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Abstract

To what extent do transportation costs depend on the amount shipped, and

how does infrastructure investment shape these costs? We model railroads as

multiproduct firms and estimate the link between capacity utilization and costs

using firm choices, the network structure of production, and publicly available

routing data. We find a U-shaped relationship between marginal costs and rail

utilization: As utilization increases, costs decrease by 30% to a low point at 55%

utilization, before increasing by another 30%. Increased congestion in the rail

network can explain a third of the 50% increase in real rail prices observed since

2004. We use our framework to study two normative and one positive policy

questions: First, we estimate the network externalities of rail infrastructure

investment, finding that investment in Arizona provides the highest returns, but

only 3% are captured by Arizona itself. Next, we evaluate the cost efficiencies

that would arise from a merger between Union Pacific and Burlington Northern

Santa Fe. We find that such a merger would reduce costs by 17.1% due to

reduced misallocation and process innovation. Lastly, we study the effect of

the China shock on freight costs. We show that the reallocation of imports
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toward the West Coast led to a 3% increase in shipment costs in Los Angeles

and Chicago, with heterogeneous effects across space and firms.

Keywords: Railroads, cost function estimation, routing problem, multiprod-

uct firms.

JEL Classification: D24, L92, R41

1 Introduction

Transportation costs are key in shaping the spatial distribution of economic ac-
tivity and trade.1 These are not just technological parameters: they are complex
endogenous objects arising from the optimizing behavior of firms across multiple
modes, and as such they respond to changes in demand, market structure, and
policy.2 A recent literature has studied the role of public action in shaping these
costs, driven by renewed interest in infrastructure investment at the federal level.3

Rail features prominently in this discussion, as it is a growing sector that presents
a low-emissions alternative to trucking. In this paper, we study the structure and
determination of transportation costs in US railroads.

Railroads are multiproduct firms, jointly producing shipping services between
various city pairs. They do this by utilizing a rail network that they own and operate.
The production of these services features economies of scale, both positive—a full
train is more efficient than a half-empty one—and negative—the more traffic there

1For a comprehensive review of the literature, see Redding and Turner [2015].
2These modes range from atomistics trucks and freight ships operating in a competitive (yet

frictional) market (see Yang [2023], Brancaccio et al. [2020])), to large oligopolies controlling a large
rail network.

3This literature, spearheaded by Allen and Arkolakis [2022], Fajgelbaum and Schaal [2020]
and, more recently, Fuchs and Wong [2022], models transport costs as arising from the structure
and utilization of the transportation network, with a focus on identifying the specific links where
additional investment would be the most productive. Their models feature either a completely
decentralized transportation system with infinitesimal shippers which take transport costs as given,
or a social planner with complete knowledge and control over the flows.
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is, the harder it is to efficiently operate it.4 Joint production of shipments gives raise
to economies of scope: shipments share the same tracks and rail yards, generating
cost spillovers on each other. These economies of scale and scope will shape how
costs and conduct react to shocks, as well as the effectiveness of regulation and
infrastructure investment.

We estimate costs in rail, using rich data and a flexible model that accounts
for these economies of scale and scope. We use our estimates to conduct three
policy exercises: First, we show how the network structure of production implies
that infrastructure investment engender substantial network spillovers, which local
and state governments are unlikely to internalize. Next, we study the effect of a
merger between the two largest American railroads: the merged firm is better able
to exploit economies of scale and scope, leading to cost efficiencies of 17%. Finally,
we examine how a localized demand shock – the accession of China to the World
Trade Organization (WTO) – led to heterogeneous changes in rail costs across firms
and space.

We study the US railroad system using shipment-level data from 1998 to 2018 to
infer the routes that railroads use to ship products through their networks. From
these inferred routes, we document three empirical patterns. First, railroads do
not minimize distance: 40 percent of shipments deviate from the shortest possible
path, and the modal route of these deviating shipments is 20 percent longer than
the shortest possible path.5 Second, deviations from the shortest path are correlated
with capacity constraints.6 For every given city pair, railroads have a preferred
route which they use almost exclusively when utilization is low. But when capacity
utilization along this main route exceeds 50%, railroads become increasingly likely
to use multiple routes. Third, spot-market prices for rail shipments exhibit a U-
shaped relationship with capacity utilization. These three findings challenge the

4Since the advent of rail regulation in the late 19th century, economists have been interested in
the existence and importance of economies of scale in rail transportation. A wide-ranging literature
has followed, analyzing the topic from both theoretical (see, for example, Wellington [1893], Ripley
[1927], Jones [1931], Daniels [1932]) and empirical (see, among others, Lorenz [1916], Borts [1952],
Borts [1954], Meyer et al. [1961], Borts [1960], Griliches [1972], Keeler [1974], Braeutigam et al. [1982],
Jara-Díaz and Cortés [1996]) perspectives to explore whether costs are constant or decreasing in
quantity.

5In contrast, Fuchs and Wong [2022] assume that all shipments follow the shortest feasible path
between origin and destination.

6For each segment of the rail network, we define capacity as the highest observed monthly flow
through that segment plus 10%.
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traditional view of railroads as an industry characterized by increasing returns to
scale, and provide evidence of congestion at high utilization levels.

Based on these three findings, we build a model of freight railroads as multiprod-
uct firms selling the service of transporting carloads between city pairs. Each rail
firm owns a rail network, represented as a directed graph in which track segments
are edges and rail yards are nodes. Railroads choose routes to minimize the total
cost of shipping through their network. We decompose the marginal cost of shipping
an additional unit on a given route into three components: First, it increases the
flow in all edges belonging to the route, incurring an edge marginal cost. Second,
it increases the flows going in the opposite direction for all edges belonging to
the reverse route. Finally, it increases the amount of traffic through all the nodes
belonging to that route, incurring a node marginal cost. Each of these marginal costs
is in turn a flexible function of both capacity utilization on that segment and other
track characteristics. Because each firm owns and operates their own infrastructure,
they will internalize any spillovers they impose on their own shipments. Their
choices will then inform us on the size of these spillovers. We focus on cases for
which we observe a firm using multiple routes to fulfill shipments with the same
origin and destination and show how cost minimization implies that the cost of
shipping a marginal unit through each route must be the same.

We use this indifference condition to construct a set of moment conditions that
we can take to the data. We use the Generalized Method of Moments to estimate
the cost function of the two largest American railroads: Burlington Northern Santa
Fe (BNSF) and Union Pacific (UP). These railroads collectively account for 50%
of industry revenue and handle most traffic west of the Mississippi River. To
control for endogeneity in firms’ routing choices, we use the 2010s post-shale-boom
decline in coal production as an exogenous demand shock to construct a shift-share
instrument.

We find evidence of substantial returns to scale and congestion in rail: Marginal
costs are U-shaped, with a minimum around 55% utilization, and imply significant
economies of scale. Traversing an edge with 0% utilization is $2.00 more expensive
than a shipment at 55% utilization. As utilization increases past this efficient level
and approaches 100%, costs increase by $1.25. These differences represents 40% and
25% of the average price for a carload-mile during this period. We also find that
infrastructure investment is effective in reducing costs, with an additional set of
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parallel tracks leading to a decrease in costs of 40%.
Finally, we show how our framework can inform answers to both positive and

normative policy questions. We start by analyzing the impact of public investment
in rail infrastructure. Many state and local governments fund rail infrastructure
investments, aiming to reduce road traffic congestion for motorsits and reduce the
cost of shipping to and from their locations.7 The network structure of production
implies that these infrastructure investments engender network externalities, which
local and state governments are unlikely to internalize. We measure the cost savings
of upgrading rail networks for each US state and find substantial heterogeneity
across states: The return on investment for the most productive state (Arizona) is 25
times larger than that of the least productive state (South Dakota). In addition, we
estimate that only 3% of the total benefits accrue to Arizona, with most of the gains
being captured by California, Texas and Illinois. This suggests that decision-makers
may fail to internalize the benefits from infrastructure investment, highlighting the
potential role of the federal government in coordinating rail investment.

Next, we study the effect of merging UP and BSNF. Such a merger could
potentially reduce costs in three ways: First, the merged firm could better coordinate
the flows between each firm’s network, redirecting traffic to the least congested
areas. Second, the joint firm would have access to new, otherwise inaccessible routes.
Finally, the merger would reduce contractual frictions that currently arise when
using trackage rights in each other’s networks. We find that such a merger would
reduce costs by 17.1% compared to the decentralized equilibrium.

Finally, we study the effect of China’s accession to the WTO ("the China shock")
on domestic U.S. transportation costs. We find that the increase in Chinese goods
arriving in West Coast ports led to a doubling in rail flows originating in Los Angeles.
The aggregate effect of the shock is small, but there is substantial heterogeneity
across both space and firms. We find that Los Angeles experienced the largest
increase in costs (around 4%), but regions located between Los Angeles and Chicago
also experienced increased costs. Conversely, we find that UP was previously
operating below its optimal capacity, and as a result, the cost of their shipments
decreased after the shock.

Our work contributes to the literature on transportation costs across networks.

7Two large city-level investments are the Alameda Corridor, built in Los Angeles in the early
2000s, and CREATE, an ongoing project in Chicago. Both of these resulted from a partnership
between railroads, city governments and, in the case of CREATE, the state and federal governments.
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Allen and Arkolakis [2022] model transportation costs as endogenous and dependent
on the traffic flowing through each edge in the network. They then use US data to
compute the welfare benefits from improving the efficiency of individual edges in
the network using hat algebra, with the goal of directing infrastructure investment
towards its most efficient applications. Fajgelbaum and Schaal [2020], on the
other hand, make stronger assumptions to obtain an expression for the optimal
infrastructure network as a function of the data. Fuchs and Wong [2022] build on
this foundation by adding a mode-choice decision, explicitly modeling US road,
rail, and ports with a focus on the intermodal facilities that allow for switching
between networks. This literature has primarily featured infinitesimal agents that
take transportation costs as given, while we study large oligopolistic firms that
internalize their effect on costs.

This paper also contributes to the well-established literature on economies of
scope within multiproduct firms. Despite the prevalence and importance of multi-
product firms in both developing and developed countries,8 multiproduct firms have
been challenging to study due to the absence of a production function, compounded
by the scant data on the products produced by firms or the allocation of inputs
across them. The theoretical underpinnings have been shaped by contributions
from Panzar and Willig [1975], Panzar and Willig [1981], and Teece [1980]. Em-
pirically, the estimation techniques have involved utilizing firm-level cost data,9

directly estimating the cost functions using quantity and input data,10 or leveraging
information on demand See Ding [2022], Argente et al. [2020], and Khmelnitskaya
et al. [2023]. Unlike most of the prior literature, we observe a fine mapping from
inputs (tracks) to outputs (shipments), as well as detailed information on the various
ways a product can be produced (routes). This allows us to use a more flexible,
revealed preference approach to estimation.

Another body of literature has taken a structural approach to studying individual
segments of the transportation network, including ports (Bailey [2021] and Ducruet
et al. [2020]), trucking (Yang [2023] and Allen et al. [2023]), ocean shipping (Bran-
caccio et al. [2020] and Ganapati et al. [2021]), river shipping (Caris et al. [2014]),
and air freight (Feng et al. [2015]). The most similar paper is Chen [2023], which

8See Bernard et al. [2010] and Goldberg et al. [2010].
9As evidenced by Hall [1973], Kohli [1981], Brock [1983], Johnes [2012].

10This approach is often referred as estimating a transformation function, see Dhyne et al. [2022]
and Maican and Orth [2021], and Zhang and Malikov [2022].

6



also studies oligopolistic competition by railroads. In his model, Chen assumes
a constant marginal cost per mile, which can only be altered by investment in
maintenance. The efficiency of this investment is then used to measure economies of
scope, since it reflects the benefits of consolidating flows. In contrast, we allow the
cost per mile to depend on the flows and the observed rail infrastructure. Although
we do not explicitly feature investment in our model, our results allow us to recover
the effects of altering specific rail characteristics, such as the slope of the terrain or
the number of parallel tracks.

Section 2 presents a brief description of the American railroad industry. Section
3 describes our data and details how we obtain routing choices from shipment level
characteristics. In Section 4, we describe a series of reduced form findings, and in
Section 5, we construct a model of railroad choices. Section 6 presents our estimation
strategy, Section 7 documents our results, Section 8 reviews three counterfactual
exercises, and finally, Section 9 concludes.

2 Industry Background

The United States has the largest freight rail network in the world, with over 140,000
miles of track. This network was constructed in the 19th and early 20th centuries,
and it reached its peak size in 1917. Following World War II, the widespread
adoption of cars, together with the development of commercial flight and trucking,
reduced rail’s market share and led to half the network being abandoned. This
decline lasted until railroad deregulation in the 1980s, after which traffic started
growing once more.11 Since then, the industry has boomed, but starting in 2004,
real prices have surged, climbing 50% by 2018 (see Figure A.1 in the Appendix).

Today the US freight railroad industry is composed of for-profit firms which own
and operate rail infrastructure,12 with six major firms operating the vast majority
of all rail shipping.13 In this paper, we focus on the two largest firms: Burlington

11The network has been stable and slowly shrinking over the past 20 years, having decreased by 4
percent between 1999 and 2014. In our analysis, we will consider the rail network as fixed, although
railroads have the option of "abandoning" a line by setting the quantities transported through it to
zero.

12In contrast, most other developed economies feature either partial or complete nationalization of
the sector.

13The six "Class I railroads" are Union Pacific (UP), Burlington Northern Santa Fe (BNSF), CSX
Transportation (CSX), Norfolk Southern (NS), Canadian Pacific Kansas City (CPKC), and the Cana-
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Northern Santa Fe (BNSF) and Union Pacific (UP). These railroads have a combined
market share of 50%, and they handle most of the traffic west of the Mississippi
River (we depict their networks in Figure 1).

Figure 1: Networks for BNSF and UP.

"Both" depicts tracks that are owned by one of the two firms, but that the other one can access via trackage
rights. Source: NTAD.

Railroads are multiproduct firms, jointly producing shipping services between
various city pairs using several types of inputs: labor, fuel, capital goods (locomo-
tives and cars), and rail infrastructure. In this paper, we will focus on this last input:
the utilization of rail infrastructure, including tracks and yards. In Section 3, we
show how to infer how these inputs are used to produce individual shipments.

The basic unit of analysis for this paper is a carload: a railroad car containing
some commodity that needs to be shipped from some origin to some destination.
Firms sell this service to customers through a mix of spot-market transactions and
long-term contracts.

Railroads primarily ship low-cost, long-distance commodities. Modern locomo-

dian National Railway (CN). We offer a brief history of the industry and regulations in Appendix
A.
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tives can achieve fuel efficiencies of around 400 miles per gallon of diesel, making
them significantly more fuel-efficient than trucks. However, their maximum speed
is lower than that of trucks, and their movement is limited to existing rail infras-
tructure. Commodities with the highest rail market share include coal, agricultural
products, motor vehicles, and, increasingly, containers.14

Economies of scale and scope. In this paper, we consider a railroad to exhibit
economies of scale if the marginal cost of moving a shipment through a track or yard
depends on the quantity shipped through that track or yard. We will refer to these
economies of scale as "returns to scale" when marginal costs decrease with quantity,
and as "congestion" when marginal costs increase with quantity. We consider a
railroad to feature economies of scope if the marginal cost of producing a shipment
between one origin-destination pair depends on the quantity shipped between other
origin-destination pairs.

Returns to scale can be generated by lumpy or fixed costs. For example, a
locomotive and a full crew can pull anywhere between one and one hundred freight
cars, thus leading to decreasing marginal costs for the first hundred units shipped.
Unit trains can also lead to returns to scale: If a client ships a whole train’s worth of
cargo from i to j, the train can avoid stopping at yards in the way. Finally, Lai and
Barkan [2009] document that the more similar trains are to each other in terms of
their length and power-to-weight ratios, the more efficiently traffic operates—this is
consistent with the law of large numbers, which suggests that scale should lead to
more efficient traffic management.

As the quantity of shipments increases, tracks can also become congested. When-
ever a faster train encounters a slower train, the fast train must reduce its speed
and wait until it reaches an "overtaking siding," where the slower train can move
aside and allow the faster train to pass. Similarly, most tracks support traffic in both
directions, so if two trains are about to cross paths, one of them must stop on a
"passing siding" until the way is cleared. Outages also play a role: If a locomotive
breaks down, all trains on the same track must wait until it’s repaired or removed.

Congestion is also present at the yard level. Yards play the role that connecting
airports play in passenger flights: Upon arrival at a yard, trains (locomotives plus
their cargo) are broken up and reassembled, so that the cargo can reach its ultimate

14In 2012, containers (i.e., any manufactured good transported in a container) surpassed coal as
the most common commodity on rail.
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destination. The more traffic, the more cumbersome this process becomes.15

3 Data

3.1 Data Sources

Our main dataset is the confidential Carload Waybill Sample (CWS), provided by
the US Surface Transportation Board. This dataset contains a 2.7% stratified sample
of all waybills from Class I railroads. A waybill is a receipt created by a railroad for
every carload of freight that travels on its rails. It provides, among other information,
the carload’s origin, destination, and trip distance; the commodity transported, its
quantity, and price charged; and a list of all the railroads involved in the trip. The
CWS contains around 600,000 waybills per year from 1996 to 2018,16 but we focus
on just 2015 to 2018 in our analysis to take advantage of improved routing data (see
Appendix E for more details).

Throughout the paper, we use a variety of additional sources. Most notably, we
use the North American Rail Lines shapefile provided by the National Transportation
Atlas Database (NTAD) to measure infrastructure characteristics, such as the average
number of tracks, the frequency of rail sidings, and the slope of the terrain. In
addition, we leverage monthly coal production data from the Energy Information
Administration, as well as imports data at the country level (provided by the World
Bank’s World Integrated Trade Solution) and at the port level (provided by the US
Census Bureau).

3.2 Inferring routes

The CWS does not directly provide railroad’s routing choices. Instead, it tells us
the endpoints of a given trip, the distance traveled, and all the states visited during

15Famously, Union Pacific faced a massive yard jam after its merger with Southern Pacific in 1997.
The sudden increase in the scale of its operations caused its yards to be gridlocked for months, with
losses estimated at $100 million.

16Around 90% of waybills are fulfilled as part of contracts, as opposed to spot-market transactions.
Other than a contract flag, our data does not provide any additional information on these contracts,
which can often be quite complex: They tend to be long-term and include investment requirements
by the railroad and/or the shipper, minimum quantity requirements for specific time periods, rebates,
etc. A growing literature (Government Accountability Office [2006]) has documented that the CWS
reported price is a poor indicator of the actual prices charged by the firm. As such, in our analysis,
we refrain from using pricing data for estimation.
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Figure 2: BNSF Original (left) and simplified (right) networks

the trip. We use the fact that the rail network is relatively sparse to invert this
information and recover the routes taken.

We start by constructing a directed network that reflects the rail infrastructure
available to each firm. We detail the steps we take in Appendix B. Figure 2 depicts
the original network on the left, and our graphical representation on the right.

For each origin-destination pair, we observe multiple combinations of distance
traveled and states visited, with each combination representing a different route.17

For each of these origin-destination-route tuples, we define a subnetwork containing
the tracks belonging to the visited states. We plot one such subnetwork in Figure
3. Next, we compute the k-shortest loopless routes between origin and destination
which are fully contained within that subnetwork. We progressively increase k until
we find all routes within 20 miles of the target distance.

If there is only one such route, we conclude that it is the route implied by the
origin-destination-route tuple. In most cases, there will be multiple routes within
the target distance; if that happens, we assume that all such routes are equally
likely to be the actual route. We then compute the probability that an edge or node
belongs to a given route by looking at the proportion of potential routes within the
target distance that includes that edge or node.

As an illustration, Figure 4 plots the inferred route for a 2500-mile shipment
originating in Los Angeles, terminating in Chicago, and visiting California, Arizona,
New Mexico, Texas, Oklahoma, Missouri, and Illinois. The width and color of an

17In order to simplify our network, we combine all rail within each 0.2 decimal degrees square.
Each of these squares has a diameter of approximately 20 miles. As a consequence, we round all
distances to the closest multiple of 20 when computing routes.
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Figure 3: Subnetwork containing the states of California, Arizona, New Mexico, Texas, Oklahoma,
Missouri, and Illinois.

edge indicate the probability that a given edge belongs to the actual route. We
repeat this process for all routes in the sample to build a dataset that is—to the best
of our knowledge—the first publicly available dataset of US railroad route choices.18

Routing choices. Our analysis relies on observing the origin, destination, states
visited, and distance of all routes taken by the firm. Since this is such an important
variable, we will briefly discuss how it is created and how it informs our approach to
analysis: First, Railinc receives the origin, destination, departure date, and railroads
involved in the shipment. This information is then matched to the Railinc Event
Data dataset, which contains the locations of individual cars over time. Around
60% of all trips can be directly matched to this second dataset, and when the two
datasets cannot be matched, Railinc matches trips to comparable waybills (i.e.,
waybills that share the same origin, destination, commodity, and interchanges),
and then computes the median distance of matching trips. Finally, if there are no
comparable trips, Railinc uses its own cost-minimizing model to compute a route
for the waybill.

18The dataset is available upon request, and it will be available in our websites in the future.
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Figure 4: Inferred route

Inferred route for a 2500-mile shipment originating in Los Angeles, terminating in Chicago, and visiting
California, Arizona, New Mexico, Texas, Oklahoma, Missouri, and Illinois. The width and color of an edge
indicate the probability that a given edge belongs to the actual route.

4 Evidence for decreasing returns to scale

In this Section, we use the data described in Section 3 to document three facts about
railroads’ routing choices which will inform our subsequent analysis.

4.1 Railroads do not minimize distance

We start by comparing the route taken by a shipment to the shortest path between
its origin and destination. We measure the extent of the deviation from the shortest
route by dividing the "excess" miles traveled by the length of the shortest path.19

Figure 5 plots a histogram of this deviation measure, conditional on it being strictly
positive, showing that 40 percent of shipments take a route longer than the shortest
path. Among these shipments, the modal shipment takes a route 14% longer than
the shortest path. There is also a long right tail, with 10% of shipments taking a

19For example, if i and j are 100 miles apart by rail, and the railroad chooses a 150-mile trip, that
trip has a deviation of (150 − 100)/100 = 50%.
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route 35% longer than shortest path. This indicates that railroads trade off distance
with other factors when making their routing choices. Next, we examine what these
other factors may be.

Figure 5: Deviation from shortest path. Observations correspond to shipments, and are weighted by
their sampling weights.

4.2 Capacity utilization predicts route choices

We first explore whether capacity constraints are relevant for routing choices. We
do not directly observe the capacity of tracks and yards. Instead, we use the largest
observed monthly flow through each track or yard to estimate capacity. To allow
for the possibility of measurement error, we assume that actual capacity is 10%
greater than this highest observed monthly flow. Letting Fuv,t be the amount flowing
through track going from u to v at time t, we define its capacity Kuv as:

Kuv = 1.1 max
t

Fuv,t

(and likewise for yards). Around 80% of tracks and yards (representing 95% of
flows) reached their maximum observed flows before 2006, but very few do so
during our period of analysis (2015-2018).

We define a track’s "capacity utilization," fuv,t as the observed monthly flow
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divided by its capacity:

fuv,t =
Fuv,t

Kuv

Likewise, we define a route’s capacity utilization as the average track utilization for
edges belonging to that route:

f i
t = ∑

uv∈i

1
∑uv∈i 1

fuv,t

Finally, for each origin-destination pair, we define its "main route" as the route
most commonly used to service that pair.

In Figure 6, we plot the number of unique routes used to service a city pair
against the capacity utilization of its main route. We find that firms use their
preferred route almost exclusively when its utilization is below 40%. However,
as utilization for the main route increases, they become increasingly likely to use
multiple routes to service the same city pair. This behavior is consistent with
increased capacity utilization leading to congestion. As such, we model firm costs
as directly dependent on capacity utilization of their infrastructure.

Figure 6: Number of routes utilized versus utilization of main route.
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4.3 Capacity utilization is correlated with prices

Our final fact relates to the relationship between capacity utilization and prices. We
look at the spot market for shipments—that is, the approximately 10% of shipments
which are not subject to long-term contracts. Figure 7 plots a binned scatter plot of
these prices against the capacity utilization of the route used to fulfill each shipment.

Figure 7: Spot market prices and capacity utilization.

Spot market prices and capacity utilization for BNSF between 1996 and 2018. We trim the top 1% of
observations in terms of price, and the bottom 1% in terms of quantity. Each observation is weighted by the
inverse of its sampling probability.

We find a U-shape relationship between spot market prices and capacity utiliza-
tion: Prices decrease with capacity utilization until 50% utilization, and increase
thereafter. In particular, minimum prices are 33% lower than prices at lower utiliza-
tion.20 This relationship need not be causal, and it likely reflects a combination of
varying markups and costs across space. In order to let our model inform us on this
point, we will let marginal costs be a convex function of capacity utilization.

20Figure 7 includes no controls. If we add commodity and time fixed effects, the relationship is
attenuated but remains significant. Origin and destination fixed effects leave an upwards sloping
curve, without the declining part of the U-shape.
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5 Model

We develop a model in which railroads choose routes to minimize costs, taking
shipping demand and the behavior of other railroads as givens. Motivated by
our descriptive results, we allow the cost function to depend flexibly on each rail
segment’s traffic, with either increasing or decreasing returns to scale at different
levels of capacity utilization.

We begin by describing the rail network and the railroad’s production function.
Next, we present the railroad’s cost minimization problem. We then describe
additional assumptions related to the railroad’s cost function before deriving an
indifference condition implied by cost minimization, which will be useful for
estimation.

5.1 Preliminaries

Network. The railroad owns and controls a rail network, represented by a sym-
metric directed graph G = (V, E), with |V| = NN nodes and |E| = NE edges.

Routes. To deliver a shipment from origin o to destination d, the railroad uses
sequences of edges, which we will call routes. Each route i is defined by two
indicator vectors, RiE and RiN, where RiE

uv = 1 if edge uv belongs to the route, and
RiN

uv = 1 if node n belongs to the route. There are Nod distinct, non-looping routes
between o and d.

5.2 Firm problem

In each month t, the railroad chooses a matrix of route choices, X, to minimize costs
given a quantity vector Qt where Xod,it is the quantity (in carloads) the firm decides
to ship between o and d via route i at time t, and Qod,t is the quantity that the firm
must ship from o to d. The firm’s problem is:

min
X

C(X)

subject to
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0 ≤ Xod,it ∀i, od (1)
Nod

∑
i=1

Xod,it = Qod,t ∀od (2)

Constraint (1) requires the firm to ship a nonnegative quantity along each route.
Constraint (2) ensures that the quantities shipped across all routes are sufficient to
fulfill demand.

This formulation represents the problem faced by the head of the Operations
Department in a Class I railroad: She knows how much needs to be shipped
where, she must determine the cheapest way to do so. This assumes that the firm
takes demand as given when making routing choices, and is consistent with the
behavior documented by Williams [2022] in the airline industry and Chen [2023]
in the railroad industry. In Appendix C, we show how with modest assumptions
regarding demand, we can extend the problem to allow for joint determination
of routing choices and quantities. In particular, we can allow consumers to prefer
certain routes to others, as long as their inverse demand is separable in quantities
and route characteristics. This condition is satisfied by logit demand, which is the
most common specification used in empirical analyses of the industry (see, for
example, Chen [2023]).

5.3 Cost Function

We start by imposing structure on the cost function. We assume that C(X) equals
the sum of the cost of traversing each edge and node in the network. We model
the cost of traversing an edge as a function of the flows through that edge in both
directions:

cuv,t = cuv(Fuv,t, Fvu,t)

where cuv is an edge-specific and time-invariant function. Edge traffic Fuv,t sums
routing choices over all routes which use edge uv,

Fuv,t = ∑
od

Nod

∑
i=1

Xod,itRiE
uv
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Similarly, we let the cost of traversing a node to be a function of the traffic through
that node:

cn,t = cn(Fn,t)

where node traffic Fn,t sums over all routes which use node n,

Fn,t = ∑
od

Nod

∑
i=1

Xod,itRiN
n

Note that by allowing both cuv and cn to be nonlinear functions of quantity, we are
baking in economies of scale at the edge and node level.

Thus, we rewrite the cost function as:

C(F(X)) = ∑
uv

cuv(Fuv,t(X), Fvu,t(X)) + ∑
n

cn(Fn,t(X)) (3)

5.4 Indifference Condition

In this subsection, we show how to use the cost function to derive an indifference
condition that will allow us to estimate the model using routing choices.

We start by rewriting (3) as a Lagrangian incorporating the restrictions stated in
equations (1) and (2). Dropping the time subindex for simplicity, we have:

min
X,λ

L = C̃(F(X)) + ∑
od,i

λ1,od,iXod,i + ∑
od

λ2,od[Qod − ∑
i

Xod,i]

The first order condition for a generic choice Xod,i is given by:

∂C(F(X))
∂Xod,i

+ λ1,od,i + λ2,od = 0

Consider an origin-destination pair od for which more than one route is used—
say, routes i and j. In that case, constraint (1) is not binding, and its associated
Lagrangian multipliers equal zero. The FOCs for i and j reduce to:

∂C(F(X))
∂Xod,i

+ λ2,od = 0 (4)

∂C(F(X))
∂Xod,j

+ λ2,od = 0 (5)
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Subtracting (5) from (4) we obtain the following result, showing that the marginal
cost of both routes must equal each other.

Lemma 1. If an origin-destination pair od features two routes with positive flows
i and j, their first order conditions satisfy:

∂C(F(X))
∂Xod,i

=
∂C(F(X))

∂Xod,j
(6)

Our cost function assumptions imply a more intuitive form of this equation. For
each route i, let R̃iE be the indicator vector for the reverse route of i, containing the
same nodes but reversing the direction of each edge. The partial derivative of the
cost function with respect to shipping along a single route can be decomposed into

∂C(F(X))
∂Xod,it

= ∑
uv∈i

∂cuv

∂Fuv︸ ︷︷ ︸
Edge flows

+ ∑
vu∈i

∂cuv

∂Fvu︸ ︷︷ ︸
Reverse-edge flows

+ ∑
n∈i

∂cn

∂Fn︸ ︷︷ ︸
Node flows

(7)

Equation (7) highlights the three ways in which shipping an extra unit via route
i affects costs: First, it increases the flow in all edges belonging to route i, incurring
an edge marginal cost. Second, it increases the flows going in the opposite direction
for all edges belonging to the reverse route to i, R̃i. Finally, it increases the amount
of traffic through all nodes belonging to route i, incurring a node marginal cost.

Let ∂⃗cuv
∂Fuv

, ∂⃗cuv
∂Fvu

, and ∂⃗cn
∂Fn

be vectors stacking the derivatives of the cost of traversing
edges and nodes with respect to edge-flows in the same direction, edge-flows in
the opposite direction, and node flows, respectively. Equation (7) can be compactly
rewritten as follows:

∂C(F(X))
∂Xod,it

= R′iE ∂⃗cuv

∂Fuv
+ R̃′iE ∂⃗cuv

∂Fvu
+ R′iN ∂⃗cn

∂Fn
(8)

Plugging equation (8) into equation (6), we obtain a matrix version of the first order
condition:[

Ri,E − Rj,E
]′ ∂⃗cuv

∂Fuv
+
[

R̃i,E − R̃j,E
]′ ∂⃗cuv

∂Fvu
+
[

Ri,N − Rj,N
]′ ∂⃗cn

∂Fn
= 0 (9)

In the next section, we develop an empirical analogue to this equation for
estimation.
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5.5 Example

To build intuition, we present a simple 3-node version of the model, depicted in
Figure 8. There are NN = 3 nodes (LA, DE, CH) and NE = 6 edges.

Figure 8: A sample network

There are two possible non-looping routes between LA and CH: Route 1 is
{(LA, DE) , (DE, CH)}, while route 2 is {(LA, CH)}. We can represent this mapping
of routes to specific edges and nodes using a pair of matrices RE and RN, where:

RE =

[
R1E

R2E

]
=

[
1 1 0 0 0 0
0 0 1 0 0 0

]

RN =

[
R1N

R2N

]
=

[
1 1 1
1 0 1

]

The rows of RE and RN correspond to routes 1 and 2, while the columns correspond
to the six edges for RE and the three nodes (LA, DE, CH) for RN.21

Suppose the firm must deliver a single shipment from LA to CH, that is,
QLA,CH = 1. The firm chooses how much to ship through each of the two routes
between LA and CH, XLA,CH = (x1, x2), where xi is the amount shipped on route i.
Given some choice of shipments X, the flows through each edge are given by:

FE(X)′ = XRE =
[

x1 x2

] [1 1 0 0 0 0
0 0 1 0 0 0

]
=
[

x1 x1 x2 0 0 0
]

Similarly, the flows through each node are:

21The edges are, in order, (LA,DE), (DE,CH), (LA,CH), (DE,LA), (CH,DE), (CH,LA)
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FN(X)′ = XRN =
[

x1 x2

] [1 1 1
1 0 1

]
=
[

x1 + x2 x1 x1 + x2

]
The cost of traversing edge (LA-DE) equals

cLA,DE(FLA,DE, FDE,LA) = cLA,DE(x1, 0)

while the cost of traversing node LA equals

cLA(FLA) = cLA(x1 + x2)

5.6 Comments on the model

In our model, all relevant costs are a function of flows expressed at the edge-month
and node-month levels. cuv represents the cost of shipping, for example, 10,000
carloads between u and v in a given month. This abstracts away the details involved
in the implementation of this shipment, such as how many individual trains are
required, how their schedules will be determined, how locomotives, labor, and fuel
will be allocated, etc.

Our model aims to replicate (with limited data) the algorithm used by rail firms
to choose their routes. One such algorithm, the Computer-Aided Routing and
Scheduling (CARS) tool, is described in Huntley et al. [1995]. CARS also models
the rail network as a directed graph, and aims to minimize the cost of shipping
a given quantity of cargo. However, it differs from our model in two important
ways: First, railroads observe the true costs of shipping, while we can only recover
a projection of these costs based on the edge and node characteristics to which we
have access. And second, the true algorithm is subject to an additional constraint
beyond implementing demand: It must output feasible train schedules, while we
abstract away shipment times.

6 Estimation Strategy

Our estimation relies on a revealed preferences argument based on cost minimiza-
tion. In short, if we observe that a railroad is using two routes to fulfill shipments
between a given city pair, cost minimization implies that the marginal costs of each
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route must be equal. Otherwise, the firm could decrease its costs by reallocating
shipments from the route with higher marginal costs to the route with lower ones.

Below, we detail the assumptions necessary to go from this observation to a set
of moment conditions we can take to the data.

6.1 Moment conditions

We assume that the marginal costs of traversing edges/nodes are a parametric
function of flows through that node/edge, observable edge/node characteristics (Y),
and an unobservable error. That is:

∂cuv/∂Fuv = mc1,uv(Fuv, Fvu; Yuv, θ) + ε1,uv,t (10)

∂cuv/∂Fvu = mc2,uv(Fuv, Fvu; Yuv, θ) + ε2,uv,t (11)

∂cn/∂Fn = mcn(Fn; Yn, θ) + εn,t (12)

The error terms ε account for measurement error in the observables (flows
and edge characteristics), random variation in costs (due to, for example, weather
patterns), and edge and node characteristics unobservable to us. We assume the
firm observed ε before making its routing choices, making flows an endogenous
variable.

Let an arrow superscript denote the vector stacking the corresponding function
for all edges or nodes. Replacing equations (10) through (12) into the first order
condition (9) and dropping the Y argument, we have:[

Ri,E − Rj,E
]′

m⃗c1,uv(Fuv, Fvu; θ) +
[

R̃i,E − R̃j,E
]′

m⃗c2,uv(Fuv, Fvu; θ) +
[

Ri,N − Rj,N
]′

m⃗cn(Fn; θ)

+
[

Ri,E − Rj,E
]′

ε⃗1,uv,t +
[

R̃i,E − R̃j,E
]′

ε⃗2,uv,t +
[

Ri,N − Rj,N
]′

ε⃗n,t = 0

Given a guess for θ and a functional form for the mc functions, we can compute
the first three terms of this sum as a function of observable edge and node flows.
For each guess of θ, we can recover a linear combination of the errors. This linear
combination, together with an instrument, will give us a moment condition that
will allow us to estimate the model parameters.
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6.2 Parametrization

6.2.1 Edge marginal costs: mc1 and mc2

We start by parameterizing mc1, the same-direction marginal cost. As mentioned in
Section 2, firms seem to be considering capacity utilization fuv when making route
choices. Hence, we allow costs to depend on the capacity utilization of an edge
non-monotonically.

In addition, since our definition of what constitutes an edge depends on an ad
hoc resolution parameter, we would like a functional form that is robust to our
definition of an edge.22 In particular, if we were to split an edge in half, we would
like the cost of traversing the original edge to be equal to the sum of the two new
edges. As such, we choose costs to be linear in the edge length:

mc1,uv = duv(αd + αYYuv + g( fuv,t, fvu,t))

where duv is the length (in miles) of the edge, Yuv is a vector of track characteristics,
including the number of parallel tracks, the frequency of passing sidings, the slope
of the terrain, whether the firm owns or rents the infrastructure, and a state fixed
effect.

We need g to be any convex function that has an analytical integral. For simplicity,
we choose a quadratic polynomial on fuv and fvu.23

g( fuv,t, fvu,t) = β1 fuv + β2 fvu + γ1 f 2
uv + γ2 f 2

vu + γ3 fuv fvu

We normalize the coefficient of distance αd to be one. This implies our costs are
expressed in "effective miles," and so we can interpret g as reflecting the effect of
traffic flows in mile-equivalent units.

Our choice of mc1 has implications on the shape of cuv, which in turn restricts
the shape of mc2. In particular, by the definition of mc1,uv, the cost of traversing an
edge, cuv, must satisfy:

cuv =
∫

mc1,uvdFuv

22As mentioned in Section 3, we merge all edges within a 0.2 decimal degrees square.
23Adding higher order polynomial terms does not significantly change the results.
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Hence, the implied restriction on mc2 is given by the following expression:

mc2,uv =
∂cuv

∂Fvu
=

∂

∂Fuv

(∫
mc1,uvdFuv

)
After integrating, this becomes:

mc2,uv = duv

(
β2

Fuv

Kvu
+ γ2

FuvFvu

K2
vu

+ γ3
F2

uv
KuvKvu

)

6.2.2 Node marginal cost: mcn

We only consider the cost of traversing nodes that correspond to rail yards owned
by the firm. Traversing every other node will have a cost of zero.24 Conditional on
a node corresponding to a yard, we let node marginal costs, mcn, be a quadratic
function of node capacity utilization.

mcn = 1{node n is a rail yard}
(

αn + βn fn,t + γn f 2
n,t

)
6.3 Instrument

The firm makes its routing choices after observing the errors ε. As a result, edge-
and node-flows are likely correlated with the error term. For example, if εuv is high
due to a snowstorm increasing the cost of traversing edge uv, the firm is likely to
reduce flows going through that edge, creating a negative correlation between the
error and the observed flows.25

We can control for endogeneity using a source of exogenous variation to construct
an instrument. Since we are estimating a cost function, the natural source of variation
would be a demand shock that could help us trace the cost function. Ideally, the
magnitude of the demand shock would differ from edge to edge in a way that is
uncorrelated with the errors, allowing us to instrument for flows F using some set

24Besides rail yards, there are two additional types of nodes in the rail network: origins and
destinations of shipments, and points where two tracks cross each other. All shipments must go
through their origin and destination nodes regardless of their route; our current estimation approach
does not allow us to identify these costs. We are working on incorporating rail crossing quality data
into our analysis, but the current model does not include them.

25Since flows enter both positively and negatively in our estimating equation, we cannot conclude
from this correlation that the OLS estimates will be downward biased.
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of variables Z that satisfy:[
Ri,E − Rj,E

]′
Z⃗1,uv,t⃗ε1,uv,t +

[
R̃i,E − R̃j,E

]′
Z⃗2,uv,t⃗ε2,uv,t +

[
Ri,N − Rj,N

]′
Z⃗n,t⃗εn,t = 0

We construct such an instrument using the phase-out of coal that followed the
emergence of shale gas starting in 2009. We provide details on the validity and
construction of this instrument in the next subsection.

6.3.1 Coal phase-out shift-share instrument

We instrument for flows at the edge- and node-level with a shift-share instrument
interacting monthly coal production east of the Mississippi River with the exposure
of each edge and node to coal production.

Until the mid-2010s, coal was the largest source of electricity in the United States,
accounting for more than a third of the total electricity production (US Energy
Information Administration). But in the 2010s, coal production in the US started
to decline, as the emergence of shale gas reduced the price of natural gas and out-
priced many coal energy plants. This decline further accelerated in 2015, when the
Obama administration introduced the Clean Power Plan, increasing environmental
regulation of coal plants. Between these two factors, monthly coal production
declined by 35% from 2009 to 2018.

Rail plays a crucial role in transporting coal from mines to power plants across
the US. In 2021, 69% of coal shipments were transported by rail, and as US coal
production has decreased, the amount of coal transported by rail has decreased as
well, falling by 61% from 2008 to 2021. Since coal is the top commodity transported
by rail in terms of volume (accounting for 27% of all US freight in 2021), the
decline in coal production has represented a substantial demand shock for the rail
industry.26

We use this demand shock to construct a shift-share instrument for rail flows
at the edge and node level. Since both railroads studied in this paper (BNSF and
UP) service coal mines in the Mountain West, a potential threat to our instrument is
the possibility of higher freight prices contributing to the decline in coal production.
We address this by using as a shifter the total monthly US coal production for states
East of the Mississippi River (depicted in Figure 9), outside of these railroads’ area

26All the figures in this paragraph come from AAR Fact Sheets.
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Figure 9: US Monthly Coal Production East of the Mississippi River.

Monthly US Coal Production East of the Mississipi River. The red line denotes January 2015, the first month
used in our analysis. Source: EIA

of operations.27

We next construct a "share" reflecting the exposure of each edge and node to
the decline in coal production. We do this by computing the total carloads of coal
shipped between each pair of nodes o and d in the network for the period 1998-2003
(the earliest data to which we have access). We construct a shift-share variable at
the city-pair level by multiplying the demand shifter and the share of total carloads
shipped between a given city pair as a fraction of total coal shipments:

Shift-Shareod,t =
Carloads of Coalod,98−03

∑od Carloads of Coalod,98−03
· Coal Productiont

In order to use this measure as an instrument, we need to convert it into a
measure of exposure to coal for each edge uv and node n in the network. To do this,

27An additional concern is that the availability of cheaper shale oil led to both lower diesel costs
for rail and lower coal production. To the extent that the decline in coal correlated with a decline in
oil prices, this should affect all edges equally and cancel out (see Section 6.4), since diesel prices are
highly correlated across space. Indeed, diesel prices across US regions had a correlation of at least
97.8% during 2015-2018 (EIA).
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we compute the shortest route between o and d, and we allocate each city pair’s
exposure to all the nodes and edges belonging to that shortest route. Note that we
use the shortest rather than the observed route since the observed route depends on
the structural errors ε, and to the extent that these are persistent over time, could
introduce bias in the results.

Shift-Shareuv,t = ∑
od

1{uv belongs to shortest route between o and d} · Shift-Shareod,t

Shift-Sharen,t = ∑
od

1{n belongs to shortest route between o and d} · Shift-Shareod,t

6.3.2 Nonparametric First Stage

We use these edge- and node-level shift-shares to construct an instrument for the
endogenously determined flows at the edge- and node-level. Rather than choosing
a specific functional form to go from these shift-shares to an instrument, we follow
the approach proposed by Chen et al. [2020]to perform a nonparametric first stage
with linear controls.

To summarize their approach, suppose we want to run the following regression:

Yi = αDi + βXi + εi

where Di is endogenous, ε is unknown, and Xi is exogenous.28 If we have a
valid instrument Zi, Chen et al. [2020] show how we can consistently estimate the
coefficient of interest, α, together with the coefficient for the linear controls, β, with
the following instrument:

E[Di|Zi] + E∗[Di|Xi − E[Xi|Zi]
]

where E∗ is the Best Linear Predictor. In our application, we estimate the conditional
expectation via a random forest. We refer the reader to Chen et al. [2020] for further
details and a discussion on the econometric properties of this estimator.

In Figure 10, we plot a scatter plot of our instrument ("Predicted Flow Utilization")
and the observed flows. The instrument tracks the endogenous variable closely, and
this "first-stage" has an R2 of 78%.

28In our application, the flows fi play the role of Di, and the edge characteristics are equivalent to
Xi.
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Figure 10: Observed monthly flows vs. instrument.

6.4 Comments on the estimation

Our estimation relies on deriving a condition under which the firm equalizes
marginal costs across two routes. This approach has two drawbacks: First, any costs
that do not depend on the route chosen will cancel out. Second, this condition can
be trivially satisfied by setting all costs to zero (we implement a normalization to
avoid this issue).

Levels vs changes. Our estimation approach cannot estimate any constant coeffi-
cient in the marginal cost function. This constant coefficient includes all costs that
do not depend on the route taken, such as the wages of the employees operating
the trains. Our cost function, then, relates exclusively to inputs whose utilization

29



is directly tied to the route used. These include the services provided by the rail
infrastructure, as well as any route-dependent component of wages and capital
costs.29

An additional implication is that we cannot recover the level of costs. Our
approach, however, does allow us to detect changes in costs over time and across
space. For example, it enables us to make statements such as "route i is 100 miles
more expensive than route j."

Unit of measurement. Given our parametrization, all our moment conditions
would be trivially satisfied if we set all coefficients equal to zero. To avoid this
problem, we set the coefficient of distance on costs to one. We then interpret all costs
in terms of equivalent miles: Saying that the cost of route i is 100 miles higher than
the cost of route j implies that choosing i is equivalent to choosing j and shipping a
carload an additional 100 miles.

In some cases, it is useful to have a dollar measure of costs. To obtain this
measure, we start with the fuel efficiency of a locomotive, which stands is 400
ton-miles per gallon. A typical carload weights 115 tons, and the average price of
diesel fuel during this period was $2.71 (US Energy Information Administration).30

Altogether, this suggests that the fuel costs of shipping one car-mile are 115
400 $2.71 =

$0.78. Based on the Association of American Railroads (AAR), fuel represents
around 20% of operating costs, so the aggregate cost of shipping one car-mile is
$3.89. For reference, the average price of shipping one car-mile during this period
was $5.00.

Selection and other caveats. In our analysis, we consider cases where the
railroad uses more than one route to fulfill an origin-destination pair. However,
in so doing, we are not using the potentially useful information that if a railroad
chooses to use only one route to fulfill its demand, that choice must lead to a
lower cost than if it used two routes. We could incorporate this information using
moment inequalities for our estimation, allowing us to recover any fixed component
of marginal costs. We have not implemented this approach yet, but we plan to
explore this in future iterations of this paper.

An additional caveat related to the interpretation of the costs recovered from this
approach—especially when they interact with the time to ship—is that we cannot

29For example, a longer route may take more time, and thus require more worker hours.
30Locomotives use a diesel fuel known as Diesel #2 or ULSD (Ultra-Low Sulfur Diesel).
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directly account for the duration of any trip, since we do not observe this in our
data. However, it is possible that trips using longer routes also take longer to reach
their destinations. When this is the case, the firm needs to increase the labor and
capital used for a single trip (i.e., it needs to assign a locomotive to the trip for
a longer period of time). In such a case, our cost coefficients would also include
capital and labor costs.

A trickier problem arises when consumers care about the duration of the trip.
Under certain assumptions regarding demand, described in Appendix C, the model
is isomorphic to one in which the firm offers a rebate to consumers proportional to
the duration of the shipment. When that occurs, the marginal cost coefficients will
capture a combination of the technological costs to the firm and the foregone profits
due to the rebate.

7 Results

Estimation results. We use Generalized Method of Moments to estimate the coeffi-
cients of the marginal cost functions described in Section 6.2. We estimate separate
coefficients for both BNSF and UP, allowing them to have different technologies. We
present the results in Table 1. Columns (1) and (3) present OLS parameter estimates,
columns (2) and (4) show our IV estimates, while columns (3) and (5) add passing
sidings as an edge characteristic.31 For the remaining sections, we use specifications
(2) and (4).32 These estimates inform us regarding the shape of the cost function
and how the firms trade off distance, infrastructure characteristics, and capacity
utilization. Note that the OLS and IV coefficients are similar in magnitude, with the
main difference being that our IV estimation has tighter confidence intervals.33

For both firms, better infrastructure reduces the cost of traversing an edge. An
additional parallel track shortens the effective length of an edge by 18% for BNSF
and 61% for UP, reducing the slope by 1% reduces edge-costs by 30%, and increasing
the frequency of passing sidings reduces costs by 48-65%. The one notable difference
between the two firms is the coefficient of the trackage dummy, which indicates

31At the time of writing this draft we have not yet finished running the route inversion for Union
Pacific, thus leading to fewer observations. For more details, see Appendix B.

32We computed these estimates first, and have not yet rerun our analysis incorporating the new
coefficients.

33This is consistent with our previous discussion of the lack of a clear bias in OLS.
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Figure 11: Estimated marginal costs at the edge level - BNSF.

Edge-level marginal costs for BNSF. In this figure, we assume that the capacity utilization of an edge is the
same in both directions.

whether the firm is using another firm’s infrastructure. While UP is indifferent
between using its own tracks and those of BNSF, BNSF systematically prefers using
UP’s tracks. This is consistent with an inefficiency arising from trackage rights,
such that the price UP charges BNSF is too low. The node-costs coefficients imply
that node-level marginal costs are hump shaped on capacity utilization, achieving a
maximum at around 60% capacity utilization for BNSF and 40% for UP.

To interpret the estimated edge costs, we compute BNSF’s edge-level marginal
costs as a function of capacity utilization, depicted in Figure 11.34 We convert the
units from effective miles to dollars per carload-mile using the calculation described
in Section 6.4. Since we do not identify levels, we normalize the cost of the most
efficient unit to be zero. Marginal costs are U-shaped, with a minimum around 55%
utilization, and imply significant economies of scale: Traversing an edge with 0%
utilization is $2.00 more expensive than a shipment at 55% utilization; this difference
represents 40% of the average price for a carload-mile during this period. These
results are consistent with the behavior of prices in the spot market shown in Figure
7, even though pricing data was not included in the estimation.

34We show the same plot for Union Pacific in Appendix F.
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Figure 12: Estimated marginal cost per mile 1998-2018

Reverse edge utilization has different effects depending on the specification.
In specifications (2) and (4), with fewer track characteristics, increasing reverse
utilization lowers both the optimal capacity and total costs. In specifications (3) and
(6), with more controls, we find economically insignificant effects.35

Marginal costs over time. We estimate our model using data from 2015 to 2018.
Under the assumption that the cost function is constant over time, we can estimate
marginal costs by route for the rest of our data. Figure 12 plots the estimated change
in marginal costs per mile from 2001 to 2018. We find that changes in capacity
utilization increased the average cost per mile by around 50 cents during the period
of analysis, with most of the increase occurring during 2004-2006 and 2015-2016.
This pattern is consistent with the behavior of prices documented in Section 2, and
explains around 30% of the total increase. Appendix F shows how costs varied for
each of the two firms individually.

Figure 13 decomposes the time series presented in Figure 12 into edge-level and
node-level marginal costs. Almost all the variation comes from changes in edge-level
marginal costs, with node costs oscillating around zero for the entire period.36

35We are currently working on allowing reverse edge to affect costs differently depending on the
rail infrastructure.

36Starting in the early 2000s, railroads have tried to increase the efficiency of their shipments by
avoiding using yards, focusing increasingly on putting together "unit trains", in which all carloads
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Figure 13: Decomposition of estimated marginal costs per mile
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Table 1: Estimation Results

BNSF UP

(1) (2) (3) (4) (5) (6)

Infrastructure Characteristics
Additional Parallel Track -0.233∗∗∗ -0.183∗∗∗ -0.151∗∗∗ -0.710∗∗∗ -0.612∗∗∗ -0.588∗∗∗

[-16.64] [-16.45] [-18.27] [-52.43] [-21.25] [-38.64]

Trackage Dummy -0.329∗∗∗ -0.309∗∗∗ -0.400∗∗∗ 0.233∗∗∗ 0.182∗∗∗ 0.014
[-57.61] [-66.35] [-41.43] [29.83] [11.78] [1.40]

Slope of 1% 0.482∗∗∗ 0.418∗∗∗ 0.348∗∗∗ 0.434∗∗∗ 0.402∗∗∗ 0.293∗∗∗

[24.85] [21.17] [21.17] [20.11] [15.62] [20.73]

Passing Lane Frequency -0.651∗∗∗ -0.480∗∗∗

[-24.85] [-8.15]

Track Marginal Costs
Utilization -1.348∗∗∗ -1.533∗∗∗ -1.120∗∗∗ -0.768∗∗∗ -1.129∗∗∗ -0.287∗∗∗

[-39.77] [-37.61] [-24.32] [-19.34] [-7.63] [-3.96]

Util. Squared 1.139∗∗∗ 1.256∗∗∗ 0.918∗∗∗ 0.726∗∗∗ 1.117∗∗∗ 0.188∗∗

[29.12] [27.52] [22.51] [17.17] [7.34] [2.45]

Util. opp. dir. -0.198∗∗∗ -0.334∗∗∗ -0.179∗∗∗ -0.106∗∗∗ -0.132∗∗∗ -0.139∗∗∗

[-6.81] [-14.05] [-7.17] [-10.72] [-8.25] [-7.15]

Util. opp. dir. squared -0.051∗∗∗ -0.089∗∗∗ 0.012 -0.010 -0.034 -0.076∗∗∗

[-2.83] [-5.20] [0.85] [-0.55] [-1.41] [-2.75]

Util. times utilization opp. dir. 0.260∗∗∗ 0.479∗∗∗ 0.197∗∗∗ 0.161∗∗∗ 0.236∗∗∗ 0.0262∗∗∗

[5.75] [12.55] [4.96] [6.13] [6.30] [5.45]

Yard Marginal Costs
Node-costs constant -31.256∗∗∗ -43.929∗∗∗ -17.974∗∗∗ -9.908∗∗∗ -14.664∗ 8.322∗∗∗

[-16.62] [-13.20] [-7.08] [-7.03] [-1.89] [5.24]

Node-costs slope 96.712∗∗∗ 157.709∗∗∗ 61.634∗∗∗ 52.762∗∗∗ 83.964∗∗∗ -14.322∗∗

[12.25] [12.05] [7.28] [10.59] [2.79] [-2.24]

Node-costs quadratic -79.365∗∗∗ -136.796∗∗∗ -51.974∗∗∗ -54.149∗∗∗ -89.550∗∗∗ 16.676∗∗∗

[-10.96] [-12.04] [-7.66] [-11.64] [-3.30] [2.67]

State FE Yes Yes Yes Yes Yes Yes
Observations 80561 80561 80561 20095 20095 20162
R2 0.981 0.987

Parameters represent costs in effective-miles. t statistics in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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8 Counterfactual Analyses

Thus far, we have shown how to model railroad shipping choices while accounting
for the network structure of production, as well as how to obtain moment conditions
to estimate the model. Next, we show that accounting for this network structure is
useful to answer many policy questions. We highlight three features of the railroad
industry and explore their implications for two normative policy questions and one
positive policy question.

First, the network structure of production implies that infrastructure investments
at an edge or node level have network-wide cost implications. Since a significant
portion of rail investment is done by firms in cooperation with local and state gov-
ernments, the presence of network externalities is likely to lead to underinvestment.
We evaluate how returns to investment vary across states, and compute how much
of these returns are captured by the states making the investment.

Next, since railroads own their rail networks, they internalize any economies
of scope they impose on their own flows, potentially improving efficiency over a
decentralized system. To highlight this feature, we study the effect of merging
the two largest railroads, Union Pacific and Burlington Northern Santa Fe. Such
a merger could potentially reduce costs in three ways: First, the merged firm
could better coordinate the flows between each firm’s network, redirecting traffic
to the least congested areas. Second, the joint firm would have access to new,
previously inaccessible routes. And finally, the merger would reduce the contractual
frictions that are currently present when using trackage rights in each anoother
firm’s network. We find that such a merger would reduce costs by 17.1% compared
to the decentralized equilibrium.

Third, railroads produce a vector of products, with each product representing a
shipment between two different city pairs. To the extent that shocks are not uniform
across space, they will have different effects depending on the set of products they
affect. We study this phenomenon in the case of a particularly important shock:
the accession of China to the World Trade Organization (WTO). We show how the
reallocation of imports from ports in the Gulf Coast to the port of Los Angeles
interacted with the capacity utilization of BNSF and UP to produce heterogeneous
effects across markets.

share the same origin and destination. Thus, we interpret our results as reflecting the reduced
importance of yards.
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8.1 Infrastructure investment

Freight railroads own, build, and maintain most of the rail infrastructure in the US.
From 2017 to 2022, railroad firms invested around $23 billion per year, equivalent to
39 percent of their revenue. Nevertheless, the federal government37 as well as state
and local government, often enter into partnerships with one or multiple railroads to
jointly finance specific investments. Two salient examples are the Alameda Corridor
and the Chicago Region Environmental and Transportation Efficiency Program
(CREATE).

The Alameda Corridor, built in the late 1990s and early 2000s, was a joint
undertaking by BNSF and UP and the cities of Los Angeles and Long Beach. The
project aimed to improve rail access to the Port of Los Angeles by building a below-
ground "trench," allowing rail traffic from the port to avoid grade crossings and cross
urban areas at high speeds. Similarly, CREATE is a series of 70 projects financed by
the Department of Transportation, the Illinois state government, the City of Chicago,
and multiple private railroads.

Both of these initiatives aimed to reduce congestion in their respective cities by
separating rail flows from road networks. In addition, these flows were expected
to reduce rail congestion and increase rail access to cities. As long as part of the
reduction in costs is passed on to consumers in the form of lower prices, cities will
see a reduction in prices for goods shipped by rail, as well as increased market
access for firms located in these cities.38

One natural question that emerges is whether state and local governments
face the right incentives when deciding on whether to finance such infrastructure
investments. This is particularly salient because these investments are likely to
generate spillovers throughout the entire network. In particular, we study two
questions: First, where do infrastructure investments have the highest returns? And
second, how large are the network spillovers of these investment?s

37The Infrastructure Investment and Jobs Act of 2021 allocated $22 billion dollars to finance
investment in rail and intermodal facilities.

38These projects highlight a major reason why railroad firms are unlikely to undertake these
projects on their own: Improving rail infrastructure often involves changing road networks, making
these projects impossible without governmental cooperation.
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8.1.1 Returns to investment differ across states.

We start by evaluating how returns on infrastructure investments vary across states.39

To do so, we separately improve the rail infrastructure of each state in our sample
and assess how costs change in response. Specifically, we add one additional set of
parallel tracks to every edge in the state. Since states differ in the amount of rail
they have, we will report how cost changes for each mile of parallel tracks.

The additional set of tracks will reduce the cost for all shipments with a route
along that edge.40 In addition, the firm will be aware of its improved infrastructure,
and will reallocate shipments to take advantage of the reduced costs. In order to
recover this counterfactual change in flows, we solve the routing problem for each
firm using the new edge-level costs. For more details on this computation, please
see Appendix D.

We use June of 2018 as our reference month, meaning that firms will have to
fulfill the Qt observed in that month. We use our cost function to solve for firms’
routing choices before and after the infrastructure investment in each state s, XB

s

and XCF
s .41 Next, we compute how total costs change in response to the changing

infrastructure:

∆Cs = CUP,CF
s (XUP,CF

s ) + CBNSF,CF
s (XBNSF,CF

s )− CUP,B
s (XUP,B

s )− CBNSF,B
s (XBNSF,B

s )

We do this for all 28 states where either UP or BNSF have rail infrastructure. For
each state, we compute its Return on Investment:

Return on Investments =
∆Cs

Miles of tracks

We normalize the returns to one for the median state in our sample (Idaho), and
plot this measure for all states in Figure 14. As is evidenced by the Figure, returns
on investment vary significantly across states. The state with the most productive
investment (Arizona) has a return six times higher than that of the median state
(Idaho), which in turn is five times as productive as the least productive state (South

39In principle, our model would allow us to detect the edges or nodes where investment is most
productive. However, minimizing the cost function after every change takes about 3 hours, and with
around 6,000 nodes and edges, this is unfeasible.

40Based on our parameter estimates, this is equivalent to reducing the cost of going through each
edge by 40%.

41Note that these are Xs =
{

XUP
s , XBNSF

s
}
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Figure 14: Return to Investment in rail infrastructure.

Change in costs in response to adding one additional set of parallel tracks to all edges in a state. Idaho = 1

Dakota). Returns on investment are higher in more central regions, and the states
with the highest returns (AZ, NM, NE, MO, and KS) are all part of the largest rail
corridor, which connects Los Angeles and Chicago.42

Going back to the two infrastructure projects that opened this subsection, we find
that investment in California and Illinois is only 25% as productive as investment
in Arizona. This large difference is partly explained by two shortcomings of this
approach: First, our approach cannot recover the costs incurred at the start or end of
a shipment. All shipments originating in Los Angeles, for example, must incur the
cost of traversing the Los Angeles node regardless of the route taken. As such, any
fixed costs originating at that point would cancel out. Similarly, to the extent that
these investments focus on costs incurred during the last few miles of the trip, we
would be underestimating their benefits.43 Second, our counterfactual studies the

42Our current formulation does not allow for decreasing returns on investment: Investing one
dollar in Arizona is as effective as investing one billion. We are working in incorporating decreasing
returns in a future draft.

43We can use moment inequalities in estimation to recover these costs. We will incorporate that
approach in future work.
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returns of improving the infrastructure for all rail in California and Illinois, while
more-targeted investments would likely yield higher returns.

8.1.2 Infrastructure investments produce significant network spillovers.

Next, we focus on the case of investment in Arizona, evaluating its effects on the
costs of shipping to and from different regions of the United States. We will assume
that changes in marginal costs translate one-to-one to changes in prices, although
the qualitative results would hold as long as markups are constant across space.

We start by computing how the marginal cost of shipping a ton-mile between
each city pair in our sample changes in response to the infrastructure investment.
We denote this change as ∆cij. Next, we evaluate how these changes translate into
lower cost of shipping by constructing a Laspeyres price index for each location:

Change in relative costsi =
∑j Qij∆cij + ∑j Qji∆cji

∑j Qij + ∑j Qji

This index measures how the cost of shipping products has changed in response to
the infrastructure investment. We plot these changes in Figure 15, which demon-
strates that costs decreased the most in Arizona—up to 17% in the area around
Flagstaff. This is to be expected, since all shipments originating or terminating in
Arizona use the newly improved rail. In addition, there are substantial spillovers, as
most of California and areas of Texas saw cost reductions of over 5%.

The outcome changes, however, when we look at the total change in costs.
Although Arizona benefits the most from investment in Arizona rail, the state is not
a major origin or destination for rail flows. We compute the total change in costs to
be:

Change in total costsi = ∑
j

Qij∆cij + ∑
j

Qji∆cji

Figure 16 shows which states benefit the most once we consider total costs. Arizona
accrues only 3% of the total benefits, with 47% of the gains going to California,
and 15% each to Texas and Illinois.44 These numbers highlight how returns to
investment need not align with incentives to invest.

44Note that these numbers imply California would get a higher return from improving Arizona’s
infrastructure than from investing on its own.
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Figure 15: Changes in shipping costs per unit

Weighted proportional change in shipping costs in response to investment in Arizona.

Figure 16: Proportion of total benefits accruing to each state

Proportion of total benefits accruing to each state following investment in Arizona.
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8.2 Merger Analysis

The freight railroad industry underwent significant consolidation after its deregula-
tion in 1980, contracting from over 40 Class I railroads in the late seventies to just
seven by 1998. A 25-year pause followed, until early 2023, when Canadian Pacific
acquired Kansas City Southern, bringing the total number of firms in the industry
down to six. The Surface Transportation Board has been more lenient when evaluat-
ing anticompetitive concerns for end-to-end mergers, in which a railroad shipping
between A and B acquires a firm shipping from B to C. These mergers are analogous
to vertical integration, and have thus traditionally sparked fewer anticompetitive
concerns among regulators. In contrast, horizontal mergers, in which a railroad
acquires another railroad with similar routes, have been less common, and have
required divestments or the concession of trackage rights to competitors.

Horizontal mergers are, however, more likely to allow the merged firm to better
exploit the economies of scale and scope documented in this paper. Thus, for our
second application, we evaluate the efficiency gains from a horizontal merger. We
do this by simulating a merger between BNSF and UP.45

We start by discussing why cost synergies may arise from merging these two
firms, and identifying three factors that may lead to cost reductions. Next, we
explain how we use our model to simulate this merger, and delineate how much of
the cost reductions would come from each factor.

8.2.1 Costs efficiencies from a merger

Before discussing the implementation of this counterfactual, it is useful to consider
why a merger would lead to reductions in total costs. We identify three factors that
would lead to lower costs: cooperation, process innovation, and reduced contractual
frictions.

Cooperation. Suppose we allow UP and BNSF to merge, but we force them to
keep their networks separate, with each individual shipment reqiored tp travel
entirely within BNSF’s or UP’s original rail network. This arrangement would still
lead to lower costs, as the merged firm would be able to optimally allocate flows
to the subnetwork experiencing the lowest costs at any given moment. This could

45This merger is not under consideration and is unlikely to meet the STB’s antitrust standards;
still, we consider it an interesting thought experiment.
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be because one of the firms is better at serving a given city pair than the other, or
because one of them is congested and thus facing higher costs.

We call any reduction in costs that stems from improving the allocation across
firms "cooperation." Note that this outcome cannot be replicated with the price
system due to the presence of long-term contracts, which prevent the consumer
from shifting to the firm with the lowest shipping costs. Absent switching costs
between firms (not modelled in this paper), the firms could, in principle, replicate
this outcome by hiring each other to deliver shipments.

Process Innovation. Beyond cooperation, suppose we let the merged firm integrate
its networks and use any path when serving a given origin-destination pair. Because
the firm can now use track belonging to either of the two original firms, it will have
access to new routes that were previously unavailable. These new routes represent
new ways to produce a shipment between two points and so, we will call the cost
reduction they generate "process innovation." Regulation could also allow the firms
to reach this outcome without a merger: The STB could require the extension of
more trackage rights (which we will discuss more shortly) to make these paths
available to the existing firms.

Contractual Frictions. Trackage rights allow a firm to use another firm’s tracks for
a fee. The STB has often demanded the extension of trackage rights to competitors
in order to allow a merger, making these arrangements common in the industry.46

The fees paid are adjusted annually in response to changes in aggregate costs, but
do not generally reflect immediate traffic conditions. As a result, the firm exercising
its trackage rights might not internalize the costs it imposes on its competitor.

We see evidence of this in our estimation. In particular, we find that BNSF has
a clear preference for using UP’s tracks, while UP is indifferent. This is consistent
with BNSF paying a fee that does not fully internalize the cost of using UP’s tracks.47

These contractual frictions would be solved by a merger, since the merged firm
would fully internalize the costs when choosing its routes.

46For example, UP can access around 15% of BNSF’s tracks via trackage rights.
47If, instead, UP’s infrastructure were unobservably better than that of BNSF, we would expect to

see UP preferring its own rail to that of BNSF.
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8.2.2 Implementation and Results

We simulate the merger using 2018 as the reference year. To isolate the effect of costs
efficiencies, we assume that the merged firm does not change its prices, therefore
shipping the same amount as the two individual firms.48 We start by using our
cost function parameters to compute a pre-merger baseline, in which each firm
separately minimizes costs.49

min
X

CBN(X|XUP) min
X

CUP(X|XBN)

s.t. X ∈ XBN s.t. X ∈ XUP

∑ X = QBN ∑ X = QUP

We then compute the merger outcome in three stages, corresponding to the three
factors described in the previous subsection. We start by simulating a cooperation
equilibrium, in which the merged firm has access to the union of all routes available
to BNSF and UP, XM = XUP ∪ XBN. The firm minimizes a new cost function, CM:
This function has the same form as that described in equation (3), but can now
include edges belonging to different firms.

min
X

CM(X)

s.t. X ∈
{

XBN ∪ XUP
}

∑ X = QBN + QUP

Next, we compute the process innovation equilibrium. To do so, we expand the
choice set for the firm: It can now use routes that are only available by combining
the two subnetworks, XNEW . The problem becomes:

48We could then ask, how much would markups have to increase to undo the cost efficiencies of
the merger?

49Since our model does not fit the data perfectly, we compare model predictions to model
predictions to isolate the changes coming from the merger. For details, see Appendix D.
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min
X

CM(X)

s.t. X ∈
{

XBN ∪ XUP ∪ XNEW
}

∑ X = QBN + QUP

Finally, we compute the role of contractual frictions. We do this by assuming
that, for the merged firm, whether an edge involves using trackage rights has no
effect on costs. That is: αtrackage = 0. We compute the firm optimal choices with the
new set of parameters, and evaluate the previous choices using this new frictionless
cost function.

Results. Our simulations deliver significant synergies. For the year 2018, we
find that cooperation reduces total costs by 17% compared to the decentralized
equilibrium.50 We are currently working on implementing the other two scenarios.

8.3 China Shock

The accession of China to the WTO in 2001—one of the most studied shocks of the
last 20 years—led to a boom in international trade in the United States. Total imports
into the US, plotted in Figure A.7, increased by 115% during this period, or 15%
faster than GDP. This shock was accompanied by a corresponding shift in the sources
of imports: China’s share of total US imports increased almost threefold, from 8.2%
in 2000 to 21.6% in 2018 (Figure A.8). China’s rising share was accommodated by
a corresponding decline in imports from Canada and Japan. A vast literature has
reported how this shock led to geographically diverse labor market impacts, as
domestic firms were increasingly exposed to Chinese import competition.51

This change interacted with the geography of trade, as exporters typically opt
for the nearest port to their home country as their port of entry. Figure 17a shows
the five largest exporter’s chosen ports of entry into the US in 2018. Unsurprisingly,

50Calculating this number is not straightforward, since we do not observe the levels of costs.
Instead, we evaluate the costs before and after the merger, and compute the total reduction in costs
in effective carload-miles. We then divide this value by the total carload-miles shipped, to obtain the
17% figure.

51See, among others, Autor et al. [2013], Pierce and Schott [2014], Dorn et al. [2021], Gerritse and
Caragliu [2022].
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Figure 17: Import region of entry and country of origin, 2018

(a) Region of entry by country of origin (b) Origin by port region

Values weighted by tonnage. Only imports by ship are considered. Source: US Census Bureau. Ports included
in each region: Great Lakes - Ogdensburg, Buffalo, Milwaukee, Chicago, Cleveland, Detroit, Duluth; Gulf
of Mexico - Mobile, Port Arthur, New Orleans, Houston-Galveston; Northeast - Washington, Philadelphia,
Portland, New York, Boston, Baltimore, Providence; Southeast - Charleston, Tampa, Norfolk, Miami, Savannah,
Wilmington; West Coast - Seattle, San Francisco, San Diego, Los Angeles, Columbia-Snake.

imports from China and Japan enter the US predominantly through West Coast
ports, Mexican imports through the Gulf of Mexico, European imports through
ports in the East Coast, while Canadian imports are spread out evenly between the
East Coast, West Coast, and the Great Lakes.

As such, each port experiences a different distribution of countries of origin,
which will in general be different from that of the country as a whole. For example,
Chinese imports represent more than 20% of all imports for ports in the West Coast,
while they constitute only 2% of imports in ports in the Gulf of Mexico. Figure
17b shows this distribution for five US regions. We can interpret these graphs as
showing how exposed different areas of the country are to shocks from different
trading partners.

The combination of these two features (China’s increased import share, coupled
with Chinese exports going predominantly to the West Coast) led to a shift in the
port and region of entry of US imports. At a regional level (Fig 18a), the share of
imports entering through ports in the West Coast rose from 13% to 26%, while that
of the Gulf of Mexico fell by 20 percentage points.52 At the port level (Fig 18b), the

52This fall in part reflects the fact that the United States went from being a net importer of oil to a
net exporter during this period.
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Figure 18: Region and port of entry for US imports. 2003-2023

(a) Region of Entry (b) Port of Entry

Data through February 2023. Source: US Census Bureau

port of Los Angeles rose from fourth to first in terms of volume, surpassing New
Orleans, Houston and New York.

Rail flows were similarly affected by this shift in international trade. Figure 19
shows how the share of rail trips originating in the Los Angeles area rose from less
that 10% in 1998 to over 20% in 2018.

In this counterfactual analysis, we examine the extent to which this shift led to
changes in rail costs across the United States.

8.3.1 Counterfactual Flows

Our aim is to construct a set of counterfactual rail flows for a world in which
Chinese exporters are forced to use ports according to their average size in the year
2000. To do so, we construct a measure of how much each port of entry was affected
by the China shock, which we then subtract from the observed flows.

First, we use 2018 data to construct sop, representing the proportion of imports
from country o that entered the US through port p. This measure, similar to Figure
17b but at a more granular level, reflects the exposure of each port to trade from
each country of origin. Next, for each country, we compute the value of imports in
2000 and 2018, mo,00, mo,18.

We can now define the counterfactual change in port-level imports, ∆QCF
p , by
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Figure 19: Proportion of trips originating in Los Angeles for two major US railroads, 1998-2018

Trips weighted by size. The red line marks the passage of the United States-China Relations Act of 2000, in
which Congress granted China Permanent Normal Trade Relations status and agreed to support its accession
to the WTO.

keeping the aggregate import level (M18) at its 2018 value, but changing the import
composition to that of 2000.53 This approach allows us to isolate the effect of the
China shock on import composition while keeping the aggregate effect constant.54

∆QCF
p =

(
∑
o

sop (mo,00 − mo,18)

)
M18 (13)

We match these ports p to nodes i in our rail network. We then convert units
from tons of imports to carloads of freight by comparing the total imports in the
port of Los Angeles to the import rail shipments originating in that port in our
data.55 We construct our counterfactual rail flows by scaling 2018 rail flows up and

53Due to data limitations, here we mix two measures of trade flows: sop uses trade in tons, while
mot uses trade in dollars.

54We do this to avoid modeling changes in domestic production in response to the change in
imports. If we allowed aggregate imports to decrease, some of them would be replaced by local
producers, which might then ship their products via rail.

55The CWS provides limited data on international trade. This variable is missing for almost all
observations other than those for the port of Los Angeles.
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down according to each port’s exposure to the China shock.

QCF
ij = Qobs

ij
max

{
Qobs

i + ∆QCF
i , 0

}
Qobs

i
(14)

8.3.2 Results

We start by examining how our counterfactual affects railroads’ routing choices. To
do so, we obtain each firm’s routing choices by minimizing their estimated cost
functions for both the observed demand matrix, and the counterfactual demand
matrix defined in equation (14).56 We estimate these choices separately for each
month in 2018, and then average the results to obtain a yearly measure.

We plot the estimated change in flows for BNSF and UP induced by the China
shock in Figures 20 and A.9. For each firm, we plot how flows changed for each
edge, going both east and west. Both firms see an increase in eastbound flows
originating in Los Angeles, and decreases in eastbound flows originating in San
Francisco and westbound flows originating in New Orleans.

Despite this common shock, the effect on the network depends on routing
choices. Consider the case of shipments originating in San Francisco: BNSF routes
these shipments southeast through its main corridor in the Sun Belt. UP, on the
other hand, sends them northeast through its tracks across the Mountain West. As a
result, demand shocks in San Francisco propagate to Southern California if shipped
by BNSF, and to Nevada and Colorado if shipped by UP.

Figures 21 and 22 present how our estimated marginal costs changed in response
to the China shock for each firm. Whether an increase in flows translates into
higher or lower marginal costs depends on the preexisting capacity utilization of the
rail infrastructure. Section 7 shows that marginal costs at the edge-level have a U-
shaped relationship with capacity utilization. Higher flows may lead to congestion
if utilization falls to the right of the nadir of the U-shape, or they may lead to returns
to scale if they fall to the left.

Consider, for example, a shipment traveling from Los Angeles to Chicago.
Figures 20 and A.9 show that the traffic between those cities increased for both firms
relative to the counterfactual. Despite this, Figures 21 and 22 show how edge-level
costs increased for BNSF in almost all edges in this corridor, while they remained

56For more details on how we implement this cost minimization, see Appendix D.
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Figure 20: Counterfactual Change in Flows, BNSF

We plot the difference between the observed 2018 flows and the counterfactual flows. Values capped at ±50, 000.

Figure 21: Counterfactual Change in edge Marginal Costs, BNSF

Values capped at ±0.1.

constant or decreased for UP. Indeed, we observe that the same shock increased
the cost of a shipment between these two cities by 7% for BNSF, while it decreased
it by 1% for UP. This finding highlights the importance of considering the market
structure of rail when conducting counterfactuals: The impact of a shock may differ
depending on which firm is most affected by it.

Finally, we evaluate how these changes in edge-level marginal costs affected
different regions of the country. We use regions constructed by the Bureau of
Economic Analysis as our unit of observation. For each region, we construct a
Laspeyres cost-index reflecting how shipping costs changed in response to the
China shock. We take our estimated counterfactual change in Marginal Costs and
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Figure 22: Counterfactual Change in edge Marginal Costs, UP

Values capped at ±0.1.

weight them using 2018 rail shipments for each firm-city-pair, Qod f .

Outboundo = ∑
d

(
Qod f

Qo
∑

f
∑

i
xodi, f

(
∑
uv

RiE
uv∆mcuv + ∑

n
RiN

n ∆mcn

))
(15)

Inboundd = ∑
o

(
Qod f

Qd
∑

f
∑

i
xodi, f

(
∑
uv

RiE
uv∆mcuv + ∑

n
RiN

n ∆mcn

))
(16)

where xijr, f is the share of shipments between i and j for firm f taking route r.
Outbound measures the change in costs for the average shipment originating in
location o, which mostly affects the costs of firms producing in o, while Inbound
measures the change in costs for the average shipment arriving to location d, which
affects input costs and consumer prices for firms producing in d. We present these
measures in Figure 23.

For departing and arriving shipments, the most affected regions are Los Angeles
and Chicago, respectively, reflecting the increase in BNSF costs for that corridor.57

We can see how the increase in costs in the Los Angeles area extends to Phoenix
and, partially, to New Mexico, as the increased costs in the Los Angeles-Chicago

57The scale stops at 1.5% for legibility, but the actual measure for Los Angeles and Chicago is
over 3%. This is to be expected, since the shock mostly affected shipments between these two cities.
This is also consistent with Gerritse and Caragliu [2022], which found that most of the effect of the
China shock on employment occurred in areas around ports, with increased freight prices partially
shielding the rest of the country from competition.
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Figure 23: Counterfactual Change in region Shipping Costs, UP

corridor affect these areas.

9 Conclusion and future work

In this paper, we developed a new framework to study railroad costs that explicitly
considers the network structure of production. We documented how the firm’s
choices are consistent with nonmonotonic returns to scale and showed how to use a
model of cost minimization, together with novel railroad choice data, to estimate
railroads’ cost functions. Finally, we used this cost function to study three policy
questions: We showed how returns on investment vary more than 20x across states,
and have significant network spillovers. We highlighted how market structure
interacts with costs by simulating a merger that decreased total costs by 17%. And
lastly, we showed how demand shocks have heterogeneous impacts across firms
and space.

We remain aware of the limitations of this paper, and we plan to address them
both in future work and future versions of this draft. We are currently working to
expand our analysis to cover all six Class I railroads, allowing us to examine rail
costs throughout the continental US. In addition, to examine the entire industry,
it will be crucial to obtain an estimate of switching costs between firms. This will
require us to move from GMM to moment inequalities, allowing us to recover fixed
costs.

Another natural extension is to acquire additional data on rail contracts, to
jointly estimate demand and costs. This would be particularly useful in our ongoing
project, which integrates this structural model of rail with structural model of
trucking described in Yang [2023], to be able to evaluate the freight system as a
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whole.
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A Industry History

The US freight railroad industry is composed of private for-profit firms that both
own and operate the rail infrastructure. In this respect, it differs from most other
countries’ rail industries, which feature either partial or complete nationalization of
the sector.

The US rail network was mostly laid out in the late 19th and early 20th centuries,
when rail was the main source of internal transportation for both commodities and
passengers. The network peaked in size in 1916, at around 300,000 miles of track.
After World War II, the widespread adoption of cars, along with the development of
commercial flight and trucking, challenged the primacy of rail, which began a slow
decline. Half of the original network was either abandoned or sold off to smaller,
local firms.58

The industry can boast being one of the first industries to be regulated by the
federal government: In 1887, in response to concerns over monopolistic practices,
Congress created the Interstate Commerce Commission (ICC) to regulate railroads
and promote competition. The ICC determined which markets firms were allowed
to serve and its approval was required for any price changes, mergers, acquisitions,
or line abandonments. Railroads were subject to the "common carrier restriction," a
requirement to charge similar prices for all comparable services, which effectively
prevented them from engaging in price discrimination.

This regulation remained practically unchanged until the 1970s. During this
period, the development of automobiles and commercial planes turned rail pas-
senger services, once a key source of profits, into a financial burden for firms. In
addition, the ICC attempted to foster competition by protecting other transit firms
(Gallamore and Meyer [2014]), which often stifled innovation.59 As a result, by the
1970s railroads were in a dire financial situation, with many of them close to filing
for bankruptcy.

Following the successful deregulation of the airline and trucking industries,

58The Minuteman Trail connecting Cambridge to Lexington is an example of a repurposed rail
line.

59A famous case is that of Southern Railway’s ‘Big Johns’. These new cars featured a better
load-to-weight ratio and allowed for more efficient shipping. Southern Railways thus applied for
a 60% rate reduction in August of 1961, which was blocked by the ICC on grounds that it would
"drive truckers and other railroads out of business." SR took the matter to the Supreme Court twice
before a ruling in its favor in 1965. Source: http://www.railgoat.railfan.net/railwhales/a-axles.htm
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Congress passed a series of acts during the Carter administration, culminating in
the Staggers Act of 1980, which substantially deregulated the rail industry. The
Staggers Act allowed firms to abandon unused lines, granted them greater freedom
in setting prices, and permitted long-term contracts with clients.

This successfully revitalized the industry. Despite shedding thousands of miles
of unused track, the volume transported by Class I railroads doubled over the next
25 years, prices fell by 50% in real terms, and profits skyrocketed (Figure A.1). Key
to this transformation was the railroads’ newly-gained ability to sign long-term
contracts, as these contracts were instrumental in solving the hold-up problem
inherent in undertaking rail investments that will service other firms: Because each
railroad is in charge of building its own infrastructure, firms may be reluctant to
build tracks to service another firm without a guarantee that it will not ask for a
discount once the investment is made. Long-term contracts allowed railroads to
lock rates for long enough to recoup the investment costs.

The new regulations also gave railroads the freedom to set rates without the
need for government approval. They did include a provision allowing firms without
any other transportation alternatives to challenge rates if they exceeded 180% of the
railroad’s variable costs. But due to the difficulty of estimating these variable costs
in a network industry, only a handful of rates have been challenged, with mixed
results in the courts. Nevertheless, despite the lax government oversight, prices fell
steadily as shipping volumes increased and firms abandoned unused track.

Regulators were also substantially more lenient in allowing mergers and acquisi-
tions, especially between firms connected end-to-end. A flurry of mergers followed
this deregulation, during which the 20-odd mid-sized US railroads consolidated into
seven by the turn of the millennium. The remaining firms in the market—Union
Pacific (UP), Burlington Northern Santa Fe (BNSF), CSX Transportation (CSX), Nor-
folk Southern (NS), Kansas City Southern (KCS), Canadian Pacific (CP), and the
Canadian National Railway (CN)—own a network spanning 140,000 miles of track,
making it the largest freight rail network in the world (see Figure A.2).60 The pace
of mergers slowed down in 2000 when the Surface Transportation Board (STB, the
successor of the ICC) turned down a proposed merger between BNSF and CN; no
new mergers were attempted for the next twenty years, until CP acquired KCS in
2023.

60Association of American Railroads (2023)
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Figure A.1: Industry performance after deregulation.

Source: Association of American Railroads

Figure A.2: US Rail Network in 2023
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B Dataset construction

In this subsection, we explain in more detail how we construct our data. We can
answer additional questions or share our code upon request. Confidential Waybill
Sample. We start by reading the raw Carload Waybill Sample .txt files into Stata.
We use the ’Waybill Date’ (the date at which the originating railroad prepares the
waybill) as the date of each observation. We convert distance into miles (from tenths
of a mile). We create a commodity categorical variable using 2-digit STCC codes. We
drop all observations with zero revenue. We treat the American and the Canadian
branches of Canadian Pacific as a single firm, and we label all Class II and Class III
railroads as "Other."

Next, for each origin and destination, we match SPLC (Standard Point Location
Code) locations to Zip codes using data scraped from Railinc. We then use the
coordinates of the centroid of each Zip code (or BEA, if we could not match or SPLC
was missing) as the origin or destination of each trip.

We then take all trips involving more than one railroad (about 17% of the total)
and split them into multiple one-railroad trips. Each of these new trips will have as
its origin the location where it received the cargo from the previous firm, and as its
destination the place where it hands it over.

Network Construction. We start this process by constructing a shapefile con-
taining all the tracks that a firm either owns or has trackage rights to by modifying
the North American Rail Lines shapefile created by the NTAD. We transform this
shapefile into a network using the Shp2Graph R package (Lu et al. [2018]). We then
simplify this network to a resolution of 0.2 decimal degrees (roughly 14 by 11 miles,
depending on the latitude). This process combines all nodes lying within the same
0.2 by 0.2 square into a single node. Two of these nodes are then connected by an
edge if the original network featured an edge connecting points belonging to each of
the two new nodes. When computing an edge’s distance, we compute the shortest
route between the two nodes closest to each node’s geographical center. Finally, we
delete all nodes that have only two edges and are never the origin or the destination
of a trip.61 We are left with roughly 1,700 nodes and edges.

Route definition. We define origins and destinations by rounding the coordinates

61This leaves us with three types of nodes: nodes that are the origin of some shipments, nodes
that are the destination of some shipments, and nodes where the network branches into multiple
directions.
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of each location to the closest 0.2 degrees. We drop observations for which we do not
observe the origin or the destination (1% of the total). For each origin-destination
pair, we define a route as a unique combination of distance (rounded to the closest
20 miles) and set of states visited. We identify and drop a few routes (accounting for
0.04% of shipments) that have a data input error: These are observations where the
distance traveled is over 10 times the shortest distance. We drop these observations.
Next, for each railroad, we obtain the set of coordinates that are either an origin or
a destination of at least one of their trips.

For the density of passing lanes, we use the classification used by NTAD, where
sidings are classified with a 0 in the "number of tracks" variable. We distinguish
between sidings (loops that connect back to the network) and spurs (tracks that
branch out and connect to a destination). For each node, we compute the total
mileage of tracks and of sidings. Then, for each edge connecting two nodes, we
compute the ratio of the sum of siding mileage and track mileage.

We show preliminary results for UP, since we have not finished computing the
routes for some city pairs. We allocate these missing observations to the closest
route we have computed for that city pair. This accounts for 18% of flows at the
moment, but that number is steadily falling as more routes are computed.

Variable construction. We construct "average tracks" using the "number of
tracks" variable in the NTAD shapefile. The original variable applies to individual
tracks. We fit it into our network by computing the average number of tracks in the
20 miles around each node; then, we convert this measure into an edge-level one
by averaging this variable for the two nodes belonging to each edge. We compute
the trackage measure in a similar way. We assign nodes according to whether they
are owned by the firm. We then define an edge as involving "trackage" if one of its
nodes is owned by another firm.

We compute the "grade" variable by computing the change in elevation between
two neighboring nodes (before simplifying the network). If a locomotive travels with
constant energy, all the energy lost in climbing up a slope is regained when going
downhill, unless the locomotive needs to brake, in which case part of the energy is
lost as heat (Armstrong [2008]). We account for this by capping the energy recovered
when going downhill: If the slope is less than -1%, we assume the locomotive must
brake, losing all energy beyond that number.
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C Profit maximization

C.1 Expansion to Profit Maximization

Due to lack of good data on railroad pricing, we focus our analysis on the cost
minimization problem. In this section, we show the assumptions required to embed
our analysis in a profit maximization framework.

The firm faces a demand vector P(Qt, X), which depends on the quantities
shipped, Qt, and the routes chosen to implement them, X. P is a N2

E × 1 vector
indicating the price the firm can obtain for each shipment as a function of the
quantity shipped and its route choices.

Below, we commit a slight abuse of notation by letting Qt refer to both the matrix
of quantities to be shipped and its vectorized form, stacking all columns into a
single vector. With that caveat in mind, standard profit maximization implies that
the firm solves:

max
Qt,X

{P(Qt, X)Qt − C(F(X))} (17)

subject to equations (1) and (2).
To highlight the assumptions required to study cost minimization in isolation,

let P(Qt, X) = P(Qt) + h(X), where h is a function capturing how different routes
affect the price the firm can charge for a given shipment. This decomposition
works for a variety of demands, described later in this appendix. The problem then
becomes:

max
Qt

P(Qt)Qt − min
X

{C(F(X))− h(X)Qt}︸ ︷︷ ︸
C̃(X)

 (18)

Any cost function we recover will equal C̃(X), which combines the true cost function
plus the effect of the routes chosen on demand.

As a test of the likely size of h, we evaluate whether routing choices X predict
prices P. We first use a random forest to estimate the conditional expectation of
prices given all our observables excluding routing choices. Next, we compare that
expectation to a second random forest where we include the routing choice as an
explanatory variable. We find that including routing choices in the estimation does
not significantly decrease the prediction error. Thus, we conclude that route choices
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do not affect pricing behavior. This is consistent with pricing and routing being
chosen independently by different departments within a firm. A similar behavior
was documented by Williams [2022] in the airline industry.

C.2 Demands for which the separation works

Consider the firm problem as stated in equation (18). Under which conditions will
the inverse demand function, P(Q, X) be separable in Q and X? That is, when will
P(Q, X) = P(Q) + h(X)? We list below some common demands, and note whether
this separation is possible.

Linear Demand Suppose that demand is linearly separable in price and route
characteristics:

D(P, X) = αP + βt(X)

This implies inverse demand which is separable in quantity and characteristics

P(Q, X) = α−1Q − βα−1t(X)

As a result, let h(X) = −βα−1t(X). Under this formulation, we can interpret
t(X) as the time it takes to ship all products as a function of route choices; while
h(X) represents the effect this time has on the willingness to pay for the shipment.

Log-Linear Demand

D(P, X) = PαXβ =⇒ log Q = α log P + β log X

The inverse demand curve is

log P = α−1 log Q − α−1β log X

This is linearly separable in logs, but not in levels.

CES Demand Suppose we have CES utility/profits over goods j, where ξ(X) is a
function of good j’s characteristic (Hortacsu-Joo).

64



u(x, y) =

(
∑

j
ξ(Xj)

1/σQ(σ−1)/σ
j

)σ/(σ−1)

The implied demand function is, assuming income Y = 1,

Q =
ξ(Xj)P−σ

j

ξ(Xj)P−σ
j + ∑k ̸=j ξ(Xk)P−σ

k

Hold the other goods constant and denote them by κ.

Q =
1

1 + κξ(Xj)−1Pσ
j

Pj = (κ−1(Q−1
j − 1)ξ(Xj))

1/σ

In contrast, a CES utility like the following would generating linearly separable
inverse demand curves.

u(x, y) =

(
∑

j
(αξ(Xj) + (1 − α)Qj)

(σ−1)/σ

)σ/(σ−1)

Logit Demand Suppose that there is a continuum of consumers who receive i.i.d.
logit shocks, and they care about characteristic ξ(X) which is a function of routing
X. Suppose their mean value is π = αP + βX and there is an outside option with
value 0. Demand for product i is

D(P, X) =
exp(αP + βX)

1 + exp(αP + βX)
=

1
exp(−αP − βX) + 1

Inverse demand is

P = −α−1 log(Q−1 − 1)− α−1βX

So h(X) = −α−1β.
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D Minimizing the cost function

The optimal routing problem is a version of the traveling salesman problem, which
makes it an NP-hard problem. In order to solve it in finite time, we must theremore
make some assumptions to reduce its complexity.

To that end, we restrict the firm to choose its routes from the set of routes it has
used in our data going back to 1998. This reduces the number of potential routes
from NE! to around 120,000 per firm. In some specifications where we need to
further speed up computation time, we focus on routes that have carried at least
2.5% of total shipments. When we do this, we are left with around 6,000 routes for
1,500 city pairs.

Because of the presence of trackage rights, firms’ problems are interconnected:
UP can choose to route part of its shipments using BNSF’s networ,k and vice versa.
We model this by having firm i take firm j’s choices as given and computing its
best response. We start with a guess for each firm’s choices, and then iterate best
responses until they converge to a Nash Equilibrium.

We solve the minimization problem using SQP implemented by KNITRO 13.2.0.
We try multiple initial values and use the solution with the lowest costs. We find a
Nash Equilibrium after about 4 hours.
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E Routing data sample break

In Figure A.3, we plot the number of city pairs serviced that utilize more than
one route by one of the largest four railroad companies. This number is fairly
consistent from 2001 to 2014, but it has a clear break in 2015. To keep our analysis
consistent, we restrict our attention to the 2015-2018 period.62 In addition, to
attenuate concerns about measurement error, we only consider pairs of routes that
differ by at least 50 miles from each other. This leaves us with a sample of around
80,000 route-pair-month observations per railroad.

Figure A.3: Number of city pairs utilizing more than one route

F Additional Figures

62There is an additional, smaller jump between 2017 and 2018. It is small enough that we ignore it
in our analysis.
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Figure A.4: Estimated marginal costs at the edge level - UP.

Figure A.5: Estimated marginal cost per mile 1998-2018 - BNSF
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Figure A.6: Estimated marginal cost per mile 1998-2018 - UP

Figure A.7: Total US imports, 2000-2018

Total US imports in trillions of dollars. Source: WITS.
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Figure A.8: US imports by country, 2000-2018

Share in US imports of 5 largest trading partners. Source: WITS. Note: EU refers to countries in the EU in
2022.

Figure A.9: Counterfactual Change in Flows, UP

Values capped at ±50, 000.
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