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1 Introduction

In many consumer search situations on the Internet (but not only), after a search query,

consumers first obtain a list of distinct offers ordered by price and then search through

them (from lowest to highest price) until they find, if any, one that suits their preferences.

Retail platforms such as ebay or bonanza are good examples in which consumers encounter

themselves in this situation.1

Despite the prevalence of this search problem, except in special cases (see Armstrong

and Zhou (2011) and Ding and Zhang (2018)), the search literature has so far not provided

a characterisation of the pricing equilibrium in such a context. The reason for this is that

such a characterisation is not without difficulty. The complexity arises from two properties

of the problem that interact with one another to make it relatively intricate. The first is that

an equilibrium in pure strategies fails to exist; the second is that products are genuinely

differentiated.

Specifically, we consider a search setting in which two symmetric firms, each offering a

specific product (in a given product category), compete in prices. Consumers observe firms’

prices before inspecting the products. Because firms’ products are ex-ante identical, price is

the only attribute that guides consumers’ search. Hence, all consumers optimally choose to

inspect the product of the firm charging the lower price. After having checked its product,

consumers learn their taste for that product and decide whether to buy it, leave the market,

or to also inspect the more expensive product of the rival firm. In the latter case, consumers

choose the best of the two deals or none at all.

A pure-strategy equilibrium fails to exist because, as is standard in Bertrand environ-

ments, a firm that undercuts the price charged by the rest of the firms will see its demand

jump up. Here, this occurs because the firm that charges the lower price is automatically

ranked first and, since consumers check product suitability orderly from lowest to highest

price, the demand of this firm is much higher than if it charged the same price as the rival

firm. This pressure to lower prices unravels if the initial price level is sufficiently low. In

this case, because firms’ products are differentiated, an individual firm has an incentive to

deviate by raising its price, thereby catering to the (fewer) consumers whose preferences

1Enter for instance the search query “Gotham Steel Kitchen Set” in ebay.com.
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match sufficiently better with the product of the deviating firm. In contrast to homogeneous-

product market models such as Burdett and Judd (1983) and Stahl (1989), here product

differentiation and mixed strategies interact in such a way that the demand of a firm depends

on the actual price charged by the rival firm and not just on whether its price is higher or

lower (see also Armstrong (2017)).

The characterisation of the mixed-strategy equilibrium in this common setting has, to the

best of our knowledge, not yet been provided. Our paper tries to fill this gap. We provide

some general properties of the symmetric equilibrium in mixed strategies and show that,

when the distribution of match values is polynomial, the equilibrium price distribution can

be characterised as the solution to an ordinary differential equation. To illustrate our result,

we compute the solution for the case of uniformly-distributed match values and study how

the market performs as consumers’ inspection costs increase.

We find that firms’ prices and profits strictly decrease in search costs. The intuition is

that firms understand that when the cost of inspecting products goes up, consumers are less

likely to transit from firm to firm to check products. This increases the value of attracting

the consumers in the first place, which the firms try to do by quoting lower prices. When

consumers’ first search is free, the increased competition induced by higher search costs

always more than offsets the negative impact of a higher search friction, such that consumer

surplus strictly increases. Search frictions thus work in the favour of consumers, not to their

detriment as it is the case in standard models of search. In the limiting case in which the

likelihood of continued search reaches zero, products become de facto homogeneous and

firms end up competing à la Bertrand, thus obtaining zero profits.

Putting together firms’ profits and consumer surplus, we find that social welfare is non-

monotonic in the search cost, first strictly increasing and then strictly decreasing. This is

because, when the inspection cost is initially low, consumers benefit more from an increase

in the cost of checking products than the firms suffer. When the search cost is high to start

with, the opposite occurs. The message for policymakers is that, because of the weakening

of competition, a reduction in search costs is not necessarily welfare improving.
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Related literature

In terms of its model, our paper is related to the seminal paper of Wolinsky (1986), further

analysed by Anderson and Renault (1999). What is different in our paper is that we model

Bertrand competition in its own tradition, which means that consumers observe the prices

the firms charge and thus they serve to guide consumers’ search. While in Wolinsky (1986)

and Anderson and Renault (1999) there exists a unique pure-strategy equilibrium (under

standard regularity conditions), as explained above, when search is directed by prices such

an equilibrium fails to exist.

The question how search markets operate when firms’ prices have a bearing on the order

of search has recently intrigued several authors who have incorporated this feature in various

types of models. Armstrong and Zhou (2011) introduce search frictions in a duopolistic

market with Hotelling-type preferences. The special Hotelling structure of consumer tastes

allows the authors to compute the equilibrium price distribution in closed form. Like in our

paper, a higher search cost induces firms to charge lower prices and profits thus decrease.

Ding and Zhang (2018) modify the well-known model of Stahl (1989) to allow for product

differentiation. To obtain a tractable model of mixed pricing, they assume that firms carry

products that may or may not fit consumers’ tastes. They find that prices may, but need not,

decrease as search costs go up. The reason for this is that a higher search cost decreases

the maximum price firms can quote to non-shoppers in order to induce them to check their

products.

Haan et al. (2018) and Choi et al. (2018) take an alternative route and escape the analysis

of the mixed-strategy equilibrium by differentiating firms’ products in terms of non-search

characteristics. Specifically, they show that when products are sufficiently differentiated

and this differentiation is observed by consumers prior to search, then the demand of a firm

is no longer discontinuous in own price, which restores the existence of a pure-strategy

equilibrium. A similar insight obtains if consumers have search costs that are heterogeneous

and firm-specific (Armstrong (2017)).

The remainder of this article is structured as follows. We introduce our model in Section

2. In Section 3, we provide some general characterisation results for the ensuing mixed-

strategy equilibria. In Section 4, we solve for the mixed-strategy equilibrium when match
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values are uniformly distributed. We also provide the comparative-statics effects of higher

search costs. Section 5 concludes. Some of the proofs are relegated to Appendix A. In

Appendix B, we apply our general methodology to a more complex case than the one with

uniformly-distributed match values.

2 Model

There are two firms i = 1,2 competing in prices to sell their products to a mass 1 of con-

sumers, indexed by m ∈ [0,1]. The products are differentiated but the differentiation can

only be appreciated after inspecting the products. Each consumer is interested in buying at

most one of the firms’ products. Production costs are normalised to zero.

Initially, consumers observe firms’ prices. After this, they decide whether they wish to

inspect the products, and in which order. Only after inspecting a product, the consumer

learns her value for the product. Let ε̃im denote consumer m’s value of the match with

the product of firm i. As is standard in the literature, we assume that match values are

independent and identically distributed (i.i.d.) across firms and consumers. Let F be the

distribution of match values, with support [ε,ε], where 0 = ε < ε≤ ∞, F(ε) = 0, F(ε) = 1.2

We assume that F is smooth and strictly increasing in the interior of its support, and that

1−F is strictly log-concave. Thus, the finite match value density f (ε) exists everywhere in

the support and is strictly positive in its interior. For later use, let Eε̃ :=
∫

ε

ε
ε f (ε)dε be the

expected match value with the product of any firm.

For simplicity, we assume in the baseline model that consumers’ first inspection is for

free, while checking the product of a second firm involves an inspection cost s, with 0 < s <

Eε̃.3 During the inspection process we assume that recall is costless.

2We can easily allow for match-value distributions that put positive probability mass on zero (i.e., marginal
cost) or below, without having to adapt our methodology. For technical reasons, it is however convenient to
rule out match-value distributions that are bounded away from zero, as otherwise, depending on the degree
of competition, case distinctions would have to be made (e.g., for certain parameter values, firms may always
price below ε > 0 in equilibrium, while for others, they may not).

3The assumption that the search cost is sufficiently low is necessary to make the problem interesting. If
this assumption is violated, no consumer would transit from firm to firm to inspect products. At the end of
Section 3, we also consider the case in which consumers’ first search is costly.
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If a consumer purchases at a firm i after having checked n ∈ {1,2} products, her payoff

is given by

um = ε̃im− pi− (n−1)s.

If a consumer chooses to not buy any of the products after having inspected n ∈ {1,2}

products, her payoff is given by um =−(n−1)s. Consumers maximise their expected utility.

We look for symmetric equilibria in which (i) consumers search optimally, given the

prices the firms quote, and (ii) each firm prices optimally, given its rival’s pricing strategy

and consumers’ optimal search behaviour.

3 Analysis

Given the i.i.d. nature of the match values, it is obvious that all consumers find it optimal

to inspect the products in ascending order of price; if the products sell at equal prices, let us

assume that consumers choose randomly which one to inspect first (though this will not oc-

cur in equilibrium). As explained in the Introduction, a symmetric pure-strategy equilibrium

does not exist here: any putative symmetric equilibrium price p > 0 would be destabilised

by the incentive of an individual firm to undercut it in order to have its product inspected first

by all consumers (rather than by half of them); a putative symmetric equilibrium price p = 0

would also be destabilised but in this case by the incentive of an individual firm to raise

the price and cater to the consumers who find its product sufficiently better than the rival’s

one. We therefore look for a symmetric equilibrium in mixed strategies in which each firm

charges prices according to the cumulative distribution function G(p) = Pr(p̃ ≤ p), with

support [p, p], p > p. By the same reasoning, note that G must be atomless.

We now compute the demands for the firms’ products for an arbitrary realization of the

prices they charge. Because consumers optimally search orderly, it is convenient to label

firms’ prices as pL and pH , pL indicating the price charged by the lower-priced firm and

pH indicating the price charged by the higher-priced firm. All consumers find it optimal

to first inspect the product of the firm charging pL. Take a consumer m who has inspected

the product of the firm charging pL and has realized a match-value εLm. For this consumer,
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either εLm < pL or εLm ≥ pL. Let us now discuss in turn how the consumer will proceed

further in these two cases.

First, consider the case in which εLm < pL. The consumer will never buy at firm L. Her

problem is then whether to search firm H or drop out of the market. Inspecting the product

of the firm charging pH is optimal if the gains from search are (weakly) positive, i.e., if

GS :=
∫

ε

pH

(ε− pH) f (ε)dε− s≥ 0.

Let p̂ be implicitly defined by the solution to

∫
ε

p̂
(ε− p̂) f (ε)dε = s, (1)

which is unique and well-defined ( p̂ ∈ [0,ε]) so long as 0 ≤ s ≤ Eε̃. Moreover, implicitly

differentiating equation (1) with respect to s gives

d p̂
ds

=− 1
1−F(p̂)

< 0, (2)

which implies that p̂ is strictly decreasing in s and reaches zero for s = Eε̃.

Note that p̂ can be interpreted as a consumer’s reservation price for searching the second

firm, given that her realized match value at the first firm fell short of this firm’s price (so

that the consumer’s current best option is taking her outside option). In other words, having

no positive surplus at hand after having checked the product of the firm charging the lower

price, a consumer will only inspect the product of the rival firm if it charges a price pH ≤ p̂.

This immediately implies the following:

Lemma 1. The upper bound p of the equilibrium price distribution G cannot lie above p̂,

that is, p≤ p̂.

Proof. By contradiction, suppose that p > p̂ and take a firm i charging a price pi = p.

Because G is atomless, this firm would only see its product inspected by the consumers after

they inspect the product of the rival firm. However, because pi > p̂, not even consumers

obtaining a match value εLm≤ pL at the rival firm would find it optimal to inspect the product
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of firm i, in which case firm i would make zero profits. Deviating to a price pi ∈ (0, p̂) would

instead generate positive demand and profit.

Consider now the second case, that is, that in which εLm ≥ pL. In this case, the consumer

has to decide whether to buy directly the product sold by the firm charging the lower price,

or to inspect the product of the other firm and compare the deals. Let GS(εLm, pL) denote

the gains from searching the product of the firm charging the higher price given εLm ≥ pL.

Because the consumer will only find a better deal at that firm if ε̃Hm− pH ≥ εLm− pL, i.e. if

ε̃Hm ≥ εLm + pH− pL, these gains are:

GS(εLm, pL) =
∫

ε

εLm+pH−pL

[(ε− pH)− (εLm− pL)] f (ε)dε− s.

Note that GS decreases in pH and εLm. Therefore, GS(pL, pL) =
∫

ε

pH
(ε− pH) f (ε)dε− s≥ 0

for any price pH because pH ≤ p̂ and p̂ satisfies
∫

ε

p̂ (ε− p̂) f (ε)dε− s = 0 (see equation

(1) and Lemma 1). Moreover, GS(p̂− (pH − pL), pL) =
∫

ε

p̂ (ε− p̂) f (ε)dε− s = 0. Hence,

combining these observations, a consumer with match value εLm ≥ pL at hand will find it

worthwhile to check the product of firm H if and only if εLm ≤ εL(pH , pL) := p̂−(pH− pL).

Clearly, for arbitrary price realizations satisfying pL ≤ pH , this threshold lies weakly above

pL (and strictly so for pH < p̂), as εL(pH , pL)≥ pL for pH ≤ p̂.

Altogether, the firm charging the lower price has a demand DL(pL, pH) made up of all

consumers with a match value εLm ≥ εL(pH , pL), who immediately buy its product, and

those consumers with a match value εLm ∈ [pL,εL(pH , pL)) who also check the product of

the rival firm and choose the one of this firm if εHm < εLm + pH− pL.

Similarly, the demand for the product of the firm charging the higher price, DH(pH , pL),

stems from the consumers with a match value at firm εLm below εL(pH , pL): those with a

match value εLm ≤ pL buy at the higher-priced firm if εHm ≥ pH ; those with a match value

εLm > pL buy at firm H if εHm ≥ εLm + pH− pL. We may hence state the following lemma.
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Lemma 2. Given any two prices 0≤ pL < pH ≤ p̂, the demands for the products of the two

firms are given by:

DL(pL, pH) = 1−F(p̂+ pL− pH)+
∫ p̂+pL−pH

pL

F(ε− pL + pH) f (ε)dε (3)

DH(pH , pL) = F(pL)(1−F(pH))+
∫ p̂+pL−pH

pL

[1−F(ε− pL + pH)] f (ε)dε. (4)

Figure 1 gives a graphical representation of firms’ demands for a given pair of prices

pH and pL (with ε < pL < pH < p̂). As a consistency check, note that DL(pL, pH) +

DH(pH , pL) = 1−F(pL)F(pH). It can also be verified that for s = 0 such that p̂ = ε, the

demand system becomes exactly identical to that under perfect information (see also the

discussion in the paragraph “Equilibrium without Search Costs” below).

pL

pH

p̂

p̂

pL

p̂− (pH − pL)

εL,j

εH,j

ε

ε

45◦

DH(pH , pL)

DL(pL, pH)

ε

ε

Figure 1: Illustration of firms’ demands for a given pair of prices satisfying pH > pL. Firm
L’s demand is given by the match-value probability mass spread out over the light-gray area,
whereas firm H’s demand is given by the match-value probability mass spread out over the
dark-gray area. Consumers with a match-value combination in the white area search both
firms, but eventually take their outside option.

We now report some general properties of demand for fixed prices.
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Lemma 3. Firms’ demands are decreasing in own price and increasing in the rival firm’s

price. For given prices 0≤ pL < pH < p̂, a marginal increase in the search cost s increases

firm L’s demand at the expense of firm H’s, while overall demand remains constant.

Proof. The first two statements follow immediately from differentiation. For the statement

on search costs, notice that

∂DL(pL, pH)

∂s
=−d p̂

ds
(1−F(p̂)) f (p̂+ pL− pH)

= f (p̂+ pL− pH)≥ 0,

where the second equality follows from equation (2). Likewise, we have that

∂DH(pH , pL)

∂s
=

d p̂
ds

(1−F(p̂)) f (p̂+ pL− pH)

=− f (p̂+ pL− pH)≤ 0.

The sum of these derivatives is clearly zero.

Since the products are substitutes, the behaviour of firms’ demands with respect to prices

is standard. More importantly, the lemma shows that firms’ wedge in demand increases as

consumers’ search cost goes up. The intuition is that with a higher search cost, consumers

are less willing to check the product of the firm charging the higher price after having first

inspected the product of the firm charging the lower price, and will therefore more readily

accept low match values without checking the second product. Ceteris paribus this makes it

more valuable to quote the lower price in the market.

Equilibrium without Search Costs. The above results allow us to characterise the (sym-

metric) equilibrium. Before doing so for the interesting case with strictly positive search

costs (which, as argued above, necessarily leads to mixed-strategy pricing in equilibrium)

we briefly discuss the simpler benchmark case in which s = 0. Given our assumptions, the

game then collapses to a standard random-utility model à la Perloff and Salop (1985), in

which consumers always know both match values. Our setup is however slightly different

because consumers are assumed to have an outside option.
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Since consumers know both match values and have an outside-option of value zero, they

will only ever buy from firm i if εi ≥ pi and εi− pi ≥ ε j− p j. Hence, firm i’s demand and

profit can be written as

Di,0(pi, p j) :=
∫

ε

pi

f (ε)F(ε− pi + p j)dε, (5)

πi,0(pi, p j) := pi

∫
ε

pi

f (ε)F(ε− pi + p j)dε, (6)

where the 0-subscript stands for the model variant with zero search costs.4 Following Perloff

and Salop (1985), we look for a symmetric equilibrium in pure strategies. Firm i’s first order

condition is given by

∂π0
i (pi, p j)

∂pi
=

∫
ε

pi

f (ε)F(ε− pi + p j)dε− pi

[
f (pi)F(p j)+

∫
ε

pi

f (ε) f (ε− pi + p j)dε

]
!
= 0.

In a symmetric pure-strategy equilibrium, it has to hold that pi = p j = p, such that in par-

ticular ∂πi,0(pi,p j)
∂pi

∣∣∣
pi=p j=p

!
= 0 is necessary for its existence. Noting that

∫
ε

p f (ε)F(ε)dε =

1−F(p)2

2 , we hence need that

h(p) :=
1−F(p)2

2
− p f (p)F(p)− p

∫
ε

p
f (ε)2dε

!
= 0. (7)

Our assumption that 1−F(ε) is strictly log-concave now guarantees that equation (7) has

a unique solution p∗ ∈ (0,ε).5 This allows us to state the following lemma, which concludes

our discussion of the case without search costs.

Lemma 4. Suppose that s= 0 and that 1−F(ε) is strictly log-concave. Then, if a symmetric

pure-strategy equilibrium exists, it is characterised by the unique solution p∗ ∈ (0,ε) to

equation (7).6

4For pi < p j, F(ε− pi+ p j) in the integrand of Di,0(pi, p j) equals 1 for ε≥ ε+ pi− p j. Hence, for pi < p j,
firm i’s demand can alternatively by written as

Di,0(pi, p j|pi < p j) =
∫

ε+pi−p j

pi

f (ε)F(ε− pi + p j)dε+[1−F(ε+ pi− p j)].

5The proof of this is rather lengthy and therefore omitted. It is available from the authors upon request.
6A sufficient condition for existence of this equilibrium is that Di,0(pi, p j) as defined in equation (5) is

log-concave in pi. If this is not the case and there is a profitable unilateral deviation from the equilibrium
candidate, no symmetric pure-strategy equilibrium exists for s = 0.
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Equilibrium with Search Costs. We now turn to the characterisation of the symmetric

mixed-strategy equilibria for s > 0. These are described by an atomless distribution function

G over the range of possible prices [0, p̂], see Lemma 1, where p and p denote the infimum

and supremum, respectively, of the support of G. The expected profit of a firm setting a

price p is equal to:

π(p) := p

(∫ p

p
DH(p, p̃)dG(p̃)+

∫ p

p
DL(p, p̃)dG(p̃)

)
, (8)

where DH and DL are defined in Lemma 2. The distribution function G characterises a

mixed-strategy equilibrium if there exists a scalar π∗ ≥ 0 such that π(p) = π∗ in the support

of G and π(p) ≤ π∗ outside the support. By the next lemma, one can restrict attention to

prices less than the unique7 solution to 1−F(p)− p f (p) = 0 that we denote by pM.

Lemma 5. To characterise the set of symmetric equilibria, there is no loss in restricting

attention to prices less than pM.

Proof. See Appendix A.

Lemma 5 is intuitive: Not even a monopolist would ever find it optimal to price above

the monopoly price pM. From firms’ perspective, this is even more so true under duopoly, as

decreasing one’s price starting from some p > pM now has the added benefit of potentially

beating the rival’s price, for a discontinuous upward jump in demand.

In what follows, we therefore restrict attention to prices less than pM. The next lemma

provides conditions under which the equilibrium distribution has convex support and is char-

acterised by an integral equation.

Lemma 6. Suppose that pDL(p, p̃) and pDH(p, p̃) are strictly concave8 in p ∈ [0, pM].

Then, an atomless distribution function G is a symmetric equilibrium in mixed strategies if

and only if G has a convex support [p, p], G′(p) = 0 and there exists a π∗ ∈ [0,∞) such that:

π∗

p
=

∫ p

p
DH(p, p̃)dG(p̃)+

∫ p

p
DL(p, p̃)dG(p̃),∀p ∈ [p, p]. (9)

7As a consequence of our assumption that 1−F is strictly log-concave.
8Unfortunately, we could not find an obvious condition on F that guarantees the concavity of pDL(p, p̃)

and pDH(p, p̃) up to pM .
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Proof. See Appendix A.

The requirement that pDL(p, p̃) and pDH(p, p̃) are strictly concave for p ∈ [0, pM] is

only necessary to guarantee the convexity of the support of G. Any symmetric equilibrium

G with convex support solves the integral equation in (9) and satisfies G′(p) = 0. In what

follows, we shall study the solutions to the latter mathematical problem. Unfortunately, the

integral equation does not have an explicit solution in general. However, one can compute

an approximate solution by noting that by application of the Stone-Weierstrass theorem (see

e.g. Rudin (1976), Theorem 7.26) any continuous match-value distribution function F(ε)

with compact support can be uniformly approximated arbitrarily closely by a polynomial

function. We may then apply the following lemma.9

Lemma 7. Suppose F(ε) is polynomial of order K≥ 1, with F(ε) =∑
K
k=0 akεk, aK 6= 0. Then

DL(p, p̃) is polynomial of order K in p and of order 2K in p̃, while DH(p, p̃) is polynomial

of order 2K in p and of order K in p̃.

Proof. See Appendix A.

Since, with polynomially-distributed match values, also the demand functions DL and

DH are polynomial, one can transform the above integral equation (9) into a linear homoge-

neous ordinary differential equation taking derivatives with respect to p successively until

the integrals vanish. To pave the way for this result, we shall use the simplification arising

from the subsequent lemma.

Lemma 8. For any τ≥ 0, Λτ := D(τ,0)
L (p, p)−D(τ,0)

H (p, p) is constant in p. For any τ odd,

Λτ = 0.

Proof. See Appendix A.

We are now ready to convert the integral equation (9) to a linear homogeneous differen-

tial equation of order 2K +1 with a total of 2K +3 boundary conditions, defined at the yet

unknown equilibrium support bounds p and p.

9For the proof of the subsequent Lemma 7 and all of what follows, to have a more compact notation, we
adopt, for a ∈ {0,1, . . .} and b ∈ {0,1, . . .}, that D(a,b)

i (p, p̃) := ∂a+bDi(p′,p̃′)
∂(p′)a∂(p̃′)b

∣∣∣
p′=p, p̃′=p̃

, with D(0,0)
i (p, p̃) =

Di(p, p̃), G(a)(p) := ∂aG(p′)
∂(p′)a

∣∣∣
p′=p

, with G(0)(p) = G(p), and F(a)(ε) := ∂aF(ε′)
∂(ε′)a

∣∣∣
ε′=ε

, with F(0)(ε) = F(ε).

12



Lemma 9. Suppose F(ε) is polynomial of order K ≥ 1, with F(ε) = ∑
K
k=0 akεk, aK 6= 0.

Suppose moreover that the induced demand functions DL(p, p̃) and DH(p, p̃) are strictly

concave in p up to the corresponding pM. Then, a smooth function G : [p, p] that satisfies

G(p) = 0, G(p) = 1 and G(1)(p) = 0 solves (9) if and only if:

−(−1)K(aKK!)2
[
(2K +1)G(p)+ pG(1)(p)

]
−

2K−2

∑
τ=0

Λτ

[
(2K +1)G(2K−τ)(p)+ pG(2K+1−τ)(p)

]
= 0

∀p ∈ [p, p],

(10)

K

∑
l=0

(−1)lG(−l)(p)
[
(k+1)D(k,l)

H (p, p)+ pD(k+1,l)
H (p, p)

]
−

k−1

∑
τ=0

Λτ

[
(k+1)G(k−τ)(p)+ pG(k+1−τ)(p)

]
= 0

∀k ∈ {0, ...,2K−1}

(11)

aK(K +1)!+
K−1

∑
τ=0

Λτ

[
(K +1)G(K−τ)(p)+ pG(K+1−τ)(p)

]
+ pΛKG(1)(p) = 0 (k = K)

(12)

k−1

∑
τ=0

Λτ

[
(k+1)G(k−τ)(p)+ pG(k+1−τ)(p)

]
+ pΛkG(1)(p) = 0 ∀k ∈ {K +1, ...,2K−1}.

(13)

Conditional on p, firms’ expected profit is given by

π
∗(p) =

p2K+1

(2K)!

[
−(−1)K(aKK!)2−

2K−2

∑
τ=0

ΛτG(2K−τ)(p)

]
. (14)

Proof. See Appendix A.

Lemma 9 establishes that in case of polynomially-distributed match values of order K,

finding the equilibrium CDF is equivalent to finding the solution to an overspecified linear

13



homogeneous ODE of order 2K + 1, see equation (10), with a total of 2K + 3 boundary

conditions. To see where the number of boundary conditions comes from, note that equa-

tion (11) specifies 2K boundary conditions at p with K unknowns G(−1)(p), ...,G(−K)(p)

entering linearly – which can be reduced to just K boundary conditions at p without any

unknowns10 – equations (12)+(13) provide in total K boundary conditions at p, while the

remaining 3 boundary conditions are given by G(p) = 0, G(p) = 1 and G(1)(p) = 0.

Our approach to find the equilibrium is now as follows. First, we may fix any 2K + 1

of the 2K + 3 boundary conditions and use them to compute the solution to the resulting

boundary value problem (in our case, a linear homogeneous ODE of order 2K + 1 with

2K + 1 mixed boundary conditions) as a function of the admissible 0 < p < p ≤ pM.11

Second, we need to find those values of p and p such that also the two still unused boundary

conditions are satisfied. The solutions to these final consistency conditions is what pins

down the equilibrium.

10Letting
akl := (−1)l

[
(k+1)D(k,l)

H (p, p)+ pD(k+1,l)
H (p, p)

]
,

we can write e.g. the first K equations (for k = 0, . . . ,K−1) in (11) as

A

G(−1)(p)
...

G(−K)(p)

= b,

where

A :=

 a01 . . . a0K
...

...
aK−1,1 . . . aK−1,K


is the K ×K matrix with entry ak−1,l in row k and column l, and b is the K × 1 vector with element bk,
k = 0, . . .K−1, given by

bk :=
k−1

∑
τ=0

Λτ

[
(k+1)G(k−τ)(p)+ pG(k+1−τ)(p)

]
−ak0.

If A is invertible, we can then find G(−1)(p)
...

G(−K)(p)

= A−1b.

These concrete expressions for G(−1)(p), . . . ,G(−K)(p) can in turn be plugged back into the K still unused
equations in (11) for k = K, . . . ,2K−1. We are then left with K mixed boundary conditions at p which relate
sums of the various derivatives of G evaluated at p (i.e., G(2)(p), . . . ,G(2K)(p)) to functions of p only.

11Fortunately, even in cases where this cannot be done analytically, standard numerical methods such as
the so-called “shooting method” exist which can do this efficiently.
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In practice, it will often be convenient to exploit all boundary conditions apart from

G(p) = 0 and G(p) = 1, as these values do not depend on the match-value distribution and

no derivatives need to be considered when checking the final consistency conditions. Doing

so, the solution to the boundary value problem can be computed for any given values of

(p, p) by employing the boundary condition G(1)(p) = 0 and the 2K additional boundary

conditions stemming from equations (11) to (13). We denote this solution by Ĝ(·; p, p). To

find the equilibrium it then only remains to solve the corresponding consistency conditions

Ĝ(p; p, p) = 1 (15)

Ĝ(p; p, p) = 0, (16)

with unknowns (p, p) such that p ∈ (0, pM), p ∈ (p, pM]. Then one can compute π∗ using

e.g. equation (14).

We will illustrate this approach in the next section. Before doing so, we finish our general

analysis by briefly discussing the case where also consumers’ first search is costly.

Costly First Search. Consider a variant of the baseline model in which consumers also

have to incur a search cost s ∈ (0,Eε̃) when conducting their first search. As before, they

can conduct a second search after observing the realization of the first search for the same

cost s.

Then clearly, consumers would only conduct a first search if they expect to make a non-

negative surplus from their whole search process. A lower bound for the expected surplus

when conducting the first search to a firm fixing a price p is:

∫
ε

p
(ε− p)dF(ε)− s,

i.e., the expected utility of sticking to the first offer and not searching a second time. But

the fact that firms do not fix prices greater than p̂, see Lemma 1, means that this expected

surplus is always non-negative. Thus, any equilibrium of the model in which the first search

is for free12 is an equilibrium of the model in which the first search is as costly as the second

one. Therefore, we may apply the same equilibrium analysis as the one outlined above

12Or, more generally, in which the first search is less costly than the second search.
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for costless first search. The only difference is that when computing total social welfare

and consumer surplus, also the frictions stemming from consumers’ first search need to be

considered.

4 Uniformly Distributed Match Values

In this section, we illustrate how Lemma 9 can be used to transform the integral equation

in (9) into an ordinary differential equation that can be solved. To do so, we assume in the

rest of the section that F(ε) = ε for ε ∈ [0,1] and s ∈ (0,1/2), which we call the uniform

case for brevity.13 We shall also use the numerical results of the uniform case to study the

comparative-statics predictions of a change in the consumers’ search cost.

4.1 Computing the Equilibrium

Note first that in the uniform case, pM = 1/2, and thus we can restrict our attention to prices

in [0,1/2] by Lemma 5. Besides, one can show after some trivial algebraic manipulations

on (1), (3) and (4) that:

p̂ = 1−
√

2s, (17)

DL(p, p̃) =
1
2
+ s− p+ p̃− p̃2

2
, (18)

DH(p, p̃) =
(1− p)2

2
− s+(1− p)p̃. (19)

Thus, D(1,0)
L (p, p̃)=−1, D( j,0)

L (p, p̃)= 0 for any j≥ 2, D(1,0)
H (p, p̃)=−(1− p)− p̃, D(2,0)

H (p, p̃)=

1, D( j,0)
H (p, p̃) = 0 for any j≥ 3, Λ0 = 2s, Λ2 =−1, Λi = 0 for either i = 1 or i≥ 3. Besides,

one can establish via differentiation that pDL(p, p̃) and pDH(p, p̃) are strictly concave in p

for p ∈ [0, pM], and as a consequence, the application of Lemmas 6 and 9 to characterise the

equilibrium is straightforward.

13In Appendix B, we showcase the applicability of our general approach also for the more complicated case
of a linear-decreasing match-value density.
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Lemma 10. In the uniform case, an atomless distribution function G : [p, p]→ [0,1] is a

symmetric equilibrium in mixed strategies if and only if G solves:

3G(p)+ pG(1)(p)−2s
[
3G(2)(p)+ pG(3)(p)

]
= 0 ∀p ∈ [p, p], (20)

G(p) = 1,

G(1)(p) = 0,

G(2)(p) = −1−3p+3p2 +2s
2sp(1−2p)

, (21)

G(p) = 0,

1+2sG(1)(p)+ spG(2)(p) = 0. (22)

Moreover, the equilibrium profit as function of the upper bound is given by

π
∗(p) =

p2 [(1− p)2 +2s
]

2(1−2p)
, (23)

while the expected price as function of the upper bound is given by

Ep̃(p) =
−3p2 +4p+2s−1

2(1−2p)
. (24)

Proof. Equations (20) and (22) follow immediately from applying equations (10) and (12)

in Lemma 9 for K = 1 and aK = 1.14 For equation (21), note that applying equation (11) in

Lemma 9 for k = 0,1 gives the system of equations

G(p)
[
D(0,0)

H (p, p)+ pD(1,0)
H (p, p)

]
−G(−1)(p)

[
D(0,1)

H (p, p)+ pD(1,1)
H (p, p)

]
= 0

G(p)
[
2D(1,0)

H (p, p)+ pD(2,0)
H (p, p)

]
−G(−1)(p)

[
2D(1,1)

H (p, p)+ pD(2,1)
H (p, p)

]
−Λ0

[
2G(1)(p)+ pG(2)(p)

]
= 0.

14aK = 1 since F(ε) = a0 +a1ε with a0 = 0, a1 = aK = 1.
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Using that G(p) = 1, G(1)(p) = 0, as well as, for the uniform case, D(0,0)
H (p, p) = (1−p)2

2 −

s+(1− p)p, D(1,0)
H (p, p) = −1, D(0,1)

H (p, p) = 1− p, D(1,1)
H (p, p) = −1, D(2,0)

H (p, p) = 1,

D(2,1)
H (p, p) = 0 and Λ0 = 2s, the above system simplifies to

(1− p)2

2
− s− p2−G(−1)(p)(1−2p) = 0

−2+ p+2G(−1)(p)−2spG(2)(p) = 0.

Eliminating G(−1)(p) and solving for G(2)(p) then easily yields the following solution, con-

ditional on p:

G(2)(p) =−1−3p+3p2 +2s
2sp(1−2p)

G(−1)(p) =
1−2p− p2−2s

2(1−2p)
,

validating equation (21).

Firms’ equilibrium profit conditional on p, as reported in equation (23), can now be

found by applying equation (14) in Lemma 9 for K = 1 and aK = 1. This gives

π
∗(p) =

p3

2

[
1−2sG(2)(p)

]
=

p2

2

[
1+

1−3p+3p2 +2s
1−2p

]
=

p2 [(1− p)2 +2s
]

2(1−2p)
,

as reported.

Finally, the expected price conditional on p, as stated in equation (24), comes from

noting that

Ep̃(p) =
∫ p

p
p̃dG(p̃) = p−

∫ p

p
G(p̃)d p̃ = p−G(−1)(p).

Hence

Ep̃(p) = p− 1−2p− p2−2s
2(1−2p)

=
−3p2 +4p+2s−1

2(1−2p)
.

In the uniform case, we henceforth obtain a third order linear homogeneous ODE with

a total of five boundary conditions. As outlined in the main text above, a general way to
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find the equilibrium when F(ε) is of order K would then be to exploit all 2K + 1 bound-

ary conditions apart from G(p) = 1 and G(p) = 0, analytically or numerically solve the

corresponding boundary value problem for any admissible (p, p) to obtain Ĝ(·; p, p), and

then pin down the equilibrium variables p and p by solving the final consistency conditions

Ĝ(p; p, p) = 1, Ĝ(p; p, p) = 0.

However, the uniform case has the unique property that there are actually enough bound-

ary conditions to fully specify the ODE as initial value problem with just conditions at the

(yet unknown) upper bound of the price distribution.15 The advantage is that a relatively

manageable and unique analytic solution to this initial value problem exists, which in turn

can be used to semi-analytically find the equilibrium objects p and p.

Lemma 11. For any p ∈
[
0, 1

2

)
, the unique continuous solution Ǧ to (20) with boundary

conditions Ǧ(p) = 1, Ǧ(1)(p) = 0 and Ǧ(2)(p) =−1−3p+3p2+2s
2sp(1−2p) is

Ǧ(p) = A[(B1(p)+B2(p))C+D(p)+E1(p)+E2(p)], (25)

where

A =
1

8s(1−2p̄)

B1(p) = e
p√
2s

∫ p̄√
2s

p√
2s

(
e−x

x

)
dx

B2(p) = e−
p√
2s

∫ − p√
2s

− p̄√
2s

(
e−x

x

)
dx

C = p̄2
(
(1− p̄)2 +2s

)
/
√

2s

D(p) =−2p̄2
(
(1− p̄)2 +2s

)
/p

E1(p) = e
p−p̄√

2s

[
p̄3−

(√
2s+2

)
p̄2−

(√
2s−1

)(
3
√

2s+1
)

p̄−
√

2s
(

1−
√

2s
)2
]

E2(p) = e−
p−p̄√

2s

[
p̄3 +

(√
2s−2

)
p̄2−

(√
2s+1

)(
3
√

2s−1
)

p̄+
√

2s
(

1+
√

2s
)2
]

15Already for K = 2 (i.e., a quadratic match-value CDF), our methodology leads to a fifth order linear
homogeneous ODE with a total of four boundary conditions at p and three boundary conditions at p (see
Appendix B). Since the number of boundary conditions at the upper and lower bound is in both cases strictly
less than five, the ODE cannot be described by an initial value problem. The same argument applies for any
K ≥ 2.
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Proof. Uniqueness is guaranteed e.g. by Theorem 7.1, page 22, in Coddington and Levinson

(1955). The explicit solution we provide can be computed by any standard software that

solves ordinary differential equations.16

Next, we show that the constraints Ǧ(p) = 0 and 1+2sǦ(1)(p)+ spǦ(2)(p) = 0 that the

solution in (25) must satisfy, see Lemma 10, determine uniquely p and p. First, equation

(25) evaluated at p = p can be used to transform Ǧ(p) = 0 into:

A
[(

B1(p)+B2(p)
)

C+D(p)+E1(p)+E2(p)
]
= 0. (26)

Second, differentiating (25) with respect to p and evaluating it at p = p gives:

Ǧ(1)(p) = A

[(
B1(p)−B2(p)

√
2s

)
C−

D(p)
p

+
E1(p)−E2(p)

√
2s

]
. (27)

Moreover, differentiating (25) twice with respect to p and evaluating it at p = p gives:

Ǧ(2)(p) = A

[(
B1(p)+B2(p)

2s
− 2

p
√

2s

)
C+

2D(p)
p2 +

E1(p)+E2(p)
2s

]

= A

[
−

D(p)
2s
− 2C

p
√

2s
+

2D(p)
p2

]

=
2AD(p)

p2 , (28)

where the second equality follows from equation (26) and the third equality from −D(p)
2s −

2C
p
√

2s
= 0, compare with Lemma 11. These values for Ǧ(1)(p) and Ǧ(2)(p) can be used to

transform (22) into:

A
[(

B1(p)−B2(p)
)

C+E1(p)−E2(p)
]
+

1√
2s

= 0. (29)

Equations (26) and (29) form a system of two non-linear equations with two unknowns

p and p. Any solution to this system in which 0≤ p < p < 1
2 defines the equilibrium values

of p and p, see Lemma 10. Unfortunately, the solutions to this system of equations cannot

16We have used Mathematica version 11.0.

20



0.0 0.1 0.2 0.3 0.4 0.5
s

0.1

0.2

0.3

0.4

p, p, ∫ p̃ⅆG(p̃)

Figure 2: Equilibrium upper support bound (red), lower support bound (blue), and average
price (purple) as a function of s.

be obtained analytically, so we proceed by solving it numerically. Our numerical analysis

below suggests that it has a unique solution for any s ∈ (0,1/2).

Numerical Results 1. Figure 2 plots the upper support bound p, lower support bound p

and the average price charged by firms, (24), in equilibrium as a function of s.17 The three

variables are strictly decreasing in s, starting from p = p =
√

2−1 for the case s→ 0, down

to p = p = 0 for the case s→ 1/2.

These results confirm the general intuition that an increase in search costs should tend

to intensify price competition. Quite remarkably, the two extreme cases s→ 0 and s→ 1/2

converge to the unique symmetric pure-strategy equilibrium that exists when s = 0 and s =

1/2, respectively.18

17We draw these plots using Mathematica 11.0. The code is available from the authors upon request.
18For s = 0, equation (7) implies that in the uniform case, the unique solution in (0,1) to p2 +2p−1 !

= 0
defines the symmetric candidate equilibrium price. This is clearly given by p∗ =

√
2−1. Moreover, using the

profit function in (6), it is straightforward to check that there are also no profitable non-marginal deviations
from p∗ =

√
2−1. Hence, this indeed constitutes the unique symmetric pure-strategy equilibrium.
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4.2 Numerical Welfare Analysis

In this section, we study how industry profits, consumer surplus and social welfare vary with

the consumers’ search cost s. Since there are two firms only, the expected industry profits

are simply equal to 2π∗, where π∗ as a function of p is given by (23). Since firms’ costs are

equal to zero, the social surplus is equal to the buyer’s value, minus the search cost if the

buyer conducts a second search. Because this second search is conducted only if the buyer’s

value from the product of the firm charging the lower price εL is less than p̂−(pH− pL), the

expected social surplus conditional on a vector of prices (pL, pH), where pL < pH , is equal

to

W (pH , pL,s) :=
∫

L
εL dλ(εL,εH)+

∫
H

εH dλ(εL,εH)− s(p̂− (pH− pL)),

where λ denotes the Lebesgue measure and the regions L and H are depicted in light grey

(L) and dark grey (H) in Figure 1.19 One can show after some tedious algebra that the above

expression is equal to:

W (pH , pL,s) =
2p3

H−3p2
H(2pL +1)+6pH pL−3p2

L +4s
√

2s−6s+4
6

. (30)

The unconditional expected social surplus is then equal to:

W := 2
∫ p

p

[∫ pH

p
W (pH , pL,s)dG(pL)

]
dG(pH). (31)

19A general explicit expression for W (pH , pL,s) is given by

W (pH , pL,s) =−F(p̂− pH + pL)s+F(pL)
∫

ε

pH

εH f (εH)dεH

+
∫ p̂−pH+pL

pL

εL f (εL)F(εL + pH − pL)dεL

+
∫ p̂−pH+pL

pL

[∫
ε

εL+pH−pL

εH f (εH)dεH

]
f (εL)dεL

+
∫

ε

p̂−(pH−pL)
εL f (εL)dεL.
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The expected consumer surplus can be computed as the expected social surplus minus

the expected industry profits:

CS := 2
∫ p

p

[∫ pH

p
W (pH , pL,s)dG(pL)

]
dG(pH)−2

p2 [(1− p)2 +2s
]

2(1−2p)
. (32)

An increase in the search cost s directly reduces both total surplus and consumer surplus.

This effect is reinforced by the induced effect on the search intensity and therefore on the

efficiency of the allocation. However, another indirect effect is that the increase in search

costs fosters competition and thus reduces prices (Numerical Results 1). Consequently, an

increase in search costs induces countervailing effects on the expected consumer surplus and

the expected social surplus and it is a priori unclear which one dominates.

In the case of industry profits, an increase in search costs shifts demand from the more

expensive to the cheaper firm for given prices and thereby directly reduces industry profit.

Moreover, the lower prices due to enhanced competition (see Numerical Results 1) also

indirectly decrease profits.

Numerical Results 2. Figure 3 plots expected social welfare, consumer surplus and indus-

try profit as a function of s. Welfare is first increasing and then decreasing in search costs.

Consumer surplus is strictly increasing and industry profit is strictly decreasing in search

costs.20

As anticipated above, industry profits decrease with search costs. In the case of consumer

surplus, the numerical results suggest that the competition effect dominates, whereas in

the case of social surplus, the results are less clear. For low values of the search cost the

competition effect dominates, but for larger values the dominant forces are the increase in

search costs and allocative efficiency. The surprising implication is that reducing search

frictions may not always be a welfare-enhancing policy, even if this can be done at virtually

no cost, and the reason is that competition is softened.

20Observe moreover that for s→ 0, W (0)≈ 0.6193 =W (
√

2−1,
√

2−1,0) (compare with equation (30)),
where p∗ =

√
2−1 is the symmetric pure-strategy equilibrium for s = 0 (see Footnote 18 above). Also CS(0)

and Π(0) are consistent with this equilibrium price level.
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Figure 3: Expected social welfare (purple), consumer surplus (blue), and industry profit
(red) as a function of s.

Note finally that this counterintuitive welfare result prevails in the model variant with

costly first search.21 For this variant, as all consumers still conduct a first search (compare

with the discussion at the end of Section 3), we just have to deduct s from total social

welfare and consumer surplus to find their new values. As it turns out, the only qualitative

difference to the case with costless first search is the behaviour of consumer surplus as

search costs vary. With costly first search, it is not a strictly increasing function any longer.

This is because, as the search cost tends to the expected match value, total social welfare

and consumer surplus now tend to zero, such that the consumer surplus cannot increase

indefinitely.

Numerical Results 3. Figure 4 plots the expected total social welfare, the consumer surplus

and the industry profit in the model with costly first search, as a function of s. The first two

are initially increasing and then decreasing, achieving their maximum value at a strictly

positive search cost. The third one is strictly decreasing.
21It also prevails under a linear-decreasing match-value density rather than a uniform density, see Appendix

B for details.
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Figure 4: Expected total social welfare (purple), consumer surplus (blue) and industry profit
(red) with costly first search as a function of s.

5 Conclusion

On the Internet consumers can easily check prices and therefore firms can use them to in-

fluence the way in which consumers search. The question how the ability of firms to direct

consumer search impacts market competitiveness has proven to be a difficult one. This pa-

per has added to the small literature on this issue by analysing it within the context of the

workhorse model of consumer search for differentiated products of Wolinsky (1986).

We have studied a duopolistic search market in which firms compete in prices to entice

consumers to inspect their products. Consumers optimally inspect first the product of the

firm quoting the lower price, and then, if so they wish, they check the product of the ri-

val firm. Upon inspection, they learn the value they place on a product. We have shown

that there does not exist an equilibrium in pure strategies. We have also seen how the fact

that products are differentiated makes the characterisation of the mixed-strategy equilibrium

non-standard. We have derived some general properties of the symmetric equilibrium in

mixed strategies and show that, when the distribution of match values is polynomial, the

equilibrium price distribution can be characterised as the solution to an ordinary differential

equation. To illustrate our result, we have computed the equilibrium price distribution for

the often-used case in which match values are uniformly distributed. We have finally paid
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attention to the way the equilibrium changes as the cost of checking products increases. This

has revealed that firms’ profits decrease, consumer surplus increases, while social welfare is

non-monotonic, first increasing and then decreasing in search costs.

An extensive literature, using an array of models with sequential and non-sequential

search for homogeneous and differentiated products, has demonstrated that search costs

weaken competition. A constant in that literature has been that consumers cannot check

prices before they search. This paper has shown that the influence of search frictions on the

functioning of the market is totally different when firms can use prices to influence the way

in which consumers search. The message for policymakers is that, because cutting search

costs softens competition, a reduction in the costs of search need not be welfare improving.
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Appendix A Technical Proofs

Proof of Lemma 5. To prove the lemma, we shall show that the derivative of the profit func-

tion:

π
′(p) =

∫ p

p

∂(pDH(p, p̃))
∂p

dG(p̃)+
∫ p

p

∂(pDL(p, p̃))
∂p

dG(p̃)− pG′(p)(DL(p, p)−DH(p, p))

is strictly negative for p ∈ (pM, p̂]. Since22 DL(p, p)−DH(p, p) = (1−F(p̂))2 > 0, it is

sufficient to show that the terms ∂(pDS(p,p̃))
∂p are strictly negative for p∈ (pM, p̂]. To prove so,

we deduce an alternative expression for DL and DH from the discussion preceding (3) and

(4). In particular, the low price sells if and only if:

εLm ≥min(pL + p̂− pH , pL +max(εHm− pH ,0)) = pL +max(min(p̂,εHm)− pH ,0),

and the high price sells if and only if εLm≤ p̂−(pH− pL) and εHm≥ pH +max(εLm− pL,0).

Thus,

DL(pL, pH) =
∫

ε

ε

(1−F(pL +ψL(ε)) f (ε)dε, (33)

DH(pH , pL) =
∫ p̂−(pH−pL)

ε

(1−F(pH +ψH(ε))) f (ε)dε, (34)

where ψL(ε) := max(min(p̂,ε)− pH ,0) and ψH(ε) := max(ε− pL,0).

Thus:

∂(pLDL(pL, pH))

∂pL
=−

∫
ε

ε

(
pL−

1−F(pL +ψL(ε)

f (pL +ψL(ε))

)
f (pL +ψL(ε)) f (ε)dε,

22The difference between (3) and (4) evaluated at pL = pH = p gives:

DL(p, p)−DH(p, p) = 1−F(p̂)−F(p)(1−F(p))−
∫ p̂

p
(1−2F(ε)) f (ε)dε

= 1−F(p̂)−F(p)(1−F(p))− (F(p̂)−F(p̂)2)+(F(p)−F(p)2)

= (1−F(p̂))2.
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and,

∂(pHDH(pH , pL))

∂pH
=−

∫ p̂−(pH−pL)

ε

(
pH−

1−F(pH +ψH(ε))

f (pH +ψH(ε))

)
f (pH +ψH(ε)) f (ε)dε

− pH(1−F(p̂)) f (p̂− (pH− pL)).

Both expressions are strictly negative for pS > pM (S = L,H) as desired, because,

pS−
1−F(pS +ψS(ε)

f (pS +ψS(ε))
≥ pS−

1−F(pS)

f (pS)
> 0,

where both inequalities are a consequence of our assumption of strict log-concavity of 1−F

and because ψS(ε)≥ 0, first inequality, and pS > pM, second inequality.

Proof of Lemma 6. First, the “if” part. Eq. (9) implies that π(p) = π∗ for any p ∈ [p, p], and

thus the firm is indifferent between any p ∈ [p, p]. To show that there are no incentives to

deviate to a price less than p, it is sufficient to show that for p < p:

π
′(p) =

∫ p

p

∂(p ·DL(p, p̃))
∂p

dG(p̃)≥ 0.

Note that the concavity of p ·DL(p, p̃) with respect to p means that it is sufficient to prove

this inequality for p = p. To prove so, multiply both sides of Eq. (9) by p, differentiate them

with respect to p ∈ [p, p] and evaluate at p = p to get:

∫ p

p

∂(p ·DL(p, p̃))
∂p

∣∣∣∣
p=p

dG(p̃) = pG′(p)
(
DL(p, p)−DH(p, p)

)
≥ 0,

where the sign follows from the facts that p ≥ 0, G′(p) ≥ 0 and DL(p, p)−DH(p, p) =

(1−F(p̂))2 > 0, see Footnote 22.

To show that there are no incentives to deviate to a price higher than p, it is sufficient to

show, by Lemma 5, that for p ∈ [p, pM]:

π
′(p) =

∫ p

p

∂(p ·DH(p, p̃))
∂p

dG(p̃)≤ 0.
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The concavity of p ·DH(p, p̃) with respect to p means that it is sufficient to prove this

inequality for p = p. Again, multiply by p both sides of Eq. (9), differentiate them with

respect to p and evaluate at p = p to get:

∫ p

p

∂(p ·DH(p, p̃))
∂p

∣∣∣∣
p=p

dG(p̃) = pG′(p)(DL(p, p)−DH(p, p)) . (35)

This expression is equal to zero, as desired, when G′(p) = 0.

To prove the “only if” part, we note first that the equation in (9) is the usual indifference

condition that must necessarily hold for prices in the support of G. Thus, (35) must also

hold. Consequently, G′(p) = 0 follows from the fact that the equilibrium condition that

payoffs must be lower for prices higher than p implies that,

∫ p

p

∂(p ·DH(p, p̃))
∂p

∣∣∣∣
p=p

dG(p̃)≤ 0,

and (DL(p, p)−DH(p, p)) = (1−F(p̂))2 > 0, see Footnote 22.

Finally, to show that G cannot have gaps in the support, we argue by contradiction.

Suppose that there exists a gap (p′, p′′) ⊂ (p, p) in which G does not put probability mass.

In this case, equilibrium requires that π(p) ≤ π(p′) = π(p′′) for any p ∈ (p′, p′′). Besides,

one can deduce from (14) and our assumptions that pDL(p, p̃) and pDH(p, p̃) are strictly

concave in p that π(p) is strictly concave in p ∈ [p′, p′′]. This is a contradiction as there is

no strictly concave function that satisfies π(p)≤ π(p′) = π(p′′) for any p ∈ (p′, p′′).

Proof of Lemma 7. It is straightforward to see that for F(ε) polynomial, the demand func-

tions DL(p, p̃) and DH(p, p̃) as specified in equations (3) and (4) are bivariate polynomials.

A multivariate polynomial is of order Z in some argument x if the Z’th (Z ≥ 1) partial deriva-

tive of that function with respect to x is constant in x and different from zero.

We start by proving the order of DL(p, p̃) in p and p̃. Note by letting pL = p and pH = p̃

in equation (3) (see Lemma 2) that

DL(p, p̃) = 1−F(p̂+ p− p̃)+
∫ p̂+p−p̃

p
F(ε− p+ p̃) f (ε)dε

= 1−F(p̂+ p− p̃)+
∫ p̂

p̃
F(ε)F(1)(ε+ p− p̃)dε, (36)
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where the second equality follows from changing the integration variable. One may then

directly observe that

D(K,0)
L (p, p̃) =−F(K)(p̂+ p− p̃)+

∫ p̂

p̃
F(ε)F(K+1)(ε+ p− p̃)dε =−aKK! 6= 0,

where the second equality follows from the assumption that F(ε) = ∑
K
k=0 akεk, aK 6= 0, such

that F(K+1)(·) = 0 and F(K)(·) = aKK!. Hence, DL(p, p̃) is polynomial of order K in p.

Invoking again equation (36), one may further note that

D(0,2K)
L (p, p̃) =−F(2K)(p̂+ p− p̃)+

∂2K

∂(p̃)2K

[∫ p̂

p̃
F(ε)F(1)(ε+ p− p̃)dε

]
= 0+

2K

∑
k=1

(−1)kF(2K−k)(p̃)F(k)(p)+
∫ p̂

p̃
F(ε)F(2K+1)(ε+ p− p̃)dε

=
2K

∑
k=1

(−1)kF(2K−k)(p̃)F(k)(p)

= (−1)KF(K)(p̃)F(K)(p) = (−1)K(aKK!)2 6= 0,

where the first equality is obvious, the second equality follows from F(2K)(·) = 0 (since

2K > K and F is polynomial of order K) and direct calculation, the third equality follows

from F(2K+1)(·) = 0 (since 2K+1 > K and F is polynomial of order K), the fourth equality

follows since all sum terms apart for k = K are zero (since either 2K−k > K or k > K unless

k = K, and F is polynomial of order K), and the last equality follows from F(K)(·) = aKK!.

Hence, DL(p, p̃) is polynomial of order 2K in p̃.

We now turn to proving the order of DH(p, p̃) in p and p̃. As mentioned after Lemma 2,

it holds that DL(pL, pH)+DH(pH , pL) = 1−F(pL)F(pH). Letting pH = p and pL = p̃ and

rearranging, we obtain

DH(p, p̃) = 1−F(p)F(p̃)−DL(p̃, p).

Hence, it follows that

D(2K,0)
H (p, p̃) = 1−F(2K)(p)F(p̃)−D(0,2K)

L (p̃, p)

=−(−1)K(aKK!)2 6= 0,
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where the second equality follows because 2K > K and F is polynomial of order K, and

the above result that D(0,2K)
L (p, p̃) = (−1)K(aKK!)2 independent of p and p̃, such that also

D(0,2K)
L (p̃, p) = (−1)K(aKK!)2. Hence, DH(p, p̃) is polynomial of order 2K in p.

Likewise, observe that

D(0,K)
H (p, p̃) = 1−F(p)F(K)(p̃)−D(K,0)

L (p̃, p)

=−F(p)aKK!+aKK! = aKK!(1−F(p)) 6= 0,

where the second equality follows from F(K)(·)= aKK! and the above result that D(K,0)
L (p, p̃)=

−aKK! independent of p and p̃, such that also D(K,0)
L (p̃, p) = −aKK!. Hence, DH(p, p̃) is

polynomial of order K in p̃.

Proof of Lemma 8. The case τ = 0 has already been shown in the proof of Lemma 5, Foot-

note 22. For τ≥ 1, we use that (3) implies that

D(1,0)
L (p, p̃)=−F(1)(p̂+ p− p̃)(1−F(p̂))−F(1)(p)F(p̃)−

∫ p̂+p−p̃

p
F(1)(ε− p+ p̃)F(1)(ε)dε.

Note next that slightly simplifying equation (4), applying integration by parts and changing

the integration variable gives an alternative expression for DH ,

DH(p, p̃) = F(p̂− p+ p̃)(1−F(p̂))+
∫ p̂

p
F(ε− p+ p̃)F(1)(ε)dε,

such that

D(1,0)
H (p, p̃) =−F(1)(p̂− p+ p̃)(1−F(p̂))−F(1)(p)F(p̃)−

∫ p̂

p
F(1)(ε− p+ p̃)F(1)(ε)dε.

Subtracting then yields

D(1,0)
L (p, p̃)−D(1,0)

H (p, p̃) =−(1−F(p̂))
[
F(1)(p̂+ p− p̃)−F(1)(p̂− p+ p̃)

]
+
∫ p̂

p̂+p−p̃
F(1)(ε− p+ p̃)F(1)(ε)dε.
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Via direct calculation, we therefore obtain for any τ≥ 1 that

D(τ,0)
L (p, p̃)−D(τ,0)

H (p, p̃)

=
∂τ−1

[
D(1,0)

L (p, p̃)−D(1,0)
H (p, p̃)

]
∂pτ−1

=−(1−F(p̂))
[
F(τ)(p̂+ p− p̃)+(−1)τF(τ)(p̂− p+ p̃)

]
+

τ−1

∑
t=1

(−1)tF(t)(p̂)F(τ−t)(p̂+ p− p̃)− (−1)τ

∫ p̂

p̂+p−p̃
F(τ)(ε− p+ p̃)F(1)(ε)dε.

The last expression evaluated at p̃ = p is equal to:

−(1−F(p̂))
[
F(τ)(p̂)+(−1)τF(τ)(p̂)

]
+

τ−1

∑
t=1

(−1)tF(t)(p̂)F(τ−t)(p̂),

which is constant in p as desired. Moreover, it can easily be seen that for τ odd, the expres-

sion is equal to zero.

Proof of Lemma 9. Recall first from equation (9) that the identity

π∗

p
=

∫ p

p
DH(p, p̃)dG(p̃)+

∫ p

p
DL(p, p̃)dG(p̃) (37)

must hold for all prices p in the equilibrium support [p, p]. Differentiating (37) k times with

respect to p while using from Lemma 8 that Λτ = D(τ,0)
L (p, p)−D(τ,0)

H (p, p) is constant in

p, it is straightforward to see (and prove via induction) that23

(−1)kk!
π∗

pk+1 =
∫ p

p
D(k,0)

H (p, p̃)dG(p̃)+
∫ p

p
D(k,0)

L (p, p̃)dG(p̃)−
k−1

∑
τ=0

G(k−τ)(p)Λτ

∀k = 0,1,2, . . . . (38)

23For k = 0, we employ the convention that ∑
−1
τ=0(·) = 0.
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Multiplying both sides of (38) by pk+1, differentiating once more with respect to k, and

finally dividing both sides by pk again, we obtain

0 =(k+1)

[∫ p

p
D(k,0)

H (p, p̃)dG(p̃)+
∫ p

p
D(k,0)

L (p, p̃)dG(p̃)−
k−1

∑
τ=0

G(k−τ)(p)Λτ

]

+ p

[
−ΛkG(1)(p)+

∫ p

p
D(k+1,0)

H (p, p̃)dG(p̃)+
∫ p

p
D(k+1,0)

L (p, p̃)dG(p̃)−
k−1

∑
τ=0

G(k+1−τ)(p)Λτ

]
∀k = 0,1,2, . . . ,∀p ∈ [p, p].

(39)

From Lemma 7, we know that if F(ε) is polynomial of degree K ≥ 1, DL(p, p̃) is poly-

nomial of degree K in p, while DH(p, p̃) is polynomial of degree 2K in p. We moreover

know from the proof of Lemma 7 that then

D(2K,0)
H (p, p̃) =−(−1)K(aKK!)2.

Hence, setting k = 2K in equation (39), all integrals vanish (with
∫ p

p D(2K,0)
H (p, p̃)dG(p̃) =

−(−1)K(aKK!)2), and we are left with

0=−(2K+1)

(
(−1)K(aKK!)2G(p)+

2K−1

∑
τ=0

G(2K−τ)(p)Λτ

)
− p

[
Λ2KG(1)(p)+

2K−1

∑
τ=0

G(2K+1−τ)(p)Λτ

]

for all p ∈ [p, p]. Noting that Λ2K−1 = 0 since 2K − 1 is odd, such that the last sum

terms drop out, as well as using that λ2K = D(2K,0)
L (p, p)−D(2K,0)

H (p, p) =−D(2K,0)
H (p, p) =

(−1)K(aKK!)2, a slight rearrangement finally yields equation (10). Clearly, to achieve

profit indifference in the equilibrium pricing support, this equation must be satisfied for

all p ∈ [p, p].

We now turn to showing that the boundary conditions given in equation (11) must hold.

For this, note first that evaluating (39) at p, using G(1)(p) = 0 and rearranging gives

0 =
∫ p

p

[
(k+1)D(k,0)

H (p, p̃)+ pD(k+1,0)
H (p, p̃)

]
dG(p̃)−

k−1

∑
τ=0

Λτ

[
(k+1)G(k−τ)(p)+ pG(k+1−τ)(p)

]
∀k = 0,1,2, . . . .

(40)
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The right summation term is already identical to the one in equation (11). It thus remains to

show that the integral term can be transformed to the expression in (11). To do so, note that

applying integration by parts once yields

∫ p

p

[
(k+1)D(k,0)

H (p, p̃)+ pD(k+1,0)
H (p, p̃)

]
dG(p̃) =[

(k+1)D(k,0)
H (p, p)+ pD(k+1,0)

H (p, p)
]

G(p)−
∫ p

p

[
(k+1)D(k,1)

H (p, p̃)+ pD(k+1,1)
H (p, p̃)

]
G(p̃)d p̃

∀k = 0,1,2, . . . .

(41)

Applying integration by parts a second time then yields

∫ p

p

[
(k+1)D(k,0)

H (p, p̃)+ pD(k+1,0)
H (p, p̃)

]
dG(p̃) =[

(k+1)D(k,0)
H (p, p)+ pD(k+1,0)

H (p, p)
]

G(p)−
[
(k+1)D(k,1)

H (p, p)+ pD(k+1,1)
H (p, p)

]
G(−1)(p)

−
∫ p

p

[
(k+1)D(k,2)

H (p, p̃)+ pD(k+1,2)
H (p, p̃)

]
G(−1)(p̃)d p̃

∀k = 0,1,2, . . . ,

(42)

where G(−1)(p̃) :=
∫ p̃

p G(x)dx (such that in particular G(−1)(p) = 0). The same pattern

repeats, such that applying integration by parts exactly K +1 times gives

∫ p

p

[
(k+1)D(k,0)

H (p, p̃)+ pD(k+1,0)
H (p, p̃)

]
dG(p̃)

=
K

∑
l=0

(−1)l
[
(k+1)D(k,l)

H (p, p)+ pD(k+1,l)
H (p, p)

]
G(−l)(p)

−
∫ p

p

[
(k+1)D(k,K+1)

H (p, p̃)+ pD(k+1,K+1)
H (p, p̃)

]
G(−(K−1))(p̃)d p̃

=
K

∑
l=0

(−1)l
[
(k+1)D(k,l)

H (p, p)+ pD(k+1,l)
H (p, p)

]
G(−l)(p)

∀k = 0,1,2, . . . ,

(43)
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where G(−Z)(p̃), Z ≥ 0, is defined recursively by G(−Z)(p̃) :=
∫ p̃

p G(−(Z−1))(x)dx for all Z ≥

1, with G(0)(p̃) = G(p̃). Note that the last equality follows because DH(p, p̃) is polynomial

of order K in p̃, see Lemma 7, such that the integral term drops out.

Substituting the integral term in (40) by the summation term in (44), the equivalence of

(40) to (11) is finally evident.

As next step, we show that the boundary conditions given in equations (12) and (13)

must hold. To see this, note that evaluating (39) at p gives

0 =(k+1)

[∫ p

p
D(k,0)

L (p, p̃)dG(p̃)−
k−1

∑
τ=0

G(k−τ)(p)Λτ

]

+ p

[
−ΛkG(1)(p)+

∫ p

p
D(k+1,0)

L (p, p̃)dG(p̃)−
k−1

∑
τ=0

G(k+1−τ)(p)Λτ

]
∀k = 0,1,2, . . . ,∀p ∈ [p, p].

(44)

Now, recall again from Lemma 7 that for F(ε) polynomial of degree K ≥ 1, DL(p, p̃) is

polynomial of degree K in p. Moreover, it is known from the proof of Lemma 7 that then

D(K,0)
L (p, p̃) =−aKK!.

Hence, evaluating equation (44) for k=K, all integral terms drop out (with
∫ p

p D(K,0)
L (p, p̃)dG(p̃)=

−aKK!), and we obtain

0 =(K +1)

[
−aKK!−

K−1

∑
τ=0

G(K−τ)(p)Λτ

]
+ p

[
−ΛKG(1)(p)−

K−1

∑
τ=0

G(K+1−τ)(p)Λτ

]
∀p ∈ [p, p]. (45)

Rearranging, equation (12) easily follows.
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Similarly, evaluating equation (44) for k > K, all integral terms drop out completely, and

we obtain

0 =(k+1)

[
−

k−1

∑
τ=0

G(k−τ)(p)Λτ

]
+ p

[
−ΛkG(1)(p)−

k−1

∑
τ=0

G(k+1−τ)(p)Λτ

]
∀k = K +1,K +2, . . . ,∀p ∈ [p, p].

(46)

Again, a slight rearrangement then easily yields equation (13).

We finally prove the statement on firms’ expected profit conditional on p, equation (14).

Setting k = 2K in equation (38) and evaluating it at p, noting that
∫ p

p D(2K,0)
H (p, p̃)dG(p̃) =

−(−1)K(aKK!)2, we obtain

(2K)!
π∗

p2K+1 =−(−1)K(aKK!)2−
2K−1

∑
τ=0

G(2K−τ)(p)Λτ.

Since Λ2K−1 = 0 since 2K− 1 is odd, this directly implies the result. This completes the

proof.

Appendix B Linear-Decreasing Match Value Density

In this appendix we showcase how our general methodology for polynomially-distributed

match values can be applied to a situation which is more complex than the uniform case.

Adding some realism, we will thereby focus on a setting where high match values are less

likely than low match values. The simplest possible such case is where the match-value

density is linearly decreasing. Specifically, we will assume in what follows that

F(ε) =
4ε

3
− 4ε2

9
for ε ∈ [0,3/2], (47)

which is the unique match-value CDF that (i) corresponds to a linear-decreasing match-

value density reaching from ε = 0 to some ε = a > 0, with f (0) > 0 and f (ε) = 0, and (ii)

has a mean Eε̃ = 1/2 as in the uniform case.
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Solving maxp p(1−F(p)), it can now easily be seen that pM = 1/2, which also coincides

with the uniform case. Hence, for the equilibrium analysis, attention can be restricted to

prices in [0,1/2]. Using equations (1), (3) and (4), it can moreover be shown that:

p̂ =
3
2

(
1− (2s)

1
3

)
, (48)

DL(p, p̃) =

[
1+(2s)

4
3

2
+

8 p̃(1+ s)
9

− 4p̃2

9
+

8p̃4

243

]

+p
[
−8(1+ s)

9
− 8 p̃

9
+

16 p̃2

27
− 32p̃3

243

]
+ p2

[
4
9

]
, (49)

DH(p, p̃) =

[
1− (2s)

4
3

2
+

8 p̃(1+ s)
9

− 4p̃2

9

]
+ p

[
−8(1+ s)

9
− 8p̃

9
+

16p̃2

27

]
+p2

[
4
9
− 16 p̃2

81

]
+ p3

[
32 p̃
243

]
+ p4

[
− 8

243

]
. (50)

From these equations it follows that

D(1,0)
L (p, p̃) =

[
−8(1+ s)

9
− 8p̃

9
+

16 p̃2

27
− 32 p̃3

243

]
+ p

[
8
9

]
, (51)

D(2,0)
L (p, p̃) =

8
9
, (52)

D( j,0)
L (p, p̃) = 0 for any j ≥ 3, (53)

D(1,0)
H (p, p̃) =

[
−8(1+ s)

9
− 8p̃

9
+

16 p̃2

27

]
+ p

[
8
9
− 32 p̃2

81

]
+p2

[
32p̃
81

]
+ p3

[
− 32

243

]
, (54)

D(2,0)
H (p, p̃) =

[
8
9
− 32 p̃2

81

]
+ p

[
64 p̃
81

]
+ p2

[
−32

81

]
, (55)

D(3,0)
H (p, p̃) =

[
64 p̃
81

]
+ p

[
−64

81

]
, (56)

D(4,0)
H (p, p̃) = −64

81
, (57)

D( j,0)
H (p, p̃) = 0 for any j ≥ 5. (58)

Moreover, it is straightforward to establish using equations (49) and (50) that

Λ0 = (2s)
4
3 , (59)
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while equations (51) to (58) reveal that Λ1 = Λ2 = Λ3 = 0,

Λ4 =
64
81

, (60)

and Λ j = 0 for all j ≥ 5.

It can finally be proved via differentiation and some manipulations that pDL(p, p̃) and

pDH(p, p̃) are strictly concave in p for p∈ [0, pM],24 such that we may apply Lemmas 6 and

9 to further characterise the equilibrium.

Since F(ε) is polynomial of order K = 2, with highest coefficient a2 = −4
9 , equation

(10) in Lemma 9, in conjunction with the above results on Λk, immediately reveals that the

linear homogeneous ODE

− 64
81

[
5G(p)+ pG(1)(p)

]
− (2s)

4
3

[
5G(4)(p)+ pG(5)(p)

]
!
= 0 (61)

pins down firms’ equilibrium CDF G(p) in the (yet to be determined) equilibrium pricing

support [p, p]. We will now proceed to find the K = 2 missing boundary conditions at p and

the K = 2 missing boundary conditions at p (next to the already known boundary conditions

G(p) = 1, G(1)(p) = 0 and G(p) = 0). In total, this will give us an overspecified linear

homogeneous ODE of order 2K + 1 = 5 with 7 boundary conditions. Fixing all boundary

conditions except for G(p) = 1 and G(p) = 0, treating the numerical solution to the (now

appropriately specified) ODE (of degree 5 with 5 boundary conditions) as function of p and

p, and then numerically finding the combination of p and p such that the final consistency

requirements G(p) = 1 and G(p) = 0 are satisfied, will then give us the solution.

Boundary conditions at the upper bound. We start with the boundary conditions at p.

Applying equation (11) for k = 2K−1 = 3 first reveals that

4D(3,0)
H (p, p)+ pD(4,0)

H (p, p)

− G(−1)(p)
[
4D(3,1)

H (p, p)+ pD(4,1)
H (p, p)

]
+ G(−2)(p)

[
4D(3,2)

H (p, p)+ pD(4,2)
H (p, p)

]
−Λ0

[
4G(3)(p)+ pG(4)(p)

]
!
= 0.

24Details are available from the authors upon request.
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Noting that D(3,1)
H (p, p̃)= 64

81 for any (p, p̃) (compare with equation (56)) and D(4,0)
H (p, p̃)=

−64
81 for any (p, p̃) (compare with equation (57)), it is obvious that D(3,2)

H (p, p)=D(4,1)
H (p, p)=

D(4,2)
H (p, p) = 0. In particular, this implies that in the above condition, the term which in-

cludes G(−2)(p) drops out. Solving for G(−1)(p) then immediately gives

G(−1)(p) =
4D(3,0)

H (p, p)+ pD(4,0)
H (p, p)−Λ0

[
4G(3)(p)+ pG(4)(p)

]
4D(3,1)

H (p, p)

= − p
4
− 81

256
(2s)

4
3

[
4G(3)(p)+ pG(4)(p)

]
. (62)

Next, applying equation (11) for k = 2K−2 = 2 gives us the condition

3D(2,0)
H (p, p)+ pD(3,0)

H (p, p)

− G(−1)(p)
[
3D(2,1)

H (p, p)+ pD(3,1)
H (p, p)

]
+ G(−2)(p)

[
3D(2,2)

H (p, p)+ pD(3,2)
H (p, p)

]
−Λ0

[
3G(2)(p)+ pG(3)(p)

]
!
= 0.

Noting that D(2,1)
H (p, p) = 0 and D(2,2)

H (p, p) =−64
81 (compare with equation (55)), as well as

that D(3,1)
H (p, p) = 64

81 and D(3,2)
H (p, p) = 0 (see above), such that in particular 3D(2,1)

H (p, p)+

pD(3,1)
H (p, p) = 64

81 p, solving the above boundary condition for G(−2)(p) gives

G(−2)(p) =
−3D(2,0)

H (p, p)− pD(3,0)
H (p, p)+ 64

81 pG(−1)(p)+Λ0

[
3G(2)(p)+ pG(3)(p)

]
3D(2,2)

H (p, p)

=
−8

3 +
64
81 pG(−1)(p)+(2s)

4
3

[
3G(2)(p)+ pG(3)(p)

]
−64

27

=
9
8
− 1

3
pG(−1)(p)− 27

64
(2s)

4
3

[
3G(2)(p)+ pG(3)(p)

]
=

9
8
+

p2

12
+(2s)

4
3

[
−81

64
G(2)(p)+

27
256

p2G(4)(p)
]
, (63)

where the last equality follows from substituting G(−1)(p) from equation (62) and simplify-

ing.

Having isolated the moments G(−1)(p) and G(−2)(p) (linking them to just p and the

higher-order derivatives G(2)(p), G(3)(p), G(4)(p) at the upper bound), we can proceed to

pin down two (mixed) boundary conditions at the upper bound that do not depend on any
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unknown moments. For the first of these, equation (11) applied for k = 0 gives us the

condition

DH(p, p)+ pD(1,0)
H (p, p) − G(−1)(p)

[
D(0,1)

H (p, p)+ pD(1,1)
H (p, p)

]
+ G(−2)(p)

[
D(0,2)

H (p, p)+ pD(1,2)
H (p, p)

]
!
= 0.

Inserting

DH(p, p) =
1− (2s)

4
3

2
− 8p2

9
+

16p3

27
− 8p4

81

(compare with equation (50)),

D(1,0)
H (p, p) =− 8

243
(
27(1+ s)−18p2 +4p3)

(compare with equation (54)),

D(0,1)
H (p, p) =− 8

243
(
−27(1+ s)+54p−36p2 +8p3)

(taking the partial derivative of equation (50) with respect to p̃ and evaluating at p = p̃ = p),

D(1,1)
H (p, p) =−8

9
+

32p
27
− 32p2

81

(taking the partial derivative of equation (54) with respect to p̃ and evaluating at p = p̃ = p),

D(0,2)
H (p, p) =−8

9
+

32p
27
− 32p2

81

(taking the second partial derivative of equation (50) with respect to p̃ and evaluating at

p = p̃ = p), and

D(1,2)
H (p, p) =

32
27
− 64p

81
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(taking the second partial derivative of equation (54) with respect to p̃ and evaluating at

p = p̃ = p), simplification reveals that the above boundary condition can be expressed as

[
1− (2s)

4
3

2
− 8p(1+ s)

9
− 8p2

9
+

32p3

27
− 56p4

243

]
−G(−1)(p)

[
8(1+ s)

9
− 8p

3
+

64p2

27
− 160p3

243

]
+G(−2)(p)

[
− 8

9
+

64p
27
− 32p2

27

]
!
= 0, (64)

with G(−1)(p) and G(−2)(p) as provided in equations (62) and (63).

For the second mixed boundary condition at p, equation (11) applied for k = 1 implies

that

2D(1,0)
H (p, p)+ pD(2,0)

H (p, p)

− G(−1)(p)
[
2D(1,1)

H (p, p)+ pD(2,1)
H (p, p)

]
+ G(−2)(p)

[
2D(1,2)

H (p, p)+ pD(2,2)
H (p, p)

]
−Λ0 pG(2)(p) !

= 0,

where we have already used that G(1)(p) = 0. Using the above results for D(1,0)
H (p, p),

D(1,1)
H (p, p) and D(1,2)

H (p, p), noting moreover that

D(2,0)
H (p, p) =

8
9

(compare with equation (55)),

D(2,1)
H (p, p) = 0

(taking the partial derivative of equation (55) with respect to p̃ and evaluating at p = p̃ = p),

D(2,2)
H (p, p) =−64

81
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(taking the second partial derivative of equation (55) with respect to p̃ and evaluating at p =

p̃ = p), another simplification reveals that the above boundary condition can be expressed

as

[
− 16(1+ s)

9
+

8p
9

+
32p2

27
− 64p3

243

]
−G(2)(p)(2s)

4
3 p

−G(−1)(p)
[
− 16

9
+

64p
27
− 64p2

81

]
+G(−2)(p)

[
64
27
− 64p

27

]
!
= 0, (65)

with G(−1)(p) and G(−2)(p) as provided in equations (62) and (63). Equations (64) and (65)

thus constitute the two boundary conditions at p that we were looking for.

Boundary conditions at the lower bound. We now determine the boundary conditions at

p. This is fortunately much easier to do than finding those at p (see above). Applying first

equation (12), we obtain directly

− 8
3
+(2s)

4
3

[
3G(2)(p)+ pG(3)(p)

]
!
= 0. (66)

Applying next equation (13), we get, after division through the positive constant (2s)
4
3 ,

4G(3)(p)+ pG(4)(p) !
= 0. (67)

Equations (66) and (67) thus constitute the two boundary conditions at p.

Equilibrium. Collecting the above results, we can finally characterise the pricing equilib-

rium under a linear-decreasing match-value density, analogous to Lemma 10 in the uniform

case.

Lemma 12. Suppose that consumers’ match values follow the CDF

F(ε) =
4ε

3
− 4ε2

9
for ε ∈ [0,3/2].
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Then, an atomless distribution function G : [p, p]→ [0,1] is a symmetric equilibrium in

mixed strategies if and only if G solves:

64
81

[
5G(p)+ pG(1)(p)

]
+(2s)

4
3

[
5G(4)(p)+ pG(5)(p)

]
= 0 ∀p ∈ [p, p], (68)

G(p) = 1, G(p) = 0, G(1)(p) = 0,

[
1− (2s)

4
3

2
− 8p(1+ s)

9
− 8p2

9
+

32p3

27
− 56p4

243

]
−
{
− p

4
− 81

256
(2s)

4
3

[
4G(3)(p)+ pG(4)(p)

]}[8(1+ s)
9

− 8p
3

+
64p2

27
− 160p3

243

]
+

{
9
8
+

p2

12
+(2s)

4
3

[
−81

64
G(2)(p)+

27
256

p2G(4)(p)
]}[

− 8
9
+

64p
27
− 32p2

27

]
= 0, (69)

[
− 16(1+ s)

9
+

8p
9

+
32p2

27
− 64p3

243

]
−G(2)(p)(2s)

4
3 p

−
{
− p

4
− 81

256
(2s)

4
3

[
4G(3)(p)+ pG(4)(p)

]}[
− 16

9
+

64p
27
− 64p2

81

]
+

{
9
8
+

p2

12
+(2s)

4
3

[
−81

64
G(2)(p)+

27
256

p2G(4)(p)
]}[

64
27
− 64p

27

]
= 0, (70)

− 8
3
+(2s)

4
3

[
3G(2)(p)+ pG(3)(p)

]
= 0, (71)

4G(3)(p)+ pG(4)(p) = 0. (72)

Unfortunately, an analytic solution G(p) to the above problem does not seem to exist. We

will therefore provide a numerical solution. As outlined earlier in this appendix, we do so by

setting up a procedure that numerically solves the above ODE for arbitrary combinations of

(p, p) using all boundary conditions except for G(p) = 1 and G(p) = 0, treating the solution

as function of p and p, and then numerically finding the combination of p and p such that

the solution indeed satisfies the additional requirements G(p) = 1 and G(p) = 0.25

25A straightforward Mathematica code (written in version 11.0) is available from the authors upon request.
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Figure 5: Equilibrium upper support bound (red) and lower support bound (blue) under
a linear-decreasing match value density (with match-value CDF F(ε) = (4/3)ε− (4/9)ε2,
ε ∈ [0,3/2]) as a function of s.

Following this procedure, we can, in principle, compute the solution for any sensible

search cost s in (0,1/2). For example, when s = 0.1, we find that for p ≈ 0.3488 and

p ≈ 0.1816, the numerical solution to the above fifth-order ODE with boundary conditions

G(1)(p) = 0 and (69) to (72) also satisfies G(p) = 1 and G(p) = 0, as required. However,

we unfortunately run into convergence problems for relatively large values of s (such that

the equilibrium prices are relatively low). Because of this, we only consider the interval

s ∈ (0,1/4] in what follows.

Numerical Results 4. Figure 5 plots the upper support bound p and lower support bound

p in equilibrium as a function of s, for s ∈ (0,1/4]. Both pricing bounds strictly decrease in

s, starting from p = p≈ 0.4678 for the case s→ 0, down to p≈ 0.1846 and p≈ 0.0473 for

the case s = 1/4.

As with uniformly-distributed match values, these results confirm the intuition that an

increase in search costs should tend to intensify price competition. Moreover, the extreme
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case s→ 0 again corresponds to the unique symmetric pure-strategy equilibrium that exists

when s = 0.26

Welfare. We conclude this appendix with a discussion of welfare. Using the general ex-

pression for welfare as reported in Footnote 19 in the main text, it can first be shown that for

given prices 0 < pL < pH ≤ p̂, total social welfare under the considered setup match-value

distribution is given by

W (pH , pL,s) :=
7

10
− s+

3
10

(2s)
5
3 − 4(1+ s)p2

H
9

+
8p3

H
27
−

32p5
H

1215

+ pL

(
8(1+ s)pH

9
− 8p2

H
9

+
32p4

H
243

)
+ p2

L

(
−4(1+ s)

9
− 8pH

9
+

8p2
H

9
−

64p3
H

243

)
+

8p3
L

27
. (73)

Moreover, for given prices 0 < pL < pH ≤ p̂, the industry profit is simply given by

Π(pH , pL,s) := pLDL(pL, pH)+ pHDH(pH , pL),

with DL(pL, pH) and DH(pH , pL) taken from equations (49) and (50). From these two ob-

servations, it also immediately follows that for given prices, the consumer surplus in the

market can be written as

CS(pH , pL,s) :=W (pH , pL,s)−Π(pH , pL,s).

26For s = 0, equation (7) implies that for F(ε) = (4/3)ε− (4/9)ε2, the unique solution in (0,3/2) to

−56p4

243
+

32p3

27
− 8p2

9
− 8p

9
+

1
2

!
= 0

defines the symmetric candidate equilibrium price. One may check numerically that this is indeed given by
p∗ ≈ 0.4678. Moreover, using the profit function in (6), it can be verified that there are also no profitable non-
marginal deviations from p∗= 0.4678. Hence, this constitutes the unique symmetric pure-strategy equilibrium.
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Since our above numerical method allows us to compute the equilibrium CDF G(p) and

corresponding density G′(p) for arbitrary values of s, the unconditional expected aggregate

welfare, industry profit and consumer surplus in the market are respectively given by

W := 2
∫ p

p

[∫ pH

p
W (pH , pL,s)dG(pL)

]
dG(pH), (74)

Π := 2
∫ p

p

[∫ pH

p
Π(pH , pL,s)dG(pL)

]
dG(pH), (75)

and

CS := 2
∫ p

p

[∫ pH

p
CS(pH , pL,s)dG(pL)

]
dG(pH). (76)

Applying numerical integration in conjunction with our above methodology, we finally

obtain the following.

Numerical Results 5. Figure 6 plots expected social welfare, consumer surplus, and indus-

try profit as a function of s, for s ∈ (0,1/4]. Welfare is first increasing and then decreasing

in search costs. Consumer surplus is strictly increasing and industry profit is strictly de-

creasing in search costs.27

Figure 6 shows in particular that the non-monotonicity of welfare with respect to search

costs prevails under a linear-decreasing match-value density: welfare is again clearly max-

imised for a strictly positive level of search costs. In addition, the industry profit (consumer

surplus) across the considered range is again strictly decreasing (increasing) in s.

27Like in the uniform case, it may moreover be observed that for s → 0, now W (0) ≈ 0.6177 ≈
W (0.4678,0.4678,0) (compare with equation (73)), where p∗ = 0.4678 is the symmetric pure-strategy equi-
librium for s = 0 (see Footnote 26 above). Also CS(0) and Π(0) are consistent with this equilibrium price
level.
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Figure 6: Expected social welfare (purple), consumer surplus (blue), and industry profit
(red) under a linear-decreasing match value density (with match-value CDF F(ε)= (4/3)ε−
(4/9)ε2, ε ∈ [0,3/2]) as a function of s.
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