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Abstract

We explore the determinants of firm pricing decisions in modern empirical work; e.g., analyses

of mergers, taxation, tariffs, cost shocks, and exchange rates when firms have market power.

We show that incorporating customer preference heterogeneity in both price sensitivity and

non-price characteristics in the mixed logit framework allows for demand curves consistent

with a wide variety of firm pricing decisions. Distributional assumptions commonly used by

researchers, however, restrict estimates of both substitution and cost pass-through significantly.

We propose a flexible and parsimonious specification of preference heterogeneity which expands

the feasible range of elasticity-curvature pairs up to those of the constant elasticity of substitution

(CES ) demand. Using scanner data for ready-to-eat cereal, we find larger estimates of cost

pass-through and welfare effects from uniform pricing – long-standing questions in economics

– when the researcher allows for flexible preference heterogeneity and that elasticity estimates

alone are uninformative.
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1 Introduction

Demand curvature and cost pass-through drive the conclusions to many substantive questions in

industrial organization (IO), including the ability of digital platforms such as Amazon.com to

affect the division of surplus between third-party sellers and consumers (Gutierrez, 2022), the

welfare implications of uniform pricing observed in settings ranging from consumer packaged goods

(DellaVigna and Gentzkow, 2019) to consumer financial products (Cuesta and Sepúlveda, 2021), or

the predicted price effects of horizontal mergers that generate cost efficiencies.1 Demand curvature

is also central to the incidence of taxes and exchange rates in non-competitive industries (Weyl and

Fabinger, 2013) and the role of regulation in controlling externalities (Fabra and Reguant, 2014;

Miller, Osborne and Sheu, 2017).

These examples highlight the importance of a flexible demand specification in avoiding

restricting the set of model predictions. This point was underscored by Bulow and Pfleiderer (1983),

who demonstrated, in the context of the tobacco industry, that functional form assumptions on de-

mand can strongly bias statistical tests examining the existence of market power. Similarly, Froeb,

Tschantz and Werden (2005) document that the predicted pass-through rates of cost efficiencies

of the WorldCom–Sprint merger are seven times larger with a CES than with a linear demand

system.

We focus on the mixed-logit (ML) model of discrete choice demand. This workhorse frame-

work in applied economics is able to capture realistic substitution patterns among heterogeneous

consumers and hence, aid in predicting substitution in response to a price change after a merger or in

identifying collusion among firms. Less attention has been paid to the determinants of pass-through

in discrete choice models, however, or the interaction between substitution and pass-through. Berry

and Haile (2021), for example, state:

...[S]ubstitution patterns drive answers to many questions of interest—e.g., the sizes of markups

or outcomes under a counterfactual merger. However, other kinds of counterfactuals can require

flexibility in other dimensions. For example, “pass-through” (e.g., of a tariff, tax, or technolog-

ically driven reduction in marginal cost) depends critically on second derivatives of demand. It

is not clear that a mixed-logit model is very flexible in this dimension.

This paper examines the connection between preference specification and the range of

feasible estimates for elasticity and curvature in discrete choice demand models. We highlight the

implications of modeling choices of representing consumer preference heterogeneity for answering

questions such as: When do assumptions on preference heterogeneity restrict feasible curvature

estimates? How can we model preference heterogeneity flexibly to simultaneously allow for the

estimation of realistic estimates of demand elasticity (market power) and curvature (pass-through)?

1 Such price effects depend on the concavity of the profit function and thus demand curvature. Jaffe and Weyl (2013)
suggest that for small merger-induced price increases, observed pass-through rates allow inference of the concavity
of profit. For large price changes, Miller, Remer, Ryan and Sheu (2015) suggest conducting a merger simulation
with a demand system constrained to mimic observed pass-through.
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Figure 1: Breakfast Cereal: Elasticity and Curvature Estimates

A: Full Model B: Multinomial Logit
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A: Full Model
Estimates
Avg. Curvature (1.06)
Avg. Elasticity (3.62)
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B: Multinomial Logit
Estimates
Avg. Curvature (0.98)
Avg. Elasticity (3.71)

Figure Notes: Dots represent the estimated own-price elasticity and curvature for a product in the sample with the gray dot
corresponding to the average elasticity and curvature.

A Motivating Example. We begin by illustrating the consequences of preference heterogeneity

on elasticity and curvature estimates using the well-known aggregate data for ready-to-eat cereal

from Nevo (2000). Figure 1 compares estimated own-price elasticity (ε) and curvature (ρ) for

the mixed-logit model estimated in Nevo (2000) that accommodates heterogeneity in both price

sensitivity and valuation of product attributes and for the simpler multinomial logit model (MNL).

The ML model (Panel A) nests the MNL model, which abstracts from preference heterogeneity

for product attributes and price. We estimate each model using Nevo’s (2000) original set of

Hausman-style price instruments.2 In each panel, a dot represents an elasticity-curvature pair for

a cereal product in the data, evaluated at the observed prices.

We find that the distribution of estimated elasticity-curvature pairs in the MNL model

(Panel A) looks very different from the one in theMLmodel (Panel B). This difference suggests that

how the researcher specifies demand plays an important role in estimating market power (elasticity)

and pass-through (curvature). Interestingly, while the two specifications deliver similar average

elasticities – a statistic often reported by researchers in the literature – their average curvatures

differ substantially. Hence, alternative model specifications can deliver identical estimates of market

power but have very different predictions for pass-through.

We observe that estimated demand curvatures in Panel A exceed one for the majority of the

products. Hence, estimates from the ML model indicate that a one-dollar increase in cost results

in more than a one-dollar increase in price for these products. In contrast, the MNL indicates that

the firm price-response for all products is less than one dollar; the MNL specification in Panel B

truncates demand curvature and hence pass-through at one.

2 We also considered other demand specifications that rely on only an idiosyncratic price random coefficient or on only
price-demographic interactions to represent heterogeneity in price sensitivity. The full description of the different
specifications and the relevant estimates are reported in Appendix A.
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Contributions. The motivating example of cereal demand highlights the first-order importance

of relying on empirical demand models that imply robust estimates of not only substitution but also

pass-through. Our objective is to highlight the implications for pass-through of modeling choices

for representing consumer preference and to provide guidance for how best to estimate flexibly

the shape of demand to limit the role of modeling restrictions in answers to important empirical

questions. We make several theoretical and empirical contributions toward achieving this objective.

First, we identify how different components of mixed-logit demand influence demand cur-

vature. We use the “demand manifold” approach of Mrázová and Neary (2017). While they

address the behavior of elasticity and curvature for different continuous demand systems (e.g.,

CES , Pollak, translog) in a single-product monopoly model, we evaluate how components of

mixed logit demand influence the relationship between elasticity and curvature in a discrete choice

framework suitable for differentiated products oligopoly models. We thus connect features of the

ML model, such as the distribution of consumer preference heterogeneity, with demand elasticity

and curvature mathematically, while at the same time providing a useful representation of this

relationship. For empirical applications, we demonstrate – as in the motivating example above

– that depicting estimated product-level demand elasticity and curvature is a useful approach for

visualizing heterogeneous demand in the industry, or equivalently, for analyzing possible restrictions

of the demand specification placed on the set of feasible elasticity-curvature pairs.

It is well understood that MNL demand – or the related nested logit demand, which

accommodates more reasonable substitution patterns at minor computational burden – is always

log-concave. Hence, the curvature of demand for both models is restricted to be less than one

as in Panel B of our motivating example. Using a simple single-product monopoly model, we

illustrate how allowing for preference heterogeneity may alleviate this restriction. We demonstrate

that curvature is determined by a tug-of-war between heterogeneity of preference over product

attributes and heterogeneity in price sensitivity. When consumers have heterogeneous tastes over

product attributes, demand curvature decreases at all prices relative to that of the simple MNL

model. Thus, by incorporating heterogeneity in tastes for product attributes only pass-through

remains at most complete. This result builds on Caplin and Nalebuff (1991b) who show that a

MNL model with heterogeneous valuations of product attributes preserves the curvature properties

of the MNL model. In particular, since the logit and the common normal distribution of preference

heterogeneity are both log-concave functions, the resulting demand is also log-concave. Intuitively,

while consumers have heterogeneous tastes over characteristics, their demand response to a change

in price is uniform, which leads firms with market power to absorb some changes in marginal cost.

We show that heterogeneity in price sensitivity enables log-convex demand and that the

shape of the price mixing distribution plays a vital role. Idiosyncratic price responsiveness is thus a

key determinant of demand curvature, accommodating (but not imposing) more than complete pass-

through. We consider three ways of specifying idiosyncratic price responsiveness – distributional

assumptions for unobserved heterogeneity in price sensitivity; observable consumer heterogeneity

via demographic-price interactions; and heterogeneity in income effects.
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Our second contribution lies in demonstrating that unit-demand discrete choice models are

capable of mimicking the shape of CES demand. Using CES demand as the starting point, the

trade literature has exploited demand manifolds to illustrate the implications of relaxing some of

its assumptions for pass-through and hence markups. We complement this literature by starting

from the unit-demand discrete choice models commonly used in IO and illustrating that they are

sufficiently flexible to accommodate any curvature at a given elasticity estimate, up to those of CES

demand. Our result complements Anderson, de Palma and Thisse (1992) without requiring the

continuous demand that may be unappealing in many empirical contexts. We further show that

for a given demand curvature, competition reduces pass-through relative to the single-product,

monopoly case. This stands in contrast to CES models where pass-through does not vary with

the number of competitors. Hence, ML and CES demand models may generate identical estimates

of demand elasticity and curvature, but the CES model will predict larger counterfactual price

responses to cost changes.

Our third contribution is to show that the choice of price and product characteristic mixing

distributions is a key modeling decision.3 We offer an easy and parsimonious way of modulating

how demographics, product characteristics, and price interact to increase the range of feasible

elasticity and demand curvature pairs. A nice feature of our approach is that it nests a ML

model with standard distributional assumptions and parameters can be recovered using a standard

generalized method of moments estimator. Identification comes via using data moments that

trace price responses and consumption patterns across distributions of customer demographics. A

researcher can also look how price sensitivity and consumption patterns vary across the distribution

of demographic attributes prior to estimating a model to assess whether – and where – to provide

additional flexibility.

We demonstrate the power of our approach by evaluating the welfare implications of uniform

pricing – a long-standing question in economics dating back to Robinson (1933) and addressed

more recently by Aguirre, Cowan and Vickers (2010) and DellaVigna and Gentzkow (2019). The

distributional consequences of uniform pricing is a question that has received considerable policy

attention.4

3 Assuming a one-tailed distribution for price random coefficients, for example, not only ensures that the demand
of all simulated consumers is downward sloping (Train, 2009), but also expands the support of feasible demand
curvatures for each possible elasticity estimate.The literature has recognized that how the demographic attributes
of consumers enter the empirical specification of price sensitivity plays an important role in generating economically
meaningful consumer responses to price. For example, Nevo (1998) comments that the estimated price sensitivity
distribution is:

achieved mainly by freeing the restrictive linear form in which log income influenced the price
coefficient; once we allow for log income to enter in a non-linear fashion, by introducing a quadratic
term, we achieve a reasonable distribution of price sensitivity.

4 See, for example, the 2015 report by the Council of Economic Advisors on “Big Data and Differential
Pricing,” available at https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/docs/
Big_Data_Report_Nonembargo_v2.pdf, accessed on 5/29/2023.

– 4 –

https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/docs/Big_Data_Report_Nonembargo_v2.pdf
https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/docs/Big_Data_Report_Nonembargo_v2.pdf


Using scanner and individual-level data for ready-to-eat cereals, we show that our flexible

specification generates demand elasticity and curvature estimates that differ substantially from

those derived under standard distributional assumptions because these constrained models cannot

match the observed consumption patterns in the micro data. Moreover, we find that common

distributional assumptions (i.e., including customer raw income or log-income in indirect utility)

made by researchers leads to significantly larger substitution patterns because the estimator uses

unobserved heterogeneity to better match the identifying data moments.

We find that modelling demand with flexible distributions generates an estimated aggregate

welfare effect which is 3.6 and 9.7 times greater than when restricting interactions to income

and log-income, respectively. Hence, using standard distributional assumptions biases the impact

of uniform pricing significantly by limiting the distribution elasticity-curvature pairs. For the

researcher interested in assessing the equity implications of uniform pricing, we find significant

differences here as well; i.e., the welfare effects of uniform pricing for high-income consumers (i.e.,

consumers with annual income greater than $99,000) is 2.0 and 3.8 times greater than models where

the researcher uses income and log-income interactions, respectively. As our flexible approach

enables us to reject these distributional assumptions, we conclude that providing the flexibility we

suggest is of first-order importance for empirical work in order to keep a healthy distance between

assumptions and results.

Alternative Approaches. Our paper aims to add flexibility to the ML model in order to reduce

the impact of model specification on pass-through behavior. We focus on empirical, unit-demand,

discrete choice applications only. Alternative approaches have extended the range of feasible curva-

tures by adopting a discrete-continuous choice framework where heterogeneous consumers choose

either a budget allocation for a given product (Adão, Costinot and Donaldson, 2017; Björnerstedt

and Verboven, 2016) or several units of the same product (Anderson and de Palma, 2020; Birchall

and Verboven, 2022). There are many environments where modeling the budget share allocated to

a product might be more appropriate than the assumption that consumers have unit demand for a

product, but this flexibility also comes at a cost. For example, markups are invariant to sales and

prices in the CES model.

Following much of the empirical literature, we focus on parametric specifications. Alter-

natively, Compiani (2022) uses a non-parametric approach to estimate demand flexibly. This

attractive solution places few restrictions on the shape of demand in answering empirical questions

of interest, such as predicting post-merger prices. The additional flexibility and steep computational

cost limit this approach to empirically rare settings with at most a handful of products.

Outline. We first provide a brief mathematical introduction for the demand manifold framework in

Section 2. In Section 3 we characterize the demand manifold of a general ML model. We evaluate

the implications of different quasi-linear preference specifications for curvature and elasticity in

Section 4, before we extend the analysis to environments with income effects in Section 5. Section 6
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addresses the estimation and identification of heterogeneity in price sensitivity and hence demand

curvature. We describe our proposed instrumentation strategy and investigate its properties in

Monte Carlo analyses before turning to our empirical application of uniform pricing from the

ready-to-eat cereal industry. Section 7 concludes. Additional results and derivations are reported

in the Appendices.

2 A Primer on Demand Manifolds

In this section, we introduce the concept of a demand manifold, a smooth relationship between

demand elasticity and curvature consistent with profit maximization. Mrázová and Neary (2017)

provide an excellent formal derivation of demand manifolds and their properties for a wide range

of continuous demand specifications. We employ demand manifolds to assess the flexibility of

alternative preference specifications in the context of discrete-choice demand, highlighting relevant

issues that relate to the estimation of mixed-logit demand from an applied perspective.

We begin with a discussion of the demand manifold for a single-product monopolist, as we

rely on this setup in Sections 3-5 to illustrate graphically the properties of common discrete-choice

demand specifications. Next, we discuss demand sub-convexity, which we impose on the demand

systems in these analyses to ensure the existence of well-behaved equilibria and comparative statics.

Demand sub-convexity weakly limits the feasible elasticity and curvature combinations by ensuring

that demand becomes more elastic at higher prices.

2.1 Single-Product Monopoly

Consider the case of a single-product monopolist with constant marginal cost c. The monopolist

sets the price p that maximizes profits Π(p) = (p − c)·q(p) and the following necessary condition

holds:

Πp(p) = q(p) + (p− c)·qp(q) = 1− p− c

p
ε(p) = 0 ⇐⇒ ε(p) ≡ −p·qp(p)

q(p)
> 1 , (1)

where ε denotes the elasticity of demand. Similarly, the sufficient condition for price p to maximize

monopoly profits is:

Πpp(p) = 2qp(p) + (p− c)·qpp(q) < 0 ⇐⇒ ρ(p) ≡ q(p)·qpp(p)
[qp(p)]

2 < 2 , (2)

letting ρ denote the curvature of demand. While demand can be concave (ρ < 0), linear (ρ = 0),

or convex (ρ > 0), concavity of the profit function rules out excessively convex demands.

Mrázová and Neary (2017) prove that a well-defined smooth equilibrium relationship con-

necting elasticity ε and curvature ρ exists for continuous demands that are decreasing (qp(p) < 0
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and pq(q) < 0) and three times differentiable. This allows us to invert the elasticity in Equation (1),

and substituting into Equation (2), we obtain the demand manifold:

ρ[ε(p)] =
p2 ·qpp(p)
ε2(p)·q(p)

. (3)

The slope of demand plays a central role in the profit maximization necessary condition (1);

in equilibrium, demand must be elastic whenever firms have market power. Economists frequently

rewrite the necessary profit maximization condition in terms of markups, or the Lerner Index.

The sufficient condition for profit maximization further requires that at the equilibrium

price, the monopolist’s marginal revenue function is non-increasing, which we rewrite in turn

in Equation (2) as a constraint on the equilibrium curvature of demand. Cournot (1838) first

established the connection between demand curvature and pass-through for a monopolist with

constant marginal costs:
dp

dc
=

1

2− ρ
> 0 , (4)

Hence, when the monopolist faces log-concave demand with ρ < 1, its pass-through of cost shocks is

incomplete, while it is more than complete in the case of log-convex demand with ρ > 1. Complete

pass-through occurs when ρ = 1.5 Our representation of the manifold in terms of (ε, ρ) therefore

directly relates to economic outcomes of interest, namely markups and pass-through.

2.2 Demand sub-convexity

Demand is said to be “sub-convex” (“super-convex”) if log[q(p)] is concave (convex) in log(p). In

the monopoly manifold examples we consider in Sections 3- 5, we focus attention on sub-convex

demand. Sub-convexity of demand is equivalent to a demand elasticity that increases with price;

i.e.,

εp(p) =
ε2(p)

p
·
[
1 +

1

ε(p)
− ρ(p)

]
> 0 ⇐⇒ ρ(p) < 1 +

1

ε(p)
= ρ(p)CES . (5)

Equation (5) also establishes a cutoff condition for the curvature of sub-convex demand. For a given

elasticity ε, this cutoff is the curvature of the Constant Elasticity of Substitution (CES ) demand,

q(p) = βq−1/σ. CES demand is the only demand system where a single parameter determines both

elasticity and curvature: εCES = σ and ρCES = (σ+1)σ−1 > 1. Thus, εp(p) = 0, which implies the

well-known result that CES markups and pass-through are invariant to price.

5 In oligopoly markets, the pass-through rate also depends on substitution between products affected by a common
cost shock. Weyl and Fabinger (2013) focus on the symmetric single-product oligopoly version of equation (4):

dp

dc
=

1

1 + θ(1− ρ)
> 0 , (4’)

where θ is a conduct parameter ranging from θ = 0 for perfectly competitive to θ = 1 for monopoly. We evaluate
the difference between (4) and (4’) in the context of our Monte Carlo study of a non-symmetric oligopoly setting
in Section 6.3.
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There is widespread empirical evidence supporting the so-called Marshall’s (1920) Second

Law of Demand of demand becoming more elastic as prices rise.6 More importantly, the equilibrium

existence results for oligopoly models with differentiated products in Caplin and Nalebuff (1991a)

for single-product firms and in Nocke and Schutz (2018) for multi-product aggregative games rely

heavily on sub-convexity of demand as it is interchangeable with quasi-concavity of the firm’s

profit function in own price where profits are strictly positive. Our analysis below also shows that

sub-convexity is helpful in generating well-behaved comparative statics and equilibria: as price

rises, the firm no longer has the incentive to continue raising price and garner increasing markups

as it would when demand becomes increasingly inelastic in price.

3 Demand Elasticity and Curvature for Discrete Choice Models

In this section we rely on demand manifolds to explore the relationship between curvature and

elasticity in the context of the discrete choice demand model that forms the backbone of much

empirical work in IO: mixed logit demand. We characterize the demand manifold in general, for

arbitrary specifications of preference heterogeneity, which we refine in the following sections. We

define the indirect utility of consumer i from purchasing product j as:

uij = xjβ
⋆
i + fi(yi, pj) + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (6)

where (xj , ξj) denote observed and unobserved characteristics of product j, respectively, pj its price,

and yi consumer i’s income. Mixed logit allows for heterogeneity in consumers’ valuation of the

product characteristics x via β⋆
i . We normalize the value of the outside option to zero.

The sub-function fi represents how spending on the outside good, yi − pj , affects indirect

utility. The effect of outside good spending varies by individual i, both because income varies across

consumers and because consumers differ in their price sensitivities. To simplify notation, we write:

f ′
ij =

∂fi(yi, pj)

∂pj
, and f ′′

ij =
∂2fi(yi, pj)

∂p2j
. (7)

Thus, f ′
ij represents the marginal effect of price pj on consumer i’s indirect utility while f ′′

ij

represents how this marginal effect changes with price.

6 This includes evidence on the relationship between markups and the scale of production in macroeconomics
(see Mrázová, Neary and Parenti, 2021, and references therein), markup adjustments after trade liberalization
(De Loecker, Goldberg, Khandelwal and Pavcnik, 2016), pass-through of exchange rates for coffee and beer in trade
(Nakamura and Zerom, 2010; Hellerstein and Goldberg, 2013), as well as tax pass-through in the legal marijuana
market (Hollenbeck and Uetake, 2021) and markup adjustments to changes in commodity taxation in IO (Miravete,
Seim and Thurk, 2018).
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Individual i purchases product j if uij ≥ uik , ∀k ∈ {0, 1, . . . , J}. Because of the additive

i.i.d. type-I extreme value distribution of ϵij , individual i’s choice probability of product j is:

Pij(p) =
exp

(
xjβ

⋆
i + fi(yi, pj) + ξj

)
1 +

J∑
k=1

exp
(
xkβ

⋆
i + fi(yi, pk) + ξk

) . (8)

Notice that individual i makes a dichotomous decision about the purchase of product j (i.e.,

“Buy j” vs. “Buy Something Else”). The purchase decision is the outcome of a Bernoulli random

process with a probability of success Pij , which varies with the vector of prices and characteristics

of the different alternatives. The Bernoulli random variable has mean µij = Pij , variance σ2
ij =

Pij(1−Pij), and (non-standardized) skewness of skij = σ2
ij(1−2Pij). Aggregating over the measure

of heterogeneous individuals summarized by G(i), total demand for product j becomes:

Qj(p) =

∫
i∈I

Pij(p) dG(i) . (9)

We can now write the elements defining the demand manifold, elasticity and curvature of

product j, relegating the detailed derivations to Appendix B. The own-price demand elasticity

of product j amounts to a scale-free measure that aggregates individual price responses (demand

slopes) weighted by their choice variance:

εj(p) = − pj
Qj(p)

∫
i∈I

f ′
ij ·σ2

ij dG(i) , (10)

Similarly, the demand curvature of our discrete choice model is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
f ′′
ij · σ2

ij dG(i) +

∫ (
f ′
ij

)2
· skij dG(i)[∫

f ′
ij · σ2

ij dG(i)

]2 . (11)

Combining elasticity (10) and curvature (11), we obtain the general expression for the mixed logit

demand manifold:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
[∫

f ′′
ij ·σ2

ij dG(i) +

∫ (
f ′
ij

)2 ·skij dG(i)

]
. (12)

How the researcher defines the pricing sub-function f(·) plays a fundamental role in de-

termining both demand elasticity and curvature. A common empirical sub-function is simply the

linear function of outside good spending, i.e., fij(yi, pj) = α⋆
i (yi − pj), resulting in quasi-linear

demand. For a given elasticity, the curvature is now driven by heterogeneity in the idiosyncratic

price sensitivity α⋆
i . We consider this case in Section 4. Alternatively, the researcher could impose
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a non-linear sub-function (Griffith, Nesheim and O’Connell, 2018), with different implications for

curvature and pass-through, which we discuss in Section 5.

While we illustrate graphically the manifold properties for the monopoly case in the fol-

lowing sections, it is important to note that the above demand manifold definition extends to

multi-product oligopoly settings by including both direct own-price effects and indirect cross-price

effects through the dependence of choice probabilities in Equation (8) on the vector of all prices

p. Equation (12) is thus the manifold of residual demand for product j. How the introduction of

competition affects the link between curvature and pass-through in practice depends on the specific

substitution effects across products. We return to this issue in Section 6.3.

4 Quasi-Linear Preferences

In this section we consider quasi-linear preferences, which researchers commonly rely on for inex-

pensive products like the cereal varieties considered in Nevo (2000). Quasi-linear preferences also

imply simpler curvature derivations since f ′′
ij=0. We thus consider the following variant of equation

(6):

uij = xjβ
⋆
i + α⋆

i

(
yi − pj

)
+ ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (13)

where we include α⋆
i to capture consumers’ heterogeneous price sensitivity which we model as

α⋆
i = α + σpϕi. The distribution of price sensitivity, therefore, is a mixture between a degenerate

mean utility price coefficient α and a mean-zero distribution ϕi ∼ Φ of deviations. The relative

magnitude of α and σp, as well as the shape of Φ, determine the shape of the distribution of α⋆
i .

We follow the literature in specifying heterogeneity in the valuation of product characteristic

x by decomposing β⋆
i into β⋆

i = β + σxνi, where β similarly denotes the mean valuation while νi

captures the idiosyncratic heterogeneity in the valuation of the observed product characteristic,

which we assume to take the form of a standard normal random variable scaled by σx.

Note that purchase decisions based on indirect utility comparisons do not depend on

individual income yi, which shifts the indirect utility of all products by α⋆
i yi. There are thus

no income effects. Furthermore, with fi(yi, pj) linear in price and income, f ′
ij = −α⋆

i and f ′′
ij = 0.

Hence, demand curvature is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
(α⋆

i )
2 · skij dG(i)[∫

−α⋆
i · σ2

ij dG(i)

]2 , (14)

and the demand manifold simplifies to:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
∫
(α⋆

i )
2 ·skij dG(i) . (15)
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Curvature and elasticity are thus inversely related for any price-quantity pair as long as skij =

σ2
ij(1− 2Pij) > 0, when the probability Pij of choosing any single product is sufficiently small, e.g.,

the common case of choosing among hundreds of consumer products.

4.1 Demand Manifolds of Common Discrete Choice Demand Specifications

We now employ Equation (15) to explore the demand manifolds of several workhorse discrete choice

specifications from the empirical literature: MNL, CES , ML with random coefficients on product

attributes, and ML with a random coefficient on price. The extent and manner in which these

specifications introduce flexibility in the preference specification vary, enabling us to demonstrate

how the demand model’s capacity to accommodate feasible combinations of elasticity and curvature

changes as we relax these restrictions.

Multinomial Logit (MNL). In the MNL model, there is no unobserved heterogeneity, so σp =

σx = 0 and α⋆
i = α and β⋆

i = β. Hence, Pij = Pj = sj(p) is the market share of product j.

Elasticity and curvature reduce to:

εj(p) = αpj
(
1− Pj

)
, (16a)

ρj(p) =
1− 2Pj

1− Pj
< 1 . (16b)

Combining Expressions (16a)-(16b), we obtain the MNL demand manifold:

ρj [εj(p)] =
αpj
(
1− 2Pj

)
εj(p)

. (17)

Equation (16b) shows that MNL demand is concave, ρj(p)< 0, only in very concentrated

markets where the share of a single product exceeds 50% of sales. For less concentrated industry

configurations demand is convex, ρj(p)> 0, but MNL also restricts demand to be log-concave, as

ρj(p) < 1 for all possible prices. Thus, pass-through in any MNL demand model is necessarily

incomplete regardless of setting and identification strategy. Furthermore, since MNL demand

curvature (16b) decreases in Pj , pass-through grows arbitrarily close to complete for settings with

a multitude of atomistic products – a common feature of the multi-product oligopolies studied in

practice, such as automobiles, breakfast cereals, spirits, etc.

The left panel of Figure 2 depicts several demand manifolds for a single-product monopoly

MNL model. We fix the product attribute to take a value of X = 1 and allow consumer valuations

for the attribute β to range from {β, β + 1 . . . , β + 5}, with β = 1. We set the price response

coefficient α = 0.5 and consider elasticity-curvature combinations at different price levels. Each

manifold is color-coded by level of price, ranging from pj = 0 (darkest) to pj = 10 (lightest). Note

that higher prices always correspond to more elastic demands (because MNL demand is sub-convex)

and hence, lower equilibrium markups.
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Figure 2: Multinomial and Mixed Logit Manifolds
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alternative standard deviations σx and β = 1.

Increasing the average valuation of the product attribute, β, to β + 1, β + 2,. . . , shifts the

demand manifold upwards from the base MNL demand manifold in Figure 2. Increasing mean

demand for a product thus decreases both demand curvature and price elasticity for a given price,

consistent with Equation (17).

Constant Elasticity of Substitution. The decreasing and convex black dashed curve in Figure 2

represents the (ε, ρ) combinations for CES demand under alternative values for the elasticity of

substitution. Anderson, de Palma and Thisse (1987, 1992) were the first to show that a discrete

choice model where individuals spend a fraction of their income on a continuous quantity of a single

product can generate the CES utility function of the representative consumer model (Dixit and

Stiglitz, 1977). Thus, CES arises naturally in the context of discrete-continuous models (Hanemann,

1984), while MNL is most appropriate when consumers have unit demand. However, like the MNL

model, CES choice probabilities suffer from the IIA property in producing unrealistic substitution

patterns.

Since MNL is log-concave, its manifolds always fall to the left of the CES boundary delim-

iting super-convex demands. Thus, while the CES and MNL models can both accommodate a wide

range of elasticities, their demand curvatures (and pass-through) are different. The researcher’s

choice of one of these two demand models thus restricts pass-through in stark ways, accommodating

either only under- or over-shifted pass-through, respectively, which may not be consistent with the

underlying data.

ML with Characteristic Random Coefficients. It is well-known and a primary motivation

for empirical research that accounting for idiosyncratic preferences for product attributes can relax

the restricted substitution patterns generated by MNL demand. We thus consider introducing

individual heterogeneity in the valuation of the product attribute, continuing to assume that all
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consumers have the same price responsivenessi.e., αi = α. Will adding this flexibility also address

the limitations of MNL to achieve greater degrees of curvature?

The right panel of Figure 2 shows several demand manifolds for such a ML model, allowing

the standard deviation of the random coefficient on the product attribute to increase from σx = 1

to σx = 2, while holding fixed the mean product valuation at β = 1. Adding individual preference

heterogeneity “rotates” manifolds: for a given demand elasticity, preference heterogeneity reduces

demand curvature and hence, pass-through. The firm now faces a segment of consumers with high

valuations for its attribute over whom it has market power locally, and it reduces its pass-through

relative to the case of uniform preferences.

The light-red shaded area denotes the combinations of elasticity and curvature that a ML

model with heterogeneity in the valuation of the product characteristic can generate for mean

valuations of β ≥ 1. The figure illustrates that the ML model with normally distributed attribute

preferences continues to generate log-concave demand. Caplin and Nalebuff (1991b) show that ML

demand remains log-concave under any other log-concave distribution of idiosyncratic preferences,

comprising the vast majority of distributions used in economics (Bagnoli and Bergstrom, 2005).

Further, this result extends naturally to the nested logit – a demand system commonly employed

in antitrust economics – because it provides for more reasonable substitution patterns with small

computational burden.7 Mathematically, equation 14 demonstrates that curvature can only come

through the shape of the choice probability distribution (Pij), particularly the skew. Achieving

greater curvature with product characteristics therefore would require mixing distributions for

idiosyncratic preferences that feature a large tail.8

It is evident that this version of a ML model has inherent limitations when used to empir-

ically study pass-through in non-competitive environments: pass-through is necessarily restricted

to be incomplete.9 In empirical settings with log-convex demand, firms with market power aim to

over-shift cost shocks, however. Employing a MNL or a ML model with idiosyncratic preferences

over attributes in such instances would result in biased preference estimates that generate the closest

demand curvature to the true data-generating process that these models can produce, a curvature

of effectively one. Figure 2 illustrates that to exhibit such demand curvature, the estimated model

would either understate the true degree of idiosyncratic product attribute preferences or overstate

consumers’ true price sensitivity, generating the appearance of a competitive environment with full

pass-through.

7 McFadden and Train (2000) demonstrate that aML specification with random coefficients on product characteristics
can generate equivalent substitution patterns to the nested logit model.

8 Our own experiments show that while it is possible to extend demand curvature to be greater than one with
idiosyncratic product characteristics alone, it takes a significant skew to achieve small increases in demand curvature
beyond one.

9 This is at odds with the mounting evidence of pass-through rates exceeding 100% in horizontally differentiated
products industries such as groceries (Besley and Rosen, 1999); clothing and personal care items (Poterba, 1996);
branded retail products (Besanko, Dubé and Gupta, 2005); gasoline and diesel fuel (Marion and Muehlegger, 2011);
as well as beer, wine, and spirits (Kenkel, 2005) among others.
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ML with Price Random Coefficients. How can we expand the range of curvatures that the ML

estimates can accommodate to allow for log-convex demand and thus over-shifting of pass-through?

The only element of preferences that remains to be considered is idiosyncratic price responsiveness.

Substituting α⋆
i = α+ σpϕi into the demand manifold for quasi-linear preferences (15) results in:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
∫
(α+ σpϕ)

2 ·skij dΦ(i) (18)

In the absence of idiosyncratic price heterogeneity, σp = 0, this demand manifold coincides with the

manifold of the MNL in Equation (17). Thus, for any given demand elasticity and price-quantity

pair, an increase in the spread of the distribution of idiosyncratic price heterogeneity via σp expands

the range of demand curvatures that the model can generate.10 With a sufficiently large σp, we

show the manifolds will cross the unit curvature threshold, allowing discrete choice demand to

accommodate pass-through rates in excess of 100%.

To illustrate this argument, we assume a log-normal distribution for the idiosyncratic price

responsiveness, which ensures that individual demands are all downward sloping (Train, 2009);

ϕi ∼ Φ(0, 1) = log-normal(0, 1). In Figure 3, we start from the MNL manifold and depict how

the shape of the manifold changes as we increase the standard deviation of the log-normal mixing

distribution σp from 0 to 1 for a fixed mean price sensitivity α.11 We find that manifolds now

cross into the log-convex region of demand with more than complete pass-through, a result that

is consistent with many of the (ε̂, ρ̂) estimates for the breakfast cereal products in Figure 1’s first

panel.

4.2 The Shape of Price Mixing Distribution

Figure 3 uses the example of the log-normal distribution to show that increasing the variation in

idiosyncratic price responsiveness increases the feasible curvatures the ML model can accommodate

for a given elasticity value. We now consider the choice of price mixing distribution, focusing on the

range of feasible elasticity and curvature combinations up to the CES boundary that a candidate

price mixing distribution can generate. We limit attention to two price mixing distributions common

in empirical work: normal and log-normal distributions.

4.2.1 Demand under a Normal Price Random Coefficient

The left panel of Figure 4 represents demand, elasticity, and curvature at different prices for a ML

model with a normal price random coefficient. We illustrate the case where the product attribute X

and consumer valuations for the attribute β both take on values of one; mean price responsiveness

remains at α = 0.5 and the standard deviation of the price random coefficient σp = 0.15 so that

10 Indeed the shift of each manifold to the right is proportional to the second order moment of the distribution Φi.
11Note that to say σp is “large” is only meaningful in its relation to the mean price coefficient (α).
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Figure 3: Multinomial and Mixed Logit Manifolds
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for higher valuations of the inside good. The other manifolds refer to the ML model with price random coefficients where
σ1
p < σ2

p < σ3
p < σ4

p. The random component of the slope of demand is more important for large values of σp.

we can address demand behavior both in the sub-convex and super-convex regions. We measure

quantity on the left axis and elasticity and curvature on the right axis. The top shaded area

identifies the log-convex region of demand, corresponding to curvatures greater than one.

Starting from the black solid line representing the MNL case when σp = 0, allowing for

heterogeneous price sensitivity rotates demand up to the red solid line as some consumers’ price

sensitivity is now lower. Demand elasticity increases monotonically in price for the MNL model

(black dashed lined), but the inclusion of the random price coefficient dampens this pattern (red

dashed lines). Indeed, the ML’s demand elasticity reaches a maximum.

In the right panel, we depict, among others, the demand manifold corresponding to this

particular demand specification with σp = 0.15; the manifold depiction illustrates that the maxi-

mum elasticity is reached precisely at the price level where the demand manifold crosses the CES

locus.12 For higher prices, elasticity decreases in price and demand becomes super-convex, violating

12Davis (2005) first addressed this behavior of demand elasticity estimates in discrete choice models. Chintagunta
(2002) documented empirically that demand elasticity is quasi-linearly increasing in price in ML models while
Björnerstedt and Verboven (2016) attributed this property to the linearity of conditional utility in price.
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Figure 4: Demand Manifolds: Standard Normal Price Mixing Distribution

(a) Elasticity & Curvature

 0.0  2.0  4.0  6.0  8.0 10.0 12.0 14.0 16.0 18.0 20.0
Price

0.0

0.2

0.4

0.6

0.8

1.0

Qu
an

tit
y

Demand (Left Axis)

MNL
Mixed Logit with
Price RC N(0, 1)

Mixed Logit Demand: Price RC Normally-Distributed

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

El
as

tic
ity

 (
) a

nd
 C

ur
va

tu
re

 (
)

Elasticity (Right Axis)

Curvature (Right Axis)

(b) Demand Manifold

 0.0  0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0
Demand Curvature ( )

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

De
m

an
d 

El
as

tic
ity

 (
)

CES Boundary

Super-Convex Region

MNL

p = 0.10
p = 0.11

p = 0.15

uij = Xj + ipj + ij

i = p i

i N(0, 1)

Vary Price-Sensitivity

Notes: Panel (a) contrasts quantity, elasticity, and curvature under MNL in black and ML in red. Panel (b) represents
demand manifolds in the (ε, ρ) plane. Light-shaded regions represent all feasible (ε, ρ) pairs conditional on the price-mixing
distribution.

Marshall’s Second Law. We also observe that in order for demand to be sub-convex, we require

less heterogeneity in price-sensitivity among consumers (i.e., smaller values of σp).

4.2.2 Demand Under a Log-normal Price Random Coefficient

The left panel of Figure 5 depicts the equivalent demand system under the assumption that

idiosyncratic price sensitivity is distributed log-normal with σp = 0.3. Relative to the prior case,

a log-normally distributed price random coefficient induces a larger rotation of demand as the

mass of consumers with low price responsiveness is larger. The ML’s price elasticity now grows

quasi-linearly in price for a larger price range. Thus, with a log-normal price random coefficient, it

is less likely that the manifold crosses into the super-convex region of demand. As with a normally

distributed price random coefficient, log-normally distributed idiosyncratic price responsiveness

accommodates a curvature above one, but the curvature quickly reaches a maximum at low prices

and converges asymptotically to ρ = 1 as the price increases.13

4.2.3 Normal vs. Log-normal Price Random Coefficients

The right panels of Figures 4 and 5 depict the demand manifolds when price random coefficients

are normally and log-normally distributed, respectively, for alternative values of σp. The light-red

shaded area identifies all combinations of (ε, ρ) within the sub-convex region of demand that are

feasible under each model for any combination of the structural parameters (α, σp, β).

The right panel of Figure 4 illustrates that while a normal price random coefficient accom-

modates some log-convex demands, the range of log-convex (ε, ρ) combinations is limited. For large

13This hints at demand manifolds becoming downward sloping at some price level in the log-convex region for the
log-normal mixture but not necessarily so for the normal distribution.
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Figure 5: Demand Manifolds: Log-normal Mixing Distribution

(a) Elasticity & Curvature: Log-normal
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values of σp, demand manifolds are upward sloping until they cross the CES locus. Constraining

demand to be sub-convex limits the role of idiosyncratic price responses in preferences, as the

admissible values of σp are small. The symmetric normal distribution includes both positive and

negative deviations from the mean price sensitivity α. Thus, unless the extent of heterogeneity in

price sensitivity is limited, the model has to accommodate an increasingly large share of individ-

uals with upward-sloping demands. The feasible log-convex elasticity-curvature combinations are

thus frequently characterized by a high elasticity of demand, effectively minimizing instances of

upward-sloping demand.

The utilization of a one-tailed log-normal distribution introduces skewness (Equation 18)

and expands the scope for more prominent differences in price sensitivity and curvature; the right

panel in Figure 5 shows larger values of σp continue to generate sub-convex demand. This results

in a much larger range of feasible curvatures for a given demand elasticity, in particular for less

elastic demands where firms enjoy more market power. Figure 5 hence shows that a model with a

log-normal price random coefficient can admit most well-behaved curvature-elasticity pairs in the

sub-convex region of demand, with the exception of a small set of (ε, ρ) combinations close to the

CES locus. As these are part of the feasible region of the specification with a normal price random

coefficient, we explore the ability of the generalized normal distribution as a mixture between a

normal and log-normal distribution to extend the set of (ε, ρ) pairs; see Appendix C.

4.3 Demographic Interactions and Demand Curvature Estimates

In empirical applications, researchers rely on the fact that idiosyncratic price responsiveness is cor-

related with demographics. Rather than imposing a distribution on idiosyncratic price sensitivities,

as we did above, one might therefore specify the idiosyncratic price sensitivity αi as a function of

an observable demographic di, i.e., α
⋆
i = α + πddi. The equivalence to the analysis of Section 3
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is apparent: it is now the empirical distribution of demographic di that underlies measure G(i) in

the manifold expression (3) and that determines the feasible combinations of (ε, ρ) pairs that the

demand system can accommodate. In Section 6.4, we consider how to relax the assumption that

di linearly shifts price sensitivity by allowing the data to determine a flexible relationship between

the demographic attribute and price sensitivity.

4.4 Summary

The analysis in this section indicates that a quasi-linear discrete choice demand model that in-

corporates flexible heterogeneity in consumer preferences for product attributes and, notably, in

price sensitivities does not impose substantial ex-ante restrictions on the curvatures and elasticities

the model can accommodate. In particular, the quasi-linear model is capable of accommodating

curvature-elasticity pairs all the way up to, and including, those observed in the CES demand

model.

5 Beyond Quasi-Linear Preferences

Quasi-linear preferences may be appropriate for representing the demand for low-priced products

where income effects are likely small. For products like the original car application in BLP , the

purchase price accounts for a substantial portion of consumer income, however. The indirect utility

specification in BLP accommodates income effects by incorporating a nonlinear function of outside

good spending into preferences. In this section, we explore the implications of this specification

for the demand model’s ability to encompass the full range of curvatures and elasticities associated

with sub-convex demand.

5.1 Flexible Income Effects

In contrast to the quasi-linear case where outside good spending enters consumers’ indirect utility

linearly, BLP specifies the preferences in Equation (6) with the following price sub-function:

fi(yi, pj) = α ln
(
yi − pj

)
. (19)

Both the quasi-linear price sub-function and BLP ’s alternative are, however, special cases of a

Box-Cox power transformation (Box and Cox, 1964) of outside good spending, which is consistent

with utility maximization in discrete choice contexts for any value of parameter λ ∈ R driving

the convexity or concavity of the transformation. We, therefore, specify the generalized price

sub-function,

fi(yi, pj) = α⋆
i

(
yi − pj

)(λ)
=


α⋆
i

(
yi − pj

)λ − 1

λ
, if λ ̸= 0 ,

α⋆
i ln

(
yi − pj

)
, if λ = 0 ,

(20)
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and explore how the value of the power parameter λ affects demand elasticity (10), curvature (11),

and the shape and position of the manifold (12) through its effect on f ′
ij and f ′′

ij in Equation (7).

In line with the BLP specification, we abstract from heterogeneity in price sensitivity and consider

the case of α⋆
i = α. A power parameter of λ = 0 thus yields the BLP model, while a power

parameter of λ = 1 results in a MNL model. This means that the income distribution captures any

idiosyncratic price responsiveness across individuals, modulated byλ.14

As in Berry, Levinsohn and Pakes (1999), we adopt a first-order Maclaurin series approxi-

mation (at pj = 0) of the Box-Cox transformation:15

fi(yi, pj) = α
(
yi − pj

)(λ) ≃ αy
(λ)
i − αpj

y1−λ
i

. (21)

As the first term in this sub-function does not vary across products j, the marginal effect of price

pj on indirect utility is again constant with f ′
ij = −α(yi)

λ−1 and f ′′
ij = 0. The resulting demand

elasticity and curvature are:

εj(p) = − pj
Qj(p)

∫
i∈I

− α

y1−λ
i

·σ2
ij dG(i) , (22a)

ρj(p) =

∫
i∈I

µij dG(i)×

∫
(1− λ)α2

y2−λ
i

· σ2
ij dG(i) +

∫
α2

y
2(1−λ)
i

· skij dG(i)[∫
− α
y1−λ
i

· σ2
ij dG(i)

]2 , (22b)

yielding a demand manifold of:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·

∫
i∈I

α2 ·
[
(1− λ)y−λ

i ·σ2
ij + skij

]
y
2(1−λ)
i

dG(i) . (23)

In Figure 6, we plot the demand manifold under various power parameters λ, assuming as

above that the valuation of the product attribute, βXj , equals one and price sensitivity λ equals

14 It is worth comparing our setup to the multiunit demand model of Birchall and Verboven (2022) who rely on a
different Box-Cox transformation in the price subfunction, f(yi, pj) = γλ−1

(
yλ
i − 1

)
λ−

(
pλj − 1

)
λ. The associated

conditional demand function of qij = (γyi/pj)
1−λ is a nonlinear function of the fraction of the allocated share of

income, γ, spent on a chosen product. Their transformation is an h-function bridging MNL and CES demands,
e.g., Nocke and Schutz (2018, Proposition VII, Appendix VI.1), which Anderson and de Palma (2020, §5.4) show
to be well-defined for λ ∈ (0, 1). Curvature flexibility thus results from a hybrid combination of these two demand
models, but disappears when the specification reduces to the quasi-linear unit-demand case when λ = 1. Our goal
in specifying subfunction (20) is instead to allow for curvature flexibility within the confines of a unit-demand setup
consistent with utility maximization (e.g., Roy’s identity holds for qij = 1). Our Box-Cox transformation parameter
can take any real value, accommodating stronger or weaker income effects and hence curvature flexibility.

15Note that for λ = 1, Equation (21) again leads to the MNL model, but for λ = 0, the price sub-function becomes
α ln yi − αpj/yi, which only coincides with (20) for yi = 1. The preference specification based on Equation (21) is
hence only approximately consistent with utility maximization.
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Figure 6: Box-Cox Transformation and Demand Manifolds
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0.5. We rely on a log-normal approximation to the U.S. income distribution in our representation

of yi. The figure illustrates that, as in the case of the quasi-linear utility with flexible idiosyncratic

price sensitivities, accommodating income effects via the approximate Box-Cox transformation of

outside good spending yields, for a power parameter between zero and one, preferences that can

accommodate curvatures close to those of the CES boundary.16

To provide some initial empirical context for the role of the Box-Cox power transform in

shaping elasticity and curvature of ML demand, we conduct a similar analysis to the one in the

introduction, where we display the elasticity and curvature combinations of two alternative models

of demand for breakfast cereal in the spirit of Nevo (2001). Now, we rely on the automobile data

from Berry, Levinsohn and Pakes (1995) to illustrate the elasticity and curvature properties of a

ML model with income effects modulated by the power parameter λ, contrasting the original BLP

specification (λ = 0) with a quasi-linear specification with a common price sensitivity (λ = 1) and

two in-between cases (λ = 0.5 and λ = 0.75). We estimate four separate sets of preferences holding

λ fixed at each value, otherwise following BLP in choice of specification and identification strategy.

16While we consider a power parameter λ ∈ [0, 1], in line with the empirical literature, Box and Cox (1964) consider
λ ∈ [−5, 5], which would expand the range of feasible curvature elasticity pairs beyond the ones depicted in Figure 6.
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Figure 7: Income Effects and Demand Manifolds
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Figure 7 shows the scatter plots of (ε̂, ρ̂) for each automobile model in the BLP data under these

four alternative specifications.

The top left panel represents the quasi-linear case. The average estimated automobile

demand elasticity is ε̂ = 2.75 with nearly full (single-product) pass-through, ρ̂ = 0.99, as any mixed

MNL without idiosyncratic price sensitivity is necessarily log-concave, as shown in Section 4.1.

Note also the sorting of automobiles by price: the estimated demand is substantially more elastic

for the most expensive vehicles.

The demand estimates are log-convex for all automobile models whenever we allow for

some income effects, as shown in the other three panels of Figure 7. Reducing λ increases the

importance of income effects through smaller price responses by higher-income households. Moving

from quasi-linear demand to demand with income effects does not change the average estimated

elasticity significantly, reaching ε̂BLP = 2.83 when λ = 0. Despite the similar average price elasticity,

the distribution of curvature (passthrough) varies substantially across specifications. This is similar

to what we observed in the motivating RTE cereal case. Relative to the quasi-linear specification,

the expensive (cheap) market segment is much less (more) competitive under the BLP model.
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Curvatures decrease monotonically with λ, with ρ̂ = 0.99 when λ = 1 to ρ̂BLP = 1.35 when

λ = 0 (which, in this case, coincides with the curvature of the CES model evaluated at the average

elasticity: ρ̂CES = 1 + 1/2.83 = 1.35). Average pass-through rates thus increase from 99% in the

quasi-linear specification without income effects to 179% with the strong income effect specification

of BLP demand – dramatically different predictions. We report estimates of average elasticity,

curvature, price markup, and pass-through rate for each scenario in Table D.1 in Appendix D.

The intermediate cases of λ = 0.5 and λ = 0.7 make clear that income effects broadly not only

restrict the range of demand elasticity (and markup) estimates but also expand the range of demand

curvature (and pass-through rate) estimates that a discrete choice model of demand can deliver.

5.2 Summary

The preceding sections demonstrate that the ML model exhibits significant flexibility, not only in

capturing realistic substitution patterns but also in generating a wide range of cost pass-through

when we allow for heterogeneity in both consumer valuations for product attributes and sensitivity

to price. Idiosyncratic attribute valuations give firms localized market power, leading to under-

shifted pass-through, while consumer heterogeneity in price sensitivity entails over-shifted pass-

through. The combined effect of these two forces drives a given product’s pass-through. The

above examples also demonstrate, however, that the exact specification of heterogeneity in price

sensitivity has important consequences for the economic outcomes of interest. This raises the

question of identifying a flexible specification for price sensitivities and, consequently, demand

curvature in an empirical setting, the topic of the next section.

6 Empirical Applications

We now discuss the estimation and identification of flexible demand curvature in an empirical

setting. We begin by providing broad intuition for the link between the distribution of price

sensitivity and demand curvature. We rely on this intuition to propose an identification strategy

that exploits heterogeneous consumer responses to exogenous price changes and show its success at

identifying flexible price sensitivities in ML models with and without income effects using Monte

Carlo evidence. As our price sensitivity specification nests the standard ML models, we also show

the consequences of model mis-specification through Monte Carlo simulation and an empirical

application from ready-to-eat cereal.

6.1 Heterogeneous Price Sensitivity and Pass-Through Over-shifting: Intuition

We have thus far taken heterogeneity in price responsiveness as a demand primitive that implies

both over-shifted pass-through and a wide range of feasible elasticity-curvature combinations.

Product demand is, however, not only a function of consumer preferences but also of market

definition – which is often controlled by the firm. We, therefore, start this section by presenting
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Figure 8: Pass-through implications of Targeted and Uniform Monopoly Pricing
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(b) Uniform Pricing
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a straightforward example of pricing by a monopolist who caters to two consumers with different

demand profiles. The purpose of this illustration is twofold: first, to illustrate scenarios wherein

firms may choose more than complete cost pass-through, and second, to provide intuition for the

instrumentation strategy we employ to identify empirically a flexible distribution of price sensitivity.

Figure 8 depicts, in the left panel, the demands of the two consumers with simple linear

demands of different slopes. Consider first the case where the monopolist can set individual prices

for each consumer. The left panel illustrates the well-known result of monopoly under-shifting: in

response to a drop in marginal cost from $2 to $1, the monopolist lowers each consumer’s price by

$0.5.

In many empirical settings, including the ready-to-eat cereal context we consider below,

firms do not practice such perfect price discrimination. Consider therefore the case where the

monopolist charges a single price to both customers. The right panel shows that in setting the

uniform price, the monopolist now faces a kinked demand.17 At the initial marginal cost of $2, the
monopolist’s optimal price excludes the low-valuation consumer from the market: serving only the

high-valuation consumer is more profitable. Once marginal cost drops to $1 though, setting a price

that induces both consumers to buy becomes more profitable; the optimal price drops from $6 to

$4, and pass-through is over-shifted to induce the price-sensitive consumer to buy.

More generally, in responding to a drop in cost, a firm serving heterogeneous consumers with

a uniform price trades off the standard incentive to remain on the elastic portion of demand and

the benefits of drawing in a larger, more price-sensitive, customer-base when costs fall. The right

17 In an influential paper, Kimball (1995) first suggests a smooth differentiable version of this kinked demand to
ensure subconvexity and markups increasing with the scale of production in macro models.
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panel illustrates that, for a given change in cost, the firm’s choice of cost pass-through depends on

the initial price level: had we started from a higher initial marginal cost and hence, a higher initial

uniform price, the firm would continue to serve only the high-valuation consumer when its cost

drops by $1, reducing the price by $0.5 as in the left panel. Our identification strategy exploits this

idea that for demands outside the family of iso-convex demand (which includes the linear demand

as a special case; see Mrázová and Neary, 2017), the pass-through of cost shocks differs at different

price levels and/or across different demographic groups.

6.2 Instruments to Connect Demand Manifolds and price sensitivity

The previous discussion suggests that an interaction between cost shifts and price levels can serve

as an instrument to recover the shape of the distribution of consumers’ price sensitivities and hence,

the curvature of a unit demand function. Empirically, one could represent such price sensitivities

with a flexible function of consumers’ demographics, a flexibly distributed price random coefficient,

or nonlinear income effects through the Box-Cox power parameter.18

A challenge, of course, that arises in taking this idea to data, is the endogeneity of prices

in an oligopoly equilibrium: unobserved demand shocks ξ may confound the response in price to

a change in cost ω. We address this issue here by constructing exogenous price predictions via a

reduced-form hedonic price regression based on exogenous characteristics xt and cost shocks ωt:
19

pt = γ0 + γ1xt + γ2ωt + ut . (24)

We run the above regression and use the results to construct the vector of predicted (exogenous)

prices p̂t. We then follow Gandhi and Houde (2020) and construct differences in price-space between

product j and its competitors:

Zp
jt =

∑
r

(
p̂rt − p̂jt

)2

. (25)

Equation (24) enables us to construct exogenous prices by separating price effects due to changes

in demand (via ξ) from changes in cost (via ω). It is also a simple pass-through regression. Cost

pass-through, therefore, informs the identification of demand primitives related to curvature using

γ̂2 via the substitution patterns captured in equation (25). Since curvature in quasi-linear and

income-effect discrete choice models comes through heterogeneity in price-sensitivity, equation (25)

identifies the price random coefficient (σp) in a quasi-linear utility model and our proposed Box-

Cox income transformation (λ) in a consumer model with income effects. The instrument traces

the demand manifolds using cost shocks, holding constant exogenous demand shifters at different

18This is the same argument used long ago in the field of transportation to account for decreasing marginal utility
of travel and compare the benefits of a given reduction time for commuting trips of very different length (Gaudry
and Wills, 1978; Koppelman, 1981).

19Alternatively, one could construct prices non-linearly using firm first-order conditions as in Berry et al. (1999).
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price levels. Interacting this instrument with observable demographics identifies the case when

price-sensitivity is correlated with the same demographics.

6.3 Flexible Manifold Estimation: Monte Carlo Analysis

We now conduct a Monte Carlo analysis to demonstrate the validity of our identification strategy

and evaluate the potential for mis-specified demand systems to introduce biases in economic out-

comes of interest – elasticity and curvature. We focus on a specification of preferences with income

effects specification but also apply the instrument in an empirical application with quasi-linear

demand below. Consider a setting with J=20 differentiated products sold by single-product firms

competing in prices for T =50 periods. Consumer indirect utility takes the following form:

ujlt = β0 + β1x
1
jt︸ ︷︷ ︸

Common Across
Consumers

+
K∑
k=1

(
β2,k + σX,kνik

)
x2jt,k︸ ︷︷ ︸

Idiosyncratic
Characteristic Tastes

− α · pjt · yλ−1
it︸ ︷︷ ︸

Idiosyncratic
Price Sensitivities

+ ξjt + ϵijt , (26)

where, as above, income effects decrease as λ moves from zero to one. In this specification, some

product characteristics are observed by the researcher ({x1jt, x2jt}) while others are only observed

by consumers and firms (ξjt). Valuation of the product attribute x1jt is common across individuals

and we draw x1 independently from a uniform distribution. We model consumer preference

heterogeneity in product characteristics via x2jt with two elements (K=2) including a constant and

a uniformly-distributed product characteristic. As in Gandhi and Houde (2020), product attributes

(other than the constant) vary across time.20 Consumers, therefore, have preference heterogeneity

over the J inside goods as a category, via the constant random coefficient, and over variation in

the observable product characteristic across the J products and T time periods. We set β2=1 and

σX = 5 for k = 1, 2. We assume that the unobservable characteristic ξjt is distributed standard

normal. We model heterogeneous price sensitivity using the above approximation to the Box-Cox

transformation of outside good spending modulated by parameter λ. We assume that consumer

income yit is drawn from a log-normal distribution and parameterize these draws following Andrews,

Gentzkow and Shapiro (2017), generating market (e.g., time) variation in these draws by allowing

the variance of income to vary.

Single-product firms choose prices simultaneously each period given their constant marginal

costs cjt. In the static oligopoly Bertrand-Nash equilibrium, period t equilibrium prices p⋆t , satisfy

the set of J first-order conditions for the firms:

p⋆jt = cjt − sj(δt, p
⋆
t ;σX , σp)×

[
∂sj(δt, p

⋆
t ;σX , σp)

∂p⋆jt

]−1

. (27)

20 In empirical applications, such as automobiles, this is due to product remodels, which the researcher treats as
exogenous to unobserved variation in demand via ξ. For our purposes, this is equivalent to allowing for exogenous
product entry and exit – a common assumption in the empirical literature.
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Marginal costs are a function of product characteristics and cost shocks:

log cjt = γ0 + γ1 log x
1
jt + γ2 log x

2
jt + ωjt + ζjt (28)

We set all γ parameters equal to 1 and draw cost shocks {ωt, ζt} from standard normal distributions.

The researcher observes ωt which provides identification for the distribution of price sensitivity. We

generate pricing equilibria in the true data-generating processes by selecting α and β0 so that the

average own-price elasticity is 2.5 with a 20% aggregate inside share for each simulation.

We consider the objective of a researcher who estimates consumer demand given observed

prices, quantities, and ω cost shocks following the best practices outlined in Conlon and Gortmaker

(2020). The researcher also specifies the supply side as in Berry et al. (1999) and correctly

specifies the outside option as well as the distribution generating the random coefficients for product

characteristics νi. The researcher, however, may incorrectly model income effects and hence, the

distribution of price-sensitivities, as in Section 4.3. The goal of this Monte Carlo analysis is to

investigate the success of an empirical demand model with a flexible Box-Cox power transformation

of outside good spending at identifying and recovering the true demand curvature underlying the

data-generating process.

We consider three data-generating processes: we simulate demand and cost data assuming

that (1) λ = 0, as in the original BLP specification; (2) λ = 1, resulting in quasi-linear demand;

and (3) λ = 0.7, an in-between case with weaker income effects than case (1): the distribution of

αi is compressed, with a coefficient of variation of only 0.56, relative to 3.57 for the case of λ = 0.

In the following, we denote case (1) as ‘log’; case (2) as ‘linear’; and case (3) as ‘box-cox’ or ‘bc’.

With these three data sets, we then estimate seven specifications. In scenarios (1)-(3), we

specify the demand model correctly and verify that we can recover the underlying preferences.

In scenarios (4) and (5), we specify general ‘box-cox’ preferences to recover the simpler ‘log’ and

‘linear’ preferences. Lastly, in scenarios (6) and (7) we investigate model mis-specification by using

either a ‘log’ or a ‘linear’ demand model in estimation to recover ‘box-cox’ preferences.

Identification. We identify the characteristic random coefficients (σX) using the Differentiation

IVs of Gandhi and Houde (2020). In Scenarios (3) through (5), where the researcher estimates

demand allowing for flexibility in the price sensitivity distribution via λ, we include the interactions

of the price differentiation instrument of Gandhi and Houde (2020) with moments of the income

distribution:

ZP
jt =

∑
r

(
p̂rt − p̂jt

)2

, (29a)

ZD
jt = ZP

jt ⊗
{
inc10%t , inc50%t , inc90%t

}
. (29b)
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Table 1: Monte-Carlo: Parameter Estimates

Scenario α (varies) λ (varies) σx = 5 σ0 = 5 Coeff .Var MAB Corr .

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231 -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947 0.00 0.00 0.00 0.00 0.66 0.66

3: bc–bc 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735 -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–bc 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121 -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–bc -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: bc–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218 -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: bc-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987 -0.57 0.00 -0.16 0.22 -0.44 0.43

Notes: The first column indicate the true data-generating process and the researcher’s assumed specification of the price-income
interactions. The next three (double) columns report the average bias (A.Bias) and root mean standard error (RMSE) of the
income parameter λ and drivers of the idiosyncratic characteristics tastes using 1, 000 replications for each scenario. The price
coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx and σ0 (constant)
are both set to 5. Column “Coeff .Var” reports the coefficient of variation of the distribution of price responsiveness of the
data-generating process as well as of the estimated model. The remaining set of columns report the coefficient of variation for
idiosyncratic prices-sensitivity parameters (αi), the median average bias (MAB) for average product elasticity and curvature
(ε, ρ), and the average correlation between product-level elasticity and curvature (corr(εj , ρj)).

Discussion of Results. We present the parameter estimates in Table 1 for seven distinct sce-

narios. In general, across curvature targets, the estimation succeeds at recovering the underlying

parameters when the researcher’s preference specification coincides with the true underlying data-

generating process, i.e., Scenarios (1)-(3), consistent with Gandhi and Houde (2020) and Conlon

and Gortmaker (2020). The estimates of elasticity (market power), curvature (pass-through), and

their correlation are consistent with the true quantities in the data.

In Scenarios (4) and (5), the researcher models consumer price-sensitivities flexibly using

a Box-Cox transformation of outside expenditure and estimates the income parameter λ. The

estimates of the Box-Cox model accurately estimate λ and the random coefficients of product

attributes when the underlying preferences include a logarithmic function of income, although it

overestimates the average price responsiveness α. We also observe that Box-Cox model accurately

recovers the distribution of price-sensitivity (columns labeled ‘Coeff. Var’), as well as the elasticity-

curvature pairs.

Scenarios (6) and (7) address mis-specification biases of imposing particular price-income

interactions when the true data-generating process is Box-Cox. Scenario (6) assumes the logarithmic

transformation of outside good spending, while Scenario (7) assumes quasi-linear preferences of

Nevo (2001). The assumed logarithmic specification leads to a particularly large mis-specification

bias in all estimated parameters. The large positive average bias for the random coefficients on the

characteristic, σx, leads to greater substitution within inside products than the true data, while the

average bias of −2.2 for the constant random coefficient indicates greater substitution to the outside

option than the true data. Not surprisingly, the economic implications are significant as the average

estimated elasticity is −1.95, or 0.55 points less elastic than the true data-generating process,

while he average estimated curvature is 0.69 points above the true data-generating process. The

researcher, therefore, would tend over-estimate both market power and pass-through. Moreover,

specifying log preferences ex ante amounts to imposing a different rate of change of the demand
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elasticity with income from the true relationship under Box-Cox preferences, leading to much

greater heterogeneity in price sensitivity than the underlying data. Such a bias has consequences

for welfare calculations, especially since solving for changes in consumer surplus requires accounting

for income effects. If the researcher assumes that preferences are quasi-linear, instead, as in scenario

(7), the estimated elasticity of −2.66 understates firms’ true market power while the estimated

curvature is 0.22 points below the true data indicating the estimated model will under-predict the

firm pass-through.

The final two columns of Table 1 demonstrate that mis-specification impacts the distribution

of estimated elasticity-curvature pairs among products. Looking across the different data-generating

processes we observe that the shape of the distribution of price sensitivities, via the income dis-

tribution, determines the relationship between demand elasticities and curvature, i.e., the demand

manifold. Imposing specific distributions of price sensitivities – Scenarios (6)–(7) – results in

a flipped sign of the correlation between product-level elasticities and curvatures, or the slope

of the manifold, leading to a mischaracterization of the relationship between market power and

pass-through among the products. This could have large consequences for the evaluation of the

economic effects of mergers, cost changes, taxation, or tariffs, particularly for different consumer

and firm types.

Competition, Demand Curvature, and Pass-through. Our graphical illustrations of the

demand manifold relied on the monopoly case, where the connection between demand curvature

and pass-through is straightforward. This connection is less clear, however, in empirical settings

where firms offer asymmetrically differentiated products, as in our empirical application below.

In this section, we use the Monte Carlo environment to compare monopoly pass-through

(i.e., assuming, for each product, that dp
dc = 1

2−ρ) with pass-through in our simulated 20-firm

single-product environment. We use the Box-Cox indirect utility and vary λ to generate equilibria

of varying degrees of demand curvature. For each simulated equilibrium, we calculate the average

pass-through two ways: First, under the assumption that each firm’s pass-through rate is that of

a monopolist and under the actual market structure, and second by solving for equilibrium pass-

through rates due to the introduction of a common 10% increase in marginal costs. We construct the

average “oligopoly” pass-through rate as the simple average of equilibrium product pass-through

rates. We then illustrate the effect of competition on the connection between pass-through and

demand curvature by plotting the “monopoly” and “oligopoly” pass-through conditional on demand

curvature (Figure 9).

Competition pushes equilibrium pass-through towards one thereby muting the upward

pricing pressure generated by the change in marginal costs. The increase in the common cost

leads to both direct and indirect pass-through effects. The price of a product always increases

with its own cost. This is the direct effect captured by monopoly pass-through. The indirect effect

collects substitution effects induced by price changes of other products similarly affected by the
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Figure 9: Competition and Pass-Through Rates
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Notes: Figure presents Monte Carlo results across equilibria of median demand curvature. We generate each equilibrium
following the environment discussed in Section 6.3 for the Box-Cox utility specification where λ∈ [0, 1]. For each market t in
each equilibrium, we solve for the median (across 20 products) demand curvature. “Monopoly” represents the pass-through
rate of a single-product monopolist, e.g., (4). “Oligopoly” is the median pass-through rate for each market t in each
equilibrium generated by a 10% increase in marginal costs. The shaded region reflects the 95% confidence interval.

cost increase. The net effect thus depends on “how far” a particular product is from its closest

substitutes in product space.21

The Monte Carlo evidence thus points to the advantages of employing a flexible specification

of consumers’ price sensitivity in recovering unbiased elasticities and curvatures from the data

and illustrates the continued link between curvature and pass-through in settings beyond the

monopolist cases we considered above. As competition attenuates pass-through towards complete

pass-through, however, the importance of allowing for flexible pass-through estimation in assessing

policy outcomes of interest is ultimately an empirical question. We, therefore, conclude this section

with an application.

6.4 Flexible Manifold Estimation: Ready-To-Eat Cereal

In this section, we investigate the implications of specification bias by evaluating the consumer

welfare implications of uniform pricing in the ready-to-eat cereal market. Recent empirical work

(Adams and Williams, 2019; DellaVigna and Gentzkow, 2019; Hitsch, Hortaçsu and Lin, 2021)

highlights the infrequent use of fine market segmentation strategies by retailers in similar consumer

packaged goods despite the increasing availability of detailed data that might facilitate such prac-

tices. This work focuses on evaluating explanations for the lack of customized pricing, including

21See Footnote 5. Häckner and Herzing (2016) use these same arguments to show the difference in incidence in a
monopoly and in a multi-product oligopoly. Frieberg and Romahn (2018) illustrate how the wedge between the
two lines of Figure 9 varies with the ownership structure using the Swedish beer industry as a case study.
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frictions, such as managerial costs to optimizing pricing, and the more limited profit gains to

segmentation under oligopoly.

Our objective here is different: we aim to assess the contribution of demand specification

to conclusions about the consumer welfare consequences of targeted pricing, and the role of the

estimated curvature therein. Aguirre et al. (2010) establish the connection between aggregate

welfare gains from third-degree price discrimination and curvature, building on work by Robinson

(1933) and others which showed that third-degree price discrimination enhances aggregate welfare

only if it increases aggregate output. Along the way, we assess differences in estimated substitution

and cost pass-through implicitly introduced by the researcher’s functional form assumptions.

Demand Curvature and Price-Discrimination. Consider the case of a single-product monop-

olist who sells to two different markets but produces with a common cost function. Let p denote

the uniform price and {pw, ps} the profit-maximizing market-specific prices for the “weak” and

“strong” markets, respectively, where pw < p < ps. Aguirre et al. (2010) show that uniform pricing

increases consumer welfare if the demand function in the strong market is at least as convex as that

in the weak market at the uniform price, or, in terms, of curvature, ρw(p) < ρs(p) . Moreover, the

marginal welfare effect of uniform pricing is decreasing in the difference between demand curvature

in the “weak” and “strong” markets. This indicates that the distribution of demand curvature,

particularly its variance, is an important ingredient in the evaluation of the welfare implications of

uniform pricing.

Demand Specification. We abstract from store choice and represent consumer i’s choice of which

product j to purchase at store l in week t using the quasi-linear indirect utility in Equation (13).

We include, as a product characteristic, the sugar content of product j and allow preferences for

sugar content to vary with the consumer’s observed demographics Dil (the presence of children)

and income yil, as well as an unobserved preference shifter νil that we assume to be distributed

standard normal. We allow for the same heterogeneity in the valuation of the outside good to

capture systematic differences across consumers in the overall taste for cereal, part of which may

correlate with household demographics.

We now know that demand curvature follows directly from the distribution of heterogenous

tastes and introduce two ways to model to model this flexibly. First, we introduce additional

flexibility in how demographics enter the price coefficient α⋆
i . We allow the presence of kids to

shift α⋆
i linearly, but follow Nevo (2001) in accommodating a non-linear effect of household income

on price sensitivity, as prior work has found sizable differences in price elasticities across low- and

high-income consumers in the RTE market. Note, however, that in a quasi-linear model, such

patterns do not represent income effects; they simply capture differences in purchase behavior by

consumers of different income levels. There are a number of ways of introducing such flexibility in

α⋆
i . For example, one might allow price sensitivity to differ by income bin, or one could employ more

complex methods such as sieve estimation (e.g., Wang, 2022). We found, however, that leveraging
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the Box-Cox transformation provides greater flexibility with minimal computational burden. As

in Equation (20), we thus allow the power parameter λ to reflect differences in price sensitivity

between low- and high-income consumers:

y
(λ)
il =


yλil − 1

λ
, if λ > 0 ,

ln
(
yil
)
, if λ = 0 .

(30)

A nice feature of the Box-Cox transformation is that it nests common empirical applications. A

power parameter of λ = 1 corresponds to a linear effect of income on price sensitivity and λ = 0

denotes the case of log income, but the transform can also accommodate a convex relationship

between income and price sensitivity with λ > 1. The final price coefficient that we specify is

αi⋆ = − exp(α+ πpy
(λ)
i + πk

1
kids
i ). (31)

where the exponential operator is useful to guarantee downward-sloping demand for all consumers.

Our second approach to introducing flexibility again uses a Box-Cox transform the income

distribution but this time in order modulate the degree to which high- and low-income consumers

choose whether to buy one of the J RTE cereals or the outside option. From Section 4 we know

that allowing for flexibility in the price sensitivity allows for curvature (and pass-through) to exceed

unity while allowing for flexibility in non-price attributes decreases curvature. By focusing on the

income distribution, we show how flexibility can be introduced on a single demographic to allow

movement in what the estimated model will allow. Providing flexibility on other demographics

follows directly and is only limited by whether the customer has identifying data moments.

We rely on this specification of preference heterogeneity, together with logit shocks εijlt to

consumer i’s utility from product j, in calculating the probability that consumer i purchases product

j in market l in period t, sijlt, as in Equation (8). We derive aggregate demand for product j in

each store location by integrating over the distributions of observable and unobservable consumer

attributes Dil, yil, and νil, denoted by PD(Di), Py(yi), and Pν(νi), respectively, and scaling the

market share for product j in market l at time t with the market’s size:

sjlt = Mlt

∫
νl

∫
Dl

∫
yl

sijltdPy(yi)dPD(Di)dPν(νi) . (32)

In deriving the product’s aggregate demand, we follow Backus, Conlon and Sinkinson (2021) in

relying on an estimate of weekly store traffic as the potential market size Mlt. To capture variation

in store traffic across weeks, we rely on milk and paper towel purchases, the two largest product

categories in the IRI data, and project weekly cereal sales on weekly milk and paper towel purchases.

We then scale predicted cereal purchases such that the predicted average outside option share

across stores matches the share of shopping occasions that do not include cereal purchases in the

IRI micro-data panel.
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Estimation. We employ a standard Generalized Method of Moments (GMM ) estimator. We

partition the parameter space into (θ1, θ2) where the first set of parameters govern exogenous

variables which enter consumer indirect utility linearly, while the second set, including λ, enter non-

linearly. We augment data with the consumption micro-moments (Petrin, 2002; Berry, Levinsohn

and Pakes, 2004) similar to Grieco, Murry and Yurukoglu (2021) and follow Backus et al. (2021)

in estimating preferences without imposing supply-side aggregate orthogonality conditions. We

also include brand and market (city-week) fixed effects to absorb unobserved brand and market

characteristics. The structural errors are then brand-market-week demand shocks; e.g., an increase

in demand for Cheerios in a given market.

The GMM estimator exploits the fact that at the true value of parameters θ⋆ = (Σ⋆,Π⋆, λ⋆),

the demand instruments (ZD) are orthogonal to the demand-side structural errors ξ(θ⋆), i.e.,

E
[
ZD′

ξ(θ⋆)
]
= 0, so that the GMM estimates solve

θ̂ = argmin
θ

{
g(θ1, θ2)

′Wg(θ1, θ2)

}
, where g(θ1, θ2) =

[
gD(θ1, θ2)

gM(θ1, θ2)

]
, (33)

where gD(θ1, θ2) represents the orthogonality conditions of interacting the structural errors with

instruments, gM(θ1, θ2) represents the squared distance between micro-moments implied by the

model at guess (θ1, θ2) and the empirical micro-moments, and W is a positive, semi-definite the

weighting matrix.22,23

Our estimates rely on the following instruments. We identify the characteristic random

coefficient for sugar content using the differentiation IVs of Gandhi and Houde (2020). The intuition

here is that exogenous variation in the availability of products that are similar in sugar content

increases substitution for a given product. We similarly identify the random coefficient on the

outside option using the total number of cereal products carried in store l in week t. Both of these

instruments derive from the available variation in product set discussed in Appendix E.

Our instrumental variable for price relies on cost data for different grains and sugar sweet-

eners to capture time-series cost shocks that vary by brand but are common across geographic

markets. This accounts for the fact that a given brand is usually produced in a single factory and

shipped to stores.24 We generate predicted prices by projecting price on these input commodity

22As the instruments come from different data sources, the weighting matrix is block-diagonal. We compute the
weighting matrix for the aggregate orthogonality moment conditions using the standard 2-step process. We
construct the optimal weighting matrix for the micro-moments by bootstrapping the IRI panel data with re-
placement, for each sample constructing the corresponding micro-moments, and inverting the covariance matrix of
the bootstrapped sample (Gourieroux, Monfort and Renault, 1993).

23We solve (33) using first the aggregate demand instruments (ZD) to find an initial estimate θ̂ and then generate an
approximation to the optimal aggregate instruments following Berry et al. (1999), Reynaert and Verboven (2013)
and Conlon and Gortmaker (2020).To increase the likelihood of achieving a global minimum, we employ the Knitro
Interior/ Direct algorithm suggested by Dubé, Fox and Su (2012) starting from several different initial conditions.

24We found that also including measures of distance between store and factory interacted with diesel fuel prices
yielded small and insignificant point estimates in a simple first-stage price regression so we have not included fuel
prices in our specification.
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prices interacted with “type of grain” used in production of the cereal, sugar content (grams of

sugar) interacted with the price of sweeteners, and exogenous product characteristics. As in Backus

et al. (2021), we found doing this in a Random Forest model more effective than a linear projection

as the Random Forest is better able to approximate the nonlinear effects of cost changes reflected

in firms’ optimal prices. Given predicted price, we generate a differentiation instrumental variable

(Zp) that captures substitutability of products in “price-space”.

Identification of the mean price coefficient (α) comes via p̂ (i.e., through exogenous cost

shocks to the commodity prices, particularly sweeteners) while we identify the coefficient of price

interacted with income (πp) and the Box-Cox transform parameters (λp, λc) in part using the

interaction of the price differentiation instrumental variable with moments of market l’s income

distribution:

ZD
t = Zp

t ⊗
{
1, %kids, incX%

lt

}
, (34)

where incX%
lt corresponds to the Xth-percentile store l’s fitted household income distribution yl; we

consider average income quartiles. The interaction of predicted price and percentiles of the income

distribution allows us to to identify the shape of the distribution of price sensitivity – a feature

generated by the Box-Cox parameter λ.

As λp regulates the distribution of price-sensitivity across consumers and therefore consump-

tion patterns among low- and high-income consumers, identification comes from the likelihood that

consumers buy inexpensive versus expensive varieties conditional on income. For example, when

λp=1 marginal differences in price sensitivity across income levels are uniform. Hence, the predicted

average price of the chosen product changes uniformly across income groups, all-else-equal. When

λp = 0 we observe that small differences in income will yield very different consumption patterns

with respect to price at low-income levels. We would therefore observe in the data that the average

price paid between consumers across the lowest income groups would look very different while the

average price paid among the highest income groups would change little. Just the opposite is true

for the case when λp>1 as the gradient in the average price paid across low-income consumers is

flat while we observe a large gradient across high-income consumers. At the same time, the added

flexibility of the Box-Cox transform does not preclude, for example, finding that wealthy consumers

are less price sensitive than poor consumers. The sign of the price interaction, πp governs such

relationships. A similar argument holds for the Box-Cox transform of income which is interacted

with the interaction term πc to regulate the degree to which high- and low- customers are more or

less likely to purchase one of the J RTE cereal products versus the outside option all else equal.

Additional identification comes from using the IRI panel data to construct micro-moments

that are particularly useful in identifying differences in demand which are correlated with de-

mographics, including income.25 We include (1) average price paid across the top three income

quartiles (relative to the first income quartile) among households that purchase any cereal variety,

25The IRI micro data applies for a subset of cities so we only generate model micromoments for these cities to ensure
the moments are comparable.
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and (2) whether a customer buys a cereal variety across income quartiles. We also include as

micro-moments the correlation between price and whether the family has kids to identify the effect

of presence of children on price sensitivity, These moments aid in identifying πp, πc, πk, λp, λc

and therefore aid in identifying the price-sensitivity and willingness-to-pay distributions in the

underlying consumer population.

Finally, we allow for substitution among the 41 RTE cereals in our sample to be driven

by observaable customer characteristics as well as unobservable (to the econometrician) taste

heterogenity for sugar (σs) and for RTE cereals (σc) generally. The former is identified via the

(exogenous) introduction of added-sugar cereals in a market. The latter is identified via remaining

variation in the micro-moments for whether a customer buys a cereal which cannot be explained.

Results. We consider three versions of the model: one where we allow preferences to vary with

the distribution of income in a flexible way; i.e., we estimate {λp, λc} and the remaining two as

specifications where we use log-income (i.e., λ = 0) and income (i.e., λ = 1) as proxies for how

preferences for RTE cereal and price sensitivity vary with customer income. The GMM estimator

and instruments are common across all specifications in order to make the results comparable. We

also consider an unreported simple multinomial logit specification to provide a base case. Table (2)

presents parameter estimates based on a set of N=1000 simulated agents per market.

We find that all models generate reasonable parameter estimates in implying intuitive

patterns among consumers. For example, we observe downward-sloping demand for all model

specifications and find that consumers become less price-sensitive as their income grows. Households

with kids are more price-sensitive than households without kids, but are more likely to buy cereal

overall, and high-sugar cereal specifically (Kids-Sugar > 0).

However, matching the price gradient across household income requires a transformed

income distribution (λ̂p=1.7), and our estimates enable us to reject log-transformed income (λp=0)

which is the prevailing approach for modeling price-income interactions in the literature (e.g., Nevo,

2001) as well as using raw income (λc,p = 1). We also observe that allowing for flexibility in the

income distribution for non-price characteristics (i.e., the value of RTE cereal) is important as

again reject using log-income and raw income as proxies for non-price preferences among low- and

high-income consumers.

In terms of implications, mixed logit models generate similar estimates for the demand

elasticity while the MNL model generates relatively more elastic demand. Our flexible approach

generates demand estimates which feature more curvature than the other models as well as greater

variation. These results imply greater (theoretical) firm price-responses to a change in marginal

cost. Finally, our Flexible model also predicts less diversion than either the “Income” or “Log-

Income” models. This result follows directly the “constant” random coefficient which is precisely

estimated in all models but larger in the “Income” and “Log-Income” models (2.7 and 6.9, respec-

tively). Recall that identification of the random coefficients can also come from the micro-moments.

We find that the estimator in both restricted models turns to the unobserved variation taste for
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Table 2: IRI Ready-To-Eat Estimation Results

Parameter Flexible Income Log-Income

Box-Cox Transform (λ)

Income-Constant (λc) 1.3970 - -

(0.1434)

Income-Price (λp) 1.7287 - -

(0.1151)

Price (α) 2.4069 1.8632 1.9103

(0.0341) (0.0212) (0.0198)

Random Coefficients (Σ):

Constant 1.8448 2.6593 6.9369

(0.2287) (0.1268) (0.1752)

Sugar 0.7276 0.5909 0.1143

(0.1129) (0.1189) (6.1729)

Demographic Interactions (Π):

Income-Constant -0.0543 0.4579 1.2056

(0.066) (1.0938) (1.4836)

Income-Price 0.0260 -0.4435 -0.7644

(0.0121) (1.0535) (1.0195)

Kids-Constant 0.5387 0.7624 1.7556

(0.3035) (0.1909) (1.0419)

Kids-Price -0.2432 -0.3320 -0.3453

(0.0358) (0.0369) (0.0386)

Kids-Sugar 0.9136 1.1020 1.2167

(0.0965) (0.1051) (0.1096)

Implications:

- Elasticity 1.93 1.91 1.88

- Curvature 1.17 1.12 1.07

- Diversion to Outside Good 0.48 0.39 0.18

Notes: Estimates (standard errors in parentheses) based on IRI scanner data from 2007
to 2011. See Appendix E for further information regarding the data set. Sample
amounts to 85,829 brand-chain-week observations. GMM estimates include brand and
market (city-week) fixed effects. Estimated models include the same set of identifying
GMM instruments and cost instruments (commodity prices) discussed in Section 6.4.
All statistics under “Implications” correspond to the brand-store-week average. Source:
Authors’ calculations.

RTE cereal when it can’t match the micro-moments using income or log-income.26 the end effect

then is that the estimated models have substantially greater substitution than our flexible model.

As the flexible model nests the restricted model, we conclude that these ex ante restrictions placed

by the researcher introduced a specification bias which resulted to substitution patterns which are

too large.

26See Table E.1 in Appendix E.
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Discussion. What explains these differences in curvature and substitution but not elasticity? In

Table E.1 we present the micro-moments generated by each model specification. We find that all

mixed logit demand specifications are able to match the non-price moments (bottom two panels)

but that additional flexibility is needed to match the expected how the price each customer pays

for RTE cereal changes as their income increases. In the data, we observe the average price paid by

customers in second income quartile is 0.2% greater than the average price paid by customers in the

first income quartile, and that this increases to 5.2% for customers in the fourth income quartile.

Neither the log-income nor the income models can match this progression because both constrain the

price sensitivity of customers to be a pre-determined function of the income distribution. Hence, the

mixing distribution used to inform customer demand is fixed by the researcher prior to estimating

the model. Only by adding the flexibility of the Box-Cox transform does the model generate similar

consumption patterns across the income distribution which – in turn – yields different estimates

of demand curvature. Moreover, our results again demonstrate that looking at estimated demand

elasticity is not enough if the researcher is interested in research or policy questions which involve

firms which may adjust their prices strategically. Put differently, two models can generate similar

demand elasticity estimates but imply very different results to important questions.

Regarding substitution, the primary driver for using mixed logit models has historically

been to generate “reasonable substitution” patterns. Our estimation results indicate that the

distributional assumptions researchers have heretofore thought innocuous could be driving the

substitution patterns these estimated models deliver. Our results demonstrate that providing

flexibility in these distributions is therefore of first-order importance for a variety of empirical work

(e.g., estimates of market power, antitrust) in order to keep a healthy distance between assumptions

and results. A nice feature of our identification strategy is that a researcher can look how price

sensitivity and consumption patterns vary across the distribution of demographic attributes prior

to estimating a model to assess whether – and where – to provide additional flexibility.

Estimated Demand Manifolds. We present estimated curvature-elasticity pairs in Figure 10.27

We observe that moving from the multinomial logit to mixed logit models generates substantially

greater variation in estimated product curvature-elasticity pairs. When using raw income as the

price interaction (bottom-left panel), we find substantial variation in estimated demand elasticities.

When including log-income in α⋆
i , we find lower curvature estimates and less dispersion in the

estimated elasticity-curvature pairs, reflecting the lower variance and skewness of the log-adjusted

distribution.

In all specifications we find that high-income consumers are less price-sensitive than low-

income consumers. The distribution of price sensitivity, however, varies significantly across specifi-

cations. The estimated shape parameter (λ̂p=1.7) of the more flexible Box-Cox model implies that

low-income consumers are relatively uniform in their price sensitivity while high-income consumers

27See Appendix E, Table E.2 for moments of these distributions.
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Figure 10: IRI Breakfast Cereal: Elasticity and Curvature Estimates
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Figure Notes: Dots represent the point elasticity and curvature estimates for each observation in the sample with the silver
dot corresponding the the average elasticity and curvature estimates.

are heterogeneous. This stands in contrast with both the log-income (top-right) and income

(bottom-left) models where low-income consumers are more heterogeneous in their price sensitivity.

6.5 Marginal Costs and Pricing

We use the estimated demand models, together with an equilibrium pricing model, to determine

marginal costs consistent with the observed prices. In line with the above descriptive evidence, we

assume that a single uniform price prevails in all stores affiliated with a given chain in a geographic

market. We treat chains as local monopolists. Under uniform pricing, each chain therefore solves:

max
pjt

∑
j∈J

[
(pjt − cjt)×

L∑
l=1

Mltsjlt

(
p, x, ξ; θ

)]
, (35)

where cjt denotes the marginal cost of product j in period t. We assume that differences in marginal

cost across stores within a chain due to transportation are negligible. To simplify the notation,

we omit the period t subscripts going forward. Define as sj(p, x, ξ; θ) the aggregate demand for
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product j,
∑L

l=1Mlsjl(p, x, ξ; θ). Profit maximization implies the following first-order condition for

product j, ∀j ∈ J :

sj

(
p, x, ξ; θ

)
+
∑
m∈J

(
pm − cm

)
× ∂sm

∂pj
= 0 . (36)

The final term ∂sm
∂pwj

is the response in product m’s quantity sold to a change in price and, through

the pricing rule, the retail price of product j. We transform the first-order condition into vector

notation enables us to separate costs from dollar markups:

p = c+ [∆′]−1 × s
(
p, x, ξ; θ

)
︸ ︷︷ ︸

vector of $ markups

, (37)

where ∆ is the matrix of changes in quantity sold due to changes in retail price with element (k,m)

equal to ∂sk
∂pm

; i.e.,

∆ =


∂s1
∂p1

. . . ∂s1
∂pJ

...
. . .

...
∂sJ
∂p1

. . . ∂sJ
∂pJ

 . (38)

Given estimates of consumer demand (θ̂) together with price and quantity data, we recover product-

level marginal costs (ĉjt) for each chain via (37).

6.6 Strategic Pricing of Firms

Empirical work has become increasingly focused on the strategic decision-making of firms. In

this section we explore the extent to which the researcher’s ex ante modelling choices inadvertently

bakes-in the importance of firms towards impacting economic outcomes we care about. In Figure 11

we demonstrate that different modeling approaches generate different estimates of market power (as

measured via the Lerner index), substitution (as measured via diversion to the outside good), and

cost pass-through. In Panel (a), we observe that providing flexibility in modelling demand yields

demand estimates which are more elastic (i.e., lower Lerner indices) and greater substitution to

the outside good. An alternative interpretation is that locking-in the distribution of demographic

interactions ex ante leads the researcher to over-estimate substitution. These results are due to the

estimator in the Income and Log-Income models increasing the value of the random coefficients (Σ)

in order to bring these models in-line with the data moments.

In Panel (b), we present three different ways of measuring pass-through. “Monopoly” is

the theoretical pass-through of a monopolist defined as 1
2−p̂ . In “Oligopoly” we introduce a 10%

marginal cost shock to each product and solve for the new pricing equilibrium in each market. In

“Aggrgegate” we assume a 10% increase in marginal cost across all products and solve for the new

pricing equilibrium in each market. For each counterfactual-model pair, we present median values

in the figure.
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Figure 11: Competition and Pass-through
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Notes: Panel (a) presents median estimates of the Lerner index (i.e., p−ĉ
p

) and diversion to the outside good. Panel (b)

presents three different ways of measuring pass-through. “Monopoly” is the theoretical pass-through of a monopolist defined
as 1

2−p̂
. In “Oligopoly” we introduce a 10% marginal cost shock to each product and solve for the new pricing equilibrium in

each market. In “Aggrgegate” we assume a 10% increase in marginal cost across all products and solve for the new pricing
equilibrium in each market. For each counterfactual-model pair, we present median values in the figure.

In all mixed logit models we observe the “Monopoly” and “Oligopoly” counterfactual equi-

libria are close which indicates competition does not play a large role in dampening pass-through in

mixed logit models. This likely reflects the firms locating their products in pockets of characteristic

space where they are differentiated from the competition. We do see competition playing a greater

role when there is an aggregate shock, however, as higher costs for all products leads movement

up the demand manifolds leading to lower levels of curvature and pass-through. Moreover, we see

that fixing the distributions of heterogenous price sensitivity and product characteristics ex ante

leads to lower estimates of cost pass-through regardless of the shock.

6.7 Consumer Welfare Implications of Uniform Pricing

We conclude this section by using the estimated equilibrium models and corresponding estimated

marginal costs to assess the welfare implications of uniform pricing. For each of the four demand

specifications, we predict the optimal store-specific price, assuming – as in the estimation – that

consumers are captive to a particular store. Similar to our analysis above, our goal is to assess the

extent to which the researcher’s ex ante modelling decisions impact their estimates of the welfare

effects of uniform pricing.

Firms set prices in our counterfactual equilibrium by solving the following profit-maximization

problem:

max
pjlt

∑
j∈J

[
(pjlt − cjlt)×Mltsjlt

(
p, x, ξ; θ

)]
, (39)
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We identify beneficiaries of uniform pricing by evaluating changes in consumer welfare

in moving from the observed uniform to store-specific pricing via compensating variation, i.e.,

the amount of income necessary to keep individuals in a given location indifferent between any

counterfactual set of prices p′ and the uniform ones p. Residents in location l are thus on average

better-off under uniform pricing when compensating variation is positive. We calculate each

household’s compensating variation following Small and Rosen (1981) and aggregate across house-

hold demographics and unobserved preference heterogeneity in deriving aggregate compensating

variation for store l consumers. To make the welfare statistics more intuitive, we normalize each

market by the aggregate market-level RTE cereal spend we observe in the data.

In Figure 12, Panel (a) we show uniform pricing increases aggregate welfare in all of our

estimated models (i.e., CV > 0) though the magnitudes vary. Our Flexible specification allows for

the distribution of price sensitivities to adjust according to the average price paid across income

quartiles. We find that the resulting skewness in this distribution has large aggregate welfare effects

compared to pinning this distribution down ex ante. In particular, the Flexible model implies that

uniform pricing generates aggregate consumer welfare gains that are 3.6 and 9.7 times greater than

the researcher would have found using raw income and log-income, respectively.

Not surprisingly, we also observe that high-income consumers benefit from uniform pricing

in all of our estimated models since these customers tend be less price-sensitive than low-income

consumers. Since we require skewness in the income distribution to match the identifying data

moments, the Flexible model implies that the difference in elasticity between low- and high-income

consumers is greatest in this model. This difference translates to bigger welfare effects across income

as evidenced that we estimate the welfare benefit of uniform pricing for high-income consumers is

2.0 and 3.8 times that of the models with income and log-income interactions, respectively.

Figure 12: Distributional Implications of Uniform Pricing

(a) Income
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Notes: Figure present average CV/spend across markets of similar demographic characteristic where each characteristic is
divided into quartiles. The “Aggregate” bar corresponds to the average CV/Spend across all markets.“Low Income” (“High
Income”) reflects markets which are in the bottom (top) 25% of average income in the sample. “Few Kids” (“Many Kids”)
reflects markets which are in the bottom (top) 25% of percent of households with a child.
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We offer a placebo test in Panel (b). As our model had less scope for variation in price-

sensitivity across families of different sizes, we observe little variation in welfare effects for families

of different sizes across models. What little effect we do observe is driven through the positive

correlation between family size and income. Alternatively, if we observed significant variation in

consumption patterns across price and family size (or any other observable demographic), adding

this level of flexibility would make the model’s welfare implications for these groups richer. Of

course, we now know that just the opposite would also be true if such variation existed in the data

and the researcher instead chose to impose the demographic variation as a proxy for the distribution

of price sensitivity.

Discussion. The objective of this empirical application was to demonstrate not only how to

estimate demand with flexible distributions of price and non-price valuations, but also to address

the implications of allowing for this kind of flexibility. Figure 12 therefore demonstrates that how the

researcher models the distribution of price-sensitivity has important aggregate welfare implications

as well as distributional consequences. As equity is increasingly the focus of policy debates, these

results indicate that allowing for flexibility in the estimation of the distribution of price-sensitivity

is of first-order importance to the evaluation of alternative policy solutions.

Lastly, it is important to note that our results are driven by the fact that we find patterns in

the RTE cereal data which is consistent with a distribution of price sensitivity that is more skewed

than the distribution of either income or log-income can accommodate. In a different empirical

setting, however, this may not be the case. We view this connection among data, model, and

results as an important contribution regardless of context, however. Ideally, researchers should

demonstrate to their audience that their model generates consumption patterns, particularly along

the price-income gradient, which is consistent with their data.

7 Concluding Remarks

We have shown that the unit-demand mixed-logit model is capable of accommodating a wide array

of empirically-relevant elasticity-curvature pairs, thereby providing further evidence of the power

of the mixed-logit model as a demand framework and policy tool. We have also demonstrated

how different components of the demand specification contribute to expanding the set of attainable

elasticity-curvature pairs. This is useful as it both aids in identification of the mixed-logit model

and demystifies the mixed-logit model by enabling the researcher to articulate the path from data

to model to empirical result and/or policy recommendation for questions centered on cost pass-

through. In particular, our theoretical and empirical results highlight the importance of modeling

mixing distributions flexibly in order to keep a healthy distance between assumptions and results.

– 41 –



References

Adão, Rodrigo, Arnaud Costinot, and Dave Donaldson (2017): “Nonparametric Counterfactual Predictions
in Neoclassical Models of International Trade,” American Economic Review, Vol. 107, pp. 633–689.

Adams, Brian and Kevin Williams (2019): “Zone Pricing in Retail Oligopoly,” American Economic Journal:
Microeconomics, Vol. 11, pp. 124–56.

Aguirre, Iñaki, Simon Cowan, and John Vickers (2010): “Monopoly Price Discrimination and Demand
Curvature,” American Economic Review, Vol. 100, pp. 1601–1615.
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Appendix

A Elasticity and Curvature of Demand for Breakfast Cereal

Nevo (2000) specifies preferences as follows (ignoring market location and time indices):

uij = xjβ
⋆
i + α⋆

i pj + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (A.1a)(
α⋆
i

β⋆
i

)
=

(
α

β

)
+ΠDi +Σνi , νi ∼ N(0, In+1) , (A.1b)

where xj is the (n×1) vector of observed product characteristics and pj is the price of (inside) prod-

uct j available in each market, J , with J = |J |. Payoff of the outside good is ui0 = ϵi0. There are

random coefficients of product characteristics, β∗
i and price responsiveness, α∗

i . Preferences might

be correlated to a d-vector of demographic traits Di through the (n+1)×d matrix Π of interaction

estimates that allows for cross-price elasticity to vary across markets with different demographic

composition. To further account for individual preferences over unobservable product attributes, νi

captures mean-zero, unobserved preference shifters with a diagonal variance-covariance matrix Σ.

Lastly, the idiosyncratic unobserved preference by consumer i for product j, ϵij , follows the Type-I

extreme value distribution across all products in J .

Table A.1: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (πp) Manifold

Specification (α) (σp) log(Income) log(Income)2 Child ε ρ

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74 0.96
(0.9674) (0.9367) — — —

[C] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74 0.96
(0.9944) — — — —

Notes: GMM estimates of parameters related to price sensitivity using simulated breakfast cereal data estimated via
“best practices” described in Conlon and Gortmaker (2020). Remaining parameters for product characteristics follow
Nevo (2001) and are included in each demand specification but are not reported. Robust standard errors in parentheses.

We consider four alternative specifications:

[A] α⋆
i = α+

d∑
k=1

παkDi + σανi , (Nevo – Full Model) (A.2a)

[B] α⋆
i = α+ σανi , (Only Price Random Coefficient) (A.2b)

[C] α⋆
i = α+

d∑
k=1

παkDi , (Only Demographic Price Interactions) (A.2c)
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[D] α⋆
i = α , (No Price Interactions) (A.2d)

The estimation results of Model A is represented graphically in Panel A of Figure 1 in

the main text. We contrast it with a variant of Model D in Panel B that removes not only price

interactions, but also product characteristic interactions.

B Choice Probability Distribution and Demand Manifolds

B.1 Moments

Because of the additive i.i.d. type-I extreme value distribution of ϵij , the individual i’s choice

probability of product j given by (8) is also the mean of an individual-specific Bernoulli distribution:

µij = Pij , (B.1)

which are functions of the vector of prices p that we omit to reduce clutter. The variance is:

σ2
ij = Pij(1− Pij) . (B.2)

And finally, the third central moment or non-standardized skewness is:

skij = Pij(1− Pij)
2 − P2

ij(1− Pij) = Pij(1− Pij)(1− 2Pij) , (B.3)

from where we obtain standardized moment or skewness (MacGillivray, 1986) as:

µ̃ij,3 =
skij
σ3
ij

=
Pij(1− Pij)(1− 2Pij)√

[Pij(1− Pij)]3
=

1− 2Pij√
Pij(1− Pij)

, (B.4)

where σ3
ij is the third raw moment of the individual choice probability distribution.

B.2 Moment Derivatives

We use the derivative of the choice probability (8) with respect to price repeatedly:

P′
ij =

∂Pij

∂pj
= f ′

ij · Pij(1− Pij) . (B.5)

The derivative of the variance with respect to price is:

∂σ2
ij

∂pj
=

∂Pij(1− Pij)

∂pj
= P′

ij(1− Pij)− PijP′
ij = f ′

ij · Pij(1− Pij)(1− 2Pij) = f ′
ij · skij . (B.6)

To conclude, we obtain the price derivative of skewness by differentiating the first equality in (B.3):

sk′ij =
[
(1− Pij)

2 − 4Pij(1− Pij) + P2
ij

]
·P′

ij =
[
(1− 2Pij)

2 − 2Pij(1− Pij)
]
·f ′

ij ·Pij(1−Pij) . (B.7)
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B.3 Demand Manifold

Price differentiate (9) and substitute (B.5) to obtain demand elasticity of product j with respect

to p:

εj(p) ≡ − pj
Qj(p)

· ∂Qj(p)

∂pj
= − pj

Qj(p)

∫
i∈I

f ′
ij ·Pij (1− Pij) dG(i) . (B.8)

Similarly, the inverse demand curvature of product j is:

ρj(p) ≡ Qj(p) ·
∂2Qj(p)/∂p

2
j

[∂Qj(p)/∂pj ]2
=

∫
i∈I

PijdG(i)×


∫

f ′′
ij ·Pij (1− Pij) dG(i)+∫ (

f ′
ij

)2
·[Pij (1− Pij) (1− 2Pij)] dG(i)


[∫

f ′
ij · Pij (1− Pij) dG(i)

]2 . (B.9)

Equations (10) and (11) follow after substituting (9), (B.2) and (B.3) into these expressions.

Combining elasticity and curvature we obtain the expression for the demand manifold (12):

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
[∫

f ′′
ij ·Pij (1− Pij) dG(i) +

∫ (
f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)

]
.

(B.10)

C A General Mixing Distribution

Idiosyncratic demand sensitivity is modeled as α⋆
i = α+πϕi, where α is the mean slope of demand

and π captures the effect on price heterogeneity of preferences across individuals. We model draws of

individual types ϕi after the following three-parameter Asymmetric Generalized Normal distribution

(Nadarajah, 2005):

Prob
(
ϕ < x; ι, ζ, η

)
= ΦN (y) where =


−1

η
log

(
1− η(x− ι)

ζ

)
, if η ̸= 0 ,

x− ι

ζ
, if η = 0 ,

(C.1)

and where ΦN (·) denotes the cumulative distribution function of a standard normal. To avoid

an overparameterized model, we normalize the scale parameter ζ = 1, and η < 0 so that the

support of the distribution is (ι+1/η,∞). The distribution is right-skewed, mimicking a log-normal

distribution for η = −1 and converging to a normal distribution as η −→ 0. Furthermore we center

the distribution around the mean slope:

E[ϕ] = ι− ζ

η

(
eη

2/2 − 1

)
= 0 , (C.2)
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so that:

ι =
1

η

(
eη

2/2 − 1

)
. (C.3)

The one-parameter Asymmetric Generalized Normal distribution can then be written as:

Prob
(
ϕ < x; η

)
= ΦN (y) where =


−
log
(
eη

2/2 − ηx
)

η
, if η ̸= 0 ,

x− ι

ζ
, if η = 0 ,

(C.4)

with mean, variance, and skewness:

µ[ϕ; η] = 0 , (C.5)

σ2[ϕ; η] =
eη

2/2
(
eη

2/2 − 1
)

η2
, (C.6)

µ̃3[ϕ; η] =
3eη

2/2 − e3η
2/2 − 2(

eη2/2 − 1
)3/2 . (C.7)

Figure C.1: Covering the Space with a Flexible Price Mixing Distribution

(a) Potential Price Mixing Distributions
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Notes: The left panel shows three specifications of the price random coefficient distribution. The right panel shows the
combinations of all structural parameters generating well-behaved solutions for (ε, ρ) in the sub-convex region.

Figure C.1 explores the implications of using this flexible mixing distribution for the price

random coefficient. In panel (a) we present three different variants of how the price mixing

distribution may look: ranging from standard normal to log-normal. We also consider an in-

termediate case that might represent a particular mixture of these two distributions. In panel (b)

we present the implications of this flexibility for covering (ε, ρ) space. As before, we focus our

attention to specifications ensuring sub-convexity of demand (light shaded region). Panel (b) shows

that allowing for sufficient flexibility in the price mixing distribution expands the support of the
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parameters of interest and facilitates obtaining robust estimates (ε̂, ρ̂) by relaxing the constraints

that other distributions of price random coefficients might impose.

D Nonlinear Income Effects

Table D.1: Income Effects, Markups, and Pass-Through Rates

λ = 0 λ = 0.5 λ = 0.75 λ = 1

Elasticity (ε) 2.83 (0.26) 2.34 (0.48) 2.77 (1.01) 2.75 (2.05)

Curvature (ρ) 1.35 (0.08) 1.19 (0.07) 1.13 (0.05) 0.99 (0.01)

Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 48.12 (20.55)

Pass-Through (%) 178.99 (18.33) 145.91 (16.38) 117.90 (7.27) 99.41 (0.01)

Notes: Mean and standard deviations (in parentheses) of demand elasticity and curvature plus their implied price markup and
pass-through rate.

Figure D.1: Income Effects and Demand Manifolds (by Vehicle Origin)
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E Ready-to-Eat Cereal

Data. We use scanner data from the marketing company IRI for the period of 2007 to 2011. For

a set of cities, we observe cereal revenue and price at the universal product code, store, and week,

together with brand name, parent company, and package size, as well as product characteristics

such as the types of grain used to produce the cereal. For two markets, Eau Claire, WI and

Pittsfield, MA, we observe consumer-level panel data on weekly grocery shopping trips and record

cereal purchases and prices paid by an average of 3,700 consumers each week.

We restrict attention to products packaged in cardboard boxes (approximately 94% of total

revenue) and a sales rank in the top 20% of products (approximately 95% of total revenue, allowing

us to significantly reduce the product set from the original 1,022). We define a cereal product j as

the combination of brand and flavor (e.g., Honey Nut Cheerios). After aggregating across product

sizes, we obtain 41 products and construct a price per one-ounce serving for each by dividing total

revenue by the total number of servings.

To reduce computational complexity, we focus on stores in large markets with significant

geographic variation: Los Angeles (7.2% of total revenue), Boston (4.9%), Chicago (4.0%), Houston

(2.5%), Houston (2.5%), and Seattle (2.4%) as well as small markets Eau Claire (0.6%) and Pittsfield

(0.5%) which we include in order to leverage the micro-moments from the cities. Finally, we append

to these data nutritional information (i.e., content of added sugar, calories, protein, fat, sodium,

fiber, carbohydrate, potassium, and vitamins) attained via web-scrape. We also obtain time-series

data for commodity costs of corn, oats, rice, wheat, and sugar-sweeteners (e.g., high-fructose corn

syrup) from Quandl and the Federal Reserve Economic Data.

The raw store-level data include demographic information for customers living within a

two-mile radius of each store location. We focus on the presence of children in the household

and income. The demographic data for income is binned in discrete categories (e.g., the number

of customers with annual incomes between $25,000 to $29,999). We fit the binned empirical

distributions to beta distributions of the second kind to establish continuous income distributions in

each market; Appendix E illustrates the ability of the assumed beta distribution to fit the observed

categorical data. We use these fitted distributions, together with the share of households with

children, to construct simulated consumers who vary in income and the presence of children in the

household. We similarly generate a continuous income level from the recorded income categories

for the households in the micro data; we observe the presence of children in each participating

household directly.28

Motivating Evidence. We begin by addressing the prevalence of multi-store chains in the data.

In Figure E.1, Panel (a) we demonstrate that 74% of retailers in the data have more than one store

and that there is significant heterogeneity in the size of chains as measured by number of stores

within each chain. In Panel (b) we explore income variation across the stores. We exploit the

28We ignore correlations between demographics, as the data do not report conditional distributions based on
demographics.
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store-specific income data and compare income across stores by calculating the standard deviation

in average income across stores within a chain. For example, a chain that has two stores where

each store is located in a geographic area with an average income of $50,000 will have a standard

deviation equal to zero, while a chain with stores in low-income and high-income locations will

have a positive standard deviation. We observe that chains do not appear to select locations of

similar incomes. If consumer price sensitivity varied systematically with income, these differences

in locations’ incomes suggest heterogeneity in price sensitivity among consumers shopping at the

chain. Moreover, this provides suggestive evidence that, conditional on uniform pricing, demand

curvatures are likely to exceed one.

Figure E.1: Evidence of Multi-Store Chains

(a) Number of Stores within a Chain
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DellaVigna and Gentzkow (2019) found that products in many consumer packaged good

categories, including ready-to-eat cereal, are priced uniformly across stores within a chain. We see

similar behavior in our sample. We first explore product selection in our sample and note that

49.1% of stores sell at least one unit of each of the 41 products at some point during each year,

and 90.9% of stores carry (sell) at least 38 of the 41 products. This indicates that chains are not

separating consumer types across stores by using different product selections.

We test for uniform pricing using the share of variation in prices explained by chain fixed

effects – a similar test employed by Nakamura (2008), Hitsch et al. (2021), and DellaVigna and

Gentzkow (2019). We do so by looping through products and for each product regressing the

average price over weeks in store s for product j, psj , on chain and city fixed effects. In our

data, we find median R2 values, across products, for chain and city fixed effects of 0.72 and 0.31,

respectively. As chain fixed effects explain a large share of the variation in the data, this suggests

the presence of uniform pricing whereas the relatively minor role for city fixed effects suggests less

importance pertaining to local market factors such as competition and consumer preferences.

Simulating Consumers. We construct the sample of simulated consumers for each market by

relying on the empirical distributions of the demographic attributes age, presence of children in

the household, and income. We use the IRI demographic supplement, which includes demographic

statistics for consumers within a two-mile radius of the store. We fit continuous market-specific
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distributions to the discrete distributions of income and age using generalized beta distributions

of the second kind to fit the empirical income and age distributions for each market l. McDonald

(1984) highlights that the beta distribution provides a good fit to empirical income data relative

to other parametric distributions. In Figure E.2 we compare the estimated cumulative distribution

functions (dashed lines) versus the binned data (dots) for a representative store.

Figure E.2: Estimating Demographics

(a) Income
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Notes: In each panel we compare estimated income and age distribution (dashed lines) and the discrete income and age
distributions (dots) in the IRI data.

The IRI data do not have a time dimension so we assume demographics are stable across our

time period (2007-2011). Finally, we account for the unobserved preferences for product attributes

(νil) via Halton draws which Train (2009) demonstrated is an efficient method to efficiently cover

the space of unobserved preferences (νil). We then draw 1,000 individuals for each store to derive

the predicted probability of choosing product j numerically via monte carlo simulation.
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Additional Results.

Table E.1: Matching Consumption Patterns

Moment Data Flexible Income Log-Income MNL

E[Price|Kids]/E[Price|No Kids] -0.0033 -0.0022 -0.0034 -0.0032 0.0009
E[Price|IncomeQ2]/E[Price|IncomeQ1] 1.0022 1.0057 1.0119 1.0220 0.9929
E[Price|IncomeQ3]/E[Price|IncomeQ1] 1.0115 1.0257 1.0276 1.0290 0.9894
E[Price|IncomeQ4]/E[Price|IncomeQ1] 1.0524 1.0514 1.0404 1.0266 0.9793

E[Buy|Kids]/E[Buy|No Kids] 0.0927 0.0894 0.0919 0.0914 0.0033
E[Buy|IncomeQ2]/E[Buy|IncomeQ1] 1.0849 1.0300 1.0884 1.1414 0.9899
E[Buy|IncomeQ3]/E[Buy|IncomeQ1] 1.2161 1.1827 1.2110 1.2337 0.9900
E[Buy|IncomeQ4]/E[Buy|IncomeQ1] 1.3350 1.3007 1.3301 1.3277 0.9721

Corr[sugar,kids] 0.0827 0.0606 0.0683 0.0724 0.0010

Table E.2: Elasticity, Curvature,
and Flexible Demand

Flexible Income Log-Income MNL

Elasticity
- Mean 1.93 1.91 1.88 2.24
- Median 1.92 1.90 1.88 2.23
- Stand. Dev. 0.41 0.41 0.41 0.53
- 90% 2.45 2.42 2.39 2.92
- 10% 1.42 1.38 1.34 1.56

Curvature
- Mean 1.17 1.12 1.07 0.99
- Median 1.15 1.12 1.07 0.99
- Stand. Dev. 0.08 0.05 0.03 0.01
- 90% 1.28 1.19 1.09 1.00
- 10% 1.07 1.07 1.04 0.98
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