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1 Introduction

It is well-known that private information and demand uncertainty play a crucial role in deter-
mining market outcomes in oligopoly. While the impact of such incomplete information varies
across models and assumptions, it is thus one of the most important questions in 1O literature
whether and how information exchange or spillover between competing firms affects market
outcomes and consumer welfare.

A common assumption in this literature is that the input market is competitive. That is, firms
compete in quantities or prices taking the input price as exogenously given. This approach is
tractable and appealing in some industries, but there are plenty of examples where competing
firms interact with a common input supplier. For instance, the products sold in downstream re-
tailers such as Target and Walmart are largely overlapped, and the market for semiconductors,
which are used as input for smartphones and other electronic devices, is highly concentrated.
This opens up the possibility that private information of each downstream firm is endoge-
nously flowed into others through contracting with their common upstream supplier, which is
not captured in the models assuming competitive input markets.

Motivated by this observation, we revisit a standard model of Cournot duopoly competition
with private (demand) information by introducing a common strategic input supplier. In our
model, each downstream firm receives a private demand signal and bilaterally contracts with
a common upstream supplier. The upstream supplier has no priori private information, but it
may learn the downstream firms’ signals by observing which input contract is offered. In turn,
each downstream firm may want to infer the rival’s demand information by offering a contract
that screens the information the upstream firm has learned from contracting with the rival.

Our main result is the characterization of a unique equilibrium in which such information
spillover is perfect. That is, private information of each downstream firm is endogenously
flowed within a vertical chain by signaling and screening behaviors in vertical contracting.
Under certain conditions, the equilibrium outcome coincides with the public information case,
whereas otherwise, systemic quantity distortions arise for truthful information transmission.
Compared to the competitive upstream market benchmark, the equilibrium in our model in-
duces more dispersed equilibrium quantities and may generate higher consumer welfare at the
cost of lowered vertical surplus. These observations, therefore, suggest that more concentra-

tion in the upstream market could positively affect consumers in the downstream market.

1.1 Literature Review

Our paper is related to the common agency literature. Applications of a common agency game
are extensive, including antitrust regulation, tacit collusion, multilateral lobbying, and verti-
cal contracting (Bernheim & Whinston, 1986). Galperti (2015) considers a general mechanism

design framework where each principal has private information and provides a delegation prin-
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ciple type of result, which is useful to characterize equilibrium allocations. Lima, Moreira &
Verdier (2017), Lima & Moreira (2014), and Martimort & Moreira (2010) consider common
agency games with privately informed principals in specific environments such as lobbying and
public-good provision problems. We contribute to this literature by showing how downstream
firms can use a common manufacturer to exchange relevant information in a vertically-related
market. Our paper is also related to the mechanism design literature on an informed princi-
pal (Myerson, 1983; Maskin & Tirole, 1990, 1992; Mylovanov & Troger, 2012). In contrast to
these works, we consider multiple privately informed principals that strategically choose mech-
anisms to signal information to a common agent, whose private information is endogenously
generated. In our equilibrium construction, the principals signal their information through the
design of a mechanism while screening the agent’s information at the same time.

In the context of vertical contracting, Marx & Shaffer (2007) analyze a model in which
two competing retailers simultaneously make take-or-leave-it offers to their common upstream
manufacturer. They show that a retailer can use upfront payments to exclude its rival in equi-
librium. In a similar setup, Miklos-Thal, Rey & Vergé (2011) derive an opposite result by
showing that this type of exclusion appears only when the contract cannot be contingent on
whether the relationship is exclusive or not. While the main interests of these works are on
the effects of competitive externalities between downstream firms on market outcomes, we
abstract away from these effects by assuming that each downstream firm is a local monopolist.
This allows us to focus on the issue of information transmission through a common upstream
supplier, which has not been explored in the existing literature.!

Indeed, it is well understood that parties may use contracts as a screening or signaling
device in asymmetric information supply chain frameworks (Kong, Rajagopalan & Zhang,
2017). For instance, Chu (1992) studies a model in which a supplier is the one that holds
private information about the demand state of a new product. > We contribute to this literature
by examining the use of contracts as a screening and signaling device simultaneously, which
is necessary when supply contracts are secret.

Information sharing between competing firms has been extensively studied. In terms of
information-sharing incentives Vives (1984) show that not sharing information is a dominant
strategy for each firm in Cournot and then the market outcome is never optimal. Vives (1984)
suggest that public policy should encourage information sharing. In a similar setup Clarke

(1983) shows that there is never a mutual incentive for all firms to share information unless

'Lima (2021) study information transmission in vertical contracting when there is a common retailer. Unlike
ours, however, they assume that (i) private information is held by upstream firms; (ii) it is verifiable; and (iii) the
upstream firms have all the bargaining power. Also, his focus lies on comparing fixed fee contracts and RPM,

while our paper studies the possibility of efficient collusion.
2See also Li (2002), Zhang (2002), Li & Zhang (2008), Gal-Or, Geylani & Dukes (2008), Shin & Tunca

(2010), Jain, Seshadri & Sohoni (2011), Jain & Sohoni (2015), Anand & Goyal (2009), Shamir (2012), Shamir
(2017), and Kong, Rajagopalan & Zhang (2013).



they may cooperate on actions once information has been shared.

In terms of efficiency, Vives (1984), analyzes a setting where firms receive signals about
the uncertain demand and show that Bertrand competition is more efficient than Cournot com-
petition, in the sense that the Bertrand equilibrium price (quantity) is lower (higher) than the
Cournot equilibrium price. Vives (2002) studies effects of market power and incomplete infor-
mation on a Cournot market. He shows that when the market is large enough, abstracting from
market power provides a much better approximation than abstracting from private information,

highlighting the important role of information on the competition outcome.

2 Model

We consider a setting with one upstream firm U and two downstream firms D, and D,. The
upstream firm supplies input to D;, which is transformed to a final product and sold by D; at
zero distribution cost. The upstream firm’s marginal production cost is constant at ¢ > 0.
Market demand is subject to unobservable shock, but each downstream firm D; receives a
private signal s; € {h, [} about the underlying demand, which we refer to as the firm’s type.

Given a pair of signals (sy, s2) and quantities (¢1, g2), the inverse demand for D;’s product is

P (i, q-i; 8i,5-i) = 0s,5, — ¢ — Bq—,

where § € (0, 1] captures the degree of product differentiation. The “demand shifter” param-

eter 0,5, is assumed to satisfy
Onn > O = Oip > Oy > ¢,

and the signals are drawn from i.i.d. distribution: for each 7 = 1,2,
p=Pr(s;=h) e (0,1).

Each downstream firm D; simultaneously offers a price schedule f; (¢) to the upstream
firm. Given the contracts f = (f1, f2), the upstream firm then decides whether to accept each
contract or not, and if it accepts the contract f;, how much it sells its input to D;. To be precise,
let g; € {1,0} denote U’s acceptance decision on D;’s contract, and ¢; > 0 denote the amount
of input supply to D; (conditional on acceptance). Letting z; = (f;, ¢i, g;) be the contracting
outcome between U and D;, the aggregate profit of U is

u(z1,29) = Z gi - (fi (@) — cqi),

i=1,2

and the profit of D is

W(Zi, Z—i; Siy Sfi) =g (P(%,gﬂ' ©q—i; Sis Sfi)%' — fi (QZ)) .



Note that the bilateral surplus of a pair U and D); is
U(Zi, Z—iy Siy 37i> =0i- (P (Qiag—i *q—i; Siy 54) qi — qu‘) .
We summarize the timing of the game as follows:
1. Each D; privately observes a demand signal s;.
2. Each D; simultaneously offers a price schedule f; (-) to U.
3. U decides either to accept or reject each offer.

4. If U accepts f;, it decides the amount of input supply ¢; to D;, and the payments are
made accordingly.

Before analyzing this game, we discuss several benchmark cases that are useful to evaluate

the effect of information spillover through vertical contracting.

Benchmark 1 (complete information) Suppose that demand signals are publicly observ-
able. Given that the downstream firms have bargaining power and there are no upstream exter-

nalities, each downstream firm will fully extract the bilateral surplus by setting

Cq; if ¢, = q;k (51'7 5—1‘) )
f’t(ql) =

—oo  otherwise.
where ¢ (s;, s_;) is the equilibrium quantity of D;, which is given by
a; (si,5-:) = arg max (P (g5 q" i (5-i,8i) 5 86, 5—i) @ — ¢ai)

for each 7 = 1, 2. Given the linear demand specification, these are given by

05,5, — C

q;k (S“S*Z) = qzlsg = 2 +/8 I

for each i = 1,2 and s1,$2 € {h,l}. This quantity profile corresponds to the unique Nash
equilibrium outcome when two firms compete under complete information when they produce

goods at the marginal cost of c. For this reason, we will call it the "first-best” quantity profile
throughout the paper. ¢

Benchmark 2 (competitive input market without communication) Next, suppose that
each downstream firm privately observes a demand signal but can purchase intermediate goods
from a competitive input market at the price of c. In this game, the unique Bayesian equilib-
rium is given by (¢} (s1) , g3 (s2)) satisfying, for each ¢ = 1,2 and s1, s € {h, [},

q: (87«) € arg manE (P (Qla qiz (g) ) iy g) q; — CQZ) )

5



where s denotes the random variable of the rival downstream firm’s demand signal. In our

model specification, the unique equilibrium quantities are given by

_E(0s) —c _ Bp (E (6hs) — E (015))

2+ 0 2(2+ ) ’
e o« E(Ohs) —c | B(1—p)(E(6hs) — E(0hs))

for each i = 1,2 and sy, sy € {h,(}. Note that the downstream firms never achieve the first-

best outcome given the lack of information sharing. As we may expect, g; > ¢/. ©

Benchmark 3 (competitive input market with communication) As a final benchmark,
suppose that the firms still purchase intermediate goods from a competitive input market at the
price of ¢, but can exchange public cheap talk messages. Even with such a direct communi-
cation device, however, it can be shown that informative cheap talk communication does not
occur, and the first-best quantity profile is never achieved in equilibrium. To see this, let us
assume that each downstream firm sends message h (resp. ) after receiving signal h (resp. [).
On the path of plays, information asymmetry disappears, and the firms’ quantities are given by
those in Benchmark 1. However, since the profit of D; will increase as the rival downstream
firm sells less, each downstream firm with signal A will find it profitable to send [ and sells q;
such that

q; = argmax (P (¢;,q"; (5,1); b, 8) qi — cq) ,

qi
where § € {iz, Z} is the message sent by the rival downstream firm.> This type of double-

deviation prevents information exchange, and the equilibrium quantities still remain the same

as those in Benchmark 2. ¢

3 Vertical contracting and information spillover

Now, we analyze the model introduced in Section 2. This is a common agency game where
two competing downstream firms are the principals, who contract with a common upstream
input supplier. Each downstream firm is privately informed about a demand signal, which is
unobservable to either its rival downstream firm or the upstream firm. While the upstream
firm has no a priori private information, it can learn the rival downstream firm’s demand signal
when the rival downstream firm’s contract offer is separating.

Throughout the analysis, we will focus on fully revealing equilibria in which both signaling
and screening occur: that is, different types of downstream firms make different offers (sepa-

rating), and different types of the upstream firm choose to supply different amounts of quantity

3See also Goltsman and Pavlov (2014), who study cheap talk communication in horizontal Cournot markets

where each firm’s production cost is private information and drawn from a continuous distribution.
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(screening). From the perspective of each downstream firm, the vertical contracting game then
becomes a principal-agent problem where both the principal and the agent have private infor-
mation. As in Martimort & Moreira (2010); Lima & Moreira (2014), we first consider the best
response of each downstream firm in this informed principal problem and then find their fixed
point, which is a solution to the game we consider.

To be more precise, let us consider the problem of an informed downstream firm that holds

the following conjecture about the rival downstream firm’s menu offer:

e )= (@ 2). 7)) (@ 7). (2.8).0)).

where <E[j,, fj) is a pair of a quantity and a fixed fee offered by the rival downstream firm of
type-s targeted to the upstream firm of s’-type, and ¢ is a null contract of contract rejection.*
To characterize fully revealing equilibria, we restrict the set of conjectures to those satisfying
the following two conditions:

Condition (SI). ¢}, > ¢ > ¢\ > 0 foreach s € {h,[}.
Condition (SC). For each s € {h, [}, there exists u® > 0 such that
W= =f— g
Note that Condition (SI) imposes the boundaries on quantities under conjectured offers and
ensures signaling—that is, 7" and M’ are distinct—in that
max{gy, 4’} > @ > G, > min{g,,q}.

Because of separating offers, the upstream supplier learns the rival downstream firm’s private
information under Condition (SI). The condition is intuitive since it is profitable to sell more
quantities in the market when the demand signals are higher.

On the other hand, Condition (SC) ensures screening—that is, the upstream firm is willing
to accept an offer and choose a quantity targeted to its own type. In particular, if Condition

(SCO) is satisfied, we can alternatively write a pair of offers as
m = (m",m') = ((a.a ") (@ 3.7)) -
Consequently, the set of offers that we consider is given by
M = {(qn, qi,u) : (qn, @, w) satisfies Condition (SI) and u > 0} .

Given conjectured menus m, the problem of the type-s downstream firm is then defined as
follows:
max _ p (P (qu, @5 s,h) an — fo) + (L= p) (P (a1, @8, 0) o — f1)
OS}Zh?l Sézhh
hyJ1E€

sit. (IC_,),(ICU), and (IRU),

4That is, f* (@)= f:f, for each s, s' € {h,1} and f* (q) = —oc for all other ¢’s.
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where

p (P (@;5, cjﬁs; —s, h) — c) g, + (1 —p) (P (ﬁs, Ef_s; —s, l) — c) qi—u?’

>p (P (an,@vs —s.h) =) an+ (1= p) (P (@, @ —s,1) —¢) G —u (IC-y)
fn—cqn > fi—cqand f; —cq > fr — cqn (ICU)

and
fn—rcq,>0and f; —cq >0 (IRU)

Note that (IC_y) is the incentive constraint for the downstream firm of type —s # s not to
mimic type s and ensures that private is transmitted from a downstream firm to the upstream
firm. When this constraint is binding, it generates distortion for separating types. On the other
hand, (/CU) and (/RU) guarantee that the upstream firm is willing to accept a menu and
choose a quantity targeted to its own type. In particular, since (/CU) reduces to f, — cq, =

fi — cqi = u for some u, we can alternatively write the informed downstream firm’s problem

as
b X (P (qn, @5 s, k) —¢)an+ (1 —p) (P (q,8%;8.0) —c)gg—u  (P-s5)
u€eR
sit. (IC_y), and (IRU"),
where

u>0 (IRU")

Clearly, the upstream firm enjoys a positive information rent if and only if © > 0.

Denoting the set of solutions to the h-type problem by BR" (1), we define equilibrium in
our game as follows:

Definition 1. An equilibrium is m = (mh,ml) € M? such that m* € BR*(m) for each
s € {h,l}.

In characterizing equilibrium, we make the following restriction on the parameters to assure

interior solutions.

i bu—c < 2-8 (00
Assumption 1. 0y, — Op > Opy — Oy = 0y — cand gi=¢ > 28 <—9;;—9Z1>

Intuitively, this restriction requires that the demand size under high signals is large enough
so that selling negative quantities in the market is never profitable. Note that the assumption
holds for all 0 < g < 1if, for example, the parameters satisty 6, — 0, =6 > 0, — 0, =2 >
9” —c=1.



3.1 Equilibrium analysis

We begin our analysis by setting up the Lagrangian function for the s-type problem (P-s):

L° = p(P (qh,ag;s,h) — c) qn + (1 —p) (P (ql,ai;s,l) —c) g —u
+ A_s(p (P (@@ —sh) =) G+ (1L =p) (P (.05 —5,1) =) @ °
—p (P (an @5 —s.0) = ) an = (L= p) (P (a0, G =s,0) = )G +u—7 )
+ A\u,
where A\_¢ and A, are the multipliers for (/C_;) and (I RU’), respectively. The boundary
condition for the quantities—which we ignore in the above—will be checked later.

Note that the marginal revenue of the downstream firm at quantity ¢ when the rival down-
stream firm sells ¢’ and the demand signals are s and ' is

0P (q,q';s,s")

MR(q,q;s,s") = 97

g+ P(q,q5s,8) =0y —Bd —2q.

Using this notation, the Kuhn-Tucker first-order necessary conditions are given as follows:

First-order condition with respect to gy:

MR(gn, @ 8,h) — ¢ — Ay (MR(qy,q; —s,h) — ¢) =0 (1)

First-order condition with respect to ¢;:

MR(ql,EflS; s,1) —c— A (MR(ql,Z[i; —s,l) — c) =0 2)

First-order condition with respect to u:

—1+ A+ A =0 3)

Complementary slackness condition for (/C_):
As(p (P @ —s.0) = )G+ (1= p) (P (@7, —5.0) =€) G *

—p(P(gn, @' —s.h) —c)an— (L= p) (P (01,05 —s,1) —C)@+u—ﬂ‘s>

=0 “)

Complementary slackness condition for (/ RU"):

Ayu =0 5)



e Nonnegative Lagrangian multipliers:

As; Ay 20 (6)

e Constraints:

(IC-s), (IRU) @)

Note that if A\_; = 0, each downstream firm equates the upstream marginal cost to its
marginal revenue at given demand signals, but otherwise, the quantities sold in the market will
be distorted by the signaling effect. On the other hand, the downstream firms’ screening efforts
generate information rents to the upstream firm only if A\, = 0. Given the constant returns to
scale production technology, however, it turns out that the downstream firms need not leave

information rents to the upstream firm for screening.

Lemma 1. For each s € {h,(}, we have \, > 0 at a solution to (P-s). Thus, u" = ! = 0in

equilibrium.
Proof. See the Appendix. [

Next, consider the incentive compatibility condition (/C_), which requires that the offer
made by the downstream firm of type s is not profitable for the other type —s to mimic.
Intuitively, each downstream firm makes more profits when the rival downstream firm sells
less, which is the case when the rival downstream firm believes that the market demand is
lower. In other words, the downstream firm of [-type has no incentive to mimic the offer made
by the h-type downstream firm. The following result formalizes this intuition.

Lemma 2. In equilibrium, \; = 0 and 0 < )\, < 1. Therefore, equilibrium quantities must
satisfy

. Onn — ¢ O — ¢ — B4
QZZth: 2"‘67%}1:#

Proof. See the Appendix. [

Given the above observations, we now consider the reduced problems in which the h-type

downstream firm solves

max (P (q. @i 1) —c) a (RP-h)

0<qi<q;,,

and the [-type downstream firm solves

petnax p (P (an, qih) —c)an+ (1 —p) (P (@@l —c)a (RP-)
st. (ICy)
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where (IC},) is given by:

P (P (@i @ips ho h) — ©) @i + (1= p) (P (@, @i by 1) — ) @
ZP (P (qua\lh;hv h) - C) qn + (1 - p) (P( aa\fa}%l) - C) qi- (8)

We denote the set of solutions by BR’ (@, (q,.4)) for each (g, (¢}, q})) € [0, q;,)” and
s € {h,1}. A fixed point of the reduced problem is then defined as (g} (g}, q})) such that

(¢ (¢h.d)) € BR' ((af (dh ) < BR ((d! (¢;.4))))-
The following result is an immediate corollary of the previous lemmas.

h

Proposition 1. Suppose m = (m",m') = ((q', ", u"), (¢}, q},u*)) is an equilibrium. Then,

Opn—c.

() uh =u® = 0; (i) ¢ = 5 and (iii) (qlh, (¢, qll)) is a fixed point of the reduced problem.

Thus, our analysis reduces to obtaining a fixed point of the reduced problem. From the first-
order conditions with respect to quantities, it is straightforward to check that the equilibrium

quantities should be of the following form:

A .
q;; ~h Anp 0
q; Ah * K
= ©)
qp | An dpy —Kih
Qf <:\h> Qu —ha

where

B (Onn, — )

TR A
i = 20 (Onn — O) __ >
2-8@+8) (1- M)

A (O — Ou)
2+8) (1-M)

>0

— i

Ry =

and S\h > 0 is the Lagrangian multiplier for (fz‘h) The terms k¢ measure the degree of
quantity distortions away from the first-best level generated by information spillover. Notably,
the equilibrium quantities achieve the first-best levels when A, = 0, which turns out to be the

case if the following inequality is satisfied:

p (Onn — Ont) (Onn — ¢ — (1 + B) (O — ©))
+ (1 — p) <9hl — 911) (th —C— (1 + 5) (0” — C)) > 0. (10)
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O No quantity distortion arises
04l i Quantity distortions arise

Figure 1: The equilibrium quantity distortions arise in the yellow region when 6, — 6, =
%>6’hl—6’”:A>0u—c:1and6:1.

As shown in the Appendix, this condition is a simple rewriting of the constraint (IAé’ h) when
every quantity is replaced by its first-best level ¢,

Our main result is a complete characterization of the unique equilibrium. For simplicity,
we write as ¢;, = % (5\;1> .
Theorem 1. There exists a unique equilibrium. In the equilibrium, the quantities are given by
(9) for some A, > 0 and ordered as q' > ¢ > ¢}, > ¢. In particular, quantity distortions arise
if and only if the inequality (10) does not hold.

Proof. See the Appendix. [

Figure 1 illustrates the case where the quantity distortions arise when the intervals between
0’s are parameterized by A > 0. It shows that, for a fixed p (resp. A), a smaller A (resp.
higher p) induces these distortions. The intuition behind this observation can be understood
as follows. In the equilibrium, each downstream firm perfectly learns true demand signals,
so they want to sell larger quantities when the signals indicate higher demand states. At the
same time, however, this generates an incentive for the high-type downstream firm to mimic
the low-type downstream firm in an attempt to reduce the rival downstream firm’s quantity.

Thus, information spillover is not possible unless the low-type downstream firm commits to
sell sufficiently small quantities ¢, and ¢} by offering such contracts with distortions. When A
is high enough, the former effect dominates the latter, and the constraint (/C},) becomes slack.
On the other hand, the low-type downstream firm does not have an incentive to mimic the high
type, so the latter effect is absent. Thus, the quantity distortions vanish when p is small (note
that the similar argument holds for small /).

Proposition 2. The left-hand side of (10) is strictly increasing in 0, — 6p; and strictly de-
creasing in (3. Thus, if the quantity distortion is absent for given parameters, it continues to be

12



0.4 0.6 0.8 10 0.z 0.4 0.6 0.8

Figure 2: Quantities when 2 = 0, — 0 =0 — 0y =0y — ¢, 5 =1,and c = 1.

absent for larger 6y, — 0y, or smaller (.

3.2 Impact of common supplier and information spillover

When the upstream market is competitive, the equilibrium quantities, ¢; and ¢, are given by
the unique Bayesian Nash equilibrium in standard Cournot competition models with private
information (Benchmark 2). In contrast, Theorem 1 shows that, with a common input supplier,
there exists an equilibrium in which information spillover occurs and firms perfectly learns true
demand signals. Now, we analyze how such information spillover affects the firms’ profits and
consumer welfare.

To simplify the analysis and focus on the case where downstream competition is severe, we
will assume A = 0y, — 0, = 0y — 0y = 0 — ¢ > 0. and 5 = 1. Under this parameterization,
it is easy to show that Assumption 1 holds but the inequality (10) does not—meaning that the
quantity distortions always arise.

In the following, we will refer to C'S and C'S as the ex-ante consumer surplus in the unique
equilibrium under competitive input markets and common input supplier, respectively. Simi-
larly, we use notations PS and PS for the ex-ante profit of each downstream firm under com-
petitive input markets and common input supplier, respectively. Since the upstream firm makes
zero profit in both environments, these are also vertical surplus of each downstream-upstream
pair.

Proposition 3. Suppose th — th = th — 91[ = 0” —c=A>0and 5 = 1. Then,

(i) There exist p;, € (0,1) such that if p > py, then ¢} > ¢ > ¢I'; and if p < py, then
a = a2 g,
(ii) There exist p; € (0, 1) such thatif p > pj, then ¢f > ¢}, > ¢};if p < py, then ¢}, > ¢ >
a-
(iii) The Lagrangian multiplier is given by A* = % V)Hp
p-

> ( and strictly increasing in
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(iv) Forall p € (0,1), we have CS < C'S and PS < PS.
Proof. See the appendix. [

Roughly speaking, the first three items (i) and (ii) imply that the quantities are more dis-
persed with a common input supplier compared to the competitive input market. This is in-
tuitive in that each downstream firm learns the true demand signals and attempt to match its
quantity level with the actual market demands.

In particular, as the high demand is more (resp. less) likely, the downward quantity dis-
tortions become more (resp. less) severe, and it often leads to quantities set by the high-type
downstream firm (resp. low-type downstream firm) smaller than (resp. larger than) the quan-
tity level g; (resp. g;°) that is obtained under the competitive input market. The item (iii) indeed
shows that the quantity distortion becomes more severe when p is high. With a higher p, intu-
itively, each downstream firm believes that the rival downstream firm is more likely high type
and sells a larger quantity in the market, which in turn, by strategic substitutability, creates
incentives for the downstream firm to offer a contract inducing smaller quantities of its own.

Despite such mixed effects on the equilibrium quantities, the last item (iv) shows that con-
sumer surplus improves when the input is supplied by the common upstream supplier, while
the opposite holds for the downstream firms. This is because the common input supplier al-
lows the downstream firms to learn each other’s private signal, so they sell larger quantities of
products in the market when the actual demand size is large. Although the reversed situation
occurs when the market demand is small, the impact of such events on consumer welfare (and
the downstream profits) is relatively small because the changes in the equilibrium quantities
as well as prices are limited by the demand size. In the equilibrium, therefore, consumers are
better off whereas the firms are worse off compared to the case where the upstream market is

competitive.

4 Conclusion

In this paper, we revisit standard Cournot competition models with private (demand) infor-
mation. Unlike the previous literature assuming competitive input market, however, we in-
troduced a common input supplier, which—we believe—is a widely observed and important
feature of modern industries. We characterized a unique equilibrium in which private informa-
tion held by each downstream firms is endogenously flowed within a vertical chain by signaling
and screening behaviors in vertical contracting. Compared to the competitive upstream mar-
ket case, such information spillover induces more dispersed equilibrium quantities and may

increase consumer welfare at the cost of lowered downstream profits.
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Appendix: Omitted Proofs

Proof of Lemma 1. Consider the h-type problem. Suppose A, = 0. Then, by (3), we have
N\ = 1, implying that M R(qn, q'; h, h) = M R(qn,q; 1, h) <= O, — 0 = 0 from (1). This
is a contradiction. The same argument applies to the [-type problem.

Proof of Lemma 2. By Lemma 1, it is immediate that 0 < A_; < 1. Now, suppose that
A; > 0. From (1), we have

th_ﬁ@};_z(h_c:/\l(‘ghl_BCj}}Z_QQh_C).

The left-hand side is nonnegative because equilibrium quantities cannot exceed ¢;;, = egigc

To derive a contradiction, suppose that the left-hand side is zero. Then, the right-hand side is

strictly negative since 0, > 0. Suppose now that the left-hand side is strictly positive.

Rearranging the terms, one can show that the equation is equivalent to
1 _ _

)\—(th — By — 2qn — ¢) = O — B, — 2qn — c.

!

Since \; < 1, this implies

1
Onn — Bay — 2qn — ¢ < X(th_ﬁq}};_2%_0) = O, — By — 2q1, — c,
!

which is a contradiction. Therefore, \; = 0, and the remaining results follow from the first-

order conditions (1) and (2) of the high-type problem.

Proof of Theorem 1. We prove the theorem in several steps.

Lemma 3. Suppose \, < \, = % (M) < 1. Then,

Onn—0n1
0<q(Mn) < ar(M) < @'() < @r(Mn) = g

Proof. A simple computation shows that

~ ~ - 2_
QZ()\h) > qlh()\h) — M\ < —5
/X 9”—6
ql()\h)>0 < )\hg R

h —C

) ) 9By —0
¢ () > gi(\n) <= M\ < b ( Mo n ) :
2 Onn — Oni

Under Assumption 1, these inequalities are satisfied.
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Now, consider (fé ») where the quantities in the both sides are replaced by the candidate

equilibrium quantities in (9). By tedious computations, one can show that it is equivalent to

PG+ (L= p)aii = pOnn — (1 + B)aiy — g — (1= p) (O — (1 + B)ai — )y

>((1 = p)(kn — Brun) + p(ku — BEw))ap — p(Orn — (1 + By — ¢+ Kin — Brw) K
—(1=p)(On — (L + B)ghy — ¢+ Brun — Kni)Kn

—(1=p)(On —2(1 + B)gy — ¢+ (1 + B)ku)ku (an

Clearly, the left-hand side is independent of A, and non-negative if and only if (fé n) 18
satisfied at the first-best quantities ¢,

Lemma 4. The right-hand side of (11) is zero at A =0, non-positive and strictly decreasing
in \, €[0,1).

Proof. Letting p =

K — B (Onn — On) ) — (%) (G — )

(2-8)2+8)(L—A
o 2>\(6hh — 0hl> _ L _
o= T resn ~ (75)
- )\h<9hl — Ou) — ulgn — qu)
R = 2+ A1 _5\h> = plqn — qu
Thus,
_ _ B 26 (B _
Kni — B = 1(qhn — qni) (2 — 5 5 _ 5) Y <2 — 5) (qhh — Q1)
and

2 2
Kin — Bk = M(th - th) (2 E 3 - 25_ 5) = M(th - th) (22 _ﬁﬁ )
Thus, the right-hand side of (11) can be written as
_n2
M <P (22 _% > —(1-p) (%)) (qnh — i) qn
2— 32 2
— Pl (th —(L+B8)qu —c+u ( 2_ 3 ) (qnn — th)) (m) (gnh — am)

—(1=p)p (th —(L+B)qu —c+p (%) (qnn — qhz)) (%) (qnn — am)
—(L=p)p (O — 2(1 + B)qu — ¢ + p(1 + B) (g — qu)) (qr — qu)-
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Note that p = 1’\’j\ is zero at \, = 0, non- negative, and strictly increasing in A € [0,1).

Thus, it suffices to show that

G= (p (22__6;) —(1—-p) (%)) (G — qn)an
—p (9hh (A +B)gu—c+p <22__B;> (qnn — th)> (ﬁ) (gnn — ani)

—(1—p) <9hz —(14+B)gn —c+pn (%) (qnn — th)> (%) (qhh — qm)
—(1=p) (O —2(1 + B)qu — ¢+ (1 + B)(qu — qu)) (g — qu)

is non-positive and strictly decreasing in A € [0,1). Clearly, G is strictly decreasing in f,
and so is in S\h. To show that it is non-positive, observe that G is a linear function of p, which
implies that it is enough to consider p = 1 and p = 0.

First, suppose p = 1. Then,

G = ((22__5;> qni — <9hh —(1+B)gu —c+nu ( BB ) (qnn — th)> <%)) (qhh — am)
_ ((2 — B — 2 (th — (14 B)gn —c+ p ( ) qrn — th))) (qnn — am)-
(2~ 8%)qm —2 (th — (1 +B)gu—c+p (2 — 52) (qnn — th))

2-p
2-p
<(2 =B — 2 (O — (1 + B)gu — )

This is strictly negative since

—|1—ﬁ ( 4‘9hh -+ ,82(0 — @hl) — 25(‘9hh — 0hl> + 40hl)
Z% (=4O — Oni) — B (2(0n, — Oni) + 8O — ©)))

<0.

Next, suppose p = 0. Then,

G = (—2 f Bth - <9hl - (1 + B)th —Cct+u <%) (th - th)) %) (th - th)
- (th - 2(1 + 5)6111 —Cc+ M(l + ﬁ)(th - QII)) (th - CIzz)

< (—2 f qu — (O — (1 + B)qu — ) ) (qnh — qm1)

— (O — 214 B)qu — ¢)(qu — qu)
<0

B
2-p
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since

ehl_<1+B>th_C:<6hl_0) (1—%) >0

and

2(1 + ﬁ)(ell — C)
240
2(1 -+ 5)(9” — C)

O —2(1+ B)qu —c=0p — c—

= O — O+ 60y —c—

240
> 9(0y — o) — 2 +251(? —¢)
= (6 — ¢) (2 — 22—:_25)
> 0.

Lemma 5. The left-hand side of (11) is non-negative if and only if

P (Onn — i) (Opp, —c— (1 + B) (O — ¢))
+ (1 — ,0) (Ghl — ‘9”) (Ghl — C(l + B) (‘911 — C)) > 0.

Proof. This directly follows from computation.

]

Lemma 6. If (10) does not hold, then there exists unique Ay € (O, Xh] such that the inequality

(11) holds as equality.

Proof. Note that the right-hand side of (11) is zero when S\h = 0. Thus, if (10) does not hold,
then the left-hand side of (11) is strictly lower than the right-hand side of (11) when 5\h = 0. By
the intermediate value theorem, therefore, it suffices to show that (11) is satisfied at th =\

for the existence of Ay, inducing equality of (11). Clearly, the uniqueness follows from Lemma

4.
For notational ease, we define the following function

F (), p) = LHS of (11) — RHS of (11) at A, = A
By tedious computations, one can check that F' (\y, p) is linear in p with
o
—F (A

=5sgn (2 (9hh - ehl) (th - 911) - 52 (th - 911) (th - C)

+ 268 (Onp, (O — 0u) — (Onn — Ont) Ou + ¢ (Onn + O — 26011)) >
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Note that

2 (Onn — Ont) (Onn — Ou) — B (Ot — Ou) (O — ©)
+26 (Onn (Ons — Ou) — (Onn — On) Ou + ¢ (Onn + O — 201))
>26 (Onh — Ont) (Onn — Ou) — B (On — ) (O — )
+28 (Onn (O — Ou) — (Onn — Ont) Ou + ¢ (Onn + Oy — 201))
=B (2 (Opn — Oni) Onn — O — (O — ©)) + (On — Ou) (Onn, — Ot + O, — ©))
>0.

This shows that F' (Xh, p) is strictly increasing in p. To prove that (11) is satisfied at )y, it is
thus sufficient to show that F' (X, 0) > 0. Indeed, this is true since

(Onn — Om)* (O — )’
(20 — (4 — B) O + (2 — B) Ou)°

This completes the proof of the lemma. [

F (M, 0) = > 0.

The previous results have proven the existence and uniqueness of the Lagrangian multiplier
A (s0, the candidate equilibrium quantities) satisfying the first-order necessary conditions. It
is immediate that these quantities satisfy Condition (SI) and Condition (SC). The remaining
step is to show that the second-order sufficient conditions are also satisfied. In doing so, we

first prove the following general result in optimization problems.

Lemma 7. Consider the optimization problem

H
max H(z, y)

ST.g(x,y) <c

and the associated Lagrangian function

La(z,y) = H(z,y) — A(g(r,y) —¢),

where H(-) and g(-) are continuously differentiable functions. Suppose that (z*, y*, \*) satis-
fies VL (z*,y*) = 0, g(z*,y*) < ¢, N (g(z*,y*) —¢) = 0, \* > 0, and that L« (x,y) is
strictly concave. Then, (z*, y*) solves the optimization problem.

Proof. Since Ly« (z,y) is strictly concave, Ly-(z*,y*) > Ly«(z,y) for all (xz,y) € S. This
directly implies that H (z*, y*)—\* (g(z*, y*) — ¢) > H(z,y)—\* (g9(x,y) — ¢) forall (z,y) €
R?. If we consider a pair (z, y) that satisfies g(x,y) < ¢ we obtain H (x*,y*) > H(x,y). Thus,

(xz*,y*) solves the optimization problem. O

Now, we apply this lemma to our problem, which completes the proof of the theorem.
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Lemma 8. Suppose (10) does not hold. Consider the reduced [-type problem,

max _ p (P (qn, ¢ (\*);h,0) —¢) qn+ (1= p) (P (q1,9f (X*);1,1) — ¢) g

0<gn,q1<qy,;,

ST.(IC})
where (IC},) is given by
p (P (s G o ) =€) gy + (1= p) (P (" (X*) q, (N) 5 b, 1) =€) g (X)
>p (P (qnai (N)5hoh) =) an+ (1= p) (P (q.q; (N*) 1 h,1) — ) @, (12)

and \* is defined in Lemma 6. Then, (g, ) = (¢} (\*), ¢}(\*)) is the solution to this maxi-
mization problem.

Proof. By construction, (qn,q;, A) = (g, (X\*),qf (\*), \*) satisfies (i) £, = L, = 0; (i)
(IC'},) is binding; and (iii) A = \* € (O, %} Also, the Lagrangian function for this problem is

strictly concave since

L 9L *
DQE _ @ 9gn0q _ _2p(1 —A ) 0 (13)
%L %L *
O0q0qp, 8_q12 0 _2<1 - p)(l —A )

By Lemma 7, we conclude that (g, ¢;) = (g}, (\*) , ¢} (A*), A*) is the solution to this problem.

]

Proof of Proposition 3. Under the assumptions in the proposition, one can compute to show

that A A 1
p +p
A RPN () N
q 3+6 < (2) qn

In addition,

) 27 A
QZh:A>QhIIQI*h:?>QZ*l:§7
and 2 2 A
N R R SR N S
ap » dp, 3 hls 4 3 lhs 4 3 s
where ry; = 3(1\3—1), Ky = 3(21*_—%}2), Ky = ?)(ii—éh). Given these, one can directly compute to

show the items (1) and (ii).
Now, to show (iii), we compute the unique A, that is determined by the binding constraint
(1C},). By a tedious computation, one can check that it is either of the following two roots:

3+2p) =3vVT+p

N, =\ =
& (3+4p)

or

= (34+2p)+3/1+p

A\
" (3+4p)
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Note that the first root A* lies in the interval [O7 %} . To see this, observe that
1
<~ 5 <1+ P,
which is always true, and
2
>0 <= (1—|—§p) > /14 p,

which always holds since p > 0. It follows from Lemma 6 that An = A\ since A, = % where
A, is the upper bound on A, defined in Lemma 3. Furthermore, since p > 0, we have

M 3 (5+4p—4\/m) .

ViFaB+ar ) T

Bp 2
To show part (iv), we first compute the (ex-ante) consumer surplus under the complete

information benchmark (Benchmark 1), which is denote by C'S*:

* 1 * * * *
cs* =5 (v (2a7,)° +2p(1 = p) (g5, + q)° + (1 = p)? (2Q11>2>

2

=2p°A* + p(1 - p)§A2 + g(l — p)*A%
16 2

= A? (2/)2 ol =p)g 51 p)2>

2

:%(1+6p+2p2)

Recall that the equilibrium with a common input supplier entails quantity distortions from the

first-best quantities, which yields the following consumer surplus:
CS =CS* + DT,

where

pr—at( (A 20 pe-p- (X))
((1 A) 9 (1 A)Q )

A (2(1 —p)(3+2p—3T+ p)(—6+ 10p> + 181+ p + p(7 + 9@)))
B 9(2p + 31+ p)?

<0.

Note that DT equals to zero only when p is 0 or 1, and for any p € (0, 1) is strictly negative.
Now, we compute the consumer surplus in the competitive input market case (Benchmark 2):

€ = % (5 24" + 200 — p) (g7 + 47" + (1= ) (247)")

1 1 1
= PO+ )5+ p(L = p) e A°G +4p)" + (1= p)"A%(2 4 p)”

2
1 1 1
=A% pP(1+p)* 5 + p(1 = p)o=(5+4p)* + = (1 — p)*(2 + p)°
2 36 18
2
== (8 + 17p+27p* 4+ 16p° + 4p*) .
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Therefore, we have

* _A210 2 3
CsS —CS_%(31—11p—16p —4p°) > 0.

Given these, we have

C5—CS
=DT+CS*-CS
A (2(1 —p)(=3=2p+ 3T+ p)(—6+10p* + 18T+ p+ p(7T+ 91+ ,0)))
9(2p + 3v/1+ p)?
AQP 2 3
+¥(31—11p—16p —4p°)
=A’K(p),
where

1
K(p) =-p(31 — 11p — 16p* — 4p%)

36
1 (8(1 —p)(=3=2p+ 3T+ p)(—6+10p*> + 18T+ p+ p(7 + 9@)))
36 (20 +3V1+p)?

It is direct to see that K (1) = K(0) = 0. We will show that, K (p) > 0 for all p € (0, 1). It is
sufficient to show that

2
p (31— 11p— 169 — 4p°) (2p+3/1+ p)
+8(1=p) (=8 =2p+3y/T5p) (=64 100 +18y/TF p+ p(T+9v/T+p)) >0

Rearranging terms, the previous inequality is equivalent to

(576 + 279p — 532p” — 143p” — 64p* — 100p° — 16p°)

> /14 p (576 — 240p — 804p> + 228p" + 192p* + 48p°)
Both terms in parenthesis are strictly positive. The first result can be obtained by directly com-
paring the positive and negative individual terms. For the second one, note that the parenthesis
is strictly positive when p = 0 and equals zero when p = 1. Also, the term is strictly decreas-

ing, which implies that it must be strictly positive for p € (0, 1). Thus, the previous inequality

is equivalent to

(576 + 279p — 532p* — 143p° — 64p* — 100p° — 16/)6)2
> (14 p) (576 — 240p — 804p” + 228p” + 192p" + 48,)5)2

After calculation, this inequality is reduced to
p (34 p—4p?)* (29.568 + 48.073p + 16.674p% — 3.895p" — 3.896p" — 4880° + 640° 4 16p7) > 0
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We have that 29.568 > 3.895p3, 48.073p > 3.896p* and 16.674p? > 488p° which completes
the proof. In the other side

PS =p*(Onn — 24 (\n) — )ah (M) + p(1 = p) (O — ' (M) — dh (M) — )l (An)

+ (1= p)p(Oun — ar (M) = (M) = )gh (M) + (1 = p)* (B — 24/(M) — )g;(Mn)
PS =p* (O — 245, — O)g, + p(1 = p) (O — G — G — ¢)aj,

+ (L= p)p(On — ¢ — a — g + (1= p)* (O — 247 — )q;

‘We have that
PS — PS = A°Q(p)
with
Q) = (1= p) (160° + p(153 — 60y/TF p) — 180(—1 + /T + p))
a 36(2p + 3v/IF )2
(1= p) (169°(5 + 6VT+p) +50°(5 + 12yT ¥ p) + p'(68 + 48T ¥ p))
36(2p + 3v/I + p)>

Again, it is direct to see that Q(1) = Q(0) = 0. We will show that Q(p) < 0 forall p € (0, 1).
It is sufficient to show that

(p(153 — 60+/1+ p) — 180(—1 + /1 + p) +16p°(5 + 6@)) >0

Rearranging terms, the previous inequality is equivalent to

(153p + 180 + 80p”) > /1 + p (60p + 180 — 96°)
Both terms in parenthesis are positive. Thus, the previous is equivalent to

(153p + 180 + 80p%)° > (1 + p) (60p + 180 — 96p%)”
After calculation, this inequality is reduced to

p (1.080 — 1.791p + 59.760p> + 70.560p° + 11.520p* — 2.816p° — 9.216p°) > 0

We have that 70.560p> > 2.816p° and 11.520p* > 9.2165. It is sufficient to show that

1.080 — 1.791p + 59.760p* > 0

1.791
119.520°

Evaluating the left-hand side in p = p,,,, we obtain a strictly positive number, which completes

The left-hand side term is a strictly convex function in p with a minimum in p,, =

the proof.
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