines ᾱt; (2) the average turbine prices TPVestast ; (3) the effective market
price Θit; (4) the inclusive value that can be attributed to the changing renewable portfolio gaps
for buyers IVit(Φit); (5) the utility demand shifter β4Z

U
jt as in Equation (18); (6) the non-utility

demand shifter as a projection of pnui onZnu
i similar to Equation (10); (7) the matching cost shifter

MatchingCostit, defined as the mean of (γ̂31{mi ̸= mj} + γ̂4Distij) from Equation (11); (8) the
amount of new wind capacity online NewCapmt in the statem and year t; (9) the subsidy level dt;
(10) a dummy variable defining whether i is before 2013; and (11) the state-level land pricesWmt.

Among these ten variables, (5), (6) and (7) are time-invariant, while others are time-varying. I
solve the profit of wind farms if they enter the market as Πit from the static model, and approxi-
mate the profit surface as a function of the quadratic basis of the state space {ul(sit)}Ll=1 such that

Π̂(sit) =
L∑
l=1

γ̂Πl ul(sit). I approximate the value function asE[V (sit, νit)] =
L∑
l=1

γvl ul(sit) and solve

the dynamic programming problem via value function iteration. I use the state variables (1)-(10) in
{ul(sit)}Ll=1 for the profit surface as land prices are only relevant for entry costs. I use (1)-(9) and
(11) in {ul(sit)}Ll=1 for the value function surface when estimating entry cost parameters, as I only
use sample window between 2013-2018, while I use (1)-(8) and (11) in {ul(sit)}Ll=1 for the value
function surface when estimating belief parameters, as I estimate the model year by year and there
is no variation in dt after adjusted for inflation between 2006 and 2012. I use the fully saturated
quadratic function of state variables (1)-(5), while the rest state variables are included only linearly.

Transition Dynamics of State Variables There are eight time-varying state variables in my
model. The subsidy level dt and the dummy variable defining whether i is before 2013 evolve
deterministically. The annual average productivity of wind turbines ᾱt, the average turbine prices
TPVestast , the effective market price Θit, and the state-level land prices Wmt are exogenous in the
model, and I recover their transition dynamics from the data with AR(1) models.

For the effective market price Θit, I allow the AR(1) coefficient to vary before and after 2009
and I allow rich heterogeneity across states for the constant term, consistent with Equation (24)
for the static estimation in Appendix Section C. The estimation model and results are shown as
follows. The total number of observations is 800 and the adjusted R-square is 0.996. The standard
error is in parentheses and clustered at the state level.

Θit = γΘ1 Θit−1 × 1(t ⩽ 2009) + γΘ2 Θit−1 × 1(t > 2009) + γΘ3 1(t > 2009) + ξΘm + ϵΘit

0.786 0.762 − 0.166

(0.019) (0.019) (0.111)
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Similarly, I estimate the transition dynamics of the state-level land pricesWmt using the AR(1)
model with rich heterogeneity across states for the constant term. The estimation model and results
are shown as follows.

Wmt = γW1 Wmt−1 + ξWm + ϵwMT

0.908

(0.021)

For annual average productivity of wind turbines ᾱt and the average turbine prices TPVestast , I
only have the time variations of the data and I estimate AR(1) processes with trend breaks before
and after 2009. The estimation model and results are shown as follows.

ᾱt = γα1 ᾱt−1 × 1(t ⩽ 2009) + γα2 ᾱt−1 × 1(t > 2009) + γα3 1(t > 2009) + ϵαTt

0.330 0.753 − 1.023

(0.382) (0.210) (1.270)

TPVestast = γTP
1 TPVestast × 1(t ⩽ 2009) + γTP

2 TPVestast × 1(t > 2009) + γTP
3 1(t > 2009) + ϵTP

t

0.909 0.945 − 2.019

(0.118) (0.163) (2.374)

For the inclusive value that can be attributed to the changing renewable portfolio gaps for buyers
IVit(Φit), it’s endogenously evolving in the model through NewCapmt, but I assume its transition
process is exogenously given. I approximate the transition process of IVit(Φit) as an AR(1) model
with the amount of new wind capacity online NewCapmt−1 in the state m and year t − 1 as an
endogenous shifter. I further allow the constant term in the AR(1) model to vary across wind
farms. The estimation model is shown in Equation (20) and the results are shown as follows.

IVit(Φit) = ρΦ1 IVit−1(Φit−1) + ρΦ2NewCapmt−1 + ξΦi + ϵΦit

0.591 − 0.240

(0.020) (0.023)

The amount of new wind capacity online NewCapmt in the state m and year t is thus another
endogenous state variable in the dynamic problem. I assume NewCapmt to follow another AR(1)
process as follows. The estimation model is shown in Equation (21). I endogenously solve ρnc1
and ρnc0 when estimating the policy belief parameters and implementing counterfactual simula-
tions. However, as I assume stationarity when estimating entry cost parameters, I directly estimate
Equation (21) using data from 2015-2018. Estimation results using data from 2014-2018 are very
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similar.

NewCapmt = ρnc1 NewCapmt−1 + ρnc0 + ϵncmt

0.791 0.032

(0.047) (0.022)

D.3 Simulation of the Dynamic Model

The simulation procedures of the dynamic model mirror the estimation steps. For both the baseline
and the counterfactual scenarios, I simulate the model year by year according to the following steps.

1. For year t, I simulate a sample of potential entrants in statem and year t of the size PotentialEntrantsmt.
The state variables of potential entrants follow the distribution of sit+1 from statem and year
t observed in the data.

2. Guess ρnc0 and ρnc1 , solve the value functions V 0(sit) and V 1(sit, bt).

3. Simulate the trajectory of NewCapmt.

4. Solve for new ρnc0 and ρnc1 and update the belief.

5. Repeat steps 2-4 until the values of ρnc0 and ρnc1 converge.

6. Solve the value functions V 0(sit) and V 1(sit, bt).

7. Draw entry cost νit 100 times and each potential entrant makes optimal entry timing deci-
sion according to Equation (17). Sum over the entry decision of each potential entrant and
calculate the total number of entrants Entrymt.

8. Update the PotentialEntrantsmt+1 to add the number of delayed entrants from year t. Repeat
the steps (1)-(7) for year t+ 1.

For policy windows between 2013-2018, I solve the parameters of the endogenous transition
process ρnc0 and ρnc1 as well as stationary value functions V (sit) for years 2013 and assume the value
functions are the same for the rest years. This is consistent with the estimation assumption that the
dynamic problem is stationary between 2013 and 2018.
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E Calculation of Social Benefits of Wind Energy

I evaluate the benefits of wind energy following Callaway et al. (2018). I assume wind farms
operate for 20 years and calculate the total benefits from their twenty-year operations. Wind energy
substitutes fossil fuels in generating electricity and thus there are three sources of benefits from
more wind energy on the grid: reducing carbon emissions, avoiding fossil input costs, and adding
capacity values to the system. I estimate the average marginal operating emissions rate (MOER) of
coal- or gas-fueled power plants in each state and year, which is defined as the marginal response
in the system-wide emissions with respect to the total production change from generators due to
more renewable energy, as Callaway et al. (2018) find that regional average MOERs offer a useful
means of “calibrating regional policy incentives to compensate for external emissions benefits.”

I access the data of total electricity production and carbon emission for each state at the hourly
level between January 1, 2004, and December 31, 2018, from the Clean Air Markets Program Data
(formerly, Continuous Emissions Monitoring Systems Database).

Following Callaway et al. (2018), I first cluster hourly observations according to load profiles
and peak loads using a k-means clustering algorithm. The clusters k are generated for each market
r, season s, and hour-of-the-day h. I categorize all observations into eight markets according to
their ISOs or RTOs, including CAISO, ERCOT, ISO-NE, MISO, PJM, SPP, NYISO, and non-ISO
states. I categorize all dates into two seasons: summer/fall (May to October) and winter/spring
(November to April). I generate 12 clusters of observations within each hour of the day, season,
and market (such as MISO in summer/fall between 10 a.m. and 11 a.m.). The MOER is estimated
using the following equation, whereEmkt andGmkt represent emissions and electricity generations
in each hour t, cluster k, and statem.

Emkt = αmkhs + ϕmkhsGmkt + emkt

ϕmkhs is the estimated MOER for each statem, season s, hour-of-the-day h, and cluster k. As
I calculate the total benefits from twenty-year operations of wind farms, I take an average ϕm as
the mean MOER for statem. The statistics of the avoided operating costs and capacity values are
taken directly from Callaway et al. (2018).33

33The detailed statistics can be found on the author’s website.
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