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Abstract

I study a general setting for policy learning with Social Welfare Functions (SWFs)

defined by semiparametric U-statistics in experimental and observational settings. I use

orthogonal scores to bound the regret at parametric rate whenever the propensity score

and the nuisance parameters are unknown. This work expands previous results to welfare

functions defined by general orthogonal scores. Three main applications of the general

theory guide the paper: (i) Inequality aware SWFs, (ii) Inequality of Opportunity aware

SWFs and (iii) Intergenerational Mobility SWFs. I use the Panel Study of Income Dy-

namics (PSID) to asses the effect of attending preschool on adult earnings and estimate

optimal policy rules based on parental years of education and parental income.

1 Welfare economics for inequality, IOp and rank corre-

lations

The policy learning literature is at the intersection of welfare economics and econometrics.

Before we delve into the econometric problem of computing optimal rules and evaluating their

statistical performance I present in this section the main welfare objects we are going to be

interested in. The most basic welfare function is that of the average outcome. Suppose we have

some continuous random outcome Yi ∈ R+. A utilitarian planner cares about

W = E[Yi].
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The above welfare does not care about other distributional aspects asides from the average

outcome. A first approach to include distributional concerns in our analysis is to follow Dalton

(1920) and Atkinson et al. (1970) and consider increasing and concave transformations u(·) of
the outcome1.

W = E[u(Yi)].

This welfare function will already rank two outcome distributions in the same way for all in-

creasing and concave u(·) if the Lorenz curve of one of the distributions is everywhere above

the Lorenz curve of the other distribution and has equal or higher mean; equivalently, if one

distribution second order stochastically dominates the other. However, if we want to obtain a

complete ordering we need to specify u(·) further. One popular choice is

u(y) =

y1−θ

1−θ
if θ ∈ (0, 1)

log(y) if θ = 1.

θ captures the concavity of u(·) and can therefore be interpreted as an inequality aversion

parameter. This paper also focuses on welfare which is aware of Inequality of Opportunity

(IOp). IOp is the part of total inequality which can be explained by circumstances, i.e. by

variables that are outside the control of the individual such as parental education or parental

income. Let Xi ∈ Rk be such a random vector of circumstances. Let also γ(Xi) = E[Yi|Xi], i.e.

the best predictor of the outcome Yi given the circumstances Xi. By looking at the distribution

of γ(Xi) instead of that of the outcome Yi we get IOp averse welfare functions. For instance,

W = E[u(γ(Xi))].

If there is no IOp, circumstances are unable to predict the outcome and we have that the best

predictor is the unconditional mean: γ(Xi) = E[Yi]. In this case we have that W = u(E[Yi]) so
we only care about the average income (with a different scale due to u(·)). If we have maximum

IOp, the outcome is a deterministic function of the circumstances and γ(Xi) = Yi. Then,

W = E[u(Yi)]. Since all inequality is IOp, we are back at the inequality averse welfare function.

Another option to take into account distributional concerns is to weight differently different

parts of the distribution. Let FY be the distribution of the outcome and F−1
Y be the quantiles.

Then, for some weights w(·) a planner might have the following welfare in mind

W =

∫ 1

0

F−1
Y (τ)w(τ)dτ.

This welfare has been used in Mehran (1976), Donaldson and Weymark (1980), Weymark (1981),

Donaldson and Weymark (1983) or Aaberge et al. (2021). If we let wk(τ) = (k − 1)(1 − τ)k−2

1With abuse of notation we call W to all welfare functions as they appear.
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we get what is known as the extended Gini family of social welfare functions. In this paper we

focus on k = 3 which is known as the standard Gini social welfare function and can be shown

to be

W = E[Yi](1−G(Yi))

= (1/2)E[Yi + Yj − |Yi − Yj|],

where G(Yi) is the Gini coefficient of the distribution of Yi, the second equality follows from

the fact that we can write the Gini of Yi as G(Yi) = E[|Yi − Yj]/E[Yi + Yj] where Yj is a copy

of Yi (i.e. the Gini can be interpreted as a normalized absolute distance between the outcomes

of two individuals taken at random). The welfare above is utilitarian as long as there is no

inequality (G(Yi) = 0) and penalizes positive values of the Gini coeffcient. Again, if we do not

care about inequality but only about IOp we can look at the distribution of γ(Xi) instead of

the distribution of Yi. In that case we have

W = E[Yi](1−G(γ(Xi)))

= (1/2)E[γ(Xi) + γ(Xj)− |γ(Xi)− γ(Xj)|].

If there is no IOp, then G(γ(Xi)) = 0 and we are back in the utilitarian case. If there is full

IOp, then G(γ(Xi)) = G(Yi) and we are back to the standard Gini social welfare function of

outcome Yi.

Finally, I also consider the problem of intergenerational mobility. Let X1i ∈ R be the first

component of Xi. A measure of rank correlation between Yi and X1i is the Kendall-τ

τ = E[sgn(Yi − Yj)sgn(X1i −X1j)].

This parameter is popular in the intergenerational mobility literature (see Chetty et al. (2014)

or Kitagawa et al. (2018)) where X1i is parental income and Yi is the child’s income. For some

target rank correlation t ∈ [−1, 1] an intergenerational mobility aware welfare function is

W = −
∣∣∣∣E[sgn(Yi − Yj)sgn(X1i −X1j)

]
− t

∣∣∣∣.
2 Policy learning with general orthogonal scores

Consider random variables (Yi(1), Yi(0), Di, Xi) ∼ F0 where (Yi(1), Yi(0)) ∈ Y × Y are real-

valued potential outcomes, i.e. Yi(1) is the outcome of individual i under treatment and Yi(0)

is the outcome of individual i in the absence of treatment. Di is a binary treatment and

Xi ∈ X is a vector of pre-treatment covariates. Let γ(j)(Xi) = E[Yi(j)|Xi] ∈ Γ for j = 0, 1 be

potential predictions, i.e. the predictions of the potential outcomes given Xi. We observe an
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i.i.d. sample (Z1, ..., Zn) with Zi = (Yi, Di, Xi) ∈ Z and Yi = Yi(1)Di + Yi(0)(1−Di) ∈ Y . Let

π : X 7→ {0, 1} be a treatment rule which indicates who receives treatment and Π be a collection

of such treatment rules. We are interested in choosing a policy π ∈ Π so as to maximize the

following welfare function

W (π) = E[g(Yi(1), Xi, γ
(1))π(Xi) + g(Yi(0), Xi, γ

(0))(1− π(Xi))]. (2.1)

Example 1 (IOp Atkinson) If we were interested in an inequality aware SWF we could use

Atkinson SWFs, W (π) = E[u(Yi(1))π(Xi) + u(Yi(0))(1 − π(Xi))] with u(·) a concave function.

In this case the optimal policy can be estimated using the methods in Kitagawa and Tetenov

(2018) and Athey and Wager (2021). If we want an IOp aware SWF we can simply look at the

distribution of γ(Xi) instead of at the distribution of Yi:

W (π) = E[u(γ(1)(Xi))π(Xi) + u(γ(0)(Xi))(1− π(Xi))].

■

Importantly, (2.1) is not observable since for a given individual we do not observe both potential

outcomes. In order to identify (2.1) we first need our sample to come from an experimental

or observational experiment where the policy has already been implemented and where the

following holds.

Assumption 1 i) (Yi(1), Yi(0)) ⊥ Di|Xi,

ii) There exists κ ∈ (0, 1/2] such that e(x) ∈ [κ, 1− κ].

The next proposition states the first identification result. The identification results depends on

whether g depends on the potential outcomes. If it does one can use a direct method based on

regression functions or use inverse propensity score weighting.

Proposition 2.1 Under Assumption 1, W (π) is identified in the following ways

W (π) = E[m1(Zi, γ, ν)π(Xi) +m0(Zi, γ, ν)(1− π(Xi))],

where

m1(Zi, γ, ν) =


g(Xi, γ1) if ν = g

φ(1, Xi, γ1) if ν = φ

g(Yi,Xi,γ1)Di

e(Xi)
if ν = e

, m0(Zi, γ, ν) =


g(Xi, γ0) if ν = g

φ(0, Xi, γ0) if ν = φ

g(Yi,Xi,γ0)(1−Di)
1−e(Xi)

if ν = e

,

where γ(Di, Xi) = E[Yi|Di, Xi], γj(Xi) = γ(j,Xi) for j = 0, 1 and φ(Di, Xi) = E[g(Yi, Xi, γ)|Di, Xi].
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The proposition above distinguishes three cases based on ν ∈ {g, φ, e}. When ν = g we are in

the case in which g only depends on potential nuisance parameters but not on actual potential

outcomes, i.e. g(u,Xi, γ
(j)) = g(t,Xi, γ

(j)) ≡ g(Xi, γ
(j)) for all u, t ∈ Y and u ̸= t. ν = φ

is the case in which the researcher chooses to follow a direct method approach instead of an

inverse propensity score weighting approach and ν = e is the inverse propensity score weighting

approach.

Hence, depending on which case we are, we will have either γ or (γ, φ) or (γ, e) as nuisance

parameters. To enjoy double robustness properties and local robustness to high dimensional

and ML first steps I provide orthogonal scores in the next result. First I need the following

assumption to take care of the nuisance parameter γ.

Assumption 2 There exist (α1, α0) such that for any γ̃ ∈ L2 and j = 0, 1 and τ >= 0

d

dτ
E[mj(Zi, γ̄τ , ν)]

∣∣∣∣
τ=0

=
d

dτ
E[αj(Di, Xi, ν)γ̄τ (Di, Xi)]

∣∣∣∣
τ=0

,

where γ̄τ = γ + τ γ̃.

Since γ enters mj only through g a sufficient conditon is to assume a similar result for the

function g instead of mj and then it will be straightforward to find the α for each ν ∈ {g, φ, e}.

Proposition 2.2 The orthogonal score is given by

Γi(π) = Γ1iπ(Xi) + Γ0i(1− π(Xi)),

where if ν ̸= g we have

Γ1i = φ(1, Xi, γ) +
Di

e(Xi)
(Yi − φ(1, Xi, γ)) + α1(Di, Xi, ν)(Yi − γ(Di, Xi)),

Γ0i = φ(0, Xi, γ) +
1−Di

1− e(Xi)
(Yi − φ(0, Xi, γ)) + α0(Di, Xi, ν)(Yi − γ(Di, Xi)).

and if ν = g we have Γ1i = φ(1, Xi, γ) + α1(Di, Xi, g)(Yi − γ(Di, Xi)) and Γ0i = φ(0, Xi, γ) +

α0(Di, Xi, g)(Yi − γ(Di, Xi)).

To estimate the welfare for a given π ∈ Π we employ cross-fitting as in Escanciano and Terschuur

(2022). Let the data be split in L groups I1, ..., Il, then

Ŵn(π) =
1

n

L∑
l=1

∑
i∈Il

Γ̂1i,lπ(Xi) + Γ̂0i,l(1− π(Xi)),

where

Γ̂1i,l = φ̂l(1, Xi, γ̂l) +
Di

êl(Xi)
(Yi − φ̂l(1, Xi, γ̂l)) + α̂1,l(Di, Xi, ν)(Yi − γ̂l(Di, Xi)),

Γ̂0i,l = φ̂l(0, Xi, γ̂l) +
1−Di

1− êl(Xi)
(Yi − φ̂l(0, Xi, γ̂l)) + α̂0,l(Di, Xi, ν)(Yi − γ̂l(Di, Xi)),
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and (φ̂l, êl, γ̂l, α̂j,l), j = 0, 1, are estimators of the nuisance functions which do not use observa-

tions in Il. Again, whenever g does not depend on the potential outcomes the middle term in

both expressions is zero. This is the case in the example of Atkinson welfare IOp.

Example 1 (IOp Atkinson (cont.)) For θ ∈ (0, 1] let

U(γ(x)) =


γ(x)1−θ

1−θ
if θ ∈ (0, 1)

log(γ(x)) if θ = 1.

θ controls the concavity of U and therefore is a parameter capturing inequality aversion which

can be picked by the policy maker. In this case g = U which only depends on the nuisance

parameters, so ν = g. The orthogonal score for θ ∈ (0, 1] is

Γi(π) = U(γ(1, Xi)) +
γ(Di, Xi)

−θDi

e(Xi)
(Yi − γ(Di, Xi))π(Xi)

+ U(γ(0, Xi)) +
γ(Di, Xi)

−θ(1−Di)

1− e(Xi)
(Yi − γ(Di, Xi))(1− π(Xi)),

i.e. α1(Di, Xi, g) = e(Xi)
−1γ(Di, Xi)

−θDi and α0(Di, Xi, g) = (1−e(Xi))
−1γ(Di, Xi)

−θ(1−Di).

■

The estimator of the optimal treatment rule among a class of rules Π is

π̂ = argmax
π∈Π

Ŵn(π).

Before analysing the statistical performance of such rule let us first extend the results in this

section to welfare functions based on U-statistics. This will allow us to consider inequality and

IOp aware SWFs based on the Gini coefficient and also a rank correlation aware SWF which is

relevant for intergenerational mobility.

3 Policy learning with U-statistics

Let now πab(Xi, Xj) = 1(π(Xi) = a) × 1(π(Xj) = b) with a, b ∈ {0, 1}. Now we consider the

following SWFs

W (π) = E
[ ∑
(a,b)∈{0,1}2

g(Yi(a), Xi, Yj(b), Xj, γ
(a), γ(b))πab(Xi, Xj)

]
. (3.1)

Example 2 (Inequality) We can accommodate the standard Gini welfare function with

g(Yi(a), Yj(b)) = (1/2)(Yi(a) + Yj(b)− |Yi(a)− Yj(b)|).
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Kitagawa and Tetenov (2021) analyse treatment allocation for this welfare function starting

from another representation of the Gini coefficient which depends on the c.d.f. of Yi. Our

representation is more useful whenever the population among which the treatment is allocated

and the population over which the welfare is computed differs. ■

Example 3 (Inequality of Opportunity IOp) We can apply the standard Gini welfare func-

tion to the distribution of the predictions to get E[γ(Xi)](1−G(γ(Xi))). This fits our setting by

letting

g(Xi, Xj, γ
(a), γ(b)) = (1/2)(γ(a)(Xi) + γ(b)(Xj)− |γ(a)(Xi)− γ(b)(Xj)|).

■

Example 4 (Rank correlation) If we want to allocate a treatment targeting a specific Kendall-

τ , say t ∈ R, we have to extend our setting to transormations of the RHS of 3.1. We can define

g(Yi(a), X1i, Yj(b), X1j) = sgn(Yi(a)− Yj(b))sgn(X1i −X1j),

where sgn(a) = 1(a > 0)− 1(a < 0) and let

W (π) = −
∣∣∣∣E[ ∑

(a,b)∈{0,1}2
g(Yi(a), X1i, Yj(b), X1j)πab(Xi, Xj)

]
− t

∣∣∣∣.
■

Proposition 3.1 Under Assumption 1, W (π) in (3.1) is identified in the following ways

W (π) = E
[ ∑
(a,b)∈{0,1}2

mab(Zi, Zj, γ, ν)πab(Xi, Xj)

]
,

where

mab(Zi, Zj, γ, ν) =


g(Xi, Xj, γa, γb) if ν = g

φ(a,Xi, b,Xj, γa, γb) if ν = φ

g(Yi, Xi, Yj, Xj, γa, γb)DiDj/eab(Xi, Xj) if ν = e

,

where φ(a,Xi, b,Xj, γa, γb) = E[g(Yi, Xi, Yj, Xj, γa, γb)|Di, Xi, Dj, Xj] and eab(Xi, Xj) = P(Di =

a|Xi)P(Dj = b|Xj).

Now we apply Proposition 3.1 to identify the welfare in each of our three main examples.

Example 2 (Inequality (cont.)) In this example the welfare is identified by

W (π) = E
[
1

2
(Yi + Yj − |Yi − Yj|)

∑
(a,b)∈{0,1}2

DiDj

eab(Xi, Xj)
πab(Xi, Xj)

]
.

■
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Example 3 (IOp (cont.)) In this example the welfare is identified by

W (T ) =
1

2
E
[ ∑
(a,b)∈{0,1}2

(
γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

)
πab(Xi, Xj)

]
.

■

Example 4 (Intergenerational mobility (cont.)) In this example the welfare is identified

by

W (T ) = −
∣∣∣∣E[sgn(X1i −X1j)sgn(Yi − Yj)

∑
(a,b)∈{0,1}2

DiDj

eab(Xi, Xj)
πab(Xi, Xj)

]
− t

∣∣∣∣.
■

In Examples 2 and 4 we have used ν = e since we will see that it makes the estimation simpler.

Example 3 does not depend on the potential outcomes (ν = g). In order to compute the

orthogonal scores we need to assume a similar linearization property as that in Assumption 2.

Assumption 3 There exist αab, P <∞, and constants (c1p, c2p) for p = 1, ..., P , such that for

all (a, b) ∈ {0, 1}2 the following linearization holds

d

dτ
E[mab(Zi, Zj, γ̄τ , ν)] = E

[ P∑
p=1

αγ
ab,p(Di, Xi, Dj, Xj, ν)(c1pγ̄τ (Di, Xi) + c2pγ̄τ (Dj, Xj))

]
,

where γ̄τ is defined as in Assumption 2.

Again, γ enters mab only through g so a sufficient condition that would allow to compute the

αab for each ν ∈ {g, φ, e} is to assume a linearization like the above for g instead of for mab.

Now we are ready to present the result of the orthogonal scores for welfare functions defined

with U-statistics.

Proposition 3.2 The orthogonal scores are given by

Γij(π) =
∑

(a,b)∈{0,1}2
Γab
ij πab(Xi, Xj),

where

Γab
ij =


mab(Zi, Zj, γ, g) + ϕγ

ab(Di, Xi, Dj, Xj, γ, α
γ) if ν = g

mab(Zi, Zj, γ, φ) + ϕm
ab(Di, Xi, Dj, Xj, φ, α

e) + ϕγ
ab(Di, Xi, Dj, Xj, γ, α

γ) if ν = φ

mab(Zi, Zj, γ, e) + ϕe
ab(Di, Xi, Dj, Xj, e, α

e) + ϕγ
ab(Di, Xi, Dj, Xj, γ, α

γ) if ν = e,
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where

ϕγ
ab(Di, Xi, Dj, Xj, e, α

γ) =
P∑

p=1

αγ
ab,p(Di, Xi, Dj, Xj, e)(c1pYi + c2pYj − c1pγ(Di, Xi)− c2pγ(Dj, Xj)),

ϕm
ab(Di, Xi, Dj, Xj, φ, α

m) = αm
ab(Di, Xi, Dj, Xj, φ)(g(Yi, Xi, Yj, Xj, γa, γb)− φ(Di, Xi, Dj, Xj, γa, γb)),

ϕe
ab(Di, Xi, Dj, Xj, e, α

e) = αe
ab,1(Xi)(1(Di = a)− ea(Xi)) + αe

ab,2(Xj)(1(Dj = b)− eb(Xj)),

and

αm
ab(Di, Xi, Dj, Xj, φ) =

DiDj − eab(Xi, Xj)

eab(Xi, Xj)(1− eab(Xi, Xj))
,

αe
ab,1(Xi) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)DiDj

ea(Xi)2eb(Xj)

∣∣∣∣Xi

]
,

αe
ab,2(Xj) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)DiDj

ea(Xi)eb(Xj)2

∣∣∣∣Xj

]
.

Now we can see how Proposition 3.2 applies to our examples. We

Example 2 (Inequality (cont.)) In this example we have that

Γij =
1

2
(Yi + Yj − |Yi − Yj|)

∑
(a,b)∈{0,1}2

DiDj

eab(Xi, Xj)
πab(Xi, Xj)

+
∑

(a,b)∈{0,1}2
αe
ab,1(Xi)(1(Di = a)− ea(Xi)) + αe

ab,2(Xj)(1(Dj = b)− eb(Xj)).

■

Example 3 (IOp (cont.))

Γij =
1

2

∑
(a,b)∈{0,1}2

(
γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

)
πab(Xi, Xj)

+
∑

(a,b)∈{0,1}2

(
φai(1− δabij )(Yi − γ(Di, Xi)) + φbj(1− δabij )(Yj − γ(Dj, Xj))

)
.

Assuming either (i) P(γT (Xi)−γT (Xj) = 0) = 0 or that (ii) xi ̸= xj =⇒ γT (Xi)−γT (Xj) ̸= 0,

it follows that Assumption 3 holds with P = 2, (c11, c12, c21, c22) = (1, 0, 0, 1), αab,1 = φai(1−δij),
αab,2 = φbi(1 − δij) and φai = 1(Di = a)/ea(Xi) and δabij = sgn(φaiγ(Di, Xi) − φbjγ(Dj, Xj))

(see proof of Proposition 1 in Escanciano and Terschuur (2022)). These assumptions deal with

the point of non-differentiability of the absolute value. (i) is satisfied if γT (Xi) is absolutely

continuous, for example if γT is strictly monotone on a circumstance which is absolutely contin-

uous given all the other circumstances. Assumption (ii) says that two observations with different

circumstances must have different fitted values. ■
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Example 4 (Intergenerational mobility (cont.)) The orthogonal score is given by

Γij =
1

2
(sgn(X1i −X1j)sgn(Yi − Yj))

∑
(a,b)∈{0,1}2

DiDj

eab(Xi, Xj)
πab(Xi, Xj)

+
∑

(a,b)∈{0,1}2
αe
ab,1(Xi)(1(Di = a)− ea(Xi)) + αe

ab,2(Xj)(1(Dj = b)− eb(Xj)).

■

To estimate the welfare for a given π ∈ Π I use an adaptation to U-statistics of the cross-

fitting used before (see Escanciano and Terschuur (2022)). I split the pairs {(i, j) ∈ {1, ..., n}2 :
i < j}in L groups I1, ..., Il, then

Ŵn(π) =
1

n

L∑
l=1

∑
(i,j)∈Il

Γ̂ij,l, (3.2)

were Γ̂ij,l is the same as Γij but with all nuisance parameters replaced by estimators which do

not use observations in the pairs in Il. As before, the estimator of the optimal treatment rule

among a class of rules Π is

π̂ = argmax
π∈Π

Ŵn(π).

4 Asymptotic statistical guarantees

In general we have that for a given treatment rule π, orthogonal scores are given by

Γij(π) =
∑

(a,b)∈{0,1}2
ψab(Zi, Zj, γ, ν, α)πab(Xi, Xj).

ψab is the sum of a function whose expectation identifies a term in the welfare plus other

functions which are correction terms needed to achieve orthogonality with respect to the nuisance

parameter γ, nuisance parameters which appear in the identification result ν and additional

nuisance parameters which appear in the process of computing the orthogonal scores α

ψab(Zi, Zj, γ, ν, α) = mab(Zi, Zj, γ, ν) + ϕγ
ab(Zi, Zj, γ, α

γ) + ϕν
ab(Zi, Zj, ν, α

ν).

This framework accomodates also the welfare functions which are not defined as U-statistics

if ψab(Zi, Zj, γ, ν, α) does not depend on Zj and only depends on a so that we could rewrite

it as ψa(Zi, γ, ν, α) for a ∈ {0, 1}. For this reason we stick to this notation and do not state

all conditions and results for welfare functions which are not U-statistics and those which are.

In the next subsections we give conditions on the convergence of the nuisance parameters and

on the complexity of the policy class Π which will allow us to prove asymptotical statistical

guarantees for our estimated treatment rules.
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4.1 Conditions on the nuisance parameter estimators

I give high level conditions for the estimators of all nuisance parameters which have to be used to

estimate the welfare. These conditions have been showed to hold for a variety of non-parametric

estimators such as kernels or sieve estimators. The assumptions below are analogous to those

in Escanciano and Terschuur (2022).

Assumption 4 E[|ψ(Zi, Zj, γ, ν, α)|2] < ∞ and for (a, b) ∈ {0, 1}2, ω ∈ {γ, ν} and for some

a(n) → 0

(i) nλγ
√

E(|mab(zi, zj, γ̂l, ν)−mab(zi, zj, γ, ν)|2) ≤ a(n) ;

(ii) nλν
√

E(|mab(zi, zj, γ, ν̂l)−mab(zi, zj, γ, ν)|2) ≤ a(n) ;

(iii) nλγ
√
E(|ϕγ

ab(zi, zj, γ̂l, α
γ)− ϕγ

ab(zi, zj, γ, α
γ)|2) ≤ a(n);

(iv) nλν
√

E(|ϕν
ab(zi, zj, ν̂l, α

ν)− ϕν
ab(zi, zj, ν, α

ν)|2) ≤ a(n);

(v) nλα
√
E(|ϕω

ab(zi, zj, ω, α̂
ω
l )− ϕω

ab(zi, zj, ω, α
ω)|2) ≤ a(n),

where 0 < λγ, λν , λα < 1/2.

These are mild mean-square consistency conditions for γ̂l, ν̂l and α̂l separately. Assumption 4

often follows from the L2 convergence rates of the nuisance estimators. Define also the following

interaction terms for ω ∈ {γ, ν}

ξ̂ωl (wi, wj) = ϕ(zi, zj, ω̂l, α̂
ω
l )− ϕ(zi, zj, ω, α̂

ω
l )− ϕ(zi, zj, ω̂l, α

ω) + ϕ(zi, zj, ω, α
ω).

Assumption 5 either

(i)
√
nE(ξ̂ωl (wi, wj)) ≤ a(n),E(|ξ̂ωl (wi, wj)|2) ≤ a(n) or,

(ii)
√
n
(
n
2

)−1∑
(i,j)∈Il |ξ̂

ω
l (Wi,Wj)| ≤ 0.

These are rate conditions on the remainder terms ξ̂ωl (wi, wj). Often, Assumption 5 follows if
√
n||α̂ω

l − α||||ω̂l − ω|| ≤ a(n), where || · || denotes the L2 norm.

4.2 Conditions on the complexity of the policy class

The complexity of the policy class must also be restricted. If all sorts of subsets of X are

allowed to decide who should be treated then we get overfitted policy rules. As in Athey and

Wager (2021) we measure the policy class complexity with its VC dimension (see for instance

Wainwright (2019)) which we allow to grow with the sample size. Hence, for now on we subscript

the policy class by n, Πn.
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Assumption 6 There are constants 0 < β < 1/2 and n∗ ≥ 1 such that for all n ≥ n∗,

V C(Πn) < nβ.

Examples of finite VC-dimension classes are linear eligibility scores or generalized eligibility

scores (see Kitagawa and Tetenov (2018)). Policy classes which increase with the sample size

are for example decision trees (see Athey and Wager (2021)).

4.3 Upper bounds

Let now

W (π) = E
[ ∑
(a,b)∈{0,1}2

ψab(Zi, Zj, γ, ν, α)πab(Xi, Xj)

]
,

W̃n(π) =

(
n

2

)−1∑
i<j

[ ∑
(a,b)∈{0,1}2

ψab(Zi, Zj, γ, ν, α)πab(Xi, Xj)

]
,

Ŵn(π) =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

[ ∑
(a,b)∈π

ψab(Zi, Zj, γ̂l, ν̂l, α̂l)πab(Xi, Xj).

]
,

W (π) and W̃n(π) are the welfare at policy rule π and the unfeasible estimator of the welfare when

all nuisance parameters are known. Ŵn(π) is the feasible estimator which we already introduced

in (3.2). Let W ∗
Πn

= supπ∈Πn
W (π) be the best possible welfare. We want to give upper bounds

to the regret: E[W ∗
Πn

−W (π̂)], i.e. the expected difference between the best possible welfare

and the the welfare evaluated at the estimated policy. As usual I start bounding the regret as

follows

E[W ∗
Πn

−W (π̂)] ≤ 2E
[
sup
π∈Πn

|Ŵn(π)−W (π)|
]

≤ 2E
[
sup
π∈Πn

|Ŵn(π)− W̃n(π)|
]
+ 2E

[
sup
π∈Πn

|W̃n(π)−W (π)|
]
, (4.1)

where in the second inequality we have added and subtracted W̃n(π) and used the triangle

inequality. The second term above is just a standard centered U-process indexed by π ∈ Πn.

We start as in Athey and Wager (2021) by showing the rate of convergence of this second term.

We work for some fixed (a, b) ∈ {0, 1}2 and we define the following set

Πab,n = {πab : π ∈ Πn}.

The first step is to bound it by the Rademacher complexity which we define as

Rn(Πab,n) = Eε

(
sup
π∈Πn

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i)

∣∣∣∣).
12



Lemma 1

E
[
sup
π∈Πn

|W̃n(π)−W (π)|
]
≤ E[2Rn(Πab,n)].

Now we want an asymptotic upper bound for E[Rn(Πab)]. Importantly, we want the bound to

depend on the following variance

Sab = E[Γ2 ab
i,j ].

While Kitagawa and Tetenov (2018) and others provide bounds in terms of the max of the scores,

Athey and Wager (2021) provide bounds based on the variance and the efficient variance. The

next result provides a bound on the Rademacher complexity based on Sab.

Lemma 2 Under Assumptions 4 and 5

E[Rn(Πab,n)] = O
(√

Sab · V C(Πn)

⌊n/2⌋

)
.

Now we want to provide asymptotic upper bounds for the first term in (4.1). Escanciano and

Terschuur (2022) show that for given π ∈ Πn

√
n(Ŵn(π)− W̃n(π)) →p 0.

The next result makes the above uniform in π ∈ Πn.

Lemma 3 (Uniform coupling) Under Assumptions 4 and 5

√
nE[ sup

π∈Πn

|Ŵn(π)− W̃n(π)|] = O
(
1 +

V C(Πn)

⌊n/2⌋min(λγ ,λν ,λα)

)
.

Finally, using Lemmas 2 and 3 the following holds.

Theorem 1 Suppose Assumptions 4 and 5 hold, that Assumption 6 holds with β < min(λγ, λν , λα).

Then

E[W ∗
Πn

−W (π̂)] = O
(√

Sab · V C(Πn)

⌊n/2⌋

)
.

5 Empirical application

In our empirical application we study the optimal allocation of children to preschool for our

leading welfare functions. We make use of the Panel Study of Income Dynamics (PSID) database

which has been following families for nearly 50 years. The nature of this survey allows us to

observe a rich set of circumstances and long term outcomes. In 1995, PSID asked about the

participation in preschool to adults between 18-30 years hold. Hence, we are able to track long

13



Estimate se pval Gini IOp Kendall n

Earnings 30-35 5499 1889 0.004 0.434 0.194 0.159 2730

Table 1: ATE, Gini, IOp and Kendal-τ

term outcomes of these individuals. We take as outcome the average earnings at 30 to 35 years

old. We assume selection on observables holds. In particular we condition on sex,birthyear,

average parental income in the 5 years before birth, mother’s education, father’s education and

whether the individual is black.

In Table 1 we see the results of estimating the Average Causal Effect (ATE), Gini, IOp and

Intergenerational mobility as captured by the rank correlation of parents and child income. To

estimate the ATE I use doubly robust scores and XGBoost to estimate the regression functions

and propensity scores. Under our assumption of no selection on observables we observe a sizeable

and significant positive effect of attending preschool of 5,499$ of added annual earnings. We see

that the Gini coefficient is 0.43, in line with official statistics and that IOp is 0.19, meaning that

44% of total inequality can be explained by the circumstances we observe. The Kendall-τ is 0.16

which indicates a positive association between parental and child incomes. We compute optimal

treatment rules based on parental income X1i and mother’s years of education X2i. For the

target in the Kendall-τ welfare we use half of the actual value in Table 1. We use the following

policy class

Π = {{X ∈ X : X1 ≤ x1&X2 ≤ x2} : (x1, x2) ∈ {F−1
X1

(p) : p = 0.2, 0.4, 0.6, 0.8, 1} × {x2 = 1, ..., 17}}.

Table 2 shows the results of the optimal policy rule compared to the situation in which no one

is treated. W0 is the welfare when no one is treated, W ∗ is the welfare at the optimal rule.

We also see the mean, Gini and IOp when no one is treated and at the optimal treatment rule.

Wg∗ is the porcentual change in welfare from not treating no one to implementing the optimal

treatment.

W0 Mean0 Gini0 or IOp0 W* Wg* Mean* Gini* or IOp*

Utilitarian 43572 50109 0.15

Gini 26891 43415 0.38 35641 0.33 49231 0.28

IOp 30814 43193 0.29 38135 0.24 49944 0.24

Kendall -0.11 -0.01

Table 2: Welfare, mean, Gini and IOp when no one is treated vs at the optimal treatment rule.

Gini or IOp columns have the Gini for the row with the Gini welfare and IOp for the row with

the IOp welfare.

Under utilitarian welfare we see that welfare increases a 15% under the optimal rule. Average
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earnings go from 43,572$ to 50,109$. Under the standard Gini welfare function we observe an

increase of 33% in the welfare. The mean increases substantially but not as much as in the

utilitarian case and the Gini strongly decreases from 0.38 to 0.28. The IOp aware welfare

function is like the utilitarian one and we only see a moderate decrease in IOp from 0.29 to 0.24.

Finally, for the Integenerational mobility aware welfare we see that we get much closer to the

target under the optimal policy rule. If we do not treat anyone then the (negative) distance

between the Kendall-τ and the target is 0.11, however, under the optimal policy rule it decreases

sharply to just -0.01. Figures 1-4 show who gets treated under the different policy rules. In the

x-axis we divide the parental income in quintiles and in the y-axis we haver mother’s years of

education.

Figure 1: Utilitarian optimal policy rule

We can see that both utilitarian and IOp welfare fucntions prescribe almost everyone to

treatment. Inequality averese welfare function restricts treatment to those in the poorest three

lowest quintiles of the parental income distribution while the Kendall welfare restricts it to those

in the 4 poorest quintiles of parental income and those with mother’s education below 14 years.
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Figure 2: Standard Gini welfare optimal policy rule

Figure 3: IOp optimal policy rule
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Figure 4: Integenerational mobility welfare optimal policy rule
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