
Interim Information and Seller’s Revenue
in Standard Auctions∗

Federica Carannante† Marco Pagnozzi‡ Elia Sartori§

March 15, 2024

Abstract

We study the interim revenue — i.e., the expected seller’s revenue coWe study the interim revenue
— i.e., the expected seller’s revenue conditional on the valuation of one of the bidders — in standard
auctions, a class of sealed-bid auctions that are ex-ante equivalent by the Revenue Equivalence Theorem.
The first-price auction yields a higher (lower) interim revenue than the second-price auction if the
valuation is lower (higher) than a threshold. The first-price auction also has the highest interim
revenue among all standard auctions if the valuation is the lowest possible one. By contrast, when the
valuation is sufficiently high, the first-price auction has the lowest interim revenue and the last-pay
auction — an atypical mechanism where only the lowest bidder pays — yields an unbounded interim
revenue.

1 Introduction

Consider an auction with risk-neutral bidders who have independent private valuations, and assume that
the seller privately learns the valuation of one of the bidders, which we refer to as the special bidder.
For example, this information about a bidder’s valuation may emerge exogenously if a potential buyer in
the auction has a score derived from his past purchases. Alternatively, the seller may obtain information
endogenously, for example in multiple auctions where a bidder is the winner of a past auction who has
revealed his valuation through his bid.1 In other environments, the seller may simply know whether the
valuation of a bidder is higher or lower than a threshold, for example because she observed whether or not
the bidder previously agreed to pay a fixed price for an object similar to the one on sale.

We analyze the expected seller’s revenue conditional on the information about the valuation of the
special bidder — the interim seller’s revenue. We focus on single-object sealed-bid auctions that award the

∗We would like to thank audiences at the CSEF-IGIER Symposium in Economics and Institutions, EWET 2023, SAET
2023 and the UniBg IO Winter Symposium for numerous helpful comments and suggestions.

†fcarannante@princeton.edu, Princeton University.
‡pagnozzi@unina.it, Università di Napoli Federico II and CSEF.
§elia.sartori@unina.it, Università di Napoli Federico II and CSEF.
1Carannante et al. (2023) analyzes the optimal choice of reserve prices in repeated auctions for online display advertising,

where bidders bid to acquire multiple impressions to the same user. In this dynamic model, the special bidder in an auction
is the winner of a past auction who has a constant valuation for acquiring another impression, while all other bidders draw
new time-specific valuations.
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object to the bidder with the highest valuation, and where the bidder with the lowest possible valuation
obtains 0 surplus.

In the environment that we analyze, the celebrated Revenue Equivalence Theorem (Vickrey, 1961; My-
erson, 1981; Riley and Samuelson, 1981) characterizes the ex-ante expected seller’s revenue. In particular,
the theorem shows that any efficient equilibrium of any auction where the lowest bidder’s type obtains 0
surplus yields the same expected revenue for the seller, and also results in the same expected payment
by every type of bidder. This second result (which actually implies the first one) is sometimes called
the bidders’ Payoff Equivalence Theorem (see, e.g., Milgrom, 2004). Hence, the theorem implies that the
choice of the auction format is irrelevant both for the seller and — ex interim — for all types of bidders,
because in all auctions they win with the same probability and expect to pay the same.

Does this indifference also hold conditional on the valuation of one of the bidders? Or does knowing
the valuation of the special bidder induce the seller to prefer a specific auction format, depending on
this valuation? To address these questions, we first focus on the two most common auction formats: the
first-price auction (FPA) — where the winner pays his bid — and the second-price auction (SPA) —
where the winner pays the second-highest bid. We show that the there is a unique threshold such that
the interim seller’s revenue is higher in the FPA than in the SPA if the bidder’s valuation is lower than
the threshold, while it is higher in the SPA than in the FPA if the bidder’s valuation is higher than the
threshold (Theorem 3).

To see the intuition behind this result, consider an auction with only two bidders and suppose that
the seller learns that one of them — the special bidder — has a very low valuation, say close to zero. This
is bad news regardless of the auction format, but especially so in the SPA. The reason is that the special
bidder’s bid is likely to lose and to determine the auction price in the SPA. In the FPA, by contrast, the
auction price is determined by the bid of the other bidder, whose expected valuation is no lower than the
unconditional expectation of a bidder’s valuation. Hence, the seller expects to earn a very low revenue
in the SPA, close to zero and bounded above by the special bidder’s valuation, but not in the FPA. This
intuition extends to more bidders and any (relatively) low valuation of the special bidder: such a low
valuation has a stronger negative effect on the expected seller’s revenue in the SPA than in the FPA, since
it reduces the expected second-highest value more than the expected highest one.

Suppose now that the seller learns that the special bidder has a very high value, say close to the
maximum possible one. This is good news regardless of the auction formats, but especially so in the SPA.
The reason is the following. If the special bidder wins the auction, then the seller’s expected revenue is
the same in both auction formats (by the Payoff Equivalence Theorem). If the special bidder loses the
auction, however, the seller’s revenue is equal to the special bidder’s valuation in the SPA, while it is only
equal to the expected bid of the other bidder in the FPA, who also has a valuation close to maximum
but shades his bid below his valuation. This intuition extends to more bidders and any (sufficiently) high
valuation of the special bidder: when a bidder with a very high valuation loses, the seller’s revenue in the
SPA is at least equal to his valuation, while in the FPA it is equal to the bid by the highest bidder, who
has a valuation close to the special bidder’s one but shades his bid below this valuation.

An analogous intuition suggests that the same ranking of the FPA and SPA also holds when both
auctions include a (common) reserve price. In fact, the interim seller’s revenue is higher in the FPA than
in the SPA if and only if the special bidder’s valuation is lower than a threshold, which is higher than the
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reserve price (Proposition 4).
We also generalize this analysis by considering standard auctions, a broad class of sealed-bid auctions

that assign the object to the highest bidder and are characterized by the set of bidders who make a transfer
to the seller and by a function that determines the transfer made by each of these bidders. This class
includes, in addition to the FPA and SPA, other winner-pay auctions where only the highest bidder pays
one of the submitted bids, and pay-as-bid auctions (like the the all-pay auction) where one or more bidders
pay their own bids. When the special bidder’s valuation is the lowest possible one, or close to it, the FPA
is interim revenue dominant among all standard auctions (Proposition 9).

We prove this results in two steps. First, we show that the FPA maximizes the interim seller’s revenue
among all pay-as-bid auctions (Proposition 8). This first result implies, for example, that close to zero
the FPA yields a higher interim revenue than the all-pay auction. Second, we show that, when the special
bidder’s valuation is the lowest possible one, the interim seller’s revenue is also higher in the FPA than in
any alternative auction where payers do not necessarily pay their bids. This second result generalizes the
comparison close to zero between the FPA and SPA, since the highest bidder pays both auctions, but he
pays his bid only in the FPA.

By contrast, when the special bidder’s valuation is close to the highest possible one, the two previous
results are reversed and the FPA yields the lowest interim seller’s revenue among all standard auctions
(Proposition 9). In fact, the special bidder’s payment represents a lower bound for the interim revenue
(Lemma 1), and the FPA achieves this bound when the special bidder has the highest possible value. The
reason is that the special bidder always wins in this case and, hence, his payment represents the total
seller’s revenue (since no other bidder pays). Moreover, the Payoff Equivalence Theorem implies that this
lower bound is also achieved by the SPA and by any other auction where only the winner pays (Proposition
8).

Other formats with a different set of payers, however, yield a higher interim seller’s revenue when the
special bidder has the highest possible value. For example, the interim revenue is strictly higher in the
all-pay auction, where all bidders pay their bids, than in any winner-pay auction. The reason is that, in the
all-pay auction, the seller obtains payments by all other bidders, in addition to the special bidder. Finally,
the interim revenue is even higher when only losing bidders pay: when the special bidder’s valuation is
close to the highest possible one, the interim revenue tends to infinity in the Last-Pay Auction (LPA)
— an atypical mechanism that we introduce, where only the lowest bidder pays his bid (Proposition 8).
Conversely, the LPA yields the lowest interim seller’s revenue when the special bidder’s valuation is the
lowest possible one.

Since the FPA maximizes the interim revenue when the special bidder’s value is 0, and minimizes it
when the special bidder’s value is the highest possible one (and since the interim revenue is increasing in
the special bidder’s value), the FPA yields the smallest range of possible interim revenues for the seller
among standard auctions, and it maximizes the minimum interim revenue (Corollary 5.4). This provides
a new interpretation for why the FPA may be considered the less risky standard auction format for the
seller.2

Our theoretical analysis has a direct application to environments where the seller is privately informed
2The common interpretation is that a risk-averse seller ex-ante prefers the FPA because, although the expected seller’s

revenue is the same, the realized seller’s revenue in other standard auctions is a mean-preserving spread of the one in the
FPA (Waehrer et al., 1998).
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about a particular bidder who participates in the auction, and other competitors are unaware of that.
In fact, our result suggests that the seller may obtain a higher revenue by choosing a particular auction
format conditional on this information, if other bidders do not draw any inference from the seller’s choice
and always bid as in an auction with symmetric competitors. This may be a natural assumption in
environments with inexperienced or unsophisticated bidders.

The rest of the paper is organized as follows. Section 2 describes the environment and Section 3
considers a simple example. Section 4 compares the interim seller’s revenue in the FPA and the SPA. In
Sections 5, we introduce the broad class of standard auctions. Sections 5.2 and 5.3 consider special cases
of standard auctions, the winner-pay and the pay-as-bid auctions, and Section 5.4 analyzes the auctions
that maximizes the interim revenue, when the special bidder’s value is close to the extrema. Section 6
concludes. Extensions of our analysis, omitted proofs and derivations are in the Appendix.

2 Environment

There is a single-object auction with n risk-neutral bidders. Each bidder i is privately informed of his
valuation vi. Valuations are independently drawn from the same CDF F (·) with full support [0, 1] and
virtual value ψ. Throughout the paper, unless otherwise specified, the expectation E integrates over F .
Given a set of bidders’ values v ∈ [0, 1]n, we denote by v(k) (v) its kth-order statistic, suppressing the
argument when convenient.

We consider sealed-bid auction mechanisms that have an equilibrium with the following characteristics:
(i) the object is awarded to the bidder with the highest valuation and (ii) a bidder with a valuation equal to
0 obtains 0 surplus. Throughout the paper, an auction mechanism is always associated with such efficient
equilibrium, assuming it exists.3 The equilibrium bidding function in the FPA with reserve price R is

bF (vi, R) ≡
R · F (R) +

∫ vi
0 xdFn−1 (x)

Fn−1 (vi)
.

If there is no reserve price, we simply write bF (vi). We assume that there is a unique v̂ such that bF (v̂, R) =

ψ (v̂) for every R.4 The assumption is satisfied by the uniform distribution, the Beta distribution with
different parameters, the Logit-Normal distribution, as well as many other distributions.

Let Πa : [0, 1]n → R be the seller’s revenue in the equilibrium of auction mechanism a as a function
of the bidders’ valuations. The Revenue Equivalence Theorem (Vickrey, 1961; Myerson, 1981; Riley and
Samuelson, 1981) states that

Theorem. In any auction a where the lowest bidder’s type obtains 0 surplus:

• Every bidder’s type vi makes expected payment t (vi) =
∫ vi
0 xdFn−1 (x) and therefore

• The seller earns expected revenue Ev [Π
a] = Π̄ = nE [t (vi)] .

3In particular, statements of the form ’in auction format a’ are shorthand for ’in any efficient equilibrium of auction
format a.’

4This assumption is a sufficient (but not necessary) condition for the uniqueness of ṽ, as defined in Theorem 3 and
Proposition 4. No other result requires this assumption. Alternative sufficient conditions for the uniqueness of ṽ are: (i)
ψ′ (vi) > bF ′ (vi, R) at any v such that bF (vi, R) = ψ (vi); (ii) bid shading in the FPA is increasing in the bidder’s value, but
less so as n increases.
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We refer to the first statement as the Payoff Equivalence Theorem (PET) and to the second (weaker,
ex-ante) statement as the Revenue Equivalence Theorem (RET).

We analyze the properties of the interim revenue function (IRF)

Πa (v) ≡ Ev [Π
a|v1 = v] ,

where Πa : [0, 1] → R is the expected seller’s revenue in auction a conditional on the valuation of one of
the n bidders, say bidder 1. We denote Pv|v as the probability measure conditional on the event v1 = v

and Ev|v the associated expectation operator, so that an equivalent rewriting is Πa (v) = Ev|v [Π
a].

In the Appendix, we show that the IRF can be written as the sum of the special bidder’s transfer
t (v), which is independent of the auction format, and the expected transfers of the other (n− 1) generic
bidders — i.e.,

Πa (v) = t (v) + (n− 1)E [tav (x)] , (2.1)

where tav (x) is the interim transfer of a bidder with valuation x in auction a, conditional on the information
that one competitor has valuation v. This highlights that the auction format does not affect the interim
revenue through the special bidder’s transfer, because of the PET, but only through the transfers of the
other symmetric bidders.

Lemma 1. The IRF has the following properties:

• Πa (v) is increasing.

• Πa (v) ≥ t (v), for all v.

• Ev [Π
a (v)] = Π̄.

The fist property in Lemma 1 is a consequence of the auction efficiency. The second property follows
from (2.1) and provides a lower bound for the IRF of any auction: the expected seller’s revenue is at least
equal to the transfer of the special bidder. The last property follows form the LIE:

Ev [Π
a (v)] = Ev

[
Ev|v [Π

a]
]
= Ev [Π

a] = Π̄.

This property simply reflects the fact that the expectation with respect to v of the IRF is the ex-ante
expected seller’s revenue, which is independent of the auction format by the RET.

3 Example

Suppose there are two bidders, each with a private valuation which is independently and uniformly dis-
tributed on [0, 1]. We compare the interim seller’s revenue in the First-Price sealed-bid Auction (FPA)
and the Second-Price sealed-bid Auction (SPA), when the seller privately learns that one of the bidders
has a valuation equal to v. Recall that in the SPA it is a dominant strategy for every bidder to bid his
value, while in the FPA the equilibrium bidding function is bF (x) = x

2 .
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Figure 3.1: Interim revenue functions in the FPA and SPA with n = 2 and vi ∼ U [0, 1].

Let x denote the valuation of the other bidder, which is unknown to the seller. In the SPA, the interim
seller’s revenue is

ΠS (v) = P (x < v) · E [x|x < v] + P (x > v) · v

= v · v
2
+ (1− v) · v = v

(
1− v

2

)
, (3.1)

because the seller’s revenue is v when the other bidder’s value is higher than v, and it is the expectation
of the other bidder’s value when v is the highest value. Similarly, in the FPA the interim seller’s revenue
is

ΠF (v) = P (x < v) · bF (v) + P (x > v) · E
[
bF (x) |x > v

]
= v · v

2
+ (1− v) · 1 + v

4
=

1 + v2

4
, (3.2)

because the seller’s revenue is the winner’s bid, which is bF (v) when v is the highest value and the
expectation of other bidder’s bid when he has a value higher than v.

Figure 3.1 shows the interim revenue functions in the two auction formats. Notice that, if the seller
knows that a bidder has valuation 0, his interim revenue in the SPA is 0, since this bidder always loses
and the auction price is equal to his value. By contrast, in the FPA the auction price is given by the other
bidder’s bid; hence it is strictly positive and equal to ΠF (0) = 1

4 . If instead the seller knows that a bidder
has valuation 1, this bidder always wins in both auction formats and the seller’s revenue is equal to the
bidder’s payment which, by the PET, is the same in the FPA and SPA (ΠF (1) = ΠS (1) = 1

2).
Finally, comparing equations (3.2) and (3.1): (i) ΠF (v) > ΠS (v) if v < 1

3 , (ii) ΠF (v) < ΠS (v) if
1
3 < v < 1, and (iii) ΠF (v) = ΠS (v) if v ∈

{
1
3 , 1
}
. Therefore, the interim seller’s revenue is higher in

the FPA than in the SPA if and only if v is sufficiently low. Moreover, the difference between the interim
revenue in the FPA and SPA — i.e., ΠF (v)−ΠS (v) — is maximized at v = 0 and minimized at v = 2

3 .
It is also straightforward to check that the two auction formats are ex-ante revenue equivalent (as implied
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by the RET): Ev

[
ΠS (v)

]
= Ev

[
ΠF (v)

]
= 1

3 . Graphically, this implies that the areas below each of the
interim revenue functions in Figure 3.1 are equal.

In the next section, we show that the qualitative properties of the IRFs in the FPA and SPA hold more
generally, with an arbitrary number of bidders and distribution of values.

4 FPA vs. SPA

The following decomposition of the IRF will be useful in our analysis:5

Lemma 2. Let a be an auction where only the winner pays. Then,

Πa (v) = t (v) + Pv|v
(
v(1) ̸= v

)
Ev|v

[
Πa|v(1) ̸= v

]
.

Lemma 2 highlights that, when the special bidder is the winner, all auction formats in which only the
winner pays are interim revenue equivalent. In this case, the seller’s revenue is the expected payment of
the special bidder, and hence it is independent of the auction format. Moreover, since a special bidder with
the highest possible valuation wins for sure, these auctions are interim revenue equivalent when v = 1.

By Lemma 2, the difference between the interim revenues in the FPA and SPA only depends on the
event that the special bidder loses:

∆(v) ≡ ΠF (v)−ΠS (v)

= Pv|v
(
v(1) ̸= v

) (
Ev|v

[
ΠF |v(1) ̸= v

]
− Ev|v

[
ΠS |v(1) ̸= v

])
. (4.1)

The following theorem shows that this difference is positive — i.e., the FPA yields a higher interim revenue
than the SPA — if and only if the value of the special bidder is lower than a threshold (see Figure 4.1 for
an example).

Theorem 3. There is a unique ṽ such that
∆(v) > 0 if v ∈ [0, ṽ)

∆ (v) < 0 if v ∈ (ṽ, 1)

∆ (v) = 0 if v ∈ {ṽ; 1}

Moreover, ∆(v) has a global maximum at v = 0 and global minimum at v̂ such that bF (v̂) = ψ (v̂).

Proof. By (4.1), the Interim revenue difference between the FPA and SPA is

∆(v) = Pv|v
(
v(1) ̸= v

)
·
(
Ev|v

[
bF
(
v(1)
)
|v(1) ̸= v

]
− Ev|v

[
v(2)|v(1) ̸= v

])
=

∫ 1

v
bF (x) dFn−1 (x)−

∫ 1

v

∫ x

0
max {v, y} dFn−2 (y)

Fn−2 (x)
dFn−1 (x) . (4.2)

5This decomposition relies on the characteristics of the FPA and SPA and separates the events that the special bidder
wins (and hence is the only payer in each of the two formats) and loses. This is conceptually different from the decomposition
(2.1), which holds in all auction formats (including those that we analyze in Section 5, where the winner does not pay or is
not the only payer).
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Figure 4.1: Interim revenue functions in the FPA and SPA (left) and interim revenue difference ∆(v)
(right) with n = 4 and vi ∼ U [0, 1].

The first term in the previous equation is the expected highest bid in the FPA when v loses, while the
second term is the expected second-highest bid in the SPA — which is the expected second-highest value
— when v loses.

In the Appendix, we show the second term is equal to
∫ 1
v ψ (x) dFn−1 (x). Therefore,

∆(v) =

∫ 1

v

(
bF (x)− ψ (x)

)
dFn−1 (x) , (4.3)

and
∆′ (v) = −

(
bF (v)− ψ (v)

)
dF (v)n−1 .

Hence, critical points of ∆(v) are either 0 or such that bF (v) = ψ (v). In the Appendix, we show that
∆(v) has a maximum at v = 0 and ∆(0) > 0 (see Lemma 13). Moreover, it is straightforward that
∆(1) = 0, ∆′ (1) ∝ 1− bF (1) > 0 and, by the RET, Ev [∆ (v)] = 0.

It follows that ∆(v) must cross the horizontal axis (from above) before 1 and must have minimum
at v̂ such that bF (v̂) = ψ (v̂) . Under our assumption that there is a unique v such that bF (v) = ψ (v),
there are exactly two critical points of ∆(v): (i) the maximum at 0 is unique and (ii) the minimum at v̂
is unique. Hence, ∆(v) cannot cross the horizontal axis more than once and so there is a unique ṽ ̸= 1

such that: (i) ∆(ṽ) = 0, (ii) ΠF (v) > ΠS (v) if v < ṽ, and (iii) ΠF (v) < ΠS (v) if ṽ < v < 1.

To shed some light on equation (4.3), we notice that, perhaps surprisingly, the second term in equation
(4.2) is equal to the ex-ante expected revenue in any auction with reserve price v and n− 1 bidders. The
reason is the following. First, the probability that in an auction with n bidders a bidder with value v loses
is exactly equal to the probability that, in an auction with n − 1 bidders and reserve price v, there is at
least one bidder with value higher than the reserve price. Hence, Pv|v

(
v(1) ̸= v

)
represents the probability

that the seller’s revenue is different from 0 in any such auction.
Second, Ev|v

[
v(2)|v(1) ̸= v

]
— i.e., the expected second-highest value when one bidder among n has

value v and this is not the highest value — is exactly equivalent to the expected seller’s revenue in a SPA
with n− 1 bidders and reserve price v, when the highest bidder has a value higher than the reserve price.
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In fact, the seller’s revenue in this auction is the reserve price v when only one bidder has a value higher
than v and is the second-highest value otherwise. Intuitively, when a bidder with value v loses in a SPA
with n bidder she acts exactly as a reserve price in a SPA with n − 1 bidders, since his bid represents a
lower bound to the price that the remaining bidders have pay.

Finally, the SPA with n − 1 bidders and reserve v is revenue equivalent to any auction with n − 1

bidders and reserve v, and yields an expected revenue equal to the expected virtual value of the highest
bidder in the auction, conditional on this bidder having a value higher than the reserve price.

Theorem 3 says that the IRFs of the FPA and SPA cross only once, so that the seller obtains a higher
interim revenue in the FPA if v < ṽ, while she obtain a higher interim revenue in the SPA if v > ṽ.
Single crossing is relevant because it allows the seller to determine her preferred auction format not only
when she knows the exact valuation of the special bidders, but also with different and arguably more
realistic information structures. For example, in many application the seller may only know that the
special bidder’s value is either above or below an arbitrary threshold, possibly different from ṽ. Because
of single crossing, the seller prefers the FPA (resp. SPA) when she knows that the special bidder is below
(resp. above) any threshold, since this is the auction format that yields the higher expected interim revenue
conditional on this information.

4.1 Reserve Price

Our main result on the comparison between the FPA and SPA extends to a setting with a common reserve
price R. Let Πa (v,R) be the IRF in auction a with reserve price R, when the special bidder has value v,
and let the interim revenue difference between the FPA and SPA be

∆(v,R) ≡ ΠF (v,R)−ΠS (v,R) .

Proposition 4. There is a unique ṽ > R such that
∆(v,R) > 0 if v ∈ [0, ṽ)

∆ (v,R) < 0 if v ∈ (ṽ, 1)

∆ (v,R) = 0 if v ∈ {ṽ; 1}

Moreover, ∆(v,R) is maximized at all v ≤ R and has a global minimum at v̂ such that bF (v̂, R) = ψ (v̂).

Figure 4.2 compares the IRFs of the FPA and SPA. Notice that, when the special bidder’s value is
lower R, the interim revenue is constant in both auction formats, but it is higher in the FPA than in the
SPA. This is obvious when there are only two bidders: if the seller knows that one bidder has a value lower
than R, then her revenue is positive if and only if the other bidder’s value is higher than R. In this case,
however, the seller’s revenue is equal to the reserve price in the SPA, while it is equal to the expectation
of the other bidder’s bid in the FPA (which is higher than R because the bidder has a value higher than
the reserve price). Similarly, with multiple bidders, when the highest bidder’s value is higher than R (and
the special bidder’s value is lower than R): in the SPA the seller’s revenue is the maximum between R and
the second-highest among n− 1 bidders, while in the FPA it is equal to the highest bidder’s bid, which is
the expectation of the maximum between R and the second-highest among n bidders.
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Figure 4.2: Interim revenue functions in the FPA and SPA with n = 2, R = 0.35 and vi ∼ U [0, 1].

Moreover, in both auction formats the interim revenue is discontinuous when the special bidder’s value
is exactly equal to the reserve price. The reason is that, if the seller knows that at least one bidder meets
the reserve price, then her revenue is always strictly positive. In both auction formats, the discontinuous
increase in the interim revenue when v = R is equal to the probability that all other bidders have a value
lower than the reserve price, times the reserve price.6 Finally, the intuition for the single crossing of the
IRFs and for the equivalence of the two auction formats at v = 1 is analogous to the case without a reserve
price.

Since Proposition 4 holds for any reserve price, our comparison between the FPA and SPA also holds
when the seller sets the optimal (ex-ante) reserve prices, which are the same in both auctions. Therefore,
while the (ex-ante) expected revenues in the optimal FPA and SPA are equal, the optimal FPA yields a
higher (lower) interim revenue than the optimal SPA if v is low (high), exactly as with FPA and SPA
without reserve prices.

5 Interim Revenue in Standard Auctions

In this section, we analyze the IRFs in different auction formats (without a reserve price) to investigate
which properties of the IRFs of the FPA and SPA generalize to other formats, and to identify the format
which is preferred by the seller, depending on the special bidder’s valuation.

In Section 5.1, we introduce standard auctions, a broad set of sealed-bid auctions that assign the object
to the highest bidder. A standard auction is characterized by the set of bidders who make a transfer to the
seller and, given such set, by a function that determines the transfer made by each of these bidders. We
then consider special cases of standard auctions: the winner-pay auctions in Section 5.2 and the pay-as-bid
auctions in Section 5.3, where we also introduce the last-pay auction, an atypical auction format that plays
a special role in our analysis. Finally, Section 5.4 characterizes the auction formats that maximize the
interim seller’s revenue when the special bidder’s value is close to the extrema.

6In both auction formats, when all other bidders have a value lower than R, the seller’s revenue is 0 when the special
bidder’s value is also lower than R, and is R when the special bidder’s value is equal to R.
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5.1 Standard Auctions

In a standard auction, each bidder submits a sealed bid, which is a non-negative real number. Bids (and
their associated bidders) are ranked and the object is assigned to the bidder who submits the highest
bid. Where standard auctions differ is in how transfers are determined — i.e., who pays what. Since we
focus on the efficient equilibrium in which a bidder with the lowest possible value obtains zero surplus, the
auction winner is the bidder with the highest value and the RET applies. Moreover, the order statistic of
the bids coincide with the order statistic of bidders’ valuations.

Let [n] := {1, . . . n}. An element i ∈ [n] is interpreted as the ith-order statistic of submitted bids.

Definition 5. The standard auction a is characterized by a non-empty set Pa ⊆ [n] and by a function
Ta : Pa → [n] such that Ta (j) ≥ j for all j ∈ Pa.

The set Pa specifies the order statistics — or, equivalently, the bidders — that pay. The function Ta

associates to each payer the order statistic — or, equivalently, the bid — that determines his transfer,
with the constraint that a bidder cannot pay a bid higher than his own.7 Although we only consider
auctions where a bidder’s payment is equal to one of the bids, it is straightforward to extend our results to
payments that are combinations of multiple bids. Ta (j) = k indicates that the bidder with the jth-highest
valuation, who hence submits the jth-highest bid, pays a price equal to the kth-highest bid.8

Standard auctions encompass the following familiar types of auctions.

Definition 6. A Winner-Pay Auction (WPA) is standard auction with Pa = {1}. A Pay-as-Bid-Auction
(PBA) is a standard auction with Ta (i) = i, ∀i ∈ Pa.

WPAs are auctions where only the bidder who obtains the object pays. The FPA and SPA are WPAs
with Ta (1) = 1 and Ta (1) = 2, respectively. In general, WPAs are characterized by the order of the bid
that determines the transfer: we refer to the WPA with Ta (1) = k as the kth-price auction (kPA).

PBAs are auctions where bidders pay their own bids. Notice that the FPA is also a PBA while any
other kPA is not; indeed to each set of payers is associated a unique PBA. The All-Pay Auction (APA)
is the PBA with P = [n]. A rather atypical standard auction that will be important for our analysis is
the Last-Pay Auction (LPA), which is the PBA with P = {n} — i.e., the auction where only the lowest
bidder pays (and pays his bid).

5.2 Winner-Pay Auctions

Each WPA is a kPA, for some k — i.e., an auction where the highest bidder wins and pays the kth-highest
bid. We denote by Πk the IRF of the kPA.

Proposition 7. Πk (0) is decreasing in k. Πk (1) = t (1) for every k, and there is a threshold v̂ such that
Πk (v) is increasing in k for v ∈ (v̂, 1).

7More concisely, we can represent a static auction as a partial function from [n] into itself. A partial function specifies the
subset of [n] over which it is defined (the domain Pa) and the function over this domain (Ta : Pa → [n], with the inequality
constraint). If Ta (j) < j for some j ∈ Pa, then a bidder with a valuation close the lowest possible one would obtain negative
expected utility (in a monotone equilibrium).

8For example, in the standard auction with Pa = {2, 4}, Ta (2) = 2, and Ta (4) = 6, the second-highest bidder pays his
own bid, while the fourth-highest bidder pays the sixth-highest bid. No other bidder pays.
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Figure 5.1: Interim revenue functions in kPA with k = 1, ..., 5, n = 5 and vi ∼ U [0, 1].

Proposition 7 generalizes Theorem 3 for extreme values of v, establishing that if the special bidder has
very low (resp. high) valuation, the seller prefers the kPA with lower (resp. higher) k. Therefore, among
all WPAs: (i) the FPA — i.e., the kPA with k = 1 — yields the highest interim revenue when v = 0; (ii)
the nPA — i.e., the auction where the winner pays the lowest bid — yields the highest interim revenue for
v ≈ 1. When v = 1, all WPAs yield the same interim revenue, which is consistent with Lemma 2. These
results are displayed in Figure 5.1.

A key step in the proof of Proposition 7 is that, for all j ≥ k,

Ev

[
Πj |Πk

]
= Πk. (5.1)

Consider first k = 1. Since the realized revenue in the FPA only depends on the valuation of the highest
bidder, conditioning on Π1 is equivalent to conditioning on v(1), which is the value of the only bidder
who pays in any kPA. Therefore, Ev

[
Πj |Π1

]
= Π1 for all j is a direct consequence of the PET. A

similar argument holds for general k. First, in a monotone equilibrium conditioning on Πk is equivalent
to conditioning on the realization of the kth-order statistic. Moreover, using PET we show that the bid of
a generic type x in any kPA is equal to the expected revenues of all jPAs with j > k, conditional on the
kth-order statistic being x.9

Notice that in (5.1) the expectation is taken under the unconditional distribution of v. By contrast,
integrating under the interim measure v|0 reduces the expectation of Πj given Πk. This is intuitive as the
distribution of the jth-order statistic is negatively affected by the presence of a bidder with value 0, and
this is true both unconditionally and also conditional on the kth-order statistic, with k < j. This implies
the result at v = 0 in Proposition 7.10

9Incidentally, (5.1) implies that a risk-averse seller (ex-ante) prefers the WPA with a lower k because Πj is a MPS of Πk

if j > k. This is a generalization of Waehrer et al. (1998), who show that the FPA is the preferred auction format for a
risk-averse seller.

10This is a direct extension of the argument for the FPA and SPA in Section 4, where the loss of a bidder affects the
expected revenue in the SPA, even conditional on the valuation of the winner — i.e., on ΠF .
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Using (5.1), it also follows that

Πk (v)−Πj (v) =

n∑
i=k+1

Pv|v
(
v(i) = v

) (
Ev|v

[
Πk|v(i) = v

]
− Ev|v

[
Πj |v(i) = v

])
. (5.2)

Hence, the interim revenue difference between any two WPAs is driven by the events in which the special
bidder is an order statistic above k, where k is the lowest order in the comparison. If k = 1 — i.e.,
comparing the FPA with all other WPAs — we obtain that “only losers matter” (Lemma 2).

Since Pv|v
(
v(i) = 1

)
= 0 for all i ≥ 2, (5.2) also implies that Πk (1) = Πj (1) for all k, j. If v = 1,

the special bidder is the only payer in all WPA, and the PET implies that all WPAs achieve the lower
bound of the IRF (Lemma 1). Local to v = 1, since bidders bid more aggressively in the jPA than in the
kPA when j > k, when the special bidder is an order statistic higher than k (which is unlikely since this
implies that he does not have the highest value), the jPA yields a higher interim revenue.11

Finally, with uniformly distributed valuations, the IRFs of two kPAs cross only once, and there is a
threshold v such that the FPA is interim dominant (among all WPAs) if v < v, while the nPA is interim
dominant if v > v, see Figure 5.1. There are no easy conditions on primitives, however, that ensure that
these results hold for any distribution.

5.3 Pay-as-Bid Auctions

PBAs play a special role in the analysis of the interim dominant auction, and also reveal that some of the
properties of the IRFs of WPAs do not generalize to formats where losers may pay.

Define by PB-P the PBA with set of payers P. In the PB-P, the transfer of a bidder with value x is
equal to his bid times the ex-ante probability of belonging to P, denoted by Pv|x (x ∈ P).12 Hence, by the
PET, the equilibrium bidding function is

bPB-P (x) =
t (x)

Pv|x (x ∈ P)
. (5.3)

Moreover, the interim transfer of a generic bidder x is13

tPB-P
v (x) = bPB-P (x) · Pv|x,v (x ∈ P) = t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)
, (5.4)

where the ratio Pv|x,v(x∈P)

Pv|x(x∈P) measures how the probability that bidder x pays changes with the information
that a competitor has value v.

Substituting in (2.1) yields the IRF

ΠPB-P (v) = t (v) + (n− 1)E
[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
. (5.5)

11Figure 5.1 shows that, with uniformly distributed values, the higher is k, the flatter is the interim revenue of the kPA
around 1. Formally, in the Appendix we show that, at v = 1, all derivatives of Πk up to order k − 1 are equal to 0.

12Formally, Pv|x (x ∈ P) =
∑

j∈P Pv|x
(
v(j) = x

)
, where Pv|x

(
v(j) = x

)
is the probability that x is the jth-order statistic

in a sample of n i.i.d. draws from F .
13We denote Pv|v,x as the probability measure conditional on the event that one bidder has valuation v and another bidder

has valuation x.
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All-Pay Auction Consider the APA, which is the PB-[n] where every bidder pays. In the APA, since
Pv|x (x ∈ P) = Pv|x,v (x ∈ P) = 1, a bidder’s interim transfer is independent of v. Substituting in (5.3)
and (5.5) yields bAPA (x) = t (x) and

ΠAPA (v) = t (v) + (n− 1)E [t (x)] . (5.6)

Therefore, when v = 1 the APA dominates all WPAs since Πk (1) = t (1); when v = 0 the APA dominates
the nPA since Πn (0) = 0 (see Section 5.2).

This implies that the IRFs of the APA and the nPA cross at least twice: the APA yields a higher
interim revenue both at v = 0 and at v = 1, and the IRFs of the two auctions integrate to the same value.
Moreover, a sufficient condition for multiple crossing between the IRFs of the APA and a WPA is that
the APA yields a higher interim revenue at v = 0. This condition is not met by the FPA,14 which indeed
crosses the APA only once (see the Appendix). By contrast, at v = 0 the APA yields a higher interim
revenue than all kPA with k ≥ 2 if and only if the expected transfer of a bidder is increasing in the number
of competitors.15

The mechanics behind the interim dominance of the APA over WPAs at v = 1 is somehow counterin-
tuitive. The APA does better because, in addition to the transfer of the special bidder — who wins for
sure and pays t (1) both in the APA and in all WPAs — the seller collects bids from all other bidders.
Hence, in the APA the seller exploits her information advantage over other bidders and receives positive
payments from bidders who (she knows) lose for sure. This intuition aligns with (2.1): ex-interim, the
special bidder’s transfer is pinned down by the PET and the auction format only affects the transfers by
other bidders, which are 0 in a WPA when v = 1.

Last-Pay Auction When v is high, is the interim revenue even higher in auctions where only losing
bidders pay? We show that the answer is positive by considering the LPA, which is the PB-{n}. By (5.3),
the equilibrium bidding function in the LPA is

bL (x) =
t (x)

[1− F (x)]n−1 ,

which is unbounded. To see why bids are unbounded, suppose otherwise and let M be an upper bound
to the equilibrium bids. Then bidding above M is a profitable deviation, as it allows to win at price 0.

Clearly, unbounded bids do not imply an unbounded ex-ante revenue (because of RET): although in
the LPA high-value bidders bid arbitrarily high because they want to win and do not expect to pay their
bids, low-value bidders bid arbitrarily low because they expect to lose and pay their bids. Moreover,
unbounded bids do not even imply unbounded interim revenue as v → 1, because the winner does not pay
his bid. Nevertheless, the next section shows that the interim revenue is indeed unbounded in the LPA
(for examples of this, see Figure 5.2 and the Appendix).16

14That the FPA dominates the APA at v = 0 is as a special case of Proposition 8, but it also follows from a direct
comparison. If the special bidder has value 0, in the FPA the interim transfer of a generic bidder is Fn−2 (x) · bF (x) = t(x)

F (x)
,

which is higher than t (x), his interim expected transfer in the APA.
15This condition ensures that the APA yields a higher interim revenue than the SPA which, by Proposition 7, implies

that the APA also dominates all other kPA with k > 2. The condition is satisfied if n is large; for example, with uniformly
distributed bidders, it requires n > 3.

16More generally, unbounded bids and interim revenue arise in all standard auctions where the winner does not pay:
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Interim Ranking of PBAs By (5.5), given v the interim optimal PBA has the set of payers P that
maximizes E

[
t (x)

Pv|x,v(x∈P)

Pv|x(x∈P)

]
. The next Proposition builds on the observation that, for extreme values

of v, there exists a P that maximizes the probability ratio Pv|x,v(x∈P)

Pv|x(x∈P) for every x.

Proposition 8. For any P ⊆ [n], ΠFPA (0) > ΠPB-P (0) > ΠLPA (0) and ΠLPA (v) > ΠPB-P (v) >

ΠFPA (v) for v ≈ 1. Moreover, limv→1Π
LPA (v)−ΠPB-P (v) = ∞.

Therefore, among all PBAs, the LPA yields the highest (resp. lowest) interim revenue when v ≈ 1

(resp. v = 0) and the FPA yields the highest (lowest) interim revenue when v = 0 (resp. v ≈ 1).
The intuition is as follows. When v = 0 the special bidder is the nth-order statistic. This increases the
likelihood that a generic bidder is any other order statistics, but the highest increase occurs for being
the maximum. Hence, the seller wants to receive payments only from the first-order statistic, since this
maximizes the probability ratio of being a payer. The argument is reversed for v ≈ 1: in this case the
special bidder is the first-order statistic and the highest increase in probability occurs for a generic bidder
being the minimum, so the seller wants only the nth-order statistic to pay.

Proposition 8 also provides a quantitative ranking of auction formats for v ≈ 1, showing that the
difference between the interim revenue of the LPA and any other PBA diverges. This also implies that
the LPA has unbounded interim revenue. A straightforward extension the proof of this result shows that
a stronger version holds, namely that for v ≈ 1 the limit behavior of the interim revenue in PBAs is
determined by the lowest payer: limv→1Π

PB-P (v) − ΠPB-P ′
(v) = ∞ if and only if minP > minP ′.

Therefore, increasing the minimum of P (e.g., removing the winner or the highest payer from the set of
payers) induces an infinite increase in the interim revenue for v ≈ 1.

5.4 Interim Dominant Auctions

In this section we complete our analysis of interim-dominant auctions by establishing that the FPA yields
higher (resp., lower) interim revenue than any other standard auction when v = 0 (resp, v ≈ 1). This
generalizes the comparisons between the FPA and the SPA (Theorem 3), WPAs (Proposition 7), and
PBAs (Proposition 8).

Proposition 9. The FPA interim dominates all other standard auctions at v = 0 and is interim dominated
by all other standard auctions for v ≈ 1.

The proof of this result uses (2.1) and establishes that, when the special bidder has value 0, the interim
transfer of a generic bidder, ta0 (x), is higher in the FPA than in any other auction format a, regardless of
his value x. In particular, in the Appendix we show that the difference tFPA

0 (x)− ta0 (x) is proportional to

∑
j∈Pa

Ew

[
ba (w) |v(j) = x, v(Ta(j)) = w

]
− n− j

n− 1
Ew

[
ba (w) |v(j) = x, v(Ta(j)) = w, v(n) = 0

]
, (5.7)

where ba is the equilibrium bidding function in auction format a. The conditional expectations in (5.7)
represent the expected payment of a bidder with value x, when he is the jth-order statistic, this order
static is a payer, and his payment is the bid of (the associated lower) bidder Ta(j).

limv→1Π
a (v) = ∞ if and only if 1 /∈ Pa.
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If auction a is not a PBA, then the difference (5.7) is positive because the first expectation is higher
than the second one: both expectations represent the expected bid of the same order statistic, but the
second one uses n − 1 draws (reflecting the fact that one bidder has value 0) rather than n. This is the
effect that drives the interim dominance of the FPA vs. the SPA (which is not a PBA) when v = 0, as in
the SPA the transfer of the winner is lower because of the information that a competitor has value 0 (see
Section 4).17

If auction a is a PBA, instead, then Ta(j) = j and the two conditional expectations in (5.7) are both
equal to ba (x). In this case, the difference (5.7) is positive because n−j

n−1 < 1 for all j > 1. This effect reflects
the change in the probability ratio of a generic bidder being a payer that occurs with the information that
v = 0, which drives the interim dominance of the FPA among PBAs (see Section 5.3).

Propositions 9, however, does not yield a revenue ranking for all auction formats. For v ≈ 1, for
example, they only imply that both the SPA and the LPA interim dominate the FPA. While the revenue
difference between the SPA and the FPA vanishes for v → 1, however, the revenue difference between the
LPA and the FPA diverges, implying that the LPA dominates the SPA. This suggests that changing the
set of payers has a stronger effect than only changing the bidders who determine the transfer. Indeed,
raising the minimum order statistic in the set of payers yields an unbounded revenue increase in PBAs for
v → 1.18

Figure 5.2 gives a graphical representation of our results for standard auctions with 3 bidders and
uniformly distributed valuations (see the Appendix for analytical derivations). The bottom-left panel
displays the behavior of standard auctions at v ≈ 0, where the FPA (red line) is best and the LPA (yellow
line) is worst. Notice that each PBA (continuous line) lies above the corresponding non-PBA with the
same set of payers (dashed line of the same color). The bottom-right panel displays the behavior of
standard auctions at v ≈ 1, where the LPA is best and the FPA is worst. In this case, each non-PBA
(dashed line) lies above the corresponding PBA (continuous line of the same color). Finally, for v → 1

all standard auctions with 1 /∈ P diverge, but the LPA does it faster. Moreover, the difference between
the LPA and the PB- {2} (purple solid line) is infinite (Proposition 8) while the difference between the
PB- {2} and the non-PBA with P = {2} (purple dashed line) remains finite.

Finally, Proposition 9 and monotonicity of the IRF imply that

Corollary. For any standard auction a, Im
(
ΠFPA

)
⊂ Im (Πa) ⊆ Im

(
ΠLPA

)
.

This results suggests that, although a generic standard auction is not a mean-preserving spread of the
FPA (in contrast to what happens with WPAs — see (5.1)), the FPA can still be considered the less risky
standard auction format for the seller. First, the FPA has the smallest range of possible interim revenues,
and hence the lowest variability among standard auctions. Second, the FPA maximizes the lowest possible
interim seller’s revenue, so it provides the best insurance for the event that v = 0.

17In fact we conjecture that, when v = 0, among all auctions with the same set of payers, the PBA yields the highest
interim revenue. For example, the difference in the transfers conditional on the realization of the order statistic of a payer
drives the interim dominance of the PBA vs. non-PBAs when v = 0 for single-payer auctions (i.e., when |Pa| = 1).

18Quantifying the gain from changing the bidders who determine the transfer, given an arbitrary set of payers, is challenging
because there is no closed form for the equilibrium bid. In the Appendix we show that, when P = {n− 1}, the limit revenue
difference between the (unique) non-PBA and the PBA is strictly positive but finite (see Figure 5.2).

16



0 1

LPA

FPA

0 0.1

FPA

P T (·)
{1} 1

{1} 2

{2} 2

{2} 3

{1, 2, 3} 1, 2, 3

{1, 2, 3} 3, 3, 3

{3} 3

0.9 1

LPA

Figure 5.2: Interim revenue functions in standard auctions with n = 3 and vi ∼ U [0, 1]. Column T (·)
reports the image of the corresponding element of P. The bottom panels zoom around v ≈ 0 and v ≈ 1.

6 Conclusions

We have analyzed interim revenue of the seller in a wide class of ex-ante revenue equivalent auction
formats, when the seller learns the valuation v of one of the bidders. For example, the seller may obtain
this information through an exogenous rating based on the bidder’s purchasing history (Bonatti and
Cisternas, 2020), or when a bidder participates repeatedly in sequential auctions for similar objects.

From a theoretical perspective, our analysis highlights how the valuation of a single bidder affects the
seller’s revenue in various auction formats. In fact, the marginal contribution to the seller’s revenue of a
bidder with a specific value v rather than a generic bidder can be interpreted as the difference between
the interim revenue at v and the ex-ante revenue. Hence, this represents the seller’s willingness to pay for
replacing, in a given auction format, a generic bidder with a specific one whose valuation is v.

Our results also identify the type of information that is most useful for the seller. Because of single
crossing, the seller can determine if her expected revenue is higher in either the FPA or SPA simply by
knowing whether the bidder’s valuation is lower than any threshold. For example, in sequential auctions
a seller learns that a bidder has a low valuation if he observes that he lost a previous auction, even if
she does not observe any of the bids in the previous auction. Or the seller may only observe whether the
bidder has previously completed a purchase at a fixed price, even without observing the actual price.
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Our analysis contributes to the literature exploring why sellers prefer specific auction formats.19 It
is natural to interpret our results as suggesting that the seller may choose a particular auction format
to obtain a higher revenue, given her information about the special bidder. Of course, this application
requires to assume that bidders always bid as in an auction with symmetric competitors, regardless of the
format. This requires that (i) the seller’s information is private — i.e., other bidders do not know the
value of the special bidder — and (ii) bidders do not draw any inference on their competitors from the
seller’s choice of auction — e.g., because they are unsophisticated or unaware that the seller is informed
about one of the bidders.20

19For example, other studies focus on risk preferences of the seller (Waehrer et al., 1998) or bidders (Maskin and Riley,
1984), and the seller’s ability to manipulate bids (Akbarpour and Li, 2020).

20Multiple equilibria exist in a model where bidders are aware that the seller chooses either an FPA or an SPA, contingent
on the valuation v of the special bidder. For example, in the Appendix we show that, with uniformly distributed valuations,
there is an equilibrium where the seller chooses the SPA for any v > 0 and the FPA if v = 0. In the SPA, all bidders bid
their values. In the FPA, non-special bidders bid as in an auction with n − 1 symmetric bidders, while the special bidder
bids the best response to his competitors’ strategy.
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7 Appendix

7.1 Extensions

Savvy Bidders

Consider a setting where bidders are aware that the seller observes the valuation v of the special bidder
before choosing the auction format. The identity (but not the valuation) of this special bidder, as well as
the fact that the seller selects the auction format based on his valuation, is common knowledge.

Define the function E : [0, 1] → A, where A represents the set of standard auctions available to the
seller. E partitions the set of possible special bidder’s valuation, depending on the associated auction
format. By choosing the function E (v), the seller chooses an auction format for each special bidder’s
valuation. Let E−1 (a) denote the subset of special bidder’s values to which the function E associates
the auction format a, i.e. E−1 (a) = {w ∈ [0, 1] : E (w) = a}. Then, E−1 (E (v)) denotes the atom of the
partition to which v belongs (i.e., all bidders’ valuations that induce the same auction format as v).

For a standard auction a ∈ A and a set V ⊂ [0, 1], construct the function Πa
V : [0, 1]n → R as follows.

1. Equilibrium Bids. Compute an equilibrium of auction a with asymmetric bidders in V × [0, 1]n−1.
The equilibrium specifies the bidding functions ba,SV : V → R and ba,NV : [0, 1] → R, which are mutual
best responses for the special and normal bidders, respectively.

2. Equilibrium Bids Extension. Extend the equilibrium to the full space [0, 1]n, by computing, for each
v /∈ V , the best response to n− 1 bidders playing ba,NV . This means that types of the special bidders
for which the seller should not choose format a, play a best response to the equilibrium in auction
a. Define this function b̃a,SV : [0, 1] → R, noting that b̃a,SV extends ba,SV on [0, 1] \ V .

3. Interim Revenue Function. Let Πa
V : [0, 1]n → R denote the revenue in such an auction as a function

of the entire profile of bidders’ valuations. Define the interim counterpart Πa
V (v) := E [Πa

V |v1 = v],
which is also defined for v /∈ V .

In words, Πa
V represents the seller’s revenue in auction format a assuming that: i) Auction format a is

chosen only if the special bidder’s valuation is in V ; ii) Non-special bidders always play according to the
equilibrium strategy for an asymmetric auction where one competitor is in the set V ; iii) The special
bidder responds optimally to the equilibrium strategy, even when his valuation is not in V .21

Definition 10. The function E (v) is a savvy-bidder equilibrium if the following conditions are satisfied.
1. Πa

Ωa
is well-definite ∀a ∈ A, i.e. there exist bid functions as defined in Step 1 and Step 2

2. For all v ∈ [0, 1] and a ∈ A, ΠE(v)
E−1(E(v)) (v) ≥ Πa

E−1(a) (v).

In the SPA, knowing that a competitor belongs to the set V ⊂ [0, 1] does not affect bids. Therefore,
for all sets V , ΠSPA

V (v) exists and is equal to ΠSPA (v), the interim revenue studied in this paper. For
any other auction format a, computing Πa

E−1(a) requires the full characterization of the bid functions

21The rationale behind this selection criterion, as formalized in Step 2, is that only the special bidder can detect any
deviation by the seller, as he is the only one aware of his own valuation.
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with asymmetric bidders (Step 1), a problem that presents notorious difficulties.22 However, savvy-bidder
equilibria that partition [0, 1] into {0} and (0, 1] are immune to this problem, as the equilibrium played
when there is common knowledge that a bidder has value 0 coincides with the equilibrium of the auction
with n− 1 bidders. In the FPA, with uniform bidders, we can compute the best response under deviation
(Step 2) and analytically characterize the interim revenue function (Step 3).

Proposition 11. Suppose F is the uniform CDF and A = {FPA, SPA}. Then, for each n

E (v) =

FPA v = 0

SPA v > 0

constitutes a savvy-bidder equilibrium in which

bFPA,N
0 (x) =

n− 2

n− 1
x, b̃FPA,S

0 (x) = max

{
n− 1

n
x,
n− 2

n− 1

}
, bSPA,N

(0,1] (x) = b̃SPA,S
(0,1] (x) = x

Proposition 11 characterizes an equilibrium in which the seller chooses the FPA if and only if the special
bidder’s valuation is zero, and chooses the SPA otherwise. The intuition behind this strategy forming a
savvy-bidder equilibrium is as follows. In this scenario, the equilibrium bids of non-special bidders in
the FPA coincide with the equilibrium bids in a standard FPA with n − 1 bidders. This is because,
by participating in an FPA, bidders learn that the special bidder’s valuation is 0, which is equivalent
to competing with one fewer bidder (Step 1). The deviation strategy of the special bidder in the event
the FPA is chosen when he has value v > 0 is the best response to these bids (Step 2). With uniform
distribution, this best response, b̃FPA,S

0 (x), can be derived in closed form.23 Given the strategies on and
off equilibrium, we show that ΠF

0 (v) equals ΠS (v) at v = 0, while it is lower than it for all v > 0. At
v = 0, the interim revenue in the FPA coincides with the interim revenue in the SPA, as non-special
bidders bid as in an auction with one fewer competitor in both auction formats. Local to v = 0, gains are
of order n in the FPA, lower than gains of order n− 1 in the SPA, and the FPA never catches up.

Intuitively, when bidders are unaware that the seller’s choice of auction format reflects her information
about the value of the special bidder (as in our main analysis), the FPA maximizes the seller’s revenue for
low values of v. However, when bidders are aware that the seller is using information about a competitor,
observing that they play in a FPA indicates that they are competing against a bidder with a low value.
Consequently, they adjust their bids accordingly, and the equilibrium tends to favor the auction format
where interim information does not influence bidding behavior.

Comparing Proposition 11 with Theorem 3 we see that in the presence of savvy bidders, the seller
cannot exploit the information about a bidder, as the others will respond and adjust their bids leading

22For the FPA, Maskin and Riley (2000) compute the equilibrium in asymmetric auction with two asymmetric bidders,
supposing that one of the valuation is drawn from a set of the form [0, vu]. Kaplan and Zamir (2012) extend the result
considering an asymmetric auction with two bidders having uniform distributions defined on sets of the form [vi, vi]. Olszewski
et al. (2023) provide conditions for the existence of equilibria in first-price auctions with asymmetric bidders; in particular
they provide sufficient conditions for the existence of equilibria when one bidder is drawn from a set V which can be of
arbitrary form, but do not provide characterization of the equilibrium.

23Notice that the responsive part of the special bidder’s best response is the equilibrium bidding function in the FPA with
n symmetric bidders. This is also a bidders’ best response when n − 1 competitors adopt any linear bidding strategy (a
property that relies on the uniform assumption). Of course, the special bidder never bids more than bF (1, n− 1) = n−2

n−1
, the

highest bid by non-special bidders.
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to an unraveling process that ultimately favors the choice of an auction format where bidding behavior is
unaffected by information about competitors.

Notice that within the class of standard auctions only the SPA is immune to manipulations given
information about a competitor. A natural question is, then, whether only this format can be played in a
savvy-bidder equilibrium, i.e. whether the equilibrium of Proposition 11 is unique. Guided by Theorem 3,
we look in the class of cutoff strategies, that is where the seller selects a cutoff v̄ ∈ [0, 1] and chooses the
FPA if and only if v ≤ v̄ and the SPA otherwise. Notice that the equilibrium in Proposition 11 belongs
to this family, but is degenerate as it sets v̄ = 0. However, proving uniqueness (even in this family) has
proven elusive as a direct unraveling argument is not possible and equilibria in the FPA with asymmetric
bidders (Step 1 in the derivation of ΠF

[0,v̄] for v̄ > 0) do not have a closed-form representation, except in
special cases (uniform with two bidders, see Kaplan and Zamir (2012)).

General Information and Implications of Single Crossing

We have analyzed the auction format preferred by the seller when she knows that one bidder has valuation
v. A natural extension of our analysis is to assume instead that the seller has some, though not perfect,
information about v. Let F̃ be a distribution over [0, 1] that represents such information. The ex-ante
case corresponds to F̃ = F , while the analysis of this paper corresponds to F̃ = δv for some v ∈ [0, 1].24

Computing the interim revenue in this setting is a straightforward extension of our analysis since

Πa
(
F̃
)
:= E

[
Πa|v1 ∼ F̃

]
= EF̃ [Πa (v)]

Some qualitative implications of Theorem 3 do not extend to this stochastic setting. In particular,
although Theorem 3 implies that

ΠS (v)−ΠF (v) > 0 ⇒ ΠS
(
v′
)
−ΠF

(
v′
)
> 0

whenever v′ > v, improving (in FOSD sense) the distribution of the special bidder does not necessarily
make the SPA more desirable. In fact, it is possible that F̃2 first-order stochastically dominates F̃1 but25

EF̃1

[
ΠS (v)−ΠF (v)

]
> 0 and EF̃2

[
ΠS (v)−ΠF (v)

]
< 0.

There are, however, signal structures where single crossing is sufficient to determine unambiguously
the seller’s preference. For example, suppose that the seller observes only whether v is above or below a
random threshold, but is ignorant of the precise threshold and even of the distribution from which it is
drawn. This type of information emerges naturally in settings where a seller is only able to observe whether
one of his bidders has previously completed a purchase or not from a competitor, without observing the

24We still work at an interim stage and not model explicitly where F̃ comes from, though the natural interpretation is
to think of F̃ as the posterior resulting from observing some signal about the special bidder’s valuation, the ex-ante (resp.,
interim model of the main paper) model being an uninformative (resp., perfectly informative) signal.

25This observation follows immediately from the fact that the interim revenue difference is non-monotonic. Thus, shifting
mass above v̂ shrinks the advantage of the SPA. As an example of F̃1, F̃2 that yield the desired contradition, take F̃1 ={
0 p

v̂ 1− p
where p is chosen such that EF̃1

[
ΠS (v)−ΠF (v)

]
= ϵ for ϵ > 0 small. Then, F̃2 =

{
0 p

1 1− p
dominates F̃1 but

is such that EF̃2

[
ΠS (v)−ΠF (v)

]
< 0.
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price or the competitor’s pricing strategy. If the interim revenue functions of two formats intersect only
once, this information is sufficient to determine which format the seller prefers.26

Proposition 12. Suppose the seller observes s = I {v < P} for some random variable P with support in
[0, 1], independent of v but of unknown distribution. If s = 1, seller’s interim revenue is higher in the
FPA. If s = 0 seller’s interim revenue is higher in the SPA.

Proposition 12 implies that the seller can understand whether the interim revenue is higher in the FPA
or SPA by knowing only whether the special bidder has a value higher or lower than a threshold, even
without knowing the exact value of either the bidder or the threshold.

7.2 Proofs

Proof of Lemma 1

We first prove expression (2.1) by writing the revenue in auction a as the sum of all bidders’ transfers,
where the revenue and such transfers are random variables that depend on the realization of all bidders’
values. Formally, letting tai (v) denote bidder i’s transfers to the seller in auction a, given bidders’ values
v,

Πa (v) =
n∑

i=1

tai (v) .

Notice that
t (v) = Ev [t

a
i (v) |vi = v] ,

because the expectation depends neither on i, by symmetry, nor on a, by the PET. By linearity of
expectations, for any measure,

E [Πa (v)] =
n∑

i=1

E [tai (v)] .

Using the unconditional measure yields the RET because

Ev [Π
a (v)] = nEv [Ev [t

a
i (v) |vi = v]] = nEv [t (v)] ,

where the first equality follows by LIE and symmetry. Using the interim measure v|v instead (recall that,
by convention, the special bidder is bidder 1),

Πa (v) = Ev [Π
a (v) |v1 = v] = Ev [t

a
1 (v) |v1 = v] +

n∑
i=2

Ev [t
a
i (v) |v1 = v]

= t (v) +
n∑

i=2

Ex [Ev [t
a
i (v) |v1 = v, vi = x]] = t (v) + (n− 1)Ex [t

a
v (x)] ,

where the last equality follows because Ev [t
a
i (v) |v1 = v, vi = x] is the interim transfer.

26Although we state the result for FPA vs. SPA, it is immediate to extend it to any pair of auction formats (e.g., the FPA
and APA) whose interim revenue functions cross only once.
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Proof of Lemma 2

The statement is a special case of (5.2) with k = 1 and j = 2.

Proof of Theorem 3

We complete the proof in the main text by proving (4.3) and Lemma 13. Notice that∫ 1

v

∫ x

0
max {v, y} dFn−2 (y)

Fn−2 (x)
dFn−1 (x) =

∫ 1

v

[
v
Fn−2 (v)

Fn−2 (x)
+

∫ x

v
y
dFn−2 (y)

Fn−2 (x)

]
dFn−1 (x)

=

∫ 1

v

[
x−

∫ x

v

Fn−2 (y)

Fn−2 (x)
dy
]

dFn−1 (x) ,

where the second equality uses integration by parts. Now let

g (v) :=

∫ 1

v

[
x−

∫ x

v

Fn−2 (y)

Fn−2 (x)
dy
]

dFn−1 (x) .

Notice that g (1) = 0 and

g′ (v) = −vdFn−1 (v) +

∫ 1

v

Fn−2 (v)

Fn−2 (x)
dFn−1 (x)

= −dFn−1 (v)

[
v − 1− F (v)

f (v)

]
= −dFn−1 (v)ψ (v) .

Finally, by the fundamental theorem of calculus:

g (v) = g (1)−
∫ 1

v
g′ (w) dw

=

∫ 1

v
ψ (w) dFn−1 (w) .

Lemma 13. ∆(v) has a maximum at v = 0 and ∆(0) > 0.

Proof. We denote by bF (x,R, n) be the equilibrium bidding function in the FPA with n bidders and
reserve price R. Integration by parts yields∫ 1

v
bF (x, v, n) dFn (x) =

∫ 1

v
ψ (x) dFn (x) ,

for every n. Therefore, using (4.3),

∆(v) =

∫ 1

v

[
bF (x, 0, n)− bF (x, v, n− 1)

]
dFn−1 (x) .

Since bF (x, 0, n)− bF (x, 0, n− 1) > 0, this implies that ∆(0) > 0.
To show that v = 0 is a local maximum, write ∆′(v) = −∆1 (v) ·∆2 (v) where ∆1 (v) = bF (v)− ψ (v)
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and ∆2 (v) = dF (v)n−1. By the Leibniz rule, for k ≥ 1,

∆(k−1) (v) =

k−1∑
j=0

(
j

k

)
∆

(k−j)
1 (v)∆

(j)
2 (v) .

Notice that, for all j < n− 1 , ∆(j)
2 (0) ∝ F (0) = 0. Then, ∆(k) (0) = 0 for all k < n− 1 while

∆(n−1) (0) =

(
n− 2

n− 1

)
∆1 (0)∆

(n−2)
2 (0) ∝ −∆1 (0) = ψ (0) < 0,

proving that 0 is a local maximum. Since the other critical point bF (v) = ψ (v) must be a minimum, 0 is
also the global maximum.

Proof of Proposition 4

Suppose that v < R. Then,

ΠF (v) = Pv|v
(
v(1) > v

)
· Ev|v

[
bF
(
v(1), R

)
|v(1) > R

]
and

ΠS (v) = Pv|v
(
v(1) > R

)
· Ev|v

[
max

{
v(2);R

}
|v(1) > R

]
.

Therefore, when v < R, the IRFs of the FPA and SPA do not depend on v and the IRF of the FPA
is strictly higher than the SPA. At v = R the IRFs of both formats have an upward jump equal to
R · Pv|v

(
v(1) < R

)
.

For v > R, Lemma 2 yields

∆(v,R) =

∫ 1

v
bF (x,R)− ψ (x) dFn−1 (x) ,

and the arguments in the proof of Theorem (3) without reserve directly extend, giving a unique minimum
at bF (x,R) = ψ (x) and hence a unique ṽ ̸= 1 such that ∆(ṽ, R) = 0.

Proof of Proposition 7

Let
∆k (v) ≡ Πk+1 (v)−Πk (v) .

To prove the statement, we show that, for all k, ∆k (v) > 0 at v = 0, ∆k (v) < 0 for v ≈ 1 and ∆k (1) = 0.
We start by establishing the following result.

Lemma 14. For all k, j with k ≥ j, E
[
Πk|Πj

]
= Πj. Moreover,

∆k (v) =

n∑
i=k+1

Pv|v
(
v(i) = v

) [
E
(
Πk+1|v(i) = v

)
− E

(
Πk|v(i) = v

)]
. (7.1)

Proof. Since Πk = bk
(
x(k)

)
and bk (·) is a strictly monotonic function, conditioning on Πk is equivalent to
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conditioning on the realization of the kth-order statistic — i.e.

E
[
Πk+1|Πk

]
= E

[
Πk+1|x(k) =

(
bk
)−1 (

Πk
)]
.

We first prove that E
[
Πk|Πk−1

]
= Πk−1 by showing that

E[bk+1
(
x(k+1)

)︸ ︷︷ ︸
Πk+1

|x(k)] = x = bk (x)︸ ︷︷ ︸
Πk

,

using the following result in probability theory (see, e.g. Casella and Berger, Ex. 5.27.a).

Fact 15. The pdf of the (k + j) th-order statistic, conditioned on the realization of the kth-order statistic,
x, is the pdf of the jth-order statistic from a sample of (n− k) draws from the distribution truncated at x.

Let Gy
(j,n) (x) denote the CDF of the jth-order statistic among n draws below the threshold y. By the

PET, ∫ v

0
bk (x) dGv

(k−1,n−1) (x) =

∫ v

0
bk+1 (y) dGv

(k,n−1) (y) , (7.2)

where the RHS (LHS) is the expected payment conditional on winning of a generic bidder with valuation
v in the (k + 1)th(kth) -price auction. Applying the LIE,∫ v

0
bk+1 (y) dGv

(k,n−1) (y) =

∫ v

0
E
[
bk+1 (y) |x

]
dGv

(k−1,n−1) (x) . (7.3)

Combining equations (7.2) and (7.3) and differentiating with respect to v yields

bk (v) = E
[
bk+1 (y) |v

]
,

and the result follows from Fact 15. The first statement of Lemma 14 follows from repeatedly applying
the LIE:

E[Πk|Πj ] = E[. . .

Πk−2︷ ︸︸ ︷
E[E[Πk|Πk−1]︸ ︷︷ ︸

Πk−1

|Πk−2] . . . |Πj ] = Πj .

We now prove (7.1). Using the Law of Total Probability,

∆k (v) =
n∑

i=1

Pv|v
(
v(i) = v

) [
E
(
Πk+1|v(i) = v

)
− E

(
Πk|v(i) = v

)]
.

However, all terms in the summation up to i = k are equal to 0. The reason is that, by strict monotonicity
of the bidding function, E

[
Πk|v(i) = v

]
= E

[
Πk|Πi = bi (v)

]
and, as we have shown,

E
[
Πk+1|v(i) = v

]
= Πi = E

[
Πk|v(i) = v

]
∀i ≤ k.
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Consider first v = 0.

∆k (0) = Ev|0

[
Πk −Πk+1

]
= Ev|0

[
Ev|0

[
Πk −Πk+1|Πk

]]
> Ev|0

[
Πk − Ev

[
Πk+1|Πk

]]
= Ev|0

[
Πk −Πk

]
= 0.

The first equality is a definition, the second equality is the LIE, the inequality uses v > v|0, and the last
line uses Lemma 14.

Consider now v ≈ 1. We establish that, for all k, there is a neighborhood of 1 where ∆k (v) < 0. By
a Taylor expansion of order N around 1,

∆k (v) =

N∑
j=0

∆k (1)(j)
(v − 1)j

j!
+ o

(
(v − 1)N

)
,

where ∆k (v)(j) denotes the jth-order derivative of ∆k (v). Since ∆k (1) = 0, the sign of the the function
∆k in a neighborhood of 1 is determined by the sign of its first non-zero derivative at 1. By Leibniz’s rule,

∆k (v)(j) =
n∑

i=k+1

j∑
s=0

(
j

s

)
P
(
v(i) = v

)(s)
∆k

i (v)
(j−s) , (7.4)

where ∆k
i (v) ≡ E

(
Πk|v(i) = v

)
−E

(
Πk+1|v(i) = v

)
. Since ∆k

i (v) has finite derivatives, the corresponding
term in (7.4) is equal to 0 if P

(
v(i) = v

)(s)
= 0.

Lemma 16. For all i,
Pv|v

(
v(i) = v

)(s)∣∣
v=1

= 0 ∀s < i− 1,

and
(−1)i−1 Pv|v

(
v(i) = v

)(i−1)∣∣
v=1

> 0.

Proof. For all k and i, E
[
Πk|v(i) = v

]
is n times continuously differentiable with finite derivatives. Using

Pv|v
(
v(i) = v

)
= (1− F (v))i−1 F (v)n−i

(
n− 1

i− 1

)
and Leibniz’s rule, we have

Pv|v
(
v(i) = v

)(j)
=

(
n− 1

i− 1

) j∑
s=0

(
j

s

)[
(1− F (v))i−1

](s) [
F (v)n−i

](j−s)
.

Therefore, for all s < i−1,
[
(1− F (v))i−1

](s)∣∣
v=1

= 0 because 1−F (1) = 0, and Pv|v
(
v(i) = v

)(s)∣∣
v=1

=

0 because it is the sum of addenda that are all zero. By contrast,[
(1− F (v))i−1

](i−1)∣∣
v=1

= (i− 1)! (−1)i−1 f (1)i−1 ,
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and hence Pv|v
(
v(i) = v

)(i−1)∣∣
v=1

∝ (−1)i−1.

Lemma 16 implies that, for all j < k, ∆k (1)(j) = 0 since all addenda in (7.4) are equal to 0. Moreover,
for j = k the only non-zero addendum in (7.4) at v = 1 is

P
(
v(k+1) = v

)(k)
∆k

k+1 (v)

∣∣∣∣
v=1

.

Notice that ∆k
k+1 (v) = E

[
bk (v′) |v′ > v

]
− bk+1 (v) and converges to bk (1) − bk+1 (1) < 0 as v → 1.

Therefore, by Fact 16,
∆k (1)(k) = P

(
v(k+1) = 1

)(k)
∆k

k+1 (1) ∝ (−1)k−1 .

Summing up, we have shown that

∆k (1)(j) (−1)j =

0 if j < k

< 0 if j = k
(7.5)

which, using (7.4), proves the statement that ∆k (v) < 0 for v ≈ 1.

Proofs of the Statements in Section 5.3

The IRFs of the FPA and APA cross only once. To see this notice that, by (5.4), the IRF of the PB-P is

ΠPB-P (v) = t (v) + (n− 1)E
[
bPB-P (x)Pv|x,v (x ∈ P)

]
= t (v) + (n− 1)E

[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
. (7.6)

Ex-interim, the seller obtains from the special bidder his transfer. From each other bidder, she obtains the
transfer weighted by the ratio of the likelihood of belonging to the set of payers, conditional on v, relative
to its ex-ante counterpart.

In the APA, P = [n] and Pv|v(x∈P)

Pv(x∈P) = 1 for all v and x. In the FPA, P = {1} and

Pv|v (x ∈ P)

Pv (x ∈ P)
=


Fn−2(x)
Fn−1(x)

= 1
F (x) x > v

0 x < v

Therefore,

ΠFPA (v)−ΠAPA (v) = (n− 1)

[
E
[
t (x)

F (x)
I [x > v]

]
− E [t (x)]

]
.

Notice that ΠFPA (0)−ΠAPA (0) ∝ E
[

t(x)
F (x)

]
− E [t (x)] > 0 and ΠFPA (1)−ΠAPA (1) ∝ −E [t (x)] < 0.

Moreover, the difference is monotonically decreasing in v, proving single crossing.
Compare now the APA with other WPAs. By (7.6), ΠAPA (0) = (n− 1)E [t (x, n)]. By contrast, since

at v = 0 the SPA is equivalent to any efficient auction with n−1 bidders,ΠAPA (0) = (n− 1)E [t (x, n− 1)].
Therefore,

ΠAPA (0)−ΠSPA (0) ∝ E [t (x, n)− t (x, n− 1)] .
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Proof of Proposition 8

By (7.6),

ΠPB-P (v) > ΠPB-P ′
(v) ⇔ E

[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
> E

[
t (x)

Pv|x,v (x ∈ P ′)

Pv|x (x ∈ P ′)

]
. (7.7)

The following Lemma proves the statements by showing that, for every x, the ratio Pv|x,v(x∈P)

Pv|x(x∈P) is highest
(lowest) in the FPA (LPA) than in any other PBA when v = 0, while it is highest (lowest) in the LPA
(FPA) when v = 1. Since t (x) is positive, this implies the result.

Lemma 17. For all x and P,

Pv|x,0
(
x = v(1)

)
Pv|x

(
x = v(1)

) >
Pv|x,0 (x ∈ P)

Pv|x (x ∈ P)
>

Pv|x,0
(
x = v(n)

)
Pv|x

(
x = v(n)

) (7.8)

and
Pv|x,1

(
x = v(n)

)
Pv|x

(
x = v(n)

) >
Pv|x,1 (x ∈ P)

Pv|x (x ∈ P)
>

Pv|x,1
(
x = v(1)

)
Pv|x

(
x = v(1)

) . (7.9)

Proof. Let pnj (x) be the probability that x is the jth-highest among n bidders — i.e., pnj (x) = Pv|x
(
x = v(j)

)
— so that Pv|x,0

(
x = v(j)

)
= pn−1

j (x) and Pv|x,1
(
x = v(j)

)
= pn−1

j−1 (x). Then,

Pv|x,0
(
x = v(1)

)
Pv|x

(
x = v(1)

) =
pn−1
1 (x)

pn1 (x)
,

Pv|x,0 (x ∈ P)

Pv|x (x ∈ P)
=

∑
j∈P p

n−1
j (x)∑

j∈P p
n
j (x)

.

Notice that
pn−1
j (x)

pnj (x)
=

(1− F (x))j−1 F (x)n−j−1 (n−2
j−1

)
(1− F (x))j−1 F (x)n−j (n−1

j−1

) =
n− j

F (x) (n− 1)
. (7.10)

This ratio is decreasing in j, which proves (7.8).27

Similarly,

Pv|x,1
(
x = v(n)

)
Pv|x

(
x = v(n)

) =
pn−1
n−1 (x)

pnn (x)
,

Pv|x,1 (x ∈ P)

Pv|x (x ∈ P)
=

∑
j∈P p

n−1
j−1 (x)∑

j∈P p
n
j (x)

and
pn−1
j−1 (x)

pnj (x)
=

(1− F (x))j−2 F (x)n−j (n−2
j−2

)
(1− F (x))j−1 F (x)n−j (n−1

j−1

) =
j − 1

(1− F (x)) (n− 1)
. (7.11)

This ratio is increasing in j, which proves (7.9) (see footnote 27).

Finally, we show that limv→1Π
LPA (v) − ΠPB-P (v) = ∞. First, from the proof of Lemma (17),

ΠPB-maxP (1) > ΠPB-P (1). Consider single-payer auctions, and compare the PB- {j} and PB- {k}. Using
27We use the following algebraic fact (whose proof follows from a simple induction argument on the cardinality of M). Let

{ai}Ni=1 and {bi}Ni=1 be sequences of positive numbers such that ai
bi

is (strictly) decreasing in i. Then for, any M ⊆ {1, . . . , N},
a1
b1

≥
∑

i∈M ai∑
i∈M bi

≥ aN
bN

, with strict inequality if M ̸= {1}. Moreover, if min {i : i ∈M} ≥ j, then aj

bj
≥

∑
i∈M ai∑
i∈M bi

, with strict
inequality if M ̸= {j}.
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(7.7) and (7.11),

ΠPB-{j} (1)−ΠPB-{k} (1) = E

[
t (x)

(
Pv|x,1

(
v(j) = x

)
Pv|x

(
v(j) = x

) −
Pv|x,1

(
v(k) = x

)
Pv|x

(
v(k) = x

) )]

= E
[
t (x)

(
j − 1

(1− F (x)) (n− 1)
− k − 1

(1− F (x)) (n− 1)

)]
=
j − k

n− 1
E
[

t (x)

1− F (x)

]
. (7.12)

Notice that, for generic l ∈ (0, v),

E
[

t (x)

1− F (x)

]
= lim

v→1

∫ v

0

t (x)

1− F (x)
f (x) dx

> t (l) lim
v→1

∫ v

l

f (x)

1− F (x)
dx

= −t (l) lim
v→1

∫ v

l
d log (1− F (x))

∝ −t (l) lim
v→1

log (1− F (v)) = ∞, (7.13)

where the inequality holds because the function t(x)
1−F (x)f (x) is bounded in the closed interval [0, v] and

0 < t (l) ≤ t (x) ≤ t (1) < ∞. Therefore, if n /∈ P then ΠPB-{n} (1) − ΠPB-maxP (1) diverges and
ΠPB-maxP (1) > ΠPB-P (1).

For the case n ∈ P, let j = maxP \ {n}. Then, from the proof of Lemma (17), ΠPB-{n,j} (1) >

ΠPB-P (1). Moreover,
ΠPB-{n} (1)−ΠPB-{n,j} (1)

= E

[
t (x)

(
Pv|x,1

(
v(n) = x

)
Pv|x

(
v(n) = x

) −
Pv|x,1

(
v(j) = x

)
+ Pv|x,1

(
v(n) = x

)
Pv|x

(
v(j) = x

)
+ Pv|x

(
v(n) = x

) )]

= E

[
t (x)

(
pn−1
n−1 (x)

pnn (x)
−
pn−1
j−1 (x) + pn−1

n−1 (x)

pnj (x) + pnn (x)

)]

= E

t (x)
 F (x)n−j

[(
n−1
j−1

)
−
(
n−2
j−2

)]
(1− F (x))

(
F (x)n−j (n−1

j−1

)
+ (1− F (x))n−j

)
 ∝ E

[
t (x)

1− F (x)

]
, (7.14)

where the asymptotic comparison holds because F (x)n−j (n−1
j−1

)
+ (1− F (x))n−j is bounded away from 0.

As the last term is infinite by (7.13), ΠPB-{n} (1)−ΠPB-{n,j} (1) diverges and ΠPB-{n,j} (1) > ΠPB-P (1).
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Proof of Proposition 9

Let the increasing function ba : [0, 1] → R denote the equilibrium bidding function in auction a. By PET
and using Fact 15 (and the corresponding notation), for all v,

t (v) =
∑
j∈Pa

pjn (v)E [ba (w) |w is Ta (j)− j of n− j below v] (7.15)

=
∑
j∈Pa

pjn (v)

∫ v

0
ba (w) dGv

(Ta(j)−j,n−j) (w)

because, by definition, in auction a a bidder with value v pays if and only if he is an order statistic j ∈ Pa

(so that there are n− j bidders with values lower than v) and, in this case, pays the bid submitted by the
(lower) bidder Ta (j). To maintain this compact notation, we use following conventions (so that unfeasible
order statistics have zero probability and pick the maximum/minimum of the support):

1. E
[
ba (w) |w is 0th of n below v

]
= ba (v)

2. E
[
ba (w) |w is nth of n− 1 below v

]
= ba (0) = 0

3. pjn (·) = 0 if j > n or j < 1.

Moreover, notice that we can write the interim transfer tav (x) as

tav (x) =


∑

j∈Pa
pj−1
n−1 (x)E [ba (w) |w is Ta (j)− j of n− j below x] if x < v∑

j∈Pa
pjn−1 (x)E [ba (w) |w is Ta (j)− j of n− j − 1 below x and one is v] if x > v

Therefore, at v = 0, ta0 (x) =
∑

j∈Pa
pjn−1 (x)E [ba (w) |w is Ta (j)− j of n− j − 1 below x]: when a bidder

with value x is the jth-order statistic and pays, his expected payment is the bid submitted by the lower
bidder Ta (j), taking into account that there are n− j − 1 bidders with unknown values lower than x and
one bidder with value 0. Moreover, using (5.4) and (7.10), tFPA

0 (x) = t(x)
F (x) .

Recall that Πa (v) = t (v) + (n− 1)
∫ 1
0 t

a
v (x) dF (x). The result at v = 0 follows because, for every

standard auction a and x ∈ (0, 1],28

tFPA
0 (x) > ta0 (x) ⇔ t (x)

F (x)
>
∑
j∈Pa

pjn−1 (x)E [ba (w) |w is Ta (j)− j of n− j − 1 below x]

⇔ t (x) >
∑
j∈Pa

pjn−1 (x)F (x)E [ba (w) |w is Ta (j)− j of n− j − 1 below x]

⇔
∑
j∈Pa

pjn (x)E [ba (w) |w is Ta (j)− j of n− j below x] >

>
∑
j∈Pa

n− j

n− 1
pjn (x)E [ba (w) |w is Ta (j)− j of n− j − 1 below x] ,

28A type x = 0 transfers nothing in all standard auctions, so we can disregard this case and assume F (x) > 0.
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where the last step uses (7.15) and the fact that pjn−1 (x)F (x) = n−j
n−1p

j
n (x) (see (7.10)). The inequality

holds because n−j
n−1 < 1 for all j > 1 and, for all x and j,

E [ba (w) |w is Ta (j)− j of n− j below x] ≥ E [ba (w) |w is Ta (j)− j of n− j − 1 below x]

because ba is increasing and the kth-order statistic of n independent draws FOSD the kth-order statistic
of n′ < n independent draws from the same distribution. Moreover, the inequality is strict except for
degenerate cases induced by our conventions — e.g., if Ta (j) = j so that both expectations are equal to
ba (x).

Computations of the Interim Revenue Functions in Figure 5.2

Let n = 3 and v ∼ U [0, 1], so that t (v) = 2
3v

3. The bid and interim revenue functions in the FPA, SPA
and APA are standard and omitted.

Consider first the PB- {2} and PB- {3}. By (5.3), the bidding functions are

bPB-{2} =
t (v)

Pv|v
(
v(2) = v

) =
v2

3 (1− v)
,

and

bPB-{3} =
t (v)

Pv|v
(
v(3) = v

) =
2

3

v3

(1− v)2
.

We compute the interim revenue using (5.5). The likelihood rations are

Pv|x,v
(
v(2) = x

)
Pv|x

(
v(2) = x

) =

 1
2x if x > v

1
2(1−x) if x < v

Pv|x,v
(
v(3) = x

)
Pv|x

(
v(3) = x

) =

0 if x > v

1
1−x if x < v

and the interim revenues are

ΠPB-{2} (v) = t (v) +
4

3

[∫ v

0

x3

2 (1− x)
dx+

∫ 1

v

x2

2
dx
]

ΠPB-{3} (v) = t (v) +
4

3

[∫ v

0

x3

1− x
dx
]
.

It is immediate to check that

ΠFPA (0) > ΠPB-{3} (0) > ΠPB-{3} (0) = 0

and
lim
v→1

ΠPB-{2} (v) = lim
v→1

ΠPB-{3} (v) = lim
v→1

ΠPB-{3} (v)−ΠPB-{2} (v) = ∞.

Consider now the standard auction with P = {2} and T (2) = 3, which we denote compactly as the
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2, 3 auction. By the PET,

bPB-{2} (v) v =

∫ v

0
b2,3 (w) dw,

and hence the bidding function is

b2,3 (v) =
v2 (3− 2v)

3 (1− v)2
.

The interim revenue function is

Π2,3 (v) = Pv|v
(
v(2) = v

)
E
[
b2,3 (w) |w < v

]
+

+ Pv|v
(
v(3) = v

)
E
[
b2,3 (w) |w is second below v

]
+ Pv|v

(
v(1) = v

)
b2,3 (v)

= Pv|v
(
v(2) = v

) 1
v

∫ v

0
b2,3 (w) dw +

∫ v

0
2 (v − w) b2,3 (w) dw + (1− v)2 b2,3 (v)

= t (v) +

∫ v

0
2 (v − w) b2,3 (w) dw.

It is immediate to see that Π2,3 (0) = 0 < ΠPB-{2} (0). The interim revenue difference with the associated
PBA is

Π2,3 (v)−ΠPB-{2} (v) = Pv|v
(
v(3) = v

)(
b2,3 (v)−

∫ 1

v
bPB-{2} (w) 2 (1− w) dw

)
=
v2 (3− 2v)

3
−
∫ 1

v

2

3
w2dw,

from which it follows that limv→1Π
2,3 (v)−ΠPB-{2} (v) = 1

3 > 0.
Finally, consider the standard auction with P = {1, 2, 3} and T (1) = T (2) = T (3) = 3, which we

denote compactly as the All-Pay-Last (APL). The associated PBA is the APA so, by the PET,

bAPA (v) =
2

3
v3 = E

[
bAPL (w) |w is last of 3 draws when one is v

]
= bAPL (v) (1− v)2 +

∫ v

0
bAPL (w) 2 (1− w) dw.

Differentiating and simplifying, we obtain the differential equation d
dv b

APL (v) = 2v2

(1−v)2
, which implies

bAPL (v) =
2v (2− v)

1− v
+ 4 log (1− v) ,

a divergent bid. This is natural: although the winning bidder pays, he does not pay his own bid, and
bounded bids unravel in any equilibrium. However, in this case the interim revenue remains finite. To see
this, write29

ΠAPL (v) = 3E
[
bAPL (w) |w is last of 3 draws when one is v

]
= 3t (v) .

Recall that the IRF of the APA, the associated PBA, is ΠAPA (v) = t (v) + 2E [t (x)]. Hence, ΠAPL (v)−
29Notice how none of the arguments for the IRF rely on the uniform distribution (or the number of bidders); the APL is

the auction format in which ta (v) = t (v), that is when given the information that the special bidder is v
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ΠAPA (v) = 2 (t (v)− E [t (x)]) from which we immediately get interim dominance (domination) of the
PBA at 0 (at 1, strict) and single crossing of the IRFs.

Online Appendix

Proof of Proposition 11

To show that E is a savvy-bidder equilibrium we need

ΠF
0 (0) ≥ ΠS

(0,1] (0) (7.16)

and
ΠF

0 (v) ≤ ΠS
(0,1] (v) ,∀v > 0. (7.17)

The argument made in the text establishes bSPA,N
(0,1] (x) = b̃SPA,S

(0,1] (x) = x and that

ΠS
(0,1] (v) = ΠS (v) =

n− 2

n
+ vn−1 − n− 1

n
vn. (7.18)

We construct ΠF
0 following the three steps in its definition.

Step 1. The FPA is chosen only when v = 0, so non-special bidders play bFPA,N
0 (x), the equilibrium

in the n− 1 bidders auction, while bFPA,S
0 is defined only on {0}.

Step 2. If the seller chose the FPA even when v > 0 the special bidder chooses

b̃FPA,S
0 (v) = argmax

b
(v − b)P

(
b > max bFPA,N

0 (x)
)

= argmax
b

(v − b)max

{(
n− 1

n− 2
b

)n−1

, 1

}

if
(
n−1
n−2b

)n−1
< 1 then the problem is equivalent to maximizing (v − b) bn−1, yielding the equilibrium bid

with n bidders; bidding above the value n−2
n−1 that ensures to win is dominated so the equilibrium bid is

capped at this level and we obtain b̃FPA,S
0 (v) = max

{
n−1
n v, n−2

n−1

}
.

Step 3. By deviating to the FPA when v > 0, the seller obtains max
{
b̃FPA,S
0 (v) , n−2

n−1y
}

, where y
denotes the maximum of the valuation of the non-special bidders.30 That is

ΠF
0 =

b̃
FPA,S
0 (v) if n−2

n−1y < b̃FPA,S
0 (v)

n−2
n−1y else

30Notice that the equilibrium is inefficient whenever v < y < (n−1)2

n(n−2)
v; by bidding more aggressively than his competitors,

the special bidder wins too often.
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which yields interim revenue

ΠF
0 (v) =


n−1
n v

(
(n−1)2

n(n−2)v
)n−1

+
∫ 1

(n−1)2

n(n−2)
v

n−2
n−1ydy

n−1 v < n(n−2)

(n−1)2

n−2
n−1 else

= min

{
n− 2

n
+

(n− 1)2n−1

(n− 2)n−1 nn+1
vn,

n− 2

n− 1

}
.

Comparing with (7.18) we obtain that ΠS
(0,1] (0) = ΠF

0 (0) = 0, which establishes (7.16). Moreover, if

v ≤ n(n−2)

(n−1)2
then

ΠS
(0,1] (v)−ΠF

0 (v) ∝ 1−

(
n− 1

n
+

(n− 1)2n−1

(n− 2)n−1 nn+1

)
v

which is positive for all v ∈
[
0, n(n−2)

(n−1)2

]
since it is decreasing in v and positive at v = n(n−2)

(n−1)2
for all n ≥ 2.

If v > n(n−2)

(n−1)2
, then ΠS

(0,1] (v) > ΠS
(0,1]

(
n(n−2)

(n−1)2

)
> ΠF

0

(
n(n−2)

(n−1)2

)
= ΠF

0 (v) as ΠF
0 is flat in that region.

Therefore, ΠS
(0,1] (v) > ΠF

0 (v) for all v > 0, which establishes (7.17) and completes the proof.

Proof of Proposition 12

Using the LIE,

Es=1

[
ΠF (v)−ΠS (v)

]
= EP

[
E
[
ΠF (v)−ΠS (v) |v < P

]]
we show that this expectation is positive no matter the distribution of P , which is unknown to the seller,
by showing that for each realization p of P ,

E
[
ΠF (v)−ΠS (v) |v < p

]
> 0.

using independence, we get

E
[
ΠF (v)−ΠS (v) |v < p

]
=

1

F (p)

∫ p

0
ΠF (v)−ΠS (v) dF (v)

= − 1

F (p)

∫ 1

p
ΠF (v)−ΠS (v) dF (v)

where the last line uses
∫ 1
0 Π

F (v)−ΠS (v) dF (v) = 0. Let ṽ be the threshold from Theorem 3 such that
sign

(
ΠF (v)−ΠS (v)

)
= sign (ṽ − v). If p < ṽ, then ΠF (v) − ΠS (v) > 0 for all v < p, implying that

the integral in the first line is positive. If p > ṽ then ΠF (v) −ΠS (v) ≤ 0 for all v > p (and strictly for
v < 1),31 implying that the integral in the second line is positive. The argument for s = 0 is the same.

31If P ∼ δ1, then v < P is uninformative and auctions are equivalent by the RET.
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