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Abstract

When a user shares multi-dimensional data about themselves with a firm, the firm learns
about the correlations of different dimensions of user data. We incorporate this type of learning
into a model of a data market in which a firm acquires data from users with privacy concerns.
User data is multi-dimensional, and each user can share no data, only non-sensitive data, or
their full data with the firm. As the firm collects more data and becomes better at drawing
inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new
users who share no data (“digital hermits”) grows. At the same time, the share of new users
who share their full data also grows. The model therefore predicts a polarization of users’ data
sharing choices away from non-sensitive data sharing to no sharing and full sharing.
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1 Introduction

Users consider some data more privacy sensitive than other data (Acquisti et al., 2016). For exam-

ple, a consumer might be unconcerned if a company has access to data on their favorite flower, but

very concerned if a company has access to data that reflected their sexual orientation. Tradition-

ally, privacy preferences and data-sharing decisions across users have reflected these heterogeneous

preferences over which types of data are sensitive and which types of data are innocuous (Prince

and Wallsten, 2022).

However, this division of data into deemed ‘sensitive’ and deemed ‘not sensitive’ is challenged by

advances in machine learning and prediction. This is because advances in prediction and inference

mean that potentially sensitive data can be inferred from data that otherwise seems innocuous.

For example, it might be possible to learn the likelihood of someone having a particular sexual

orientation from their flower-buying preferences and other seemingly innocuous data about them.

Though this may seem far-fetched, existing research has shown that traits such as IQ can be

predicted from someone liking curly fries on Facebook, or sexual orientation predicted from liking

the Wu-Tang Clan on Facebook (Kosinski et al., 2013). This leads to a new way of viewing privacy

preferences, where rather than individuals being concerned about the sensitivity of a piece of data,

they are instead concerned about what information about them can be inferred from a piece of

data, because that data is correlated with other potentially more privacy sensitive traits.

This paper analyzes the implications for users’ data-sharing decisions of such privacy prefer-

ences. We build a theoretical model in which data about each user is multi-dimensional and varying

across dimensions in the extent to which it is privacy sensitive. Users can decide to share all their

data, no data, or only a subset of their data. New users enter this digital economy gradually

over time. A firm uses accumulated data and machine learning to learn about the correlations

between the different dimensions of user data. The potential for correlation between data that

seems innocuous and data that is privacy sensitive motivates our setup.

Our analysis shows that as a firm accumulates more data and predicts more accurately the

correlation between different dimensions of user data, users’ data sharing decisions polarize. First,

more users choose to share no data. This group are “digital hermits.” Second, more users choose to

share all their data, whether sensitive or not sensitive. The share of digital hermits and the share
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of full data sharers in the population therefore both rise over time, while the share of users who

share only non-sensitive data falls over time.

This polarization occurs because extensive data sharing by early users imposes a negative ex-

ternality on later users who share only non-sensitive data. This externality results from the firm’s

learning about the correlation between different dimensions of user data. More data sharing by

early users enables the firm to draw more accurate inferences about a later user’s sensitive data

from that user’s non-sensitive data. This pushes up the compensation required to encourage non-

sensitive data sharing by users who are concerned about the use of this data to infer, through

correlation, sensitive information. Later users who value privacy sufficiently choose to be digital

hermits who share no data at all, even data that they do no consider privacy sensitive and would

be happy to share with the firm in the absence of the learning-induced externality. Later users who

value privacy less, realizing that there is little point in keeping just some data private, share all

their data, including sensitive data that they would have preferred to keep private in the absence

of the firm’s learning.

The polarization in data sharing decisions and the associated rise of digital hermits occur

both when the benefits that users receive for sharing data are fixed over time and when the firm

dynamically adjusts the benefits of sharing data—or data prices—offered to users. In the latter

case, as the firm learns about the correlation between different data dimensions, the share of users

who choose to be digital hermits in the population rises, although the firm raises both the price for

non-sensitive data and the price for a user’s full data.

This paper also shows that a more patient firm optimally commits to collecting data more

slowly. A forward-looking firm anticipates that as its ability to predict privacy-sensitive data from

non-sensitive data improves, future users will demand higher compensation to share non-sensitive

data. Inducing current users to share all their data therefore hurts the firm’s future profits. Because

of this, a more patient firm offers a lower price for the privacy-sensitive data in early periods in

order to slow down its own learning and delay the erosion in future profits due to users’ privacy

concerns.

This paper contributes to the recent theory literature on the consequences of learning and data

externalities across individuals in digital markets (Choi et al., 2019; Ichihashi, 2021; Bergemann

et al., 2022; Acemoglu et al., 2022). The main modeling differences lie in the multi-dimensionality of
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each user’s data and the focus on the consequences of a firm learning the correlation patterns across

these different data dimensions. This learning about correlation provides a new microfoundation

for the externalities across users that arise in data markets, which were assumed in Choi et al.

(2019), Ichihashi (2021), and Acemoglu et al. (2022).

These modeling differences lead our model to have some starkly different predictions. The

existing literature emphasizes that learning and data externalities across users often lead to lower

prices for data and excessive data sharing in equilibrium. While our finding that more users share

all data as the firm becomes better at making predictions mirrors the excessive data sharing result

in recent literature, we also obtain the sharply contrasting insight that more users will shut down

data sharing completely and choose to be digital hermits. Moreover, the learning-induced data

externalities in our model raise, rather than reduce, the equilibrium price for non-sensitive data as

well as the total price for a user’s full data.

2 A model of data markets with multi-dimensional user data

Setting Time is discrete and indexed by t ∈ {0, 1, 2, ...}. There is one firm and infinitely many

users C1, C2, ..., with user Ct being alive in period t. We assume users are alive for just one period

to abstract away from dynamic considerations of user data today affecting what the firm can learn

about that same user in the future, a point which is well-addressed by Ichihashi (2020). User Ct’s

type is a vector (xt, yt) consisting of the realizations of two random variables Xt and Yt. For every

t ≥ 1, the bivariate random vector (Xt, Yt) is distributed according to the bivariate probability

mass function

f (x, y|ρ) =





1+ρ
4 if (x, y) ∈ {(0, 0) , (2σX , 2σY )}

1−ρ
4 if (x, y) ∈ {(0, 2σY ) , (2σX , 0)}

,

where ρ is the correlation of Xt and Yt. If ρ > 0, the high (low) realization of Xt is associated with

the high (low) realization of Yt; if ρ < 0, the low (high) realization of Xt is associated with the high

(low) realization of Yt. Conditional on ρ, (Xt, Yt) and (Xs, Ys) are mutually independent for any t

and s 6= t.

The firm learns about the correlation ρ from the data shared by users. Formally, we assume

that at the beginning of the game, nature draws ρ ∈ {−r, r}, with each of the two realizations
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being equally likely and r ∈ (0, 1). Hence, the firm’s prior expectation is E [ρ] = r
2 + −r

2 = 0. As

the firm accumulates data, it uses Bayesian updating to revise its belief about ρ.

The marginal probability mass functions fX (x) =
∑

y f (x, y|ρ) = 1
2 and fY (y) =

∑
y f (x, y|ρ) =

1
2 are independent of ρ in our setting. Hence, as the firm learns about ρ, it learns about the joint

probability function f (x, y|ρ), but not about the marginal probability functions. This reflects that

in a world with multi-dimensional user characteristics, even if the proportion of users with a par-

ticular characteristic (say, xt = 0) in the population is known from aggregate data, data analytics

can still be useful to learn about the correlation patterns between different characteristics.

User Ct possesses a data vector (dXt, dY t) that, if shared with the firm, allows the firms to draw

inferences about (xt, yt). To focus on the firm’s learning about the correlation ρ, we assume that

the firm’s inference from data to type is perfect within each of the two dimensions. The firm can

perfectly infer xt from dXt and yt from dY t. Importantly, a user is able to share only a subset of

their data, for example only dXt, with the firm. In this case, the firm uses its posterior belief about

ρ to draw inferences about Ct’s type in the dimension about which Ct did not share data from its

knowledge of Ct’s type in the dimension about which Ct did share data.

Timing The game proceeds as follows. In period t = 0, nature draws the correlation ρ ∈ {−r, r}.

In every period t ≥ 1, the firm offers user Ct a price pXt ≥ 0 for sharing data dXt and a price

pY t ≥ 0 for sharing data dY t.
1 Though we use the term ‘price’, we recognize that formal markets

for data rarely exist, so this price may reflect other benefits that a user receives from exchanging

that particular piece of data with the firm.

Next, each user Ct decides whether to share no data, only data dXt, or their full data vector

(dXt, dY t) with the firm. We will assume below that data dimension Y is privacy-sensitive but

dimension X is not. This implies that sharing the full data vector dominates sharing only dY t for

every Ct. Therefore, we ignore the potential for sharing the sensitive data of dimension Y only,

without losing generality. Ct’s data sharing decision is denoted by st ∈ {N, I, F}, where N stands

for sharing no data, I for sharing non-sensitive (or ‘innocuous’) data, and F for sharing full data.

Finally, the firm analyzes the data shared by C1 to Ct to predict (xt, yt) and period t payoffs are

earned.

1Allowing the firm to offer a third price for a user’s full data vector (i.e., the bundle of dXt and dY t) would not
affect the results.
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Payoffs For any t ≥ 1, let Dt = (D1, D2, ..., Dt) denote the vector of data shared by C1 to Ct,

where Dt = (φ, φ) if st = N , Dt = (dXt, φ) if st = I, and Dt = (dXt, dY t) if st = F .

The firm derives revenues from predicting users’ types, for instance, because it can better

persuade users to make purchases if it knows more about them. Specifically, following Acemoglu

et al. (2022), we assume that the firm’s payoff is decreasing in the mean squared errors of the

firm’s estimators of user types. The key difference to Acemoglu et al. (2022) is that, in our setting,

each user’s type is multi-dimensional. Gross of any payments made to Ct, the firm’s current-period

payoff in period t ≥ 1 is

σ2
X − E

[
(x̂t (Dt)−Xt)

2
]

σ2
X

+
σ2
Y − E

[
(ŷt (Dt)− Yt)

2
]

σ2
Y

,

where x̂t (Dt) is the firm’s Bayes estimator of xt as a function of the data observed by the firm,

and ŷt (Dt) is the firm’s Bayes estimator of yt as a function of the data observed by the firm. The

variance terms are included as convenient normalizations, ensuring that each of the two terms in

the firm’s payoff function lies between 0 and 1.

Users value privacy in dimension Y , which could be for intrinsic reasons or for instrumental

reasons. Again following Acemoglu et al. (2022), we model consumer privacy concerns in a reduced-

form manner using the same mean-squared error of the firm’s estimator in the privacy-sensitive

dimension Y as in the firm’s profit function. Gross of any payments from the firm, Ct’s payoff is

given by

vt

E
[
(ŷt (Dt)− Yt)

2
]
− σ2

Y

σ2
Y

,

where vt ≥ 0 measures Ct’s privacy valuation. Each user’s payoff is thus increasing in the mean

squared error of the firm’s estimator in the privacy-sensitive dimension in the period in which the

user is alive.

The users’ privacy valuations (v0, v1, v2, ...) are i.i.d. draws from a uniform distribution on

[0, V ], where V > 2. The CDF of this distribution is denoted by H (v) = min
{

v
V
, 1
}
for v ≥ 0.

The privacy valuation vt is Ct’ private information.

An important assumption in our model is that Ct’s payoff is independent of the user’s realized

type (xt, yt). One interpretation of this assumption is that users have an intrinsic preference for
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keeping information about dimension Y private, regardless of their actual type. This could be the

case, for example, if the information concerns a user’s sexual activity, political views, psychological

traits, or another category deemed intrinsically sensitive by users.

Another possible interpretation is that, although a user would want to keep only information

about a specific realization of Yt private, the user is not able to infer (xt, yt) from their own

personal data (dXt, dY t), unlike the firm. This could be the case, for instance, if a user’s type

concerns personal health risks that are unknown to the user, but that can potentially be predicted

by data-rich firms.

A final interpretation is that users fear that certain type realizations may have grave reper-

cussions when revealed or inferred, but, at the time of the user’s data sharing decision, there is

uncertainty about which realization will have negative repercussions, as in the case of allegiance to

a particular political leader when it is uncertain who will win an election. This again creates an

incentive for users to keep their data private regardless of their realized type.

The assumption that each user’s payoff is independent of their realized type prevents situations

in which the firm draws inferences about a user’s type from the user’s decision to withhold data.

This rules out the classic “unraveling” result in information disclosure models, according to which all

users reveal their types without receiving any compensation or where markets fail to enable Pareto-

improving exchange (Grossman, 1981; Grossman and Hart, 1980; Milgrom, 1981; Taylor, 2004;

Acquisti and Varian, 2005). Related recent theoretical work on externalities in data markets makes

similar assumptions. Bergemann et al. (2022) assume that consumers and the data intermediary

in their model hold symmetric information at the data contracting stage. Acemoglu et al. (2022),

in whose model a user’s data consists of a signal about their one-dimensional type, assume that

(conditional on the firm’s forecast) a user’s payoff is independent of the user’s signal about their

own type. Choi et al. (2019) do not analyze an explicit statistical model with belief updating.

Instead, they assume that when buying a service from the firm, which requires data sharing, the

consumer pays a nuisance cost that is increasing in the total number of consumers sharing their

data.

Prediction quality Given the assumption that there is no learning about the marginal probabil-

ity mass functions of Xt and Yt, we have that E
[
(x̂t (Dt)−Xt)

2
]
= σ2

X and E
[
(ŷt (Dt)− Yt)

2
]
=
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σ2
Y if st = N . Moreover, since the firm can fully infer Ct’s type in the dimension(s) in which Ct

shares data, E
[
(x̂t (Dt)−Xt)

2
]
= 0 if st = I or st = F and E

[
(ŷt (Dt)− Yt)

2
]
= 0 if st = F .

Finally, consider the mean-squared error of the firm’s estimator ŷt when Ct shares only non-

sensitive data (st = I). Noting that only full data vectors (i.e., only data vectors of the form

(dXt, dY t)) contain information useful for the firm to revise its belief about ρ, we denote by nt−1 =

|{j ∈ {1, ..., t− 1} : sj = F}| the number of users who shared their full data vectors in periods 1 to

t − 1 and by kt−1 = |{j ∈ {1, ..., t− 1} : sj = F, (xj , yj) ∈ {(0, 0) , (2σX , 2σY )}| how many of these

vectors indicated positive correlation. The firm’s posterior belief about the correlation ρ can then

be denoted by ρ̂ (kt−1|nt−1) = E [ρ|kt−1, nt−1], and the firm’s estimator ŷt becomes

ŷt (Dt) = ŷt (ρ̂ (kt−1|nt−1) , xt) =





(1 + ρ̂ (kt−1|nt−1))σY if xt = 2σX ,

(1− ρ̂ (kt−1|nt−1))σY if xt = 0.

The mean squared error of the firm’s estimator ŷt given nt−1 is thus equal to

E
[
(ŷt (ρ̂ (kt−1|nt−1) , xt)− Yt)

2
]

= E

[
1 + ρ̂ (kt−1|nt−1)

2
(1− ρ̂ (kt−1|nt−1))

2 σ2
Y +

1− ρ̂ (kt−1|nt−1)

2
(1 + ρ̂ (kt−1|nt−1))

2 σ2
Y

]

= σ2
Y

(
1− E

[
ρ̂ (kt−1|nt−1)

2
])

,

where the expectation is taken over the possible realizations of kt−1. The number of full data

vectors shared by past users, nt−1, can be thought of as the size of the sample available to the firm

to estimate ρ, and the estimator ρ̂ (kt−1|nt−1) is a random variable due to the sampling variability

in kt−1.

We assume that when deciding how much data to share, a user is aware of the current mean-

squared error of the firm’s estimator ŷt in case the user shares only non-sensitive data. Formally,

Ct observes nt−1. This assumption captures user awareness of the firm’s current capability to draw

inferences and accurately predict unshared data.

Equilibrium concept We analyze pure-strategy Markov Perfect equilibria, where the state is

the number of past users nt−1 who have shared full data (which is a sufficient statistic for the

mean-squared error of the firm’s estimator). Strategies are assumed to be stationary in that they
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depend on the state but not on the time period t. Formally, the firm’s strategy is given by a pair

of functions (PX (nt−1) , PY (nt−1)) that specify the data prices offered given the state. And each

user Ct’s strategy is given by a function S (nt−1, pX , pY ; vt) that specifies the user’s data sharing

decision st ∈ {N, I, F} given the state nt−1, the price vector (pX , pY ) offered by the firm to Ct, and

Ct’s privacy valuation vt. Our generic notation for the state will be n.

In equilibrium, for every n ∈ N0, the firm’s strategy maximizes the firm’s expected discounted

payoffs from the current period onwards, and the user strategy maximizes each user’s payoff in the

period in which they are alive. The firm’s discount factor is denoted by δ ∈ [0, 1). User indifferences

are broken in favor of sharing more data.

3 Analysis

3.1 Preliminaries: Information leakage from non-sensitive data

We define the information leakage from non-sensitive data as the (normalized) reduction in the

mean squared error of the firm’s estimator ŷt when Ct reveals non-sensitive data versus no data:

Definition 1 The information leakage from non-sensitive data is

L (nt−1) ≡
σ2
Y − E

[
(ŷt (ρ̂ (kt−1|nt−1) , xt)− Yt)

2
]

σ2
Y

= E
[
ρ̂ (kt−1|nt−1)

2
]
.

Our first lemma shows that the information leakage from non-sensitive data is increasing in n

at a decreasing rate.

Lemma 1 For every n ∈ N0,

L (n+ 1)− L (n) > L (n+ 2)− L (n+ 1) > 0,

with L (0) = E [ρ] = 0 and limn→∞ L (n) = E
[
ρ2
]
= r2.

As the firm accumulates more full data vectors, the mean-squared error of its estimator of

unshared sensitive data from non-sensitive data falls, and hence the information leakage from non-

sensitive data rises. Moreover, the marginal effect of more data is decreasing. Figure 1 offers an

illustration.
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Figure 1: Information leakage from non-sensitive data (r = 0.5)

3.2 User data sharing decisions given prices

Consider the data sharing decision of user Ct if the current level of information leakage from non-

sensitive data is L ∈ [0, 1) and the firm offers the data prices (pX , pY ). Ct’s payoff is

UF (pX , pY ; vt) = pX + pY − vt

if they share full data,

UI (pX , pY , L; vt) = pX − vtL

if they share non-sensitive data, and 0 if they share no data. Sharing full data is optimal if

UF ≥ max {UI , 0}, which holds if and only if Ct’s privacy valuation

vt ≤ v (L, pX , pY ) ≡ min

{
pY

1− L
, pX + pY

}
.

Sharing no data is optimal if 0 > max {UI , UF }, which holds if and only if Ct’s privacy valuation

vt > v (L, pX , pY ) ≡





∞ if L = 0

max
{
pX
L
, pX + pY

}
if L > 0

.

If pY
1−L

< pX
L
, or equivalently L < pX

pX+pY
, we have that v (L, pX , pY ) < v (L, pX , pY ), hence
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non-sensitive data sharing is optimal for intermediate values of vt. Moreover, v (L, pX , pY ) is

increasing in L and v (L, pX , pY ) is decreasing in L in this case. If pY
1−L

≥ pX
L
, then v (L, pX , pY ) =

v (L, pX , pY ) = pX + pY . In this case, Ct either shares full data or no data, depending on how

strongly Ct values privacy. Our first proposition summarizes these insights:

Proposition 1 The users’ equilibrium data sharing strategy is

S (n, pX , pY ; vt) =





F if vt ≤ v (L (n) , pX , pY ) ,

I if v (L (n) , pX , pY ) < vt ≤ v (L (n) , pX , pY ) ,

N if v (L (n) , pX , pY ) < vt.

If pY
1−L

< pX
L
, then v (L, pX , pY ) < v (L, pX , pY ) and

∂v
∂L

> 0 > ∂v
∂L

; otherwise, v (L, pX , pY ) =

v (L, pX , pY ) = pX + pY .

Figures 2 to 4 provide graphical illustrations of the users’ data sharing decisions when prices

are fixed. Figure 2 illustrates that, keeping prices fixed, the privacy valuation cutoff above which a

user prefers to share no data falls as the information leakage from non-sensitive data rises, while the

privacy valuation cutoff below which full data sharing is optimal rises. At low level of information

leakage, the user optimally shares either non-sensitive data or full data, but never no data. At high

levels of information leakage, the user optimally shares either no data or full data, but never only

non-sensitive data.

Figure 3 illustrates how the data sharing decisions evolve with the state n, keeping prices

fixed. As the firm accumulates more full data vectors, and thus the information leakage from

non-sensitive data rises, no data sharing and full data sharing become optimal for wider ranges of

privacy valuations. Given that the information leakage from non-sensitive data is bounded above

by r2 (equal to 0.25 in the example shown in the figure), however, non-sensitive data sharing

remains optimal for intermediate privacy valuations even in the limit. Finally, Figure 4 shows how

the expected privacy valuation cutoffs evolve over time keeping prices fixed, illustrating the same

qualitative patterns.

In summary, if data prices do not adjust as the information leakage from non-sensitive data

rises, then the proportion of digital hermits and the proportion of full data sharers among new

users both grow over time, while the proportion of non-sensitive data sharers falls. The intuition
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Figure 2: User data sharing strategy as a function of the information leakage from non-sensitive
data L given fixed prices (pX = 1, pY = 0.75)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

share no data

share full data

share non-sensitive data

Figure 3: User data sharing strategy as a function
of n given fixed prices (pX = 1, pY = 0.75, r =
0.5)
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Figure 4: Expected user data sharing strategy as
a function of the period t given fixed prices (pX =
1, pY = 0.75, r = 0.5, V = 6)
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behind this is as follows. When a user shares full data, they impose a negative externality on future

non-sensitive data sharers. The data shared by the former enables the firm to predict unshared

sensitive information from non-sensitive data more accurately, which raises the privacy loss suffered

by a later user who shares only non-sensitive data. Holding data prices fixed, non-sensitive data

sharing therefore becomes less appealing relative to sharing either no data or full data as the firm

accumulates more full data vectors.

Next, we assess whether these qualitative insights continue to hold when the firm optimally

adjusts data prices as it accumulates more full data vectors and the information leakage from

non-sensitive data grows.

3.3 Equilibrium data prices and data sharing decisions

3.3.1 Data prices

We first analyze the prices that maximize the firm’s current-period payoff (henceforth profit).

Given that the current-period profit depends on the state n only through L (n), the myopic profit-

maximizing prices will be expressed as functions of L rather than n for notational convenience.

Using the privacy valuations cutoffs that determine user data sharing decisions, the firm’s current-

period profit can be written as

π (pX , pY , L) = (H (v (L, pX , pY ))−H (v (L, pX , pY ))) (1 + L− pX)

+H (v (L, pX , pY )) (2− pX − pY )

= H (v (L, pX , pY )) (1 + L− pX) +H (v (L, pX , pY )) (1− L− pY ) .

Intuitively, given the level L of information leakage from non-sensitive data, 1+L−pX is the firm’s

profit from obtaining a user’s non-sensitive data and 1−L−pY is the firm’s incremental profit from

obtaining the user’s sensitive data in addition to their non-sensitive data. The former is multiplied

by the probability that the user shares non-sensitive data (i.e., they share either only non-sensitive

data or full data), the latter is multiplied by the probability that the user shares full data.

12



Lemma 2 Myopic profit-maximizing prices. The following prices maximize the firm’s

current-period profit π (pX , pY , L):

p∗X (L) =





LV if L ≤ 1
2V−1 ,

1+L
2 if L > 1

2V−1 .
, p∗Y (L) =

1− L

2
.

A direct implication of Lemma 2 is that the myopic profit-maximizing price for non-sensitive

data is increasing in the information leakage from non-sensitive data, while the myopic profit-

maximizing price for sensitive data is decreasing:

∂p∗X (L)

∂L
> 0 >

∂p∗Y (L)

∂L
.

Greater information leakage from non-sensitive data makes a user’s non-sensitive data more valuable

to the firm, but it reduces the incremental value of a user’s sensitive data. Greater information

leakage also means that users require higher compensation to be induced to share non-sensitive data,

but less additional compensation to share their sensitive data. It is therefore intuitive that the firm

raises the price for non-sensitive data but lowers the price for sensitive data as the information

leakage from non-sensitive data rises. Moreover, the myopically optimal total price for a user’s full

data, p∗X (L) + p∗Y (L), is weakly increasing in the information leakage from non-sensitive data. It

rises at low values of information leakage and is constant at high values of information leakage.

If the firm has discount factor δ = 0, the equilibrium prices coincide with the myopic profit-

maximizing prices. If the firm is forward-looking (δ > 0), the equilibrium prices solve a dynamic

programming problem in which the firm maximizes the expected present discounted value of its

current and future profits in every state. Denoting by W (n) the firm’s expected present discounted

value of current and future profits in state n, the value function can be expressed recursively as

W (n) = max
pX≥0,pY ≥0

(π (pX , pY , L(n)) + δ [H (v (L(n), pX , pY ))W (n+ 1) + (1−H (v (L(n), pX , pY )))W (n)]) .

Note that the probability of transitioning to the next state depends on the data prices through

their effect on the privacy valuation cutoff v below which users share full data.

13



Our next proposition shows how dynamic considerations affect the firm’s equilibrium prices:

Proposition 2 In equilibrium, for every n ∈ N0,

(i) for all δ ≥ 0, the price for non-sensitive data

PX (n) = p∗X (L (n)) , and

PX (n) < PX (n+ 1) .

(ii) for all δ > 0, the price for sensitive data

PY (n) < p∗Y (L (n)) , and

p∗Y (L (n))− PY (n) > p∗Y (L (n+ 1))− PY (n+ 1) ,

with limn→∞ (p∗Y (L (n))− PY (n)) = 0. Moreover,
∂PY (n)

∂δ
< 0 for all PY (n) > 0.

(iii) for all δ > 0, the total price for a user’s full data

PX (n) + PY (n) < PX (n+ 1) + PY (n+ 1) .

Figures 5 and 6 illustrate these insights. The equilibrium price for non-sensitive data, PX (n),

is independent of the discount factor. Intuitively, this is because non-sensitive data on its own does

not improve the firm’s ability to predict unshared data from non-sensitive data, hence dynamic

considerations are absent. The figure also illustrates that the equilibrium price for non-sensitive

data rises as the firm accumulates more full data vectors, which follows from our earlier insight

that the myopic profit-maximizing price for non-sensitive data increases in the information leakage.

The equilibrium price for sensitive data, PY (n), lies below the myopically optimal level for

all δ > 0, because the collection of full data vectors erodes future profits by pushing up the

compensation required to induce future users to share non-sensitive data. The firm therefore has

an incentive to slow down the collection of full data vectors, which it achieves by offering a lower

price for sensitive data. This incentive to slow down learning by distorting the price of sensitive

data below the myopically optimal level is stronger when the firm is more patient (higher δ) or has

14
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Figure 5: Equilibrium data prices (r = 0.5, V =
6)
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Figure 6: Total price for a user’s data in equilib-
rium (r = 0.5, V = 6)

collected fewer full data vectors so far (lower n). The latter is due to our earlier insight that the

information leakage from non-sensitive data rises in n at a decreasing rate (see Lemma 1). It is

also worth noting that for high values of the discount factor, the firm may find it optimal to set

PY (0) = 0 and avoid collecting full data vectors altogether. In this case, no user shares full data

in state n = 0, which implies that n = 0 is an absorbing state.

Figure 6 illustrates that, although the equilibrium price for sensitive data can be decreasing in

n, the total price offered for a user’s full data always increases in n.

3.3.2 Data sharing decisions

Recall that in the case of fixed data prices, the privacy valuation cutoff v above which users opt

to share no data is decreasing in n. Users become more inclined to share no data as the firm

accumulates more full data vectors. With endogenous prices, it is a priori unclear whether this

result continues to hold, because the price offered for non-sensitive data rises with n, which all else

equal incentivizes users to share non-sensitive data.

To evaluate the net effect of n on the equilibrium data sharing choices, we define the privacy

valuations cutoffs as functions of the state given the firm’s equilibrium data pricing strategy:

v (n) ≡ v (L (n) , PX (n) , PY (n)) ,

v (n) ≡ v (L (n) , PX (n) , PY (n)) .

15



We obtain the following comparative statics result for v (n):

Proposition 3 In equilibrium, for every n ∈ N0,

v (n) ≥ v (n+ 1) ,

with a strict inequality if and only if L (n+ 1) > 1
2V−1 .

Hence, as in the case of fixed prices, users become more inclined to share no data as the firm

accumulates more full data vectors and the information leakage from non-sensitive data rises.

Turning to the equilibrium privacy valuation cutoff v (n) below which users share all data, we

can first note that v (n+ 1) = v (n) = 1
2 for all n if the firm is myopic (δ = 0). Moreover, extensive

numerical simulations2 show that for δ > 0, the equilibrium threshold below which users share full

data rises as the information leakage from non-sensitive data rises:

v (n) < v (n+ 1) for all n ∈ N0 if δ > 0.

Intuitively, this is because, while the price for sensitive data always decreases in n when δ = 0, it

either increases or decreases less rapidly in n when δ > 0. Compared to the myopic-firm case, users

therefore become relatively more inclined to share full data as n rises.

Figure 7 illustrates the equilibrium data sharing decisions as a function of n for different values

of the discount factor. As in the case of fixed prices, the proportion of new users who share no data

and the proportion of new users who share full data in the population rise as the firm accumulates

more full data vectors and thus the information leakage from non-sensitive data grows.

Figure 8 illustrates the same qualitative patterns in how the expected equilibrium data sharing

privacy valuation cutoffs evolve over time. The expected privacy valuation cutoff above which users

share no data falls over time, and the expected privacy valuation cutoff below which users share

no data rises. Moreover, for a given t, the expected v (n) is higher when the firm is more patient.

The reason is that, as discussed earlier, the firm’s incentive to slow down learning is stronger, and

hence the information leakage from non-sensitive data rises less fast over time, when the firm is

more patient.

2Specifically, we simulated the equilibrium for each point on the following grid of parametrizations: δ ∈
(0, 0.01, ..., 0.99), V ∈ (2, 4, ..., 20), r ∈ (0.05, 0.10, ...0.95)
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Figure 7: Equilibrium user data sharing decisions
(r = 0.5, V = 6)
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Figure 8: Expected equilibrium user data sharing
decisions over time (r = 0.5, V = 6)

4 Conclusion

Data about some aspects of an individual can reveal other, more privacy sensitive, aspects of that

same individual. As firms collect more data and learn about the correlations between different di-

mensions of individual data, the possibility that they can use seemingly innocuous data to predict

information that people prefer to keep private grows. Our paper shows that this leads to a polariza-

tion of users’ data sharing decisions. As the firm’s ability to infer sensitive data from non-sensitive

data improves, more privacy-protective people will decide to avoid sharing any data with firms,

even data that on the face of it is not sensitive, while less privacy-protective people, realizing that

there is little point keeping only some data private, will share all their data with firms. This may

disincentivize firms from collecting sensitive data in the first place, and they end up collecting it

more slowly by offering a lower price.

There are of course limitations to this research. First, we do not model the root cause of why it

is that people are more uncomfortable about some types of data than others. Second, we assume

that consumers are aware of the firm’s ability to infer sensitive information from non-sensitive data.

Third, our treatment of how data markets work is intentionally simple. For example, we focus on

short-lived users. Notwithstanding these limitations, however, we feel this paper makes a useful

first step in understanding how the correlations between data and the inferences that can be drawn

about them can lead people to withdraw from the digital world.
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Appendix: Proofs

Proof of Lemma 1. The information leakage from non-sensitive data is

L (n) =
n∑

k=0

P (k|n)ρ̂ (k|n)2 ,

where P (k|n) is the prior probability that k out of n full data vectors indicate positive correlation

(i.e., (x, y) ∈ {(0, 0) , (2σX , 2σY )}):
3

P (k|n) =
1

2




n

k



((

1 + r

2

)k (1− r

2

)n−k

+

(
1− r

2

)k (1 + r

2

)n−k
)
,

and ρ̂ (k|n) is the firm’s estimate of ρ given k and n:

ρ̂ (k|n) = E [ρ|k, n] = r

(
1+r
2

)k (1−r
2

)n−k
−
(
1−r
2

)k (1+r
2

)n−k

(
1+r
2

)k (1−r
2

)n−k
+
(
1−r
2

)k (1+r
2

)n−k
.

Using ρ̂ (k|n) = 1+ρ̂(k|n)
2 ρ̂ (k + 1|n+ 1) + 1−ρ̂(k|n)

2 ρ̂ (k|n+ 1) and P (k|n+ 1) = 1+ρ̂(k−1|n)
2 P (k −

1|n) + 1−ρ̂(k|n)
2 P (k|n), we obtain

L (n) =
n∑

k=0

P (k|n)

(
1 + ρ̂ (k|n)

2
ρ̂(k + 1|n+ 1) +

1− ρ̂ (k|n)

2
ρ̂(k|n+ 1)

)2

L (n+ 1) =
n∑

k=0

P (k|n)

(
1 + ρ̂ (k|n)

2
ρ̂(k + 1|n+ 1)2 +

1− ρ̂ (k|n)

2
ρ̂(k|n+ 1)2

)
.

Since 1+ρ̂(k|n)
2 = 1 − 1−ρ̂(k|n)

2 ∈ (0, 1), ρ̂(k + 1|n + 1) 6= ρ̂(k|n + 1), and the function x2 is strictly

convex,

1 + ρ̂ (k|n)

2
ρ̂(k+1|n+1)2+

1− ρ̂ (k|n)

2
ρ̂(k|n+1)2 >

(
1 + ρ̂ (k|n)

2
ρ̂(k + 1|n+ 1) +

1− ρ̂ (k|n)

2
ρ̂(k|n+ 1)

)2

by Jensen’s inequality. Hence, L (n+ 1) > L (n).

3For k > n, P (k|n) = 0.
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Define the ‘Jensen gap’ by

J (k, n) =
1 + ρ̂ (k|n)

2
ρ̂(k + 1|n+ 1)2 +

1− ρ̂ (k|n)

2
ρ̂(k|n+ 1)2

−

(
1 + ρ̂ (k|n)

2
ρ̂(k + 1|n+ 1) +

1− ρ̂ (k|n)

2
ρ̂(k|n+ 1)

)2

,

which can be simplified to

J (k, n) =
16r4

((
1+r
1−r

)n

2
−k

+
(
1−r
1+r

)n

2
−k
)4

− r2
((

1+r
1+r

)n−2k
−
(
1−r
1+r

)n−2k
)2 .

We then have that

L (n+ 1)− L (n) =
n∑

k=0

P (k|n)J (k, n) =
n+1∑

k=0

P (k|n)J (k, n) ,

L (n+ 2)− L (n+ 1) =
n+1∑

k=0

P (k|n+ 1)J (k, n+ 1) .

Straightforward calculations show that J (k + 1, n) < J (k, n) and J (k, n+ 1) < J (k, n). Hence,

L (n+ 1)−L (n)−[L (n+ 2)− L (n+ 1)] >
n+1∑

k=0

P (k|n)J (k, n+ 1)−
n+1∑

k=0

P (k|n+1)J (k, n+ 1) . (1)

The distribution P (k|n + 1) first-order stochastically dominates P (k|n), because
∑k

m=0 P (k|n) >

∑k
m=0 P (k|n+1) for all k ∈ {1, 2, ..., n}, both sums are zero for k = 0, and both sums are equal to

1 for k ≥ n+ 1. First-order stochastic dominance together with J (k + 1, n) < J (k, n) imply that

the right-hand side of (1) is strictly positive, and thus L (n+ 1)− L (n) > L (n+ 2)− L (n+ 1).

For n = 0, L (0) = P (0|0)ρ̂ (0|0)2 = E [ρ]2 = 0. Moreover, by the law of large numbers,

lim
n→∞

L (n) =
1

2
(−r)2 +

1

2
(r)2 = r2.

Proof of Lemma 2. First, consider L = 0. In this case,

π (pY , pX , L) = min
{pY
V

, 1
}
(1− pY ) + 1− pX ,
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which is maximized for (pX , pY ) =
(
0, 12
)
.

For the remainder of the proof, consider 0 < L < 1. First, suppose that pY
1−L

< pX
L
, and thus

v < v, at the solution of the firm’s profit maximization problem. The firm’s problem then is

max
pX≥0,pY ≥0

(
(1− L)H

(
pY

1− L

)(
1−

pY

1− L

)
+ LH

(pX
L

)(1 + L

L
−

pX

L

))
.

If L < 1
2V−1 , the profit function is increasing in pX for all pX ≤ V L and decreasing in pX for pX >

V L, hence profit is maximized at pX = V L. If L ≥ 1
2V−1 , profit is maximized at pX = 1+L

2 < V .

Moreover, for all L ∈ (0, 1), it is optimal to set pY = 1−L
2 . In both cases, pY

1−L
< pX

L
at the solution.

It remains to show that the firm cannot do better by setting prices such that pY
1−L

≥ pX
L
, and

thus v = v. At such prices, the firm’s current-period profit would be H(pX + pY ) (2− (pX + pY )).

By revealed preferences, the firm can earn more by setting the profit-maximizing prices derived

earlier:

max
pX≥0,pY ≥0

(
(1− L)H

(
pY

1− L

)(
1−

pY

1− L

)
+ LH

(pX
L

)(1 + L

L
−

pX

L

))

≥ max
p̂

(
(1− L) (H (p̂) (1− p̂)) + LH (p̂)

(
1 + L

L
− p̂

))

= max
p̂

(H (p̂) (2− p̂)) ≥ H(pX + pY ) (2− (pX + pY )) .

Proof of Proposition 2. The value function can be written recursively as

(1− δ)W (n) = max
pX≥0,pY ≥0

(π (pX , pY , L (n)) + δ (H (v (L(n), pX , pY )) [W (n+ 1)−W (n)])) .

Suppose that PY (n)
1−L(n) <

PX(n)
L(n) ≤ V for all n, so that v (L, pX , pY ) = pY

V (1−L) . We will show at

the end of the proof that this is indeed the case. Since π (pX , pY , L (n)) is separable in pX and pY ,

it then follows that PX (n) = p∗X (L (n)) and

(1− δ)W (n) = max
pY ≥0

(
π (p∗X (n) , pY , L (n)) + δ

(
pY

V (1− L (n))
[W (n+ 1)−W (n)]

))
. (2)
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Any interior solution PY (n) > 0 must satisfy the first-order condition

PY (n) =
1− L (n)

2
−

δ

2
[W (n)−W (n+ 1)] = p∗Y (L (n))−

δ

2
[W (n)−W (n+ 1)] . (3)

Moreover, Lemmas 1 and 2 imply that PX (n+ 1) > PX (n).

We now show thatW (n+ 1)−W (n) > W (n+ 2)−W (n+ 1) > 0 and limn→∞ (W (n+ 1)−W (n)) =

0. First, note that the firm’s problem in (2) can be reformulated as one in which the firm sets v’s

instead of pY ’s:

(1− δ)W (n) = max
v≥0

(π̂ (v, n) + δ (H (v) [W (n+ 1)−W (n)])) , (4)

where

π̂ (v, n) = π (p∗X (L (n)) , v (1− L (n)) , L (n)) = (1− L (n))
v (1− v)

V
+

1

V

(1 + L (n))2

4L (n)
.

Since this function is strictly decreasing and strictly convex in L (n) for any v, Lemma 1 implies

that for any v,

π̂ (v, n)− π̂ (v, n+ 1) > π̂ (v, n+ 1)− π̂ (v, n+ 2) > 0. (5)

Next, denote by v̂n =
{

PY (n)
1−L(n) ,

PY (n+1)
1−L(n+1) , ...

}
the equilibrium sequence of v’s starting in state n.

Denote by W (n |v̂m ) the expected present discounted value of profits if the state is n and the firm

uses the sequence v̂m from the current state onwards, where m can be different from n. By defini-

tion, W (n) = W (n |v̂n ). Note that the transition probabilities in W (n |v̂m ) depend on m, but not

on n. Hence, for any ∆ ∈ N
+
0 , the probability weight assigned to the profit π̂ (v (m+∆) , n+∆)

in W (n |v̂m ) is the same as the probability weight assigned to the profit π̂ (v (m+∆) , n′ +∆) in

W (n′ |v̂m ).

The inequalities in (5) then imply that

W (n |v̂n+1 ) > W (n+ 1 |v̂n+1 ) , and (6)

2W (n+ 1 |v̂n+1 ) < W (n |v̂n+1 ) +W (n+ 2 |v̂n+1 ) . (7)
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Since W (n) = W (n |v̂n ) ≥ W (n |v̂m ) for all n and m, (6) implies that

W (n) > W (n+ 1) , (8)

and (7) implies that

2W (n+ 1) < W (n |v̂n+1 ) +W (n+ 2 |v̂n+1 )

< W (n |v̂n ) +W (n+ 2 |v̂n+2 ) = W (n) +W (n+ 2) . (9)

Finally, limn→∞ (π̂ (v, n)− π̂ (v, n+ 1)) = 0 for all v by Lemma 1, which implies that limn→∞ (W (n |v̂n )−W (n+

0. Given W (n+ 1 |v̂n ) ≤ W (n+ 1) and (8), it follows that

lim
n→∞

(W (n)−W (n+ 1)) = 0. (10)

Results (8), (9), and (10) together with the first-order condition in (3) imply that

PY (n) < p∗Y (L (n)) ,

p∗Y (L (n))− PY (n) > p∗Y (L (n+ 1))− PY (n+ 1) , and

lim
n→∞

(p∗Y (L (n))− PY (n)) = 0.

To complete the proof of part (ii), we apply the implicit function theorem to (3) and use the

envelope theorem to obtain

∂PY (n)

∂δ
= −

(
1

2
[W (n)−W (n+ 1)] +

δ

2

∂ [W (n)−W (n+ 1)]

∂δ

)

= −
1

2

(
1 +

δ

1− δ
(1−H (v (n)))

)
[W (n)−W (n+ 1)]

−
δ

2 (1− δ)
H (v (n+ 1)) [W (n+ 1)−W (n+ 2)]

< 0.
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For part (iii) of the proposition, note that the total equilibrium price

PX (n) + PY (n) = p∗X (L (n)) + p∗Y (L (n))−
δ

2
[W (n)−W (n+ 1)] .

Lemmas 1 and 2 together with (9) imply that this expression is strictly increasing in n.

It remains to show that the seller cannot do better by setting prices such that PY (n)
1−L(n) ≥

PX(n)
L(n)

for some or all n. Suppose (in negation) that the equilibrium prices satisfy PY (n)
1−L(n) ≥

PX(n)
L(n) in state

n and denote the total price in that state by PT (n) = PX (n) + PY (n). The seller then earns a

current-period profit ofH (PT (n)) (2− PT (n)) and the probability of transitioning to the next state

isH (PT (n)). Now suppose the seller instead sets the prices (p̃X , p̃Y ) so that p̃Y = (1− L (n))PT (n)

and p̃X is set to maximize current-period profit subject to the constraint p̃X
L(n) ≥

p̃Y
1−L(n) = PT (n).

The probability of transitioning to the next state then remains H (PT (n)), but the seller’s current-

period profit weakly increases because

max
p̃X≥PT (n)

(
(1− L (n))H (PT (n)) (1− PT (n)) + L(n)H

(
p̃X

L(n)

)(
1 + L(n)

L(n)
−

p̃X

L(n)

))

≥ (1− L (n))H (PT (n)) (1− PT (n)) + L(n)H (PT (n))

(
1 + L(n)

L(n)
− PT (n)

)

= H (PT (n)) (2− PT (n)) .

Proof of Proposition 3. By Proposition 2, PX (n) = p∗X (L (n)) and PY (n) ≤ p∗Y (L (n)),

which implies v (n) < v (n). Hence, using Lemma 2,

v (n) =
p∗X (L(n))

L(n)
=





V if L(n) ≤ 1
2V−1

1+L
2L if L(n) > 1

2V−1

.

It follows from the expression for v (n) that v (n+ 1) = v (n) if L(n+1) ≤ 1
2V−1 and v (n+ 1) < v (n)

if L(n+ 1) > 1
2V−1 .
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