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Optimal Allocation Strategies in a Discrete-Time Exponential Bandit

Problem

by Audrey Hu and Liang Zou

Abstract. This study addresses a theoretic-bandit problem involving a "safe" and

a "risky" arm across countable periods. The agent, with one time unit per period,

strategically allocates time between these two arms aiming at achieving a "break-

through." The risky arm’s type is unknown, which can be "good" or "bad", and

breakthrough depends on proving it to be good. Breakthrough probability is an

exponential function of the allocated time, given the risky arm is good. Departing

from the “either-or”binary choices in previous studies, we explore smooth alloca-

tion strategies in the [0, 1] range. A methodological contribution of this study lies

in a problem transformation that enhances tractability, going beyond the standard

Bellman-equation approach for bandit problems. The re-formulation of the problem

allows us to obtain clear analytical solutions and comparative statics results. In

general, we find that the optimal allocation plan significantly differs from binary

strategies, and stopping after any finite periods of unsuccessful trials is suboptimal.

Keywords: two-armed bandit; learning; discrete time; stopping; exponential

distribution.



1 Introduction

This paper examines a discrete-time, two-armed bandit problem, embodying the

core economic trade-off between the exploitation of a "safe" arm with a certain

return and the exploration of a "risky" arm with an uncertain yield. The risky arm

may be categorized as "good", possessing a present value that surpasses the safe

arm, or "bad", thereby deeming it devoid of value. In each period, an economic

agent, equipped with a single unit of time, must prudently allocate this resource

between the two arms. The problem culminates in success if a "breakthrough"

transpires– that is, the risky arm is ascertained to be "good". If the arm is "bad",

the agent will perpetually fail to achieve a breakthrough, leading to the squandering

of all exploration time. This bandit model serves as an apt metaphor for a diverse

range of real-world challenges, spanning from R&D, pharmaceutical trials, mineral

site exploration, to the pursuit of proof or evidence to substantiate an unproven

conjecture.

Despite extensive research, the economic applications of the model have pre-

dominantly been constrained to discrete choice sets or convex/linear payoff func-

tions. Consequently, optimal solutions often feature a "bang-bang" strategy: allo-

cating all available time to either the safe or the risky arm, coupled with an optimal

stopping time in the absence of a breakthrough. Consistent with the renowned

index theorem by Gittins and Jones (1974), these "bang-bang" strategies are rel-

atively straightforward to analyze, eliminating the need to grapple with interior

solutions (see, for instance, Bergemann and Valimaki 2010 for a survey). However,

in many scenarios, the decision variables of interest are naturally continuous. For

example, how much capital should a company allocate to R&D from its retained

earnings? How much time should an academic devote to pursuing a highly uncer-

tain but potentially groundbreaking research idea? What should be the trial prices

a monopolistic firm might offer for a new product or service to learn the consumer

demand function? In these situations, when the objective functions are concave,
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we should anticipate the optimal allocation policies to be characterized by interior

solutions. Indeed, the scarcity of research on interior solutions to bandit problems

is more a reflection of analytical complexity rather than a lack of relevance. For

instance, Rothschild (1974), in his seminal work applying bandit theory to stores’

learning about consumer demand by changing prices over time, concluded: "I as-

sumed ... that there were only two prices that stores could charge ... However prices

are often considered to be naturally continuous variables, and it is not clear that

Theorems I and II hold when they are. This seems an open and diffi cult question

[p.200]."

A key methodological contribution of our study lies in demonstrating that the

class of two-armed bandit problems under investigation, i.e., those involving either

a "breakthrough" or "nothing" (henceforth "BorN"), can be formulated in tractable

forms by a transformation lemma (see Lemma 1). The conventional Bellman-

equation approach to bandit problems typically involves working on the future pos-

terior beliefs as state variables. When allocation strategies affect the subsequent

posterior beliefs, the problem rapidly becomes intractable. Our re-formulation of

the problem reveals that, at least for the BorN bandits, tracking the future pos-

teriors is a redundant exercise. The insight is that the continuation payoffs in the

future depend on unrealized posteriors, and by the law of iterated expectations,

the expected continuation payoffs can be calculated without invoking the poste-

rior conditional probabilities. By transforming the problem, we are able to derive

clear analytical solutions and perform comparative statics exercises in a transpar-

ent manner. We show that when the conditional probability of a breakthrough is

an exponential function of the time allocated to the risky arm, no indexing policy

combined with a stopping time can be optimal. The optimal allocation plan in our

setting is a gradually declining sequence (αt)
∞
t=1 in (0, 1] that converges to zero as t

tends to infinity, given no breakthrough has occurred.

The economic literature on bandit problems has largely focused on continuous

time in recent years. As Bolton and Harris (1999) acknowledged in their seminal
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paper: "We have chosen a continuous-time formulation of the two-armed bandit

problem because of its tractability [p. 350]." In a BorN setting with exponential

bandits, Malueg and Tsutsui (1997) were the first to characterize optimal allocation

strategies by interior solutions, assuming a quadratic cost function. They observed

the possibility of no stopping but assumed it away by introducing a fixed cost com-

ponent in the cost function. Keller, Rady, and Cripps (2005), in their seminal work,

formulated the BorN problem in continuous time and derived the optimal solution

for exponential bandits. This is the case where, given any positive and constant

proportion of time allocated to the risky arm, the probability of a breakthrough

has a constant hazard rate that is positive for the good type and zero for the bad

type. The solution features a bang-bang strategy: there exists a cut-off posterior

belief such that it is optimal to allocate full time to the risky arm when the poste-

rior is above the cut-off, and shift to allocating full time to the safe arm when the

posterior drops below the cut-off. The strategy implies an optimal stopping time:

given no breakthrough by that time, no resource will be allocated to the risky arm

anymore. The foundation of their optimal/effi cient result is the fact that the ex-

ponential distribution reduces to an instantaneous linear function of the allocation

variable. The Keller, Rady, and Cripps’(2005) continuous-time BorN framework

for exponential bandits has since been adopted by numerous follow-up studies. The

bang-bang strategy remains a common feature of these studies—either by assumption

(e.g., Awaya and Krishna 2021; Thomas 2021) or by derivation (e.g., Besanko and

Wu 2013; Besanko, Tong, and Wu 2018).

Bergemann and Hege (1998, 2005) studied the financing of innovation problems

in discrete-time BorN bandits. Assuming the probability of breakthrough to be

linear in the level of investment in innovation, they derived an optimal bang-bang

strategy and focused on the effects of financing decisions on the stopping time.

Rosenberg et al. (2007) and Murto and Valimaki (2011) analyzed the two-armed

exponential bandit problem in discrete time, assuming the action choice is binary.

Our analysis of the discrete-time counterpart of the exponential bandit prob-
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Figure 1: R&D spending in 2020 as a percentage of revenue by industry [S&P500].

Source: https://einvestingforbeginners.com/rd-spending-as-a-percentage-of-revenue-

by-industry/

lem reveals a very different story. The bang-bang strategy in discrete time is, in

general, suboptimal when the action set is [0, 1] rather than {0, 1}. Moreover, for

the exponential bandit problem considered, the optimal allocation strategy features

a "never give up" attitude toward exploring the risky arm. A rough intuition for this

result is that when αt is suffi ciently close to 0, it does not affect the change in the

posterior very much. In turn, when the posterior does not change much, it does not

cause the subsequent allocation to change much. Consequently, as t tends toward

infinity, αt gradually declines toward 0 but there exists no “last period” in which

αt would drop to 0 completely. Obviously, this cannot happen with the bang-bang

strategies.

In the framework of binary decisions, since allocations are a constant number

(0 or 1) in each per period, comparative statics analyses typically center around

effects on the optimal stopping time, or on the total amount of resources invested in
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exploring the risky arm. One appeal of our study is that it offers comparative statics

predictions directly related to the level of resources allocated to the exploration of

the unknown, thereby enabling us to adequately address empirical questions such as

"What determines the cross-industry differences in R&D spending as a percentage

of revenue?" For instance (see Figure 1), among the S&P 500 companies in 2020,

the biotechnology industry tops the list of having invested an average of $30.3%

of their revenue on R&D, while some other industries virtually invested nothing

(Sather, 2021). In short, the analysis and results presented in this study complement

and significantly enrich the state-of-the-art knowledge about the BorN exponential

bandit problems.

2 The Model

Time is discrete, with countable periods t = 1, 2, .... A decision maker (henceforth,

agent), endowed with one unit of a perfectly divisible resource (henceforth, time) per

period, faces an identical two-armed bandit problem. One arm is “safe;”the other

is “risky.”The agent must allocate in each period t a fraction of his time, denoted

at ∈ [0, 1], to the risky arm and 1−at to the safe arm. In each period t, the safe arm

yields a known payoff that is proportional to the fraction of the resource allocated

to it, i.e., (1 − at)`. The discount factor is δ ∈ (0, 1). Thus, the safe arm offers a

present value of L = `/(1 − δ) when the agent allocates full time to it indefinitely.

The risky arm can be either “good”or “bad.”It yields nothing if it is bad, and, if it

is good, has a present value G = γL where γ > 1 measures the attractiveness of the

good risky arm relative to the safe arm.1 If the risky arm is good, the probability

1Under risk neutrality, defining returns from the good risky arm by a present value G is le-

gitimate and general. For instance, we can write G = g/(1 − δ) and interpret g as a per period

expected return from the risky arm when the agent allocates full time to it. We can also write

G = L+ R and interpret R as a lump sum reward to each agent for their research breakthrough,

etc.
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of a breakthrough by the agent, e.g., finding solid evidence (or proof) that the arm

is good, is p(at) = 1− e−λat , λ > 0.

The agent has a prior probability belief π0 ∈ [0, 1] that the risky arm is good.

So, by the Bayes rule, if the agent has chosen allocations a1..., at in periods 1 through

t without a breakthrough, the updated probability (or posterior belief) that the risky

arm is good equals

πt =

π0

t∏
s=1

(1− p(as))

1− π0 + π0

t∏
s=1

(1− p(as))
(1)

3 The Bandit Problem

Let π0 ∈ (πmin, 1) be given, and let α = (αt)
∞
t=1 denote a feasible allocation plan

such that each αt ∈ [0, 1] is measurable with respect to the information available

at the start of period t. Let t∗, if any, denote the period in which a breakthrough

occurs such that αt ≡ 1 for all t > t∗. Let ts, if any,

denote the last period of the experimentation in the absence of a breakthrough

such that αt ≡ 0 for all t > ts. Then, the bandit problem boils down to maximizing

the agent’s expected, discounted payoff E(V̄ (α)) in which

V̄ (α) =


∑t∗

t=1 δ
t−1(1− αt)`+ δt

∗
G if t∗ ≤ ts∑ts

t=1 δ
t−1(1− αt)`+ δtsL if ts < t∗

and the expectation E(·) is over the type of the risky bandit, and the stochastic

processes (αt)
∞
t=1 and (πt)

∞
t=0.

Now let V ∗t denote the agent’s optimal, conditional expected payoff in period

t– given no breakthrough until period t − 1 and the updated belief πt−1. By the

principle of optimality for dynamic programming, if α is optimal it must satisfy the
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Bellman equation2

V ∗t (πt−1) = max
at∈[0,1]

Vt(at, πt−1) (2)

s.t. πt =
πt−1e

−λat

1− πt−1 (1− e−λat) (3)

where

Vt(at, πt−1)

= (1− at)`+ δ
{
πt−1p(at)G+ (1− πt−1p(at))V ∗t+1(πt)

}
(4)

This program has the following interpretations. Suppose the risky arm has returned

nothing until period t− 1, and that the agent’s past allocations imply the posterior

πt−1. If the agent allocates at to the risky arms in period t, he receives an imme-

diate return (1 − at)` from the safe arm. By the end of period t, with probability

πt−1p(at) there will be a breakthrough, in which case the exploration is over and the

agent enjoys the present value of the risky arm G. With probability 1 − πt−1p(at),

however, the risky arm yields nothing. Then, the problem continues and the agent’s

continuation, conditional expected payoff becomes V ∗t+1(πt) given updated posterior

πt. If the agent stops the experiment after period ts without any breakthrough, all

future resources will be allocated to the safe arm from ts + 1 onwards, implying

Vt = L for all t > ts.

Now suppose α = (αt(πt−1))
∞
t=1 is the optimal allocation plan that will be

implemented by the agent, such that

αt(πt−1) ∈ arg max
at∈[0,1]

Vt(at, πt−1)

We will establish the existence and uniqueness of α in Proposition 3. For now,

notice that the simple structure of Vt implies that it is differentiable in (at, πt−1) on

2Our analysis and results may treat t as a variable, hence it is useful to keep the subscript for

Vt and at.
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[0, 1]2.3 Thus, for all at = αt(πt−1) at which (2) has an interior solution, they must

satisfy the dynamic first-order condition:

∂

∂at
Vt(at, πt−1) = −`+ δπt−1λe

−λat
[
G− V ∗t+1(πt)

]
(5)

+δ(1− πt−1
(
1− e−λat

)
)V ∗′t+1(πt)

∂πt
∂at

(6)

= 0

where, by the envelope theorem,

V ∗t+1(πt) = Vt+1(αt+1(πt), πt) =⇒ V ∗′t+1(πt) =
∂Vt+1(αt+1(πt), πt)

∂πt
(7)

The term in (6) captures the learning effect of our bandit problem. Since the

agent’s payoff increases in his subjective probability that the risky arm is good,

implying V ∗′t+1(πt) > 0 (see Lemma 2) and since

∂πt
∂at

= −λe−λat (1− πt−1) πt−1
(1− πt−1 (1− e−λat))2

< 0,

the sign of this learning effect is negative. Therefore, compared to the myopic

solutions that neglect the term in (6), all interior solutions to (2) imply that the

optimal allocations under the learning effects are lower than the myopic solutions.

Of course, the bandit problem should be suffi ciently interesting so that the

risky arm is worthy of experimentation. We invoke the following assumption.

Assumption 1 π0 > πmin, where 0 < πmin = 1−δ
δλ(γ−1) < 1.

If exploring the risky arm is deemed unprofitable, the agents’optimal payoff

derives solely from the returns from the safe arm so that V ∗t ≡ L for all t ≥ 1. To

see its implications, substituting V ∗2 = L into (5)-(6) to get

∂

∂a1
V1(a1, π0) = −`+ δπ0λe

−λa1 (G− L)

and
∂2

∂a21
V1(a1, π0) = −δπ0 (λ)2 e−λa1 (G− L) < 0

3At the boundaries of [0, 1]2, the (cross-partial) derivatives of V are defined as usual by taking

limits.
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So, π0 ≤ πmin implies ∂
∂a1
V1(a1, π0)|a1=0 ≤ 0 and since the objective function is

concave, Assumption 1 provides a necessary condition for the risky arm to be of

interest. Given any π0, the composition of πmin suggests that the risky arm is

worthy of exploration as long as δ, λ, or γ is suffi ciently high.

The next assumption ensures congruency of the analysis for our study.

Assumption 2 δe−λ (λγ + 1)− 1 ≥ 0.

The role of this assumption can be illustrated by considering an extreme case

with π0 = 1. Since π0 is the agent’s subjective probability, to realize the present

value of the risky arm, G, he needs to provide verifiable evidence, say, to the public

or supervision authorities. Suppose this has to be done through experimentation

until a breakthrough occurs. Then, Assumption 2 ensures that the agent will spend

full time exploring the risky arm until achieving a breakthrough, or else never stop.

To see this, we replace πt−1 and at with 1 in (4), and obtain the optimal payoff from

the Bellman equation:

V ∗(1) = δ
(
1− e−λ

)
G+ δe−λV ∗(1)

=
δ
(
1− e−λ

)
G

1− δe−λ (8)

Since there is no learning in this case, the experimentation plan with αt ≡ 1 must

satisfy, substituting (8),

∂

∂at
V (at, 1)|at=1 = −`+ δλe−λ (G− V ∗(1))

= −`+ δλe−λg
1

1− δe−λ ≥ 0

Assumption 2 then implies that the above inequality holds. On the other hand, it

is worth observing that when Assumption 2 fails to hold, then, even if the agent

believes that the risky arm is good for sure (i.e., π0 = 1), he may not be interested

in exploring the arm if λ is suffi ciently low (i.e., too hard to achieve a breakthrough)

or if δ is suffi ciently low (i.e., too costly to wait for a breakthrough).
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Assumption 2 allows us to define

πmax =
1− δ

δ (e−λ (λγ + 1)− 1)
,

which can be easily checked to satisfy πmin < πmax < 1. As will be shown later,

πt−1 ≤ πmax implies αt < 1, ensuring that the first-order conditions can be applied

legitimately.

4 Simplifying the Problem

Although the Bellman equation approach in the previous section is quite standard,

it is not easily tractable. The main reason is that all future posteriors depend on πt,

and therefore a marginal change of at may have effects that propagate to all future

continuation payoffs.

We present here a re-formulation of the Bellman equation that enhances the

tractability of the bandit problem. Fix α (except at), and consider a mathematically

equivalent problem to (2)-(4) of maximizing

Vt(at, πt−1)−G

= (1− at)`− (1− δ)G+ (1− πt−1p(at)) δ
[
V ∗t+1(πt)−G

]
To simplify notation, denote g = (1− δ)G and define

qt = πt−1p(at) and q∗t = πt−1p(αt), for t = 1, 2, ...

Thus, both qt and q∗t are the probabilities of a breakthrough in period t. The

difference between the two functions is that the former can vary with the control

variable at while the latter is a fixed quantity with αt being a point on a given

(optimal) path of the allocations. The transformed value function Vt − G can be

then expanded as though it was the expected sum of a sequence of discounted returns

(which are negative here), with an associated probability of receiving the return in
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each period: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Period Probability Discounted payoff

t 1 − [g − (1− at)`]

t+ 1 1− qt −δ [g − (1− αt+1)`]

· · · · · · · · ·

t+ s (1− qt)
s−1∏
r=1

(1− q∗t+r) −δs [g − (1− αt+s)`]

· · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Defining Π0

r=1 (·) ≡ 1 and summing up, we find

Vt(at, πt−1) = G− [g − (1− at)`]

−Et

{ ∞∑
s=1

δs

(
(1− qt)

s−1∏
r=1

(1− q∗t+r)
)

[g − (1− αt+s)`]
}

(9)

Given no breakthrough in the previous t − 1 periods, the term in large brackets is

the conditional probability of no breakthrough over the next s periods under the

current period allocation at and the optimal future allocation plan αt+1, ..., αt+s−1.

This transformation allows us to arrive at a much simpler form of the problem, as

stated in the following lemma.

Lemma 1 (Transformation) Given (2)-(4),

Vt(at, πt−1) = Vt(0, πt−1)− at`+ δπt−1p(at)Ht+1 (10)

where Ht+1 is a positive function defined recursively by

Ht+1 = Et {g − (1− αt+1)`+ δ(1− p(αt+1))Ht+2} (11)

for t = 1, 2, ....

Proof. The probability of no breakthrough over the next s periods, starting from

period t, can be written alternatively as

(1− qt)
s−1∏
r=1

(1− q∗t+r)

= 1− πt−1 + πt−1 (1− p(at))
s−1∏
r=1

(1− p(αt+r)) (12)
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Substitute (12) into (9), and define

Ht+1 = Et

{ ∞∑
s=1

δs−1

(
s−1∏
r=1

(1− p(αt+r))
)

[g − (1− αt+s)`]
}
. (13)

We obtain by re-arranging the terms that

Vt(at, πt−1) = G− [g − (1− at)`]

− (1− πt−1)Et

{ ∞∑
s=1

δs [g − (1− αt+s)`]
}
− πt−1 (1− p(at)) δHt+1 (14)

In particular, choosing at = 0 gives

Vt(0, πt−1) = G− (g − `)

− (1− πt−1)Et

{ ∞∑
s=1

δs [g − (1− αt+s)`]
}
− πt−1δHt+1

Subtracting this from (14) yields (10).

Since g > `, then Ht+1 > 0. For T < ∞, the exploration stops at T + 1 with

αT+s ≡ 0 for all s ≥ 1 so that HT+1 = (g − `)
∞∑
s=1

δs−1 = G − L. For T = ∞,

limt→∞Ht+1 = G − L can be seen as a transversality condition consistent with

any arbitrarily large, finite T . The rest of the proof follows by straightforward

verifications.

In this lemma, Vt(0, πt−1) is the agent’s expected payoff from a hypothetical

situation of forfeiting the optima planned action αt, allocating full time to the safe

arm in period t, and then switch back to the previously scheduled optimal allocation

path from t+ 1 onward. Thus, the difference

V̂t(at, πt−1) = Vt(at, πt−1)− Vt(0, πt−1)

is the expected benefit of experimenting the risky arm in excess of the safe return

in period t. For this reason, we call V̂t the risk premium offered by of the risky arm,

and V̂ ∗t (πt−1) = V̂t(αt(πt−1), πt−1) the optimal risk premium, in period t. Lemma

14



1 shows that the solution to the maximization program in (2)-(4) is given by the

solution to the program

max
at∈[0,1]

V̂t(at, πt−1) ( = −at`+ δπt−1p(at)Ht+1) (15)

where Ht+1 depends only on the subsequent planned actions and can be treated as

a “given”for each t ≥ 1. This is a dramatic simplification of the problem.

Lemma 2 For all t = 1, 2, ..., V ∗′t (πt−1) ≥ 0. The inequality holds strictly unless

αt+r ≡ 0 for all r = 0, 1, 2, ...

Proof. From (13), we have

Ht+1 = Et

{ ∞∑
s=1

δs−1

(
s−1∏
r=1

(1− p(αt+r))
)

[g − (1− αt+s)`]
}

≤ Et

{ ∞∑
s=1

δs−1 [g − (1− αt+s)`]
}

Therefore, replacing at with αt in (14), and differentiating gives

∂Vt(αt, πt−1)

∂πt−1
= Et

{ ∞∑
s=1

δs [g − (1− αt+s)`]
}
− (1− p(αt)) δHt+1 ≥ 0

Both the above inequalities hold as an equality only if αt+r ≡ 0 for all r = 0, 1, 2, ...

Thus, by the envelope theorem, V ∗′t (πt−1) > 0 as long as the experimentation of the

risky arm continues.

This lemma confirms that the learning effect on the continuation payoff in (6),

given no breakthrough in the current period, is strictly negative.

4.1 A three-period example

Suppose t = 1, 2, 3 and in period 3 the agent must stop the experimentation. Sup-

pose after stopping, the time will be fully allocated to the safe arm, i.e., αs = 0 for

all s ≥ 3. This implies H3 = G− L. Denote X = [0, 1]× [πmin, πmax].
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For t = 2, let π1 ∈ [πmin, πmax] be given. Differentiating (10) w.r.t. a2 yields

∂

∂a2
V2(a2, π1)|a2=α2 = −`+ δπ1λe

−λα2 (G− L)

= `

(
−1 + δπ1λe

−λα2 γ − 1

1− δ

)
= 0 (16)

Moreover, V2 is twice continuously differentiable satisfying, for all (a2, π1) ∈ X,

∂2

∂a22
V2(a2, π1) = −`δπ1λ2e−λα2

γ − 1

1− δ < 0

∂2

∂a2∂π1
V2(a2, π1) = `δλe−λα2

γ − 1

1− δ > 0

These imply that condition (16) is both necessary and suffi cient for the solution

α2 to be optimal, and that the solution α2 (π1) is continuously differentiable with

α′2 > 0 on [πmin, πmax]. Solving (16) gives the period 2 optimal strategy

α2 (π1) =
1

λ
ln
π1δλ(γ − 1)

1− δ =
1

λ
ln

π1
πmin

=
1

λ

(
ln

π0e
−λa1

1− π0 (1− e−λa1) − ln πmin

)
= : h(α1, π0) (17)

Thus, α2 (π1) can be also seen as a function h(a1, π0) satisfying

∂h

∂a1
= − 1− π0

1− π0 (1− e−λa1) < 0 (18)

∂h

∂π0
=

1

π0λ (1− π0 (1− e−λa1)) > 0 (19)

For t = 1, we have

H2 (α1, π0) = g − (1− α2)`+ δe−λα2 (G− L)

= `

(
γ − (1− h(α1, π0)) +

1− π0
(
1− e−λa1

)
λπ0e−λa1

)
by (17)

δe−λα2 (G− L) = (1− δ) (G− (1− α2)L) + δe−λα2 (G− L)

= (1− δ) (G− L) + (1− δ)α2L+ δe−λα2 (G− L)
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which is continuously differentiable. Further, condition (16) implies

∂H2

∂α2
= `− δλe−λα2 (G− L)

= `− δλe−λα2 (G− L) (π1 + 1− π1)

= −δλe−λα2 (G− L) (1− π1)

→
∣∣∣∣∂H2

∂α2

∣∣∣∣ < H2 (20)

The period 1 optimal strategy α1 is now the solution of

∂

∂a1
V1(a1, π0)|a1=α1 = −`+ δπ0λe

−λα1H2(h(α1, π0)) = 0 (21)

We have

∂2

∂a21
V1(a1, π0) = −δπ0λ2e−λa1H2 + δπ0λe

−λα1 ∂H2

∂α2

∂h

∂a1

= δπ0λe
−λa1H2

(
−λ+

1

H2

∂H2

∂α2

∂h

∂a1

)
< δπ0λ

2e−λa1H2

(
−1 +

1− π0
1− π0 (1− e−λa1)

)
by (20)

< 0 (22)

Likewise, we have

∂2

∂a1∂π0
V1(a1, π0) = δλe−λa1H2 + δπ0λe

−λa1 ∂H2

∂α2

∂h

∂π0

= δλe−λa1H2

(
1 +

π0
H2

∂H2

∂α2

∂h

∂π0

)
> δλe−λa1H2

(
1− 1− π1

(1− π0 (1− e−λa1))

)
by (20)

> δλe−λa1H2

(
1− 1− π0

(1− π0 (1− e−λa1))

)
> 0 (23)

So the condition in (20) is also suffi cient. We thus have α1 implicitly defined by

L(α1, π0) := δπ0λe
−λα1H2(α1, π0)− ` = 0

The function L(α1, π0) is continuously differentiable on [0, 1]×[πmin, πmax]. The

inequalities (22)-(23) ensure that, by the implicit function theorem, L(α1, π0) = 0

gives the solution (implicitly) α1 (π0) on [πmin, πmax] such that α′1 > 0.

Figure 2 shows a graphical example of the behavior of α1 as δ and λ change.
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Figure 2: Behavior of α1 as δ and λ change, assuming π0 = 0.1 and γ = 3.

4.2 Optimal risk premium

The maximization program in (15) has also a very transparent economic interpreta-

tion: If α = (αt)
∞
t=1 is an optimal allocation plan, then each αt maximizes the risk

premium in period t given the subsequent planned actions. This objective, although

equivalent to the one in (2)-(4), seems more relevant in practical terms, as the

breakthrough can occur in any period, ending the need for further experimentation.

Proposition 1 Suppose α = (αt)
∞
t=1 is an optimal allocation plan. Then, the opti-

mal risk premium in period t equals

V̂ ∗t =
eαtλ − 1

λ
(`+ ηt)− αt` (24)

where ηt = (≥) 0 if αt < (=) 1.
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Proof. Since Vt in (10) is concave in at, so is V̂t. Thus, αt is characterized by the

first-order condition

∂

∂at
V̂t(at, πt−1)|at=αt = −`+ δπt−1λe

−αtλHt+1 = ηt (25)

where ηt is the Lagrangian multiplier associated with the constraint αt ≤ 1. (The

constraint αt ≥ 0 is irrelevant because by definition V̂t(0, πt−1) = 0.) This gives

Ht+1 =
`+ ηt

δπt−1λe−αtλ

Substituting into (10), we obtain

V̂ ∗t = V̂t(αt, πt−1)

=
eαtλ − 1

λ
(`+ ηt)− αt`

The optimal risk premium given in (24) has a natural interpretation as follows.

The term αt` is the opportunity cost of investment of time αt in the risky arm. The

term ` + ηt derives from (25), which equals the marginal benefit of investing αt in

the risky arm: δπt−1λe−αtλHt+1. The overall benefit of investing αt in the risky

arm is then given by the first term in (24), in which we note that eαtλ−1
λ

equals the

familiar ratio of 1 over the reversed hazard rate: p(αt)
p′(αt)

. It is worth noting that V̂ ∗t is

a direct function of αt, depending on the posterior πt−1 only indirectly through αt.

Compared with (6), we can see from (25) that the functional Ht+1 captures in

a way the overall marginal benefit, including the learning effects, of investing time in

the risky arm. The simplicity of the proof for Proposition 1 is largely due to the fact

that Ht+1 does not depend directly on the process of the posteriors {πt, πt+1, ...}, as

does V ∗t+1.

Of course, we still have the burden to solve for the optimal allocation plan α

for the more general case.
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5 Optimal Allocation Plan

In this section, we analyze the optimal allocation plan. If the agent decides to

stop the experiment after period t, given that no breakthrough has occurred, we

assume all resources will be allocated to the safe arm indefinitely from t+1 onwards.

Consequently, stopping in period t+ 1 implies Ht+1 = G− L.

Proposition 2 Suppose Assumptions 1-2 hold and let π0 ∈ (πmin, 1) be given. (i)

The optimal allocation plan α = (αt)
∞
t=1 satisfies αt > 0 for all t ≥ 1, i.e., the

experimentation of the risky arm never stops without a breakthrough. (ii) If α1 < 1,

then (αt)
∞
t=1 is a strictly decreasing sequence that converges to 0 as t→∞, in which

each αt is determined by

αt =
1

λ
ln
δπt−1 (1 + λ (γ − 1 + αt+1))

δπt−1 + 1− δ ∈ (0, 1) (26)

where the sequence of posteriors (πt)
∞
t=0,

πt =
πt−1e

−λat

1− πt−1 (1− e−λat) , (27)

converges to πmin as t→∞. (iii) If α1 = 1, there exists τ ≥ 1 such that αt = 1 for

all t ≤ τ and αt < 1 for all t > τ. Conclusion (ii) regarding the properties of (αt)
∞
t=1

holds for (αt)
∞
t=τ+1.

Proof. (i) It suffi ces to show that πt−1 > πmin implies πt > πmin for all t ≥ 1. We

prove this by contradiction. Pick any t such that πt−1 > πmin, or αt > 0. Suppose

πt ≤ πmin. Then αt+1(πt) = 0, implying Ht+s = G − L for all s = 1, 2, ... It follows

then from (10) of Lemma 1 that αt, πt−1 and πt must satisfy

∂

∂at
Vt(αt, πt−1) = −`+ δπt−1λe

−λαt(G− L) ≥ 0

and
∂

∂at+1
Vt(0, πt) = −`+ δπtλ(G− L) ≤ 0

where the second inequality derives from the hypothesis πt ≤ πmin. Cancelling terms,

the above two conditions imply

πt−1
πt
≥ eλαt . (28)
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By the Bayes rule, (27) holds and thus αt > 0 implies

πt−1
πt

= eλαt (1− πt−1) + πt−1 < eλαt (29)

The contradiction between (28) and (29) proves αt > 0 for all t ≥ 1.

(ii) By Lemma 1, differentiating Vt in (10) and applying (11) give us

∂

∂at
Vt(at, πt−1) = −`+ δπt−1λe

−λatHt+1

= −`+ δπt−1λe
−λat

(
g − (1− αt+1)`+ δe−λαt+1Ht+2

)
(30)

It can be easily argued that αt ≡ 1 for all t cannot be optimal. So, we may assume

that αt+1 < 1, which implies

∂

∂at+1
Vt+1(αt+1, πt) = 0 or Ht+2 =

`

δπtλe−λαt+1

Substituting Ht+2 into (30), replacing πt with the right-hand side of (27), and rear-

ranging we derive

∂

∂at
Vt(at, πt−1)

= −`+ δπt−1λe
−λat

(
g − (1− αt+1)`+

`

πtλ

)
= `

[
e−λatδπt−1 (1 + λ (γ − 1 + αt+1))− δπt−1 − (1− δ)

]
(31)

If αt = 1, we define τ = t. In this case (31) ≥ 0 at at = 1, implying

e−λδπτ−1 (1 + λγ)− δπt−1 − (1− δ) > 0

Assumption 2 implies that the term above is nondecreasing in πτ−1. Therefore,

αs = 1 for all 1 ≤ s < τ because

∂

∂as
Vs(1, πs−1) = e−λδπs−1 (1 + λγ)− δπt−1 − (1− δ)

≥ e−λδπτ−1 (1 + λγ)− δπτ−1 − (1− δ) > 0

If αt < 1, then (30) = 0 yields

αt =
1

λ
ln
δπt−1 (1 + λ (γ − 1 + αt+1))

δπt−1 + 1− δ , (32)
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confirming (26). What remains is to show that (αt)
∞
t=1 is a strictly decreasing se-

quence that converges to 0 as t→∞.

Given αt > 0 for all t ≥ 1, (27) implies that (πt)
∞
t=0 is a strictly decreasing

sequence bounded from below by πmin. Thus, by the monotone convergence theorem,

πt tends to a limit π∞ ≥ πmin. By backward induction, let us “guess”that αT+1 ≥

αT+2 for some arbitrarily large T . Then, given that αt increases in πt−1 and αt+1,

as can be easily checked from (32), for t = T − 1 we have

αt >
1

λ
ln
δπt (1 + λ (γ − 1 + αt+2))

δπt + 1− δ = αt+1

This shows that (αt)
T
t=1 is a strictly decreasing sequence. Since T is arbitrary,

taking limit as T → ∞ verifies that αt > αt+1 for all t ≥ 1. Finally, since αt > 0

implies πt−1 > πt, limt→∞ πt = π∞ implies limt→∞ αt = 0, which, in turn, implies

π∞ = πmin.

Conclusion (iii) is now a direct consequence of (ii).

The “none-stop” result of this proposition might seem surprising. A rough

intuition for this result is that when αt is suffi ciently close to 0, it does no affect

the change in the posterior very much. In turn, when the posterior does not change

much, it does not cause the subsequent allocation to change much. Consequently,

as t tends toward infinity, αt gradually declines toward 0 but there exists no “last

period” in which αt would drop to 0 completely. The proof of this result reveals

a more fundamental reason: For stopping to be optimal at certain time t + 1, two

conditions must be simultaneously met. One of these (see (28)) derives from the

first-order conditions for the optimality of the allocation plan, and the other (see

(28)) from the Bayes rule. The former requires the relative change in the posterior to

be larger than a certain level, while the latter requires the change to be smaller than

that level. These conflicting conditions imply the impossibility of finding a finite

time horizon to optimally stop the experimentation completely, no matter how long

the horizon is.
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Proposition 2 provides a useful characterization of the optimal allocation plan,

where αt is determined by the current posterior belief πt−1 and, recursively, the

next-period allocation plan αt+1. In the next proposition, we solve (αt)
∞
t=1 in which

αt is determined solely by the posterior πt−1 and other exogenous variables. We

then conduct a comparative statics analysis of the properties of αt.

Proposition 3 Suppose Assumptions 1-2 hold. Given δ, γ, λ, assume π0 ∈ [πmin, πmax].

Then, for all 1 < T ≤ ∞, where T is an exogenously scheduled stopping time for the

bandit exploration, there exists a unique optimal allocation plan (αt)
T
t=1, in which

each αt = αt(πt−1, δ, γ, λ) ∈ (0, 1) is a continuously differentiable function such that

(i)
∂αt
∂πt−1

> 0, (ii)
∂αt
∂δ

> 0, (iii)
∂αt
∂γ

> 0,

and (iv) the sign of ∂αt
∂λ
can be positive or negative, depending on the values (πt−1, δ, γ, λ).

Proof. We first show that π0 ≤ πmax implies αt < 1 for all t ≥ 1. Inspecting (31)

in the proof of Proposition 2, if αt = 1, then (31) ≥ 0 at at = 1. Consequently,

e−λδπt−1 (1 + λγ) + δπt−1 + 1− δ > 0

which implies πt−1 > πmax. But this violates the assumption π0 ≤ πmax. This shows

αt ∈ (0, 1) for all t ≥ 1.

Now assume 1 < T <∞, so thatHT+r = G−L for r = 1, 2, .... Letα = (αt)
T
t=1

denote an allocation plan and (πt)
T−1
t=0 the sequence of the posteriors associated with

α with π0 ∈ (πmin, 1). By Lemma 1,

∂

∂aT
VT (αT , πT−1) = −`+ δπT−1λe

−λαT (G− L) = 0

yields a unique solution

αT (πT−1, δ, γ, λ) =
1

λ
ln
δπT−1λ(γ − 1)

1− δ
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The function αT has continuous, positive derivative on [πmin, 1] :

∂

∂πT−1
αT =

1

πT−1λ
> 0

∂

∂δ
αT =

1

λδ (1− δ) > 0

∂

∂γ
αT =

1

λ (γ − 1)
> 0

∂

∂λ
αT =

1

λ2

(
1− ln

(
πT−1λδ

γ − 1

1− δ

))

=
1

λ2

(
1− ln

πT−1
πmin

) > 0 if πT−1 < πmine

≤ 0 if πT−1 ≥ πmine

This shows that αT satisfies the properties (i)-(iv) as stated.

Now by backward induction, for some t+1 ≤ T , suppose the function αt+1(πt, δ, γ, λ)

is well defined and continuously differentiable, satisfying properties (i)-(iv).

Moving backward in time, let h(αt+1, πt−1, δ, γ, λ) denote the function on the

right-hand side of 26 in Proposition 2:

h =
1

λ
ln
δπt−1 (1 + λ (γ − 1 + αt+1))

δπt−1 + 1− δ

It has continuous partial derivatives

∂h

∂αt+1
=

1

1 + λ (γ − 1 + αt+1)
> 0

∂h

∂πt−1
=

1

πt−1λ

1− δ
πt−1δ − δ + 1

> 0

∂h

∂δ
=

1

λδ (δπt−1 − δ + 1)
> 0

∂h

∂γ
=

1

hλ− λ+ λγ + 1
> 0

∂h

∂λ
= − 1

λ2
ln
δπt−1 (1 + λ (γ − 1 + αt+1))

δπt−1 + 1− δ +
γ − 1 + αt+1

λ (1 + λ (γ − 1 + αt+1))
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In (27), let πt = πt(at, πt−1, λ). It is continuously differentiable, with

∂πt
∂at

= −λe−λat πt−1 (1− πt−1)
(1− πt−1 (1− e−λat))2

< 0

∂πt
∂πt−1

=
e−λat

(1− πt−1 (1− e−λat))2
> 0

∂πt
∂λ

= −ate−λat
πt−1 (1− πt−1)

(1− πt−1 (1− e−λat))2
< 0

Now define function Jt(at, πt−1, δ, γ, λ) by

Jt = at − h(αt+1 (πt(at, πt−1, λ), δ, γ, λ) , πt−1, δ, γ, λ)

Since h and πt are continuously differentiable, by the induction hypothesis Jt is

continuously differentiable in all variables. Importantly, the partial derivative of Jt

with respect to at is everywhere strictly positive:

∂Jt
∂at

= 1− ∂h

∂αt+1

∂αt+1
∂πt

∂πt
∂at

> 0

By (26) of Proposition 2, Jt = 0 has a solution. Therefore, by the implicit func-

tion theorem, Jt = 0 defines a continuously differentiable function αt(πt−1, δ, γ, λ)

satisfying

∂αt
∂πt−1

=
1

∂Jt/∂at

(
∂h

∂πt−1
+

∂h

∂αt+1

∂αt+1
∂πt

∂πt
∂πt−1

)
> 0

∂αt
∂δ

=
1

∂Jt/∂at

(
∂h

∂δ
+

∂h

∂αt+1

∂αt+1
∂δ

)
> 0

∂αt
∂γ

=
1

∂Jt/∂at

(
∂h

∂γ
+

∂h

∂αt+1

∂αt+1
∂γ

)
> 0

∂αt
∂λ

=
1

∂Jt/∂at

(
∂h

∂λ
+

∂h

∂αt+1

(
∂αt+1
∂λ

+
∂αt+1
∂πt

∂πt
∂λ

))
Although tedious, it can be readily verified that ∂αt

∂λ
has the property of (iv). By in-

duction, and the principle of dynamic programming, we have thus obtained a unique

optimal allocation plan (αt)
T
t=1, with each αt satisfying properties (i)-(iv). If there

is no exogenous stopping constraint, letting T →∞ and noting from Proposition 2

that αt → 0 implies Ht+1 → G− L as t→∞, the optimal plan (αt)
∞
t=1 is obtained

in the limit.

25



The comparative statics results in this proposition are intuitive: increasing the

posterior, the discount factor, and the attractiveness of the breakthrough make the

exploration of the risky arm more profitable, and therefore warrant more investment

of time. Regarding the effect of increasing the hazard rate of the probability p, it

is interesting to observe that when the posterior is suffi ciently high the effect is

negative on the allocation. The intuition is that, with suffi ciently high confidence

that the breakthrough will occur, the agent does not need to worry too much and a

higher λ makes the breakthrough even easier to achieve. Then, the agent may have

the incentive to reduce the allocation of time given the opportunity cost of it. On

the other hand, when the posterior is suffi ciently low, increasing λ encourages the

agent to work harder on achieving a breakthrough.

Regarding the optimal risk premium given in Proposition 1, an immediate

corollary follows.

Corollary 1 Under the assumptions of Proposition 3, for all t ≥ 1 the optimal risk

premium V̂t (i) increases in πt−1, δ, γ and (ii) increases in ` holding γ fixed.

Proof. (i) is a direct consequence of Proposition 3, as V̂t is an increasing function of

αt, depending on (πt−1, δ, γ) solely through αt. (ii) is a straightforward consequence

of V̂t being an increasing function of `.

6 Concluding Remarks

This study offers an intricate analysis of the bandit problem, where optimal alloca-

tion strategies are responsive to evolving beliefs. Our findings make a theoretical

contribution to the understanding of discrete-time bandits, demonstrating that the

problem’s complexity can be reduced via a mathematically equivalent transforma-

tion of objectives. This re-formulation paves the way for transparent analytical

solutions and comparative-statics results. In the case of exponential bandits, we
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show that when decision variables are allowed to be continuous, the optimal alloca-

tion strategy diverges from binary strategies, making the cessation following finite

periods of unsuccessful trials suboptimal. The results presented in this study do

more than just complement the existing literature; they significantly enrich it.

Although our analysis and results are specific to the Breakthrough-or-Nothing

(BorN) setting, we argue that under certain suffi cient conditions, they can be ex-

tended to more general probability functions. The analytical framework developed

in this study is flexible and can be adapted to various settings involving multiple

agents and strategic interactions. We anticipate that these applications will lead to

novel insights. An intriguing question for future research is the extent to which the

transformation or re-formulation of the BorN bandits can simplify the analysis of

other problem types.
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