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1 Introduction
Consider the IBM Selectric, an electronic typewriter introduced in 1961. It replaced the
traditional strikebars with a golf-ball-like element and, in later versions, was even ‘self-
correcting.’ The Selectric made typing much more productive. Secretaries and typists could
produce many more and more attractive typewritten pages. Typists who quickly caught a
mistake could correct it invisibly, while previously, they retyped the page entirely.

One could say this change was biased towards specific tasks in the economy. In particular,
it made typists far more productive than they were earlier. However, the interaction with
task demand seems ambiguous. The Selectric did not replace typists or substitute for typing
outputs, the approach used by the task model (Autor et al. [2003], Acemoglu and Autor
[2011], Acemoglu and Restrepo [2018]). If anything, the demand for typed pages increased
after the Selectric’s introduction.

Neither did the Selectric make high-skilled labor more productive or more in demand, as
in the canonical SBTC models (Katz and Murphy [1992], Berman et al. [1994], Berman et al.
[1998], Juhn [1999]). Instead, it simply increased the speed at which everyone could type.
Thus, the individuals whose productivity increased dramatically were primarily middle-
skilled workers in typing-intensive jobs. Further, this technological innovation might have
changed the skills used in specific jobs, e.g., by expanding the set of occupations involving
some typing.

Thus, the Selectric had two effects within occupations: a primitive effect, which made
typing significantly more productive, and an adaptation effect, in which workers respond to
the primitive effect by altering their use of typing skills. At first glance, one may expect
that the second effect acts as a confounding factor, making it hard to recover the primitive
technological change. However, we demonstrate that, in a relatively general model, a first-
order approach allows pure employment changes to act as a "sufficient statistic" to identify
relative skill productivity changes.

We integrate insights from both task-based and skill-biased approaches in a tractable
general equilibrium framework. We model occupations as combining skills, akin to tasks
in the tasks model, to produce intermediate goods. Occupations utilize workers’ skills in
heterogeneous ways, and we impose nearly no structure on their production technologies.
Our model allows workers to choose first the skills they develop and then their occupations.
The market prices intermediate goods that aggregate to a single final good.

As in the SBTC model, we allow for skill-enhancing technological change. The Selectric
made typing - or routine skill - more productive. The number of typed pages produced must
increase, but whether workers deepen their typing skills or not depends on the elasticity of
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substitution between skills in each specific occupation. Routine skill use (typing) can decline
in one occupation (secretaries) but increase in another (economics professors). Employment
in typing-intensive occupations can increase or decrease. If the elasticity of demand for such
an occupation’s output is less than one, as we believe plausible, demand for that occupation
falls.

We also allow for shifts in product demand (possibly due to trade shocks) or outside
competition (possibly due to robots or offshoring) that alter the demand for workers with
different skills. The model thus clarifies the distinction between technological changes to the
productivity of individual skills and changes to demand for particular kinds of workers.

The model provides us with a simple approach to measuring the relative increase in
the technological productivity of different skills while taking demand shifts into account.
In effect, we develop a transparent structural model for interpreting within and between-
occupation changes in skill use that, for local estimation, relies only on ordinary least squares
and weighted means, using readily observable variables.

Notice this is orthogonal to the exercises conducted by Autor et al. [2003] and Goos
et al. [2014]. They identify the technological change they believe to be important, namely
the routine intensity of occupations, as a measure of vulnerability and study its relationship
with employment changes. Our approach instead leverages employment changes to identify
what is the relevant technological change. Autor et al. [2003] observe the correlation between
computerization and performance of routine tasks and show that this type of technological
change can provide relevant insights into changes in employment in the United States. Goos
et al. [2014] study the role of routine biased technological change and offshoring in explaining
changes in employment in 16 European countries, providing evidence of a much bigger role
played by the former.

Kogan et al. [2021], too, adopt an approach orthogonal to ours. They create a measure
of the similarity between the technology introduced by patents and the tasks performed in
an occupation as a proxy of exposure to technological advancement and use it to study its
association with changes in employment and wages over a time span of almost two centuries.
Bárány and Siegel [2020] estimate productivity change down to the sector/occupation level,
assuming that each occupation uses only a single skill, whereas our occupations mix different
skills in different amounts, and we account for sector-level demand. Acemoglu and Restrepo
[2019] features the emergence of entirely new occupations; our analysis is based only on the
relative employment in existing occupations, and is thus uninfluenced by such occurrences.

We depart from the skill-weights approaches of Lazear [2009], Gathmann and Schönberg
[2010], and Cavounidis and Lang [2020] by allowing the production function translating
skills or tasks into output to be a general constant-returns-to-scale neoclassical production
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function. The earlier papers assume that output in each occupation is a linear function
of skills, with occupation-varying weights. While Yamaguchi [2012] uses a somewhat more
general specification for determining wages, it, too, makes wages in each occupation a linear
function of the worker’s skills. Moreover, Yamaguchi [2012] limits the analysis to cognitive
and motor tasks. In addition, these papers focus on mobility across occupations and skill
acquisition, either by investment or learning by doing, among individual employed workers.
We abstract from the latter and focus on labor market equilibrium.

To estimate the model, we use the skills studied by Autor et al. [2003] and measured
in the Dictionary of Occupational Titles, using the third edition for skill use in 1960, the
original fourth edition for 1971, and the revised fourth edition for 1983. We combine these
measures with data from the Current Population Surveys and Censuses to measure between
and within-occupation changes in skill use from 1960 to 1983. We also create 1 and use skill
measures from the 3.0, 12.0, and 24.2 versions of the O*NET. We combine these measures
with data from the Current Population Surveys, American Community Surveys, and Cen-
suses to measure between and within-occupation changes in skill use from 1995 to 2016. We
focus on changes within each of the periods covered by the DOT and O*NET. For reasons
discussed in the text, we are skeptical of changes occurring during the transition between
the two sources.

We find that workers moved into abstract-intensive and away from routine-intensive and
manual intensive occupations in all periods for which we have data. We also show that
within-occupation shifts can dwarf those due to movement across occupations. In all peri-
ods, abstract-skill use grew within occupations while routine-skill use fell. The pattern for
manual-skill use is less consistent but fell in most periods. We show how complementarity
and substitutability of skills with respect to their own and other skills’ growth in productivity
explain these patterns.

We are not the first to look at within-occupation changes in skill use. Spitz-Oener [2006]
and Black and Spitz-Oener [2010], using German data, and Deming and Noray [2020], using
Burning Glass data, track significant within-occupation shifts in skill use, but for a later
period. Atalay et al. [2020], using keyword frequencies from three newspapers’ job ads over
an impressively long period, show that within-occupation changes account for most task
variation over time. It is an open question as to how representative these ads are. Consoli
et al. [2023] is closest to this paper. It examines within-occupation changes in routine-task
intensity (RTI) from 1980-2010. Much of their paper focuses on reconciling the DOT and
O*NET measures so that they can examine changes between 1990 and 2000 (or more pre-
cisely, between the 1991 revision of the 4th edition of the DOT and the 2000 O*NET version

1with the exception of abstract-interpersonal skills, which are those used by Acemoglu and Autor [2011]
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3.0). In our preliminary work, we, like them, found a large shift in within-occupation skill
use when shifting between the two sources. We have, therefore, chosen to exclude this period
from our analysis. 2 Most significantly, we develop a model to help us interpret the results
and apply it to a very long period. Autor and Price [2013] also study a very long period
but do not allow for within-occupation changes in skill use. This paper can be read in two
ways. Those interested solely in a better accounting of the changes from the 1960s to 2016
can jump to the data section and then examine Tables 1 and 2 and the accompanying text
in the results section. We think this analysis is a contribution in its own right. However,
we are hopeful that readers will find that the model presents a simple, versatile framework
allowing for different kinds of technological shocks and, therefore, assists in thinking about
our results and the large literature in this area.

2 A model of skill and job choice in general equilibrium

2.1 Skill acquisition and intermediate good production
Before employment, each worker chooses a vector of skills S ∈ Rn

+, where each component
Si reflects ability at task i. Once workers have acquired skills, each chooses a job J ∈ J ,
where J is the set of all jobs. If a worker with skills S is employed at job J , she produces
a quantity y((AiSi)i≤n, J) of intermediate good J , where each Ai > 0 is common to all jobs
and is a measure of the general productivity of skill i. Thus, each AiSi is the ‘effective’
amount of input i.3

We place as little structure on J and y as possible. We assume only that J is a compact
subset of a Euclidian space, that y(·, J) is a constant-returns standard neoclassical production
function,4 and that y is continuous.

For simplicity, we assume that workers have a fixed budget for skills, which we normalize
to 1, so that for any individual ΣiSi = 1. This assumption captures the idea that a worker
can study plumbing or philosophy, but if she chooses to spend more time on philosophy, she
must spend less time learning plumbing. We do not allow her to choose to spend more time

2Autor et al. [2003] examine the relation between computer use and within-occupation change in task use
between the 1977 and 1991 revisions of the DOT but do not discuss the magnitudes of these changes.

3Thus output y depends on the vector of effective inputs (AiSi)i≤n.
4y(·, J) is strictly increasing in each AiSi on Rn

++, is twice continuously differentiable, features a bordered
Hessian with non-vanishing determinant on Rn

++, is strictly quasiconcave, and y((AiSi)i≤n, J) = 0 iff AiSi =
0 for some i. This will imply that optimal skills are continuously differentiable in A and, more importantly,
interior. If skills are quite occupation-specific, e.g., plumbing or surgery skills, this may be a bad assumption;
however, the skills used in our empirical section are relatively general. We thus think that excluding corner
solutions is unproblematic for our application.
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on learning.5

A worker who anticipates holding job J will therefore

max
S≥0

y((AiSi)i≤n, J) (1)

subject to
∑

i

Si = 1. (2)

The optimal S∗(J) and y∗(J) := y((AiS
∗
i (J))i≤n, J) are given by solving the Lagrangian.

The Lagrangian’s first order condition at the optimum with respect to any Si is

Aiy
′
i((AiS

∗
i (J))i≤n, J) = λ = y∗(J) (3)

where the second equality follows straightforwardly from constant returns to scale. We
assume that workers always have skills that are optimal for the job they perform. Although
this assumption is strong, we maintain that in the sort of timescales our empirics cover,
workers will, at the least, endeavor to develop the right skills for the careers they select.
Allowing for investment while employed, as in Cavounidis and Lang [2020], would make this
a sensible assumption for workers not too far advanced in their work lives.

How do optimal output and skills change with A? From the Envelope Theorem,

∂y∗(J)
∂Ai

= S∗
i (J)y′

i((AiS
∗
i (J))i≤n, J) (4)

so that substituting for y′
i using (3), we get

∂ ln y∗(J)
∂ ln Ai

= S∗
i (J). (5)

This is effectively an application of Roy’s Identity, with our skill constraint playing the role
of the budget constraint in standard utility maximization.

To speak sensibly about the effect of changes in A on S∗(J), we proceed by inspecting
y(·, J)’s i-j elasticity of substitution for any two inputs at the optimum

σi,j((AiS
∗
i (J))i≤n, J) =

∂ln
(

AiS
∗
i (J)

AjS∗
j (J)

)
∂ln Ai

Aj

= 1 +
∂ ln(S∗

i (J)/S∗
j (J))

∂ ln(Ai/Aj)
(6)

5This is without loss of generality since we can always normalize the time she chooses to spend on learning
to 1. This could affect comparative statics on total production through a labor/leisure/learning trade-off.
That said, since this only adjusts the effective number of labor units each worker provides, with a constant
returns to scale aggregate production function, it will not affect the objects of interest to us.

5



which we can rearrange as

∂ ln(S∗
i (J)/S∗

j (J))
∂ ln(Ai/Aj)

= σi,j((AiS
∗
i (J))i≤n, J) − 1. (7)

Thus, if inputs i and j are gross substitutes (complements) in job J at the optimal skill
bundle, a relative increase in the productivity of skill i will cause workers to acquire relatively
more (less) of it. If all inputs are gross substitutes (complements) in job J at the optimal
skill bundle, the constraint that ∑i S∗

i (J) = 1 further implies that ∂S∗
i (J)

∂Ai
> 0 (< 0).

2.2 Final good production and worker allocation
So far, the model somewhat resembles Cavounidis and Lang (2020) in the sense that workers
are aligning their skill choices and occupation choices. We extend it by assuming that instead
of goods of intrinsic value, workers produce inputs in a CES final good production function

Y (q) =
[∫

J
h(J)q(J)εdJ

] 1
ε

. (8)

Here, h(J) is the relative importance of input J for final production, and q(J) is the total
quantity of intermediate good J used as an input. We assume h is continuous. The economy
has workers of total measure 1, and each worker acquires skills, subject to the constraint,
and may choose any job in J .

The model satisfies conditions under which the decentralized equilibrium is Pareto effi-
cient. Therefore, we solve for the equilibrium by solving the planner’s problem subject to the
skill acquisition and worker measure constraints. Efficiency implies that workers producing
good J will all be identical and acquire skills S∗(J); therefore, q(J) = y∗(J)f(J), where f(J)
is the density of workers assigned to producing intermediate good J .

Therefore, we can write the planner’s problem as

max
f

[∫
J

h(J) [y∗(J)f(J)]ε
] 1

ε

(9)

subject to
∫

J
f(J) = 1. (10)

We can then pointwise differentiate the Lagrangian and obtain

h(J)y∗(J)εf(J)ε−1 = h(J ′)y∗(J ′)εf(J ′)ε−1, (11)
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which we can write as

f(J)h(J ′)
1

1−ε y∗(J ′)
ε

1−ε = f(J ′)h(J)
1

1−ε y∗(J)
ε

1−ε (12)

so that we can now integrate out J ′ and using constraint (10) get

f(J) = h(J)
1

1−ε y∗(J)
ε

1−ε∫
J h(J ′)

1
1−ε y∗(J ′)

ε
1−ε

. (13)

2.3 Comparative statics
We consider the effect of technological progress that is broadly skill enhancing, as measured
by A, and changes in the demand for intermediate goods, as measured by h. The distinction
is imperfect. For example, the reduction in transportation costs, at least partly due to
technological change, reduced demand for some locally produced intermediate goods that had
hitherto been too expensive to import. Still, we think of changes in A as capturing broad-
based technological progress, such as electronic calculators rather than adding machines for
routine-cognitive skills and electric rather than manual drills for manual skills, and h as
capturing the effects of trade and, more recently, robots.

2.3.1 The effect of skill-augmenting technological change

What happens if skill i becomes more productive? Taking the derivative of (13) with respect
to Ai gives

∂f(J)
∂Ai

= ε

1 − ε
f(J)

[
∂ ln y∗(J)

∂Ai

−
∫

J

∂ ln y∗(J ′)
∂Ai

f(J ′)
]

(14)

or simply, using (5),

∂ ln f(J)
∂ ln Ai

= ε

1 − ε

[
S∗

i (J) −
∫

J
S∗

i (J ′)f(J ′)
]

. (15)

In other words, if and only if the elasticity of substitution among intermediate goods
1/ (1 − ε) is less than 1, will an increase in the productivity of skill i move workers away
from jobs where it is used more than average, and towards jobs where it is used less than
average. So, for example, if routine skill is a complement to other skills in intermediate good
production, and intermediate good demand is inelastic, an increase in AR (a technological
change that makes routine skill more productive) will (a) reduce routine use in all jobs
(within) and (b) shift workers to less routine-intensive jobs (across).

The idea that sectors experiencing slower productivity growth also experience faster em-
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ployment growth is old (Baumol [1967], see also Ngai and Pissarides [2007] and Acemoglu
and Guerrieri [2008]). We build on that idea. In our case, jobs that make more use of skills
whose productivity grows slowly will experience more employment growth.

2.3.2 The effect of changes in demand for intermediate goods

What about changes in h? In our setup, these will move workers around but have no effect
on skill use within a job. A decrease in horseshoe demand merely alters how many people
shoe horses, not how they shoe them.

To see the effect of changes in h on employment, we take the log of each side in (13) and
totally differentiate to get

d ln f(J) = 1
1 − ε

d ln h (J) + ε

1 − ε
d ln y∗(J) − d ln

(∫
J

h(J ′)
1

1−ε y∗(J ′)
ε

1−ε

)
. (16)

For a change in h, the second term in (16) is 0 and the third term does not depend on J. A
few manipulations yield

d ln f(J) = 1
1 − ε

[
d ln h (J) −

∫
J

d ln h(J ′)f(J ′)
]

. (17)

Thus, the percentage employment growth in job J is proportional to the deviation of
the percentage change in h (J) from the employment-weighted average.

2.3.3 Putting it all together

Combining (15) and (17), we have

d ln f(J) = ε

1 − ε

∑
i

[
S∗

i (J) −
∫

J
S∗

i (J ′)f(J ′)
]

d ln Ai

+ 1
1 − ε

[
d ln h (J) −

∫
J

d ln h(J ′)f(J ′)
]

. (18)

The model distinguishes between changes that replace (or reduce demand for) occupa-
tions by automating or offshoring them (a decline in h) as when data input is imported from
abroad, and those in which technology makes relevant skills more productive as when key-
punch machines are replaced by input at computer terminals. When h declines, the number
of workers employed in data entry in the home country falls, but any workers engaged in
data input continue to input data using the same skill set. Suppose the productivity Ai of a
skill i important to data entry increases. If skill inputs are complements at data entry and
intermediate-good demand is inelastic, workers in data entry jobs end up with less of skill i,
and fewer workers are hired to input data.

Interpreted within our model, Autor et al. [2003] found that, in a later period, techno-
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logical innovation increased the productivity of routine skills. Since the demand for these
skills was inelastic, the amount of time individual workers spent on them declined as did
total employment in routine-intensive occupations. Our interpretation of the period that
we study will be that the productivity of abstract skill use did not increase as rapidly as
the productivity of other skills, most notably routine skill. This caused a shift towards
abstract-skill use because the elasticity of substitution between intermediate goods is less
than one, thereby shifting employment to abstract-intensive occupations. Within occupa-
tions, declining relative abstract-skill productivity shifted skill use toward greater abstract
and less routine-skill use.

We note that our model assumes ex-ante identical workers. In a richer model with ex-ante
heterogeneous workers, demand changes might alter how jobs are done. Intuition suggests
that workers “better at routine tasks” do jobs more routinely than other workers. In such
a world, a reduction in demand for routine-intensive outputs would shift such workers to
less-routine jobs who would then perform them more routinely than before, which is the
reverse of what we observe.

2.4 Implications for empirical work
For empirical analysis, we rewrite (18) as

∆ ln(empI,J) = ε

1 − ε
Σi

(
d ln Ai

(
Si,J − Si

))
+ γI + µI,J (19)

where ∆ ln(empI,J) is the change in the employment level in industry I in occupation J, the
empirical counterpart of f (J) and γI is the coefficient on an industry that captures demand
changes due to shifts in industry demand. We note that this is an imperfect proxy for changes
in h. It will capture changes in demand for an occupation resulting from, for example, import
competition but not changes due to occupation-specific factors such as robots, although we
note that robot penetration is typically measured at the industry or braod geographic level.
We measure Si,J by its average in two proximate editions of the DOT or O*NET. µ is a
mean-zero error term. We estimate (19) separately for each time-period pair.

Since each worker’s skills sum to 1; skill use on a job sums to 1, as does mean skill use.
Therefore, (19) still applies if we add a constant term to each d ln A, and we can rewrite the
equation as

∆ ln(empI,J) = ε

1 − ε
Σi

((
d ln Ai − d ln A

) (
Si,J − Si

))
+ γI + µI,J (20)

= ε

1 − ε
Σi

((
d ln Ai − d ln A

)
Si,J

)
+ γI + µI,J (21)

: = ΣiSi,Jβi + γI + µI,J . (22)
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Equation (22) describes a regression of the (approximate) percentage change of employ-
ment in an occupation/industry cell on the skills used in that occupation and industry
dummies. The coefficients show the change in each skill’s productivity relative to the aver-
age up to a factor of proportionality. This factor is negative if the elasticity of substitution
between intermediate goods is less than 1, which we assume. Thus, a negative coefficient
means that the productivity of that skill grew faster than the average of the skills.

Although derived quite differently, our final equation is similar to the one in Goos et al.
[2014]. Their theoretical model includes wages in the equivalent of (22), which they proxy
by industry-year and occupation dummies.6 Since we first-difference the data and estimate
the model separately for each pair of years, we implicitly control for occupation and year
while explicitly controlling for industry. They also use an alternative specification in which
they explicitly control for wages but do not include it in the main text as there are concerns
about their endogeneity. While we agree with such concerns, we perform the same exercise
and observe that the inclusion of wages does not alter the outcome of our analysis. 7 The
major difference in our specifications is that they include only routine-task intensity and not
the other skills but also include a measure of offshorability.

Assuming an elasticity less than 1 seems natural. As Jones [2011] notes in a somewhat
different context, intermediate goods are unlikely to be substitutes. As he puts it, computers
are close to essential for producing some goods. Consistent with this argument, Goos et al.
[2014] estimate that the elasticity of substitution across industry outputs is 0.42. Our case is
even stronger; the outputs of secretaries, sales workers, plumbers, and truck drivers cannot
easily substitute for each other. Note that this is different from the statement that someone
who works as a secretary might be almost as productive if he worked in sales. This is entirely
plausible in our model if the required underlying skills are close.

Note that we must drop a skill because the skills sum to 1. Therefore, we can interpret
the coefficients as the rate of growth of productivity of each skill relative to the excluded
skill, again up to a multiplicative factor. Together with the requirement that the sum of
the deviations from average productivity growth equals 0, this fully identifies the relative
productivity of all the skills.

Equation (22) addresses only changes in the productivity of skills and not shifts in the
demand for occupations except through the inclusion of the two-digit industry dummies,
in line with the effect of h in (17). Demand for occupations concentrated in industries
facing import competition or declining demand will fall even absent technological change.

6We ignore the country component since we study only one country.
7We do not model wages in our current framework. A case in favor of their inclusion could be made

if we assumed the labor supply to an occupation to be elastic but not infinitely elastic. However, this is
unnecessary given that, empirically, wages do not have an effect on our results.
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Controlling for industry will capture employment losses due to import competition but not
robots or outsourcing of specific occupations to other countries. Fortunately, in the period
we study, these sources of employment loss are likely to be modest.

We estimate (22) by ordinary least squares. Consistent with Solon et al. [2015] and
Dickens [1990], we experimented with feasible weighted least squares and found no evidence
of important heteroskedasticity with respect to occupation size.

3 Data
Following Autor et al. [2003], our skill-use measures for the first part of our time period
come from the Dictionary of Occupational Titles (DOT). We use the third edition, issued
in 1965 but compiled starting sometime after the release of the second edition in 1949, as
our measure of skill use in an occupation in 1960, although it may be centered more on the
late 1950s. The 1965 DOT has not, to the best of our knowledge, been previously used
for this type of analysis. We use the fourth edition, published in 1977 and based on data
starting in 1965 for job use in 1970-72 (‘1971’). Finally, we use the last revision of the
fourth edition, based on revisions from 1977 to 1991 for skill use in 1982-84 (‘1983’). The
files for the 4th and revised 4th versions of the DOT come from Autor et al. [2003]. As
others have noted, the revised fourth edition is not a ‘fifth’ edition; many occupations were
not revisited between the fourth edition and the revised 1991 edition because the revision
addressed only occupations believed to have changed the skills they used. Therefore, we
probably underestimate the extent of within-occupation changes in skill use between 1971
and 1983. However, we observe differences between the 4th and revised 4th editions for most
of the occupations present in both 1971 and in 1983.8

For the second half of our time period, we follow Firpo et al. [2011] in relying on O*NET,
which is the successor of the DOT, and was first issued in 1998. Since then, there have been
multiple revisions of the O*NET. Each revision updates a subsample of occupations. We
use the 3.0 version issued in 2000 for skill use in 1994-96 (‘1995’)9, the 12.0 version issued in
2007 for skill use in 2005-07 (‘2006’)10, and the 24.2 version issued in February 2020 for skill

8We do not observe a change in the use of abstract and routine skills for 4 occupations, and of manual
skills for 22 occupations. It should be noted that these are changes for Census occupations, while skill use
is reported for DOT occupations. Therefore, we observe a change for a Census occupation even if only one
of the DOT occupations it comprises has been updated.

9It is not possible to use the first version of the O*NET because it used a classification of occupational
titles that can’t be aggregated at the Census occupation-level. For those occupational titles that have a
one-to-one correspondence between the 1998 and the 2000 classifications, we do not observe any differences
in the reported skill levels. Hence, it is probable that the only changes in skills observed between the two
versions are due to the different classifications of occupational titles.

10This is the latest version of the O*NET issued prior to the Great Recession.
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use in 2015-17 (‘2016’)11.
The DOT identifies aptitudes, temperaments, and abilities used in a job and measures

them numerically. The O*NET identifies abilities, skills, work activities, and work contexts.
In both datasets, observations are at the occupation-title level.

The 1965 DOT includes all of the skill-use (task) measures used in Autor et al. [2003].
With some small caveats discussed below, it recorded them on the same scales as the later
edition, allowing us to have consistent skill measures. Of course, we cannot be sure that
individuals interpreted the measures in the same way in the 1950s, 60s, and 70s, but we see
no reason that this concern should be greater than for many measures used to compare time
periods or geographies.

The one small change is that the earlier edition provides a single measure of “General
Education Development” while the later releases measure reasoning, mathematical, and lan-
guage development separately. We experimented with using the average or the maximum
of these three to generate a single measure comparable to the 1965 measure and checked
whether this affected the correlation between the third and fourth edition measures. The
correlations were similar. Looking across groups did not create a strong case for either. We
present results using the average of the reasoning, mathematical, and language development
measures for General Education Development in the 1977 and 1991 DOT s. In addition, the
1965 DOT sometimes provides more than one value of an aptitude, temperament, or ability
for a single job title. In such cases, we use a simple average of the values reported.

Like Autor et al. [2003], we measure routine-cognitive skill using the variable “adapt-
ability to situations requiring the precise attainment of set limit, tolerances, or standards,”
routine-manual skill by “finger dexterity,” manual skill by “eye-hand-foot coordination”,
abstract-interactive skill by “adaptability to accepting responsibility for the direction, con-
trol, and planning of an activity”. For our measure of abstract-cognitive skill, we use “Gen-
eral Education Development” rather than only its mathematical component, to allow for
consistency across all DOTs.

As previously stated, the O*NET is a successor of the DOT, but it does not have the
exact same variables as its predecessor, nor does it use the same scales to measure them.
We select variables, some of which are shared with Acemoglu and Autor [2011], that are
present and measured consistently in all of the used versions of the O*NET.12 Among the

11This version of the O*NET has been chosen because it is the last one issued prior to the COVID-19
pandemic, and thus it maximizes the number of updated occupational titles without the skills data being
affected by the pandemic. The period 2005-17 is preferred to later ones, to avoid complications due to the
changes in the classification of Census Occupations occurred in 2018.

12As with the DOT, we can’t be sure that the interpretation of the measures was consistent over time,
but we don’t see this as a reason for concern.
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variables used in the DOT, “finger dexterity”is the only one present in the O*NET as well.
We thus use it as our measure for routine-manual skill. We measure manual skill with
“gross body coordination”, in absence of a perfect match between the two datasets. We
measure routine-cognitive skill using the average of “importance of being exact or accurate”,
“importance of repeating the same tasks”, “number facility”. Like Acemoglu and Autor
[2011], we measure abstract-interactive skill by the average of “establishing and maintaining
interpersonal relationships”, “guiding, directing, and motivating subordinates”, “coaching
and developing others”.

For our measure of abstract-cognitive skill, we use an average of the three components of
General Education Development used in the DOT. More specifically, we use “mathematical
reasoning”for the mathematical component, an average of “oral comprehension”, “oral com-
prehension", and “written comprehension”for the language component, “critical thinking”,
“processing information”, and “making decisions and solving problems”for the reasoning
component13.

Like Autor and Dorn [2013], we then use the average of routine-cognitive and routine-
manual skill for our routine skill measure, and the average of abstract-cognitive and abstract-
interactive skill for our abstract skill measure in each period. For each census occupation,
we use a weighted average (by employment share) of the skill use in the DOT or O*NET
occupations comprising that census occupation.

For consistency with our theoretical model, we depart from Autor et al. [2003] and Autor
and Dorn [2013] in how we use these measures. Autor et al. [2003] use the absolute value
of each skill, while Autor and Dorn [2013] focus on routine intensity defined as (RTI =
ln(R) − ln(M) − ln(A)).14 Instead, we first scale the absolute level of skill use by where it
lies between the maximum and minimum of that skill’s use in any occupation over our two
sample periods corresponding to the two different datasets. Thus, use of skill i in occupation
J at time t is:

s̃killi,J,t = skilli,J,t − skillmin
i

skillmax
i − skillmin

i

(23)

where skilli,J,t is the value obtained directly from the DOT or O*NET measures aggregated
at the occupation level, skillmin

i and skillmax
i are the minimum and maximum absolute values

(at the occupation level) for skill i in any version of the DOT or O*NET. Finally, we compute
13These variables were chosen on the basis of the General Education Development components description

in the 1977 DOT.
14We, like everyone else in this literature, have to treat the ordinal measures in the DOT and the O*NET

as measured on an interval scale. We do so with an unusual level of chagrin given that one of us has pointed
out (Bond and Lang [2013], Bond and Lang [2019]) that findings can be sensitive to how an ordinal scale is
converted to an interval scale. Unfortunately, the approaches in Bond and Lang are not available to us in
this setting.
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the share of each skill in the overall sum

Si,J,t = s̃killi,J,t

Σks̃killk,J,t

(24)

so that our four skill measures sum to 1.
Census occupations are more highly aggregated than the DOT’s and the O*NET’s job

titles. Following Autor et al. [2003], we use the DOT -augmented version of the April 1971
Current Population Survey for this aggregation in the first half of our time period since
this is the only dataset with both DOT and census codes. For the second part of our time
period, we use the Occupational Employment and Wage Statistics of the U.S. Bureau of
Labor Statistics, which provide annual employment for each occupational title, as well as a
crosswalk between occupational titles and Census occupations.

We use the consistent occupation system created by Dorn [2009] and the crosswalk files
provided by Autor and Dorn [2013], linking these occupations to previous census classifi-
cations. This gives us 204 occupations in the initial period, 259 in the second period, and
323 in the third period, 318 in the fourth period, 320 in the fifth period and 308 in the last
period. We create the occupation skill measures using occupation weights from all full-time
workers not living in group quarters between age 18 and 64 in the IPUMS 1960 5% sample,
in the IPUMS 1970 1% State sample, the IPUMS 1980 5% sample, the IPUMS 2000 5%
sample, the 2005-2007 ACS 3-year sample, and the 2015-17 ACS year samples.

Our data on the occupation distribution come from the Census (IPUMS), from March
(Annual Social and Economic Supplement) Current Population Surveys (CPS), and from
the American Community Surveys (ACS) and are limited to workers age 25-64, but other-
wise, our sample restrictions are the same as for the calculation of the skill weights. Since
economists know these data well, we do not describe them here. With the exception for the
last two periods, for which we always use the 2005-07 ACS 3-years sample and the 2015-2017
ACS year samples, our choice of which sources to use for different purposes reflects an ad-
mittedly arbitrary trade-off between sample size and proximity of the employment data to
the timing of the DOTs or O*NET. Before 1968, the CPS coded occupations in fewer than
forty categories and did not use the Census classification. Therefore, we use the 1960 1%
Census sample for our initial period. We rely on the 1970, 1980, and 1990 Census samples for
the three later periods when we believe greater accuracy in estimating the employment cells
is critical. Thus, we use the censuses or the ACS to aggregate from DOT and O*NET to
census occupations and when using occupation/industry cells as observations in our regres-
sions. Our decomposition of skill use into within and between-occupation changes relies on
occupation, not industry, and therefore, uses larger cells. Consequently, we use the current
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occupation in the 1970-72, 1982-84, and 1994-96 March CPS for this purpose.

4 Results
Table 1 shows how the use of the three skills evolved from 1959 to 2016. Recall, however,
that the measures in the first and last three periods are not comparable. Therefore, when
discussing trends, we focus on changes within each sub-period. If the changes within each
sub-period are directionally similar, it is plausible that the change applies to the entire
period, but we cannot be sure that this is correct.

Subject to this caveat, we see a steady increase in the use of abstract skills. Abstract-skill
use grew from .34 to .42 between 1959 and 1971 and from .39 to .45 between 1995 and 2016.
If we believed that the DOT and O*NET measures were comparable, we would conclude
that abstract-skill use fell between 1983 and 1995. We find differences between the measures
to be a more plausible explanation for the decline.

As abstract-skill use increased, the use of the other skills increased. Note that this must
be true in aggregate since skill use sums to 1. However, we observe declines in the use of
each of the other two skills over the full period. There are, however, some notable departures
from trends. Nonroutine-manual-skill use increased in the 1960s, while the use of routine
skill remained steady during the most recent period.

Differences in the standard deviations of skill use across occupations reinforce our con-
cerns about treating the results from the DOT and O*NET as a single time-series. Except
for manual skill in 1959, the standard deviation of skill use is higher in the DOT. We note
that our results suggest that routine-skill use declined between 1983 and 1995. Previous work
has used the two data sources to document this decline. While we expect that routine-skill
use did decline over this period, we urge caution in combining the two data sets.

4.1 Within-occupations changes in skill use are important
Table 2 decomposes skill-use changes into within and across-occupation changes using the
following decomposition:

Skille+1,t+1 − Skille,t = (Skille+1,t+1 − Skille+1,t)︸ ︷︷ ︸
∆ across

+ (Skille+1,t − Skille,t)︸ ︷︷ ︸
∆ within

(25)

where e indicates the DOT or O*NET edition, and t indicates the period considered. Thus,
∆ within shows how skill use would have changed had the occupations in which, for example,
people worked been the same in 1959 and 1971. In parallel, ∆ across shows how much skill
use would have changed had skill use in each occupation remained constant between 1959
and 1971, and only the distribution of workers across occupations shifted. With exceptions
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discussed in the introduction, this latter measure corresponds to that typically presented in
the literature. Therefore, we begin with across-occupation changes. Differences from the
prior literature may reflect our use of different editions of the DOT and O*NET and/or our
somewhat different use of the skill measures.

The across-occupation patterns we observe are consistent with the prior literature. In
each period, we observe movement towards abstract-intensive occupations. This shift was
particularly large in the 1970s. Much of the change over the full period reflects the inter-
personal component of abstract (not shown). The movement away from routine-intensive
occupations was particularly notable during the DOT periods, while the movement away
from manual-intensive occupations was concentrated in the 1970s. occupations that make

As with Table 1, we show changes between 1983 and 1995 for completeness despite
our concerns about their reliability. Subject to this caveat, we observe the general across-
occupation shift from routine and manual skills to abstract skills reported in Consoli et al.
[2023].

Perhaps the most important message of Table 2 is that between-occupation shifts miss
a great deal of the action. Within-occupation changes are less consistent from period to
period but are often large. Between 1959 and 1971, there were large within-occupation
increases in abstract and manual skill use and a large decline in the use of routine skill.
Within occupation, abstract-skill use rose notably between 1971 and 1983. Over the first two
periods, the within-occupation changes roughly doubled the movement away from routine
skill and significantly increased the movement toward abstract skill, while partially offsetting
the movement away from manual skill.

In contrast, changes between 1995 and 2016 are almost entirely within occupation. While
the shift towards more abstract-intensive and less manual-intensive occupations continued
in the period during which we rely on O*NET, these movements were much more limited,
even allowing for the lower standard deviation of use in the O*NET relative to the DOT.
Similarly, the continued decline in routine-skill use is almost entirely within occupation.
Moreover, the absence of a continued decline in its use, reflects a slight shift towards more
use within occupations.

We note that if we look only across occupations, merging the DOT and O*NET gives
plausible results. However, we must believe that the within-occupation shifts in abstract
and manual-skill use were fundamentally different between 1983 and 1995 than during the
24 years before or 21 years after.

In sum, over our entire period, we observe a sharp shift from routine to abstract-skill use
both within and between occupations. We observe a similar shift away from manual-skill
use except for a surprising increase in its use within occupations in the 1960s.
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4.2 Relative skill-productivity growth matters (sometimes)
Recall that estimating (22) and imposing that the coefficients sum to 0 allows us to identify
the relative growth of skill productivity.15 Table 3 shows the results of this exercise (See
Table 1A in the Appendix for non-transformed coefficients). The coefficients in the table
measure the relative growth rate of the productivity of the skills multiplied by ε/ (1 − ε) .

Assuming that the elasticity of substitution is less than one, then 0 > ε/ (1 − ε) > −1, and
we can bound the difference relative to the average in the annualized rate of growth over
some period by the coefficient divided by the period’s length.

The two coefficients are jointly significant in each time period except the first.16 Our
earlier work [Cavounidis et al., 2021] showed skill productivity growth among men was similar
across skills during the earliest period but that among women, the productivity of finger
dexterity grew noticeably faster than the productivity of other skills. We do not replicate
those results here because we cannot get gender-specific skill-use changes in the later period.

A clear pattern emerges from the table. In every period, the productivity of routine skill
grew more rapidly than the average (the coefficients are all negative). The coefficients are
negative in all four periods and statistically significant at the .1 level in the 1970s and at
any conventional level in the last two periods. While the coefficient does not reach statistical
significance at even the .1 level in the 1960s, its value is similar in the 1960s and 1970s.

Similarly, the productivity of abstract skill grew more slowly than average in each of the
four periods. The coefficients are statistically significant at any conventional level except for
during the first period. Still the coefficient is only modestly smaller for that period than for
the 1970s. It seems plausible that the faster relative productivity growth of routine skills and
slower productivity growth of abstract skills began in the 1960s and accelerated thereafter.

Finally, the coefficients on manual skills are generally small and never significant. This
is consistent with manual-skill productivity growth falling between the productivity growth
of the other two skills.

We provide further evidence of the importance of differences in skill-productivity growth
in the line labeled “proportion due to skills.” This shows the proportion of the R-squared

15To reduce measurement error, we restrict the sample to occupation/industry combinations comprising
at least .0001% of employment in each year included in the pair and at least an average of .0002% over the
two years. The second requirement ensures that we do not create this bias by dropping observations near
the threshold that saw a modest change in employment that caused it to cross the .01% threshold but keep
similarly small occupation/industry observations that happen not to cross the threshold. Nevertheless, many
of the employment changes we observe remain implausible. Since occupations are coded consistently across
periods, we are not concerned that changes in occupation drive these changes. We winsorize the data fairly
severely at the 5th and 95th percentiles. Finally, we average our skill-use measures from the two editions
(or the revision) of the DOT, and the three editions of the O*NET corresponding to the pair of years in our
analysis.

16Recall that the mean change is normalized to 0, making one coefficient redundant.
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allocated to skill using the Shapley-Owen decomposition. Strikingly, this proportion grows
over the four periods. The jointly insignificant skill variables play only a small role in the first
period. This doubles in the next period and grows further in each of the two last periods.
While accounting for only one quarter of the explanatory power may appear modest, recall
that the number of industries dwarfs the two skill variables that are included in the regression.
We conclude that relative skill-productivity growth matters at least after 1970.

As noted previously, we also perform this exercise by adding the % change in average
wages to the controls. Table 2A in the appendix shows that this doesn’t have a meaningful
impact on our estimation.17

4.3 Slow growth of abstract productivity and fast growth routine-
cognitive skill (mostly) explains the within shifts

To understand what our model says about within-occupation skill shifts, we take a linear
expansion of Si (J) with respect to relative changes in skill productivities:

dSi(J) = Σk
∂Si(J)
∂ ln Ak

d ln Ak. (26)

Now, we multiply by f(J) and integrate over all jobs

∫
J

dSi (J) f(J)dJ = Σk

(
d ln Ak

∫
J

∂Si (J)
∂ ln Ak

f(J)dJ

)
. (27)

Now, we use the fact that ΣkSk = 1 to get

Σk
∂Sk(J)
∂ ln Ai

= 0. (28)

A short argument based on Slutsky symmetry and the regularity and constant returns
17Although not reported, we also performed this analysis using the change in the average log wage, and

reached the same conclusion, with point estimates for skills productivity that are even more similar to those
in Table 3. Table available upon request.
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to scale assumptions on y(·, J) shows that18

∂Si (J)
∂ ln Ak

= ∂Sk (J)
∂ ln Ai

(29)

so that we can rewrite (28) as

Σk
∂Si(J)
∂ ln Ak

= 0. (30)

Thus, we can normalize (27) with respect to an arbitrary d ln An:

∫
J

dSi (J) f(J)dJ = Σk ̸=n (d ln Ak − d ln An)
∫

J

∂Si (J)
∂ ln Ak

f(J)dJ. (31)

Denoting the integral on the right by ∂Si/∂ ln Ak, and replacing the left-hand-side with
the within estimates in Table 2 and the d ln Ak terms with the estimates in Table 3, we arrive
at

ŵithini = Σk ̸=n

(
d̂ ln Ak − d̂ ln An

) ∂Si

∂ ln Ak

. (32)

These ∂Si/∂ ln Ak terms represent the average changes in workers’ skills brought on by
isolated productivity changes, and we are most interested in extracting them. As Section 4.2
suggests, however, more than one Ak changed in each of our periods, making this exercise
nontrivial.

Assuming that these derivative terms do not change over time, we have twelve equations
and three unknowns after imposing symmetry per (29). We choose the parameter estimates
that minimize the sum of the squared differences between the calculated within change and
the predicted within change.19

The derivatives, ∂Si/∂ ln Ak, capture a concept analogous to p and q complementarity and
substitutability. If the derivative is positive, an increase in the productivity of skill k increases

18As we have assumed that y(·, J) is a neoclassical production function subject to a linear skill budget
constraint, we can turn to standard demand theory. The arguments of y(·, J), (AiSi)i≤n, can be thought
of as ‘effective’ skills . Now, AiSi is simply the Marshallian demand for effective skill i, where the price
of effective skill i is 1/Ai. We denote by AiS

Hicks
i the Hicksian demand of effective skill i, and by ω

the skill budget constraint. The Slutsky equation is ∂(AiSi)
∂ 1

Ak

+ ∂(AiSi)
∂ω AkSk = ∂(AiSHicks

i )
∂ 1

Ak

. From Slutsky

symmetry, ∂(AiSHicks
i )

∂ 1
Ak

= ∂(AkSHicks
k )

∂ 1
Ai

, and from constant returns to scale we have symmetric income effects
∂(AiSi)

∂ω AkSk = AiSiAkSk = ∂(AkSk)
∂ω AiSk. Thus, ∂(AiSi)

∂ 1
Ak

= ∂(AkSk)
∂ 1

Ai

, so that −AiA
2
k

∂Si

∂Ak
= −AkA2

i
∂Sk

∂Ai
or

simply ∂Si

∂ ln Ak
= ∂Sk

∂ ln Ai
as desired.

19One of the equations within each set of three is redundant. We would have eight independent equations
if the linear approximation and our data were both perfect. Rather than arbitrarily discarding one equation,
we minimize the sum of the squared deviations.

19



the amount of skill i acquired by workers. We refer to this case as A-complementarity. Note
that, unlike p-complementarity, a skill may be A-complementary or A-substitutable with
itself.20

Recall that in Table 3, we estimate ε/ (1 − ε)∗d ln Ai. So, as ε is unknown, with a change
of sign, the coefficients represent lower bounds on the absolute values of the skill-productivity
changes. Therefore, using these coefficients yields upper bounds on the derivatives. Conse-
quently, we focus on the signs of the estimated derivatives rather than their precise magnitude
and ignore the ε/ (1 − ε) term other than to assume that it is negative. Thus, in reading
Table 4, which displays the results of this exercise, readers can rely on their intuition to
divide the estimated derivative by something in the range 1.3 to 1.7.

As seen in Table 4, all skills are, on average, A-substitutes for themselves, although the
substitution effects are small for manual and routine skill productivity. Notably, routine and
abstract skills are A-complements. Consequently, the slow productivity growth of abstract
skill and fast productivity growth of routine skill both contributed to the within-occupation
growth in abstract-skill use and decline in routine-skill use. Manual and abstract skills are
A-complements, while (nonroutine) manual and routine skills are A-substitutes. Thus, the
patterns of skill growth in these two skills contributed to the within-occupation decline in
manual skill use.

Table 5 leverages these results to provide more precise estimates of how the change in
the productivity of each skill accounts for the overall within-occupation shift in skill use. It
also compares the predictions of the model with the data.

Not surprisingly, given the imprecision of the skill-growth estimates for the first period,
the model predictions are also imprecise. Within-occupation growth of abstract-skill use is
predicted accurately, but we are less successful with the other two skills.

In contrast, the model captures the direction and rough magnitude of the within-occupation
shifts between 1971 and 1983. While it somwhat underestimates each of these shifts, it is
directionally correct, and the magnitudes are reasonably close.

The 1990-2006 period experienced large within-occupation changes and exhibited large
differences in skill growth. Consequently, it is the period for which we had the greatest
expectation of matching the within-occupation shifts. In fact, the model does a good job of
capturing these large shifts, coming within 20% in each case.

The results for the final period are somewhat disappointing. The model does not do a
good job of predicting the small within-occupation change in skill use and over-predicts the
change in abstract-skill use, although it is almost perfect regarding manual-skill use.

We note that the predicted relative magnitudes of the within-occupation changes come
20In contrast AiSi, the ‘effective’ amount of skill i supplied by the worker, must increase with Ai.
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from Table 3. The fact that we predict much larger within-occupation changes for the 1990-
2006 period than for the other periods, is not trivial and provides support for the model.

5 Summary and conclusion
We make two contributions. First, at a purely empirical level, we provide new evidence
on changes in skill use over a very long period. Second, we develop a simple model that
reconciles or combines two approaches to technological change, the SBTC and task-based
literatures, by modeling technological change as increasing the productivity of individual
skills rather than, for example, college-educated workers. While our model also allows us to
account for technological change that replaces occupations, we focus on detecting changes
in skill productivity; we capture changing demand for occupations only through changes in
industry demand.

We use the insights from the model to measure the pattern of skill-productivity growth
needed to explain the employment shifts that we observe. For the 1960s, we find that
differences in skill productivity growth account for very little of the employment changes
that we observe. In contrast, they account for a significant component in the remaining
periods, even after controlling for industry.

Our empirical results suggest that if a skill’s productivity increases, use of that skill within
an occupation generally decreases. Thus, skills generally are A-substitutes for themselves.
Abstract and routine skills are A-complements, as are abstract and manual skills. In contrast,
routine and manual skills are A-substitutes. We can understand the evolution of skill use
both across and within-occupations as heavily influenced by the rapid productivity growth
of routine skill and slow productivity growth of abstract skill. These two factors explain not
only the observed across and within-occupation shifts in abstract and routine-skill use, but
also in manual-skill use.

We hope and believe that we have demonstrated that our simple model provides a useful
framework for understanding changes in skill use both between and within occupations.
Obviously, readers must make that judgment for themselves.
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Table 1: Skills use levels by year

1959 1971 1983 1995 2006 2016
Abstract skills

0.335 0.365 0.418 0.389 0.434 0.451
(0.193) (0.232) (0.240) (0.150) (0.095) (0.107)

Routine skills
0.539 0.494 0.467 0.413 0.397 0.398

(0.152) (0.215) (0.200) (0.094) (0.059) (0.055)
Manual skills

0.126 0.141 0.115 0.198 0.169 0.151
(0.095) (0.156) (0.139) (0.101) (0.113) (0.115)

Notes: Estimates use the occupation distributions from the 1960 Census, the March 1970-72, 1982-84, and
1994-96 Current Population Surveys, the 2005-2007 3-Year ACS/PRCS, the 2015-2017 ACS. The skills
used in each occupation are taken from the third, fourth, and revised fourth editions of the Dictionary of
Occupational Titles and fromthe 3.0, 12.0, 24.4 versions of the O*NET. DOT occupations are aggregated
to census occupations using the April 1971 Current Population Survey. O*NET occupations are aggregated
using the Occupational Employment and Wage Statistics (OEWS). The data for 1959-1983 and 1995-2016
are not strictly comparable. Standard deviations across occupations are provided in parentheses.
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Table 2: Within- and across-occupation components

1959-1971 1971-1983 1983-1995 1995-2006 2006-2016
Abstract skills
∆ within 0.011 0.018 -0.042 0.042 0.013
∆ across 0.019 0.035 0.013 0.003 0.004
Routine skills
∆ within -0.028 -0.008 -0.046 -0.015 0.002
∆ across -0.017 -0.019 -0.008 -0.001 -0.002
Manual skills
∆ within 0.018 -0.010 0.088 -0.027 -0.015
∆ across -0.002 -0.016 -0.005 -0.002 -0.002

Notes: This table decomposes the change in the use of each of three skills into the change that would have
been observed if the occupation distribution had been the same at the end of the period as at the beginning
of the period (∆ within) and what would have been observed if the skill use were always the skill use at the
end of the period but the occupation distribution had changed. Estimates use the occupation distributions
from the 1960 Census, the March 1970-72, 1982-84, and 1994-96 Current Population Surveys, the 2005-2007
3-Year American Community Survey/PRCS, the 2015-2017 American Community Survey. The skills used in
each occupation come from the decennial censuses, and from the American Community Survey samples for
the last two periods. DOT occupations are aggregated to census occupations using the April 1971 Current
Population Survey. O*NET occupations are aggregated using the Occupational Employment and Wage
Statistics (OEWS).
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Table 3: Skill Productivity Growth Relative to Average

(1) (2) (3) (4)
1960-1970 1970-1980 1990-2006 2006-2016

Abstract 0.250 0.353 0.940 0.680
(0.167) (0.130) (0.193) (0.119)

Routine -0.279 -0.261 -1.105 -0.767
(0.225) (0.148) (0.324) (0.163)

Manual 0.029 -0.091 0.164 0.087
(0.238) (0.177) (0.266) (0.091)

r2 0.17 0.12 0.18 0.15
N 4867 6940 8464 8478
proportion due to skills 0.08 0.15 0.21 0.24
p(all skill coefs=0) 0.231 0.013 0.000 0.000
p(routine=manual) 0.477 0.571 0.024 0.000

Notes: Standard errors in parentheses, clustered at the occupation level. Estimates are transformed from
regression of change in log employment in log employment in an occupation/industry cell on average skill
(Routine, Manual) use in that cell over the period (equation (22) in the text) and imposing that the mean
deviation from mean skill growth for all four skills is 0. Proportion due to skills is the proportion of the
R-squared attributable to the three skills in the regression using the Shapley-Owen decomposition.
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Table 4: Derivatives of Skill Use with Respect to Skill Productivity

Skill Used
∆ lnAi Abstract Routine Manual
Abstract -0.024
Routine 0.013 -0.0026
Manual 0.011 -0.0104 -0.0006

Notes: Each cell shows the derivative of the average use of the column skill with respect to a change in
the relative productivity of the row skill. Estimates are up to a factor of proportionality of −ε

1−ε (which
is strictly between 0 and 1). The estimates are derived from combining changes in skill use across time
with estimates of relative productivity growth from Table 3. See equation (32) in the text for the precise
formulation. See the text for more detail.
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Table 5: Decomposition of Within-Occupation Changes in Skill Use

1960-1971
Predicted Skill-Use Change

Source of Change Abstract Routine Manual
Abstract 0.006 -0.003 -0.003
Routine 0.004 -0.001 -0.003
Manual 0.000 0.000 0.000
Total Predicted 0.009 -0.004 -0.006
Data 0.011 -0.028 0.018

1971-1983
Predicted Skill-Use Change

Source of Change Abstract Routine Manual
Abstract 0.008 -0.005 -0.004
Routine 0.003 -0.001 -0.003
Manual 0.001 -0.001 0.000
Total Predicted 0.013 -0.006 -0.007
Data 0.018 -0.008 -0.010

1995-2006
Predicted Skill-Use Change

Source of Change Abstract Routine Manual
Abstract 0.023 -0.012 -0.010
Routine 0.014 -0.003 -0.011
Manual -0.002 0.002 0.000
Total Predicted 0.035 -0.013 -0.022
Data 0.042 -0.015 -0.027

2006-2016
Predicted Skill-Use Change

Source of Change Abstract Routine Manual
Abstract 0.016 -0.009 -0.007
Routine 0.010 -0.002 -0.008
Manual 0.001 0.001 0.000
Total Predicted 0.027 -0.010 -0.015
Data 0.013 0.002 -0.015

Notes: Each entry is the predicted change in the within-occupation use of the column skill due to changes
in the productivity of the row skill according to equation (32) in the text and using the values from Tables
3 and 4. Total predicted is the sum of the four values above. The predictions can be compared with the
within changes reported in Table 2 and repeated in the line labelled Data.
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Table 1A: Skill Productivity Growth Relative to Average - non transformed coefficients

(1) (2) (3) (4)
1960-1970 1970-1980 1990-2006 2006-2016

Routine -0.529 -0.614 -2.045 -1.447
(0.317) (0.216) (0.462) (0.270)

Manual -0.221 -0.444 -0.776 -0.593
(0.344) (0.272) (0.333) (0.134)

r2 0.17 0.12 0.18 0.15
N 4867 6940 8464 8478
proportion due to skills 0.08 0.15 0.21 0.24
p(all skill coefs=0) 0.231 0.013 0.000 0.000
p(routine=manual) 0.477 0.571 0.024 0.000

Notes: Standard errors in parentheses, clustered at the occupation level. Estimates from regression of
change in log employment in an occupation/industry cell on average skill (Routine, Manual) use in that cell
over the period (equation (22) in the text) before the transformation shown in Table 3.
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Table 2A: Skill Productivity Growth Relative to Average - including wages

(1) (2) (3) (4)
1960-1970 1970-1980 1990-2006 2006-2016

Abstract 0.252 0.358 0.938 0.680
(0.167) (0.130) (0.196) (0.119)

Routine -0.287 -0.264 -1.104 -0.768
(0.226) (0.148) (0.323) (0.163)

Manual 0.036 -0.094 0.166 0.088
(0.239) (0.177) (0.270) (0.091)

% Change mean wage 60 -0.058
(0.037)

% Change mean wage 70 0.010
(0.005)

% Change mean wage 90 0.007
(0.050)

% Change mean wage 06 0.022
(0.011)

r2 0.17 0.13 0.18 0.15
N 4867 6910 8464 8478
proportion due to skills 0.08 0.15 0.21 0.23
p(all skill coefs=0) 0.221 0.011 0.000 0.000
p(routine=manual) 0.458 0.572 0.024 0.000

Notes: Standard errors in parentheses, clustered at the occupation level. Nominal wages are converted to
1999 Dollars with CPI99 provided by IPUMS - USA. Estimates are transformed from regression of change
in log employment in an occupation/industry cell on average skill (Routine, Manual) use in that cell over
the period (equation (22) in the text) and imposing that the mean deviation from mean skill growth for all
four skills is 0. Proportion due to skills is the proportion of the R-squared attributable to the three skills in
the regression using the Shapley-Owen decomposition.
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