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Abstract

One of the primary reasons a firm may choose to expand its horizontal boundaries

is to take advantage of economies of scope, where a firm’s per unit costs fall as they

produce more products. What is the magnitude of scope economies? What are their

impacts on market outcomes? In this paper, we propose a simple, empirically tractable

method to identify the importance of economies of scope for market competition. We

start with the standard “demand-side” approach to estimating marginal costs, which

makes use of a firm’s pricing first-order conditions and the estimated demand system.

We augment this approach by introducing a micro-founded model of production by a

multi-product firm. Our method allows us to generate a set of estimating equations

for the cost function parameters that govern the extent of scale and scope economies,

together with the distribution of within-firm productivity. We apply this approach to

the U.S. beer industry and quantify the importance of scope economies for productive

efficiency, prices, and output levels.
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1 Introduction

Multiproduct firms have come to dominate industrial production (Bernard et al., 2010;

Goldberg et al., 2010). Economies of scope—cost savings that arise due to the scope of

production—have been proposed as one explanation for the existence of multiproduct firms

(Panzar and Willig, 1975; Teece, 1980; Panzar and Willig, 1981). Are economies of scope

empirically relevant for a firm’s decision to expand its horizontal boundaries? We shed light

on this question by proposing a new method to estimate economies of scope and scale and

applying it to US beer industry data. Using our estimates, we quantify the impact of scope

economies on productive efficiency and market outcomes.

We propose a multiproduct model of production that allows for (but does not impose)

within-firm productivity dispersion (i.e., productivity variation at the product level) as well

as scope and scale economies. From the production model, we derive the cost function of a

multiproduct firm, which crucially depends on parameters governing economies of scope and

scale. We derive two estimating equations that depend on technology parameters and the

output levels, productivities, and marginal costs of the products manufactured by a firm.

We then use our methodology to investigate the existence of scope economies in the US

beer industry. This industry is ideal for two reasons. First, the main players are multiproduct

firms (e.g., Anheuser-Busch, Molson Coors, SABMiller, Grupo Modelo, among other active

firms in our sample period). Second, firms in the industry produce using a small number

of plants despite high transportation costs. For example, Molson Coors had two plants

(Colorado and Virginia) serving the entire United States up until 2008. This contrasts with

other industries where local production is preferred to save on transportation costs (e.g.,

the US carbonated beverage industry). These facts combined are consistent with scale and

scope economies at the brewery level.

Our main data source is the IRI Marketing Dataset (Bronnenberg et al., 2008), which

provides price and sales data at the store–week–product level, where a product is defined

as a brand–size combination. We focus on the years 2005 to 2008. Our method does not

require observing input data either at the firm or firm–product level. In fact, we show that

demand-side data (quantities sold, prices, product characteristics, price instruments, etc.) is

sufficient to recover all the production technology parameters that enter the marginal cost

function, including those governing scale and scope economies. This is a strength of our

method, as it can be used in other industries where scanner data (rather than production

data) is available.

In estimating our model, we face two econometric challenges. First, we do not observe

marginal costs in our data. To deal with this, we use a demand-side approach to recover
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estimates of each product’s marginal cost. Specifically, we estimate demand, set up a product

market pricing game, and recover marginal costs from the equilibrium conditions of this game

(e.g., see Berry et al., 1995). Second, the firm chooses the output level for each product (in

part) based on the productivity of the corresponding product line, which is unobserved. We

use demand shifters as instruments to tackle this endogeneity concern.

Our estimates for the US beer industry suggest the existence of both scale economies

and scope economies. We use these estimates to measure the impact of scope economies on

productive efficiency and market outcomes. In our counterfactual exercise, we shut down

scope economies (keeping all other aspects of the production technology fixed) and compute

each product’s marginal cost at the output levels observed in our data without letting firms

reoptimize production. We find that shutting down scope economies increases marginal costs

by 25 percent, suggesting that scope economies significantly affect production efficiency.

How does this increase in marginal costs impact pricing and production decisions? On

the one hand, the increase in the marginal cost of a product caused by the shutdown of scope

economies decreases the marginal incentive to sell an extra unit of that good, incentivizing

a price increase. On the other hand, our estimates suggest the existence of economies of

scale, making it costly to cut down production, as this would further inflate marginal costs.

Economies of scale make price increases costly, creating a tradeoff.

We compute the counterfactual market equilibrium without scope economies to study how

these two forces play out in equilibrium. We find that marginal costs increase by 26.3 percent

relative to the equilibrium with scope economies. The effect on marginal costs is magnified

by a decrease in output (market shares decrease on average by 1.7 percent). That is, scope

economies are stronger than scale economies for production decisions, in the sense that firms

choose to cut production despite scale economies. We also find that prices increase by 13.7

percent on average in the equilibrium without scope economies. These findings combined

suggest that scope economies have a first-order effect on productive efficiency—providing an

(at least partial) explanation for why multiproduct production is favored in this industry—

and market outcomes.

We contribute to several strands in the literature. First, we contribute to the literature on

testing for the existence of non-joint production and scope economies. Previous approaches

have either relied on cost function estimation using firm-level cost data (Hall 1973, Kohli

1981, Baumol et al. 1982, Johnes 1997, Zhang and Malikov 2022 ) or estimation of multi-

output technologies using transformation functions (Dhyne et al. 2022, Maican and Orth

2020). These approaches require high-quality data on inputs and costs, which in practice is

difficult to find for many industries, and may be prone to measurement error.1 Our paper,

1See, for example, the recent discussion in De Loecker and Syverson (2021).
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on the other hand, provides a way to test for and quantify non-joint production by relying

only on demand-side data, i.e. prices, quantities, and market shares. Importantly, we do

not require that a researcher have access to any input or cost data. Instead, our approach

builds on the demand-side approach to cost estimation, pioneered in Rosse (1970), and

further developed by Berry et al. (1995), Nevo (2000), and Berry and Haile (2014), where

a firm’s pricing first order conditions are used to back out point estimates of marginal cost.

We consider a simple parameterization of a firm’s cost function that allows for joint and

non-joint production, and show how to generate simple estimating equations for parameters

governing scale and scope economies.2

In this sense, our paper is closely related to Ding (2020) and Argente et al. (2020), who

also provide evidence of scale and scope economies. While we share an interest in many of

the same questions, we differ from these papers in a number of important ways. To estimate

and quantify scale and scope economies, Ding (2020) proposes a model of joint production

driven by public inputs that generate ideas that can be applied to various industries within

a multi-industry conglomerate. Argente et al. (2020) considers an alternative model where

a firm can invest in firm-wide or product-specific knowledge. Our model largely differs from

these papers by relying on a microfoundation for joint production based on public or non-

rival production inputs, as in Baumol et al. (1982), rather than scope economies generated by

knowledge or idea generation. We also provide a complementary “micro” study — focused

on a single industry, beer — to complement the more aggregate “macro”, across-industry,

approach employed in these studies.

Second, we contribute to the body of work investigating various productivity and com-

petition issues in the US beer industry (Ashenfelter et al., 2015; De Loecker and Scott, 2016;

Miller and Weinberg, 2017; Grieco et al., 2018; Miller et al., 2021). Our key contribution is

to investigate the existence of scope economies and study their implication for efficiency and

market outcomes, which sets us apart from prior work.

2The particular form of the cost function we rely on has been used in previous literature (Baumol et al.
1982, Johnes 1997). However, our estimation approach is more flexible than previous approaches, since we
explicitly allow for the existence of firm-product-market specific shocks to productivity, which we are able
to recover naturally using our marginal cost inversion, relying on insights from Orr (2022) and Cairncross et
al. (2023).

4



2 The US Beer Industry

2.1 Industry

Beer is produced by combining malts, barley, hops, yeast, water, and sometimes other

ingredients for added flavor, and letting the resulting liquid ferment in barrels. After that,

the drink is packaged and shipped to the market. In the U.S., traditional brewers are

associated with the first phase of a so-called “three-tier” system of brewer/distributor or

wholesaler/retailer, with regulation severely limiting vertical ownership between the tiers.

Large brewers generally are prohibited from selling directly to retailers and are required to

sell their products through independent state-licensed distributors.3 Nevertheless, Ascher

(2012) suggests that within this relationship, wholesalers tend to depend on brewers to

set final prices for the products. Moreover, while distributors manage shipping and selling

products to retailers, brewers incur the bulk of the shipping cost associated with delivering

the products to distribution points that are close to the market.

While the beer industry was fragmented at its inception, with thousands of local brew-

eries, the concentration has been increasing. Ascher (2012) reports that by 2002, the number

of traditional breweries dropped to around 22. Market concentration in the industry has also

been increasing, with the top five overarching brands accounting for about 80% of sales by

2001 (Miller and Weinberg, 2017).4 While there are many non-traditional or craft breweries,

they tend to be small and local, in total accounting for less than 6% of total sales by volume

during the time period in our data (Ascher, 2012). These trends are described in more detail

in Grieco et al. (2018).

The trend toward the concentration of traditional brewing in a small number of locations

might suggest a significant increase in returns to scale and scope on the brewery level. Mul-

tiple sources agree that the technological shift in the 1960s and 1970s induced these changes

(Kerkvliet et al., 1998; Ascher, 2012; Keithahn, 1978).5 The technological advancements

include improvements in the bottling/canning and packaging technology; automation of the

brewing technology, which allowed large brewhouses to use the same amount of labor as

much smaller ones; and innovations in the fermentation process (see Keithahn (1978), p.

3Many states make exemptions for microbreweries.
4Miller and Weinberg (2017) use the following 5 overarching brand categories: ABI, Miller, Coors, Modelo,

and Heineken. These brand categories each aggregate multiple smaller brands. For example, Coors category
includes brands such as Coors and Coors Light, among others.

5Before that, scale and scope economies were present but moderate, originating mostly from general
brewery overhead and utilities. Keithahn (1978, p. 33) suggests that those included “the cost of wells, water-
processing equipment, sewage facilities, refrigeration equipment, management, laboratories, and custodial
costs”.
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34-39 for more detail).6. On the national level, Ascher (2012) points towards the importance

of economies of scale in advertising.

2.2 Data

Our main data source is the IRI Marketing Dataset (see Bronnenberg et al., 2008 for a

detailed description), which provides price and sales data at the store–week–product level

for the years 2001 to 2012. A product is defined as a brand–size combination. We follow

the replication package of Miller and Weinberg (2017) to prepare the data for estimation

and restrict attention to January 2005 to May 2008, right before the Miller–Coors joint

venture was completed. We focus on this period to abstract away from the price effects of

the Miller–Coors joint venture (Miller and Weinberg, 2017; Miller et al., 2021).

Following Miller and Weinberg (2017), we complement these data with the Public Use

Microdata Sample (PUMS) of the American Community Survey. We use these data to

incorporate demographic variables into the demand system. For every geographic area in

the IRI data, we use 500 draws of the distribution of income per person. We use the same

draws used by Miller and Weinberg (2017). Lastly, we use data on the distance from every

geographic market in the IRI dataset to the nearest brewery making each product in the

data, as described in Miller and Weinberg (2017).

Table 1 presents summary statistics of the products in our sample. A product is defined as

a brand–size combination, and we focus on three sizes: 6-pack equivalent, 12-pack equivalent,

and 24/30-pack equivalent. The table shows that firms in the industry produce multiple beer

brands and sizes for each brand, making all firms in our sample multiproduct firms.

3 Theory

3.1 Demand

Our empirical model uses the random coefficients nested logit model estimated in Miller

and Weinberg (2017), which we briefly summarize here. The conditional indirect utility that

consumer c receives from purchasing product (i, j) ∈ Ωt, where i indexes a firm and j indexes

a particular product in a market t (a city-time period combination) is given by:

uj
cit = δjit + µj

cit + ζcg(i,j)t(ϱ) + (1− ϱ)ϵjcit, (1)

6Notice that some of these technologies might allow for both economies of scale and scope. For example,
brewing large quantities of the same type of beer or brewing multiple different types of beers in a large
brewery might result in the same labor savings compared to a smaller plant.

6



Table 1: Summary Statistics of the US Beer Industry in 2007

(1) (2) (3) (4) (5)
Brand Parent Average price Share of revenue Sizes Observations
Blue Moon Belgian White Ale Molson Coors 13.721 0.006 3 898
Bud Light Anheuser-Busch 9.114 0.083 3 1,535
Budweiser Anheuser-Busch 9.116 0.040 3 1,513
Budweiser Select Anheuser-Busch 9.186 0.007 3 1,417
Busch Anheuser-Busch 6.774 0.010 3 1,300
Busch Light Anheuser-Busch 6.733 0.014 3 1,306
Coors Molson Coors 9.110 0.004 3 1,338
Coors Light Molson Coors 9.106 0.042 3 1,521
Corona Extra Grupo Modelo 14.325 0.050 3 1,212
Corona Light Grupo Modelo 14.540 0.015 3 1,049
Heineken Heineken USA 14.293 0.026 3 1,065
Heineken Premium Light Lager Heineken USA 14.621 0.007 3 982
Keystone Light Molson Coors 5.977 0.007 3 1,102
Michelob Light Anheuser-Busch 10.553 0.004 3 899
Michelob Ultra Anheuser-Busch 10.587 0.014 3 1,012
Miller Genuine Draft SABMiller 9.042 0.012 3 1,506
Miller High Life SABMiller 6.916 0.012 3 1,436
Miller Lite SABMiller 9.067 0.052 3 1,521
Modelo Especial Grupo Modelo 13.894 0.006 3 878
Natural Ice Anheuser-Busch 6.149 0.006 3 1,207
Natural Light Anheuser-Busch 6.192 0.019 3 1,368
Tecate FEMSA 11.323 0.008 3 895

Notes: An observation is a brand–size–city–month combination. The table makes use of data from year 2007. For every brand,
average price is the average price across all observations. Share of revenue is a brand’s share of the overall revenue of the beer
industry in 2007. Observations is the number of observations of each brand.
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where δjit is the mean utility of product (i, j) in market t, µj
cit is the consumer specific

deviation in the valuation of product (i, j) from its market-specific mean which depends

on product characteristics and consumer demographics, and ζcg(i,j)t(ϱ) + (1 − ϱ)ϵjcit is the

remaining consumer taste heterogeneity that is distributed extreme value. As in Miller

and Weinberg (2017), this structure of the unobserved consumer heterogeneity follows the

assumptions of a two-level nested logit model and allows substitution patterns within a group

(or a nest) to differ from substitution patterns across groups. The size of this difference is

determined by the nesting parameter 0 ≤ ϱ < 1. Since that ζcg(i,j)t(ϱ) is common to all

products in group g, and ϵjcit is i.i.d. extreme value, larger values of ϱ correspond to stronger

correlation in preferences for products within the same group.7 As in Miller and Weinberg

(2017), here we use two groups g = 0, 1, where group 0 includes only the outside option

(i, j) = (0, 0) ∈ Ω0t (e.g. buy no beer) and group 1 includes all the other products (i, j) ∈ Ωt,

which we denote by Ω1t.

The mean and consumer specific utilities δjit and µj
cit are parameterized as follows:

δjit = Xj
i β + γP j

it + σj
i + στ + ξjit (2)

µj
cit = [P j

it, X
j
i ]ΠDc (3)

where Xj
i denotes observable product characteristics that in our analysis include calories and

a constant term, Pjt is the price of product j in market t, σj
i is a product specific intercept,

στ is a time period τ specific intercept, and ξjt is the unobserved product quality. (γ, β)

then denote the average valuation of price and various product characteristics, respectively.

Dc denotes (demeaned) consumer income, and Π is a vector of parameters governing how

(γ, β) vary across consumers according to their demeaned income. The outside option payoff

is normalized to zero so that δ00t + µ0
c0t = 0.

Given these distributional assumptions, the market share of product (i, j) in market t is

given by Sj
it(Pt), where Pt is the vector of prices of all products in market t, can be written

as:8

Sj
it(Pt) =

1

Nt

Nt∑
c=1

exp
(

δjit(P
j
it)+µj

cit(P
j
it)

1−ρ

)
exp

(
Icgt
1−ρ

) exp (Icgt)

exp (Ict)
(4)

7ζcig(j)t(ϱ) follows a distribution, which depends on ϱ, that makes ζcg(i,j)t(ϱ) + (1− ϱ)ϵjcit extreme value
8Here, we assume the number of consumers is large enough so that we can “integrate out” ζcg(i,j)t(ϱ) +

(1− ϱ)ϵjcit.
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where Nt is the number of consumers in market t, Icgt = (1− ρ)
∑

j∈Ωgt
exp

(
δjit(P

j
it)+µj

cit(P
j
it)

1−ρ

)
is the inclusive value for groups g = 0, 1 and Ict = log (1 + exp(Ic1t)) is the inclusive value

for the entire market. Here, we write δjit(P
j
it) and µj

cit(P
j
it) to emphasize that the consumer-

specific payoffs to each good depend are functions of each good’s price (through equations 2

and 3).

3.2 Pricing Game

Consider market t (a city–time period combination in our analysis). Firm i has a portfolio

Jit of products in market t. We assume that the product market game takes the form of a

simultaneous-move Bertrand pricing game.

Firm i maximizes its profit given beliefs about the behavior of rivals, i.e.,

max
{P j

it}j∈Jft

Nt

∑
j∈Jit

P J
itS

j
it(Pt)− C(Yit), (5)

where Nt is the market size of market t, Y j
it = NtS

j
it(Pt), and C(Yit) is the cost function of

producing vector Yit (of cardinality |Jit|).
The equilibrium vector of prices, Pt, solves the system of first-order conditions,

Sj
it +

∑
k∈Jit

∂Sk
it(Pt)

∂P j
it

(
Pkt −

∂C(Yit)

∂Y j
it

)
= 0, ∀j ∈ Jit,∀i (6)

3.3 Technologies and Cost Functions

Each product (i, j, t) is assumed to be produced at a single brewery b(i, j, t), although

multiple products can be produced in the same brewery b.9 We now discuss a specification

of technologies that allow for joint production and economies of scope, an important feature

of multi-product production emphasized by Baumol et al. (1982), at the level of a brewery,

b.

For this purpose, we start by characterizing a firm’s production possibility frontier from

its production possibility set (Yibt,Xibt) ∈ Pibt, where Yibt is a vector of outputs produced

by the firm i at brewery b for market t, and Xibt is a vector of inputs. A firm’s production

possibility frontier is the maximal vector of outputs that a firm can produce, Yibt, given a

vector of inputs Xibt. One useful way to characterize a firm’s production possibility frontier

is by characterizing their output distance function (Caves et al. 1982), which tells us the

9We allocate products to the same brewery b if the distance to the brewery variable in Miller and Weinberg
(2017) is the same.
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minimum amount a firm must scale down a given output vector Yibt to make sure that

(Yibt

δ
,Xibt) ∈ Pibt, where δ is the minimized scaling factor. More formally, the output distance

function is:

Dibt (Yibt,Xibt) ≡ min
δ

δ s.t.

(
Yibt

δ
,Xibt

)
∈ Pibt. (7)

The output distance function is a convenient way to represent a firm’s technology—in

particular, to characterize their production possibility frontier, one needs to look at the set

of (Yibt,Xibt) such that Dibt (Yibt,Xibt) = 1.

Cairncross et al. (2023) show that the following class of output distance functions can

be derived from a class of firm technologies based on the allocation of inputs across private,

rival production tasks, and public, non-rival tasks:10

D (Yibt,Xibt;Aibt) ≡

(∑
j∈Bibt

(
Y j
ibt

Aj
ibt

) 1
α

)α

F (Xibt)
(8)

where F (Xibt) is homogeneous of degree ϕ, and Bibt denotes the set of products produced in

brewery b owned by firm i for market t. Note that technologies are assumed to differ across

firms according to the vector of productivity shocks Aibt = {Aj
ibt}j∈Bibt

.11

As we show in Appendix B for the case where F (Xibt) is Cobb-Douglas, α and ϕ to-

gether determine whether a technology involves the use of public, non-rival inputs, which

can generate scope economies. In particular, we show that βp ≡ ϕ−α captures the intensity

of public, non-rival tasks in production. As a result, this technology generates economies of

scope whenever βp > 0, i.e. non-rival tasks contribute to overall production, and nests the

standard case of non-joint production whenever βp = 0.

To go from this characterization of a firm’s production possibility set to their cost func-

tion, we assume that all inputs Xibt are obtained from perfectly competitive markets. Since

cost-minimizing firms will always operate on their production possibility frontier, and there-

fore Di (Yibt,Xibt) = 1, we can write:

Yibt ≡

∑
j∈Bibt

(
Y j
ibt

Aj
ibt

) 1
α

α

= F (Xibt) (9)

Equation (9) provides a “psuedo” production function for the output aggregator Yibt ≡
10See also Section 15G of Baumol et al. (1982) for a representation of this class of technology purely in

terms of cost functions.
11As shown in Cairncross et al. (2023), these product specific productivity shifters govern the opportunity

cost of each good within each firm.
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(∑
j

(
Y j
ibt

Aj
ibt

) 1
α

)α

. With this in mind, since F (Xibt) is homogeneous of degree ϕ, we know

that the cost function for Yibt will be given by:

C(Yibt,Wibt) = g(Wibt) (Yibt)
1
ϕ (10)

g(Wibt) is a function that is homogeneous of degree 1 in input prices.

Substituting in the definition of Yibt,we have:

C(Yibt,Aibt,Wibt) = g(Wibt)

∑
j∈Bibt

(
Y j
ibt

Aj
ibt

) 1
α


α
ϕ

(11)

Since this cost function represents a technology that nests the case of joint production

through public inputs whether ϕ − α > 0, this cost function generates economies of scope,

in the sense of Baumol et al. (1982) whenever ϕ > α. To show this, let Yj
ibt denote a vector

of outputs where all elements are zero except for the j’th element.

Lemma 1 Consider a vector Yibt = (Y 1
ibt, . . . , Y

J
ibt) with Y j

ibt > 0 for some j and
∑

j Y
j
ibt =

Yibt. Then,

• C(Yibt,Aibt,Wibt) <
∑

j C(Yj
ibt,Aibt,Wibt) if ϕ > α.

• C(Yibt,Aibt,Wibt) =
∑

j C(Yj
ibt,Aibt,Wibt) if ϕ = α;

• C(Yibt,Aibt,Wibt) >
∑

j C(Yj
ibt,Aibt,Wibt) if ϕ < α.

Proof. See Appendix A

Note that the cost function C(Yj
ibt,Aibt,Wibt) corresponds to the cost function for a

single product firm producing Y j
ibt.

12 Lemma 1 shows that when ϕ > α, C(Yibt,Aibt,Wibt)

will be strictly lower than producing the vectorYibt through J separate production processes.

As a result, economies of scope and production costs are lower when firms produce multiple

products together. On the other hand, when ϕ = α, the firm essentially operates J separate

production processes, and as a result, there are no cost savings to producing multiple goods

together. Finally, the case ϕ < α involves diseconomies of scope, where production costs rise

when a firm produces many outputs.13

12It is always possible for a firm to produce “as if” they were a single product when a firm has output
distance function (8), since a firm can always choose to produce only a single product j with some bundle

of inputs Xj
ibt, in which case D

(
(0, 0, ..., Y j

ibt, ...0),X
j
ibt;Aibt

)
= 1 implies Y j

ibt = Aj
ibtF (Xj

ibt).
13We do not expect this case to arise empirically since, in these situations, a firm would choose to operate

the J independent product lines, which would generate lower costs.
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4 Estimation

Having specified demand, the pricing game, and each firm’s cost function, we now turn

to estimation to conduct counterfactual experiments. Our primary interest is conducting

counterfactuals that quantify the importance of scope economies. As a result, core to our

analysis will be the estimation of (α, ϕ), which govern the magnitude of scope economies.

Since we rely on Miller and Weinberg (2017)’s demand model, we simply take their

estimates of (γ, β,Π) as given. Appendix C contains more information about the estimates

of the demand parameters we use. Given those estimates, we can construct δjit using the

information on Sj
it(Pt) and the standard Berry (1994) inversion. Since we assume that firms

engage in Bertrand-Nash pricing, we can then recover an estimate of marginal cost by firm-

product-market using a standard marginal cost inversion (e.g. Berry et al., 1995, Nevo,

2000). In particular, after stacking the |Ωt| − 1 first order conditions in (6) for each market

t as follows:

St +∆t (Pt −MCt) = 0, (12)

where ∆t ≡ Ot ◦ ∂t, where ∂t is a(|Ωt| − 1)× (|Ωt| − 1) matrix of with typical element (m,n)

equal to
∂Sm

it

∂Pn
i′t
, and Ot, and is an (|Ωt| − 1) × (|Ωt| − 1) ownership matrix, where element

(m,n) equals 1 is product (i,m) and (i′, n) are produced by the same firm (so i′ = i), zero

otherwise. We can then solve for the vector of marginal costs for all active products using:

MCt = Pt +∆−1
t St (13)

Note that (13) allows us to recover an estimate of the equilibrium value of each product’s

marginal cost MCj
it ≡

∂C(Yit)

∂Y j
it

. This value would only be sufficient for counterfactuals where

outputs and prices change if there was no joint production and constant returns to scale.14

If we wish to conduct such counterfactuals when firms face cost functions (11), we will need

to estimate the components of their full marginal cost function, given by:15

MCj
ibt =

1

ϕ
g(Wibt)

 ∑
j∈∈Bibt

(
Y j
ibt

Aj
ibt

) 1
α


α
ϕ
−1(

Y j
ibt

Aj
ibt

) 1
α

1

Y j
ibt

(14)

For this purpose, it will be useful be rewrite the marginal cost function as follows:

14In particular, imposing those conditions on our cost function by setting α = ϕ = 1 yields

C(Yibt,Aibt,Wibt) = g(Wibt)
∑

j
Y j
ibt

Aj
ibt

, which then leads to MCj
it = g(Wibt)

Aj
it

, which is sufficient to recover

the full cost function.
15We show in Appendix A, that the marginal costs are lower for every product when there are scope

economies and α < ϕ.

12



MCj
ibt =

g(Wibt)

ϕA
1
ϕ

ibt︸ ︷︷ ︸
≡Kibt

∑
j∈Bibt

(
Y j
ibt

Âj
ibt

) 1
α


α
ϕ
−1(

Y j
ibt

Âj
ibt

) 1
α

1

Y j
ibt

(15)

where we use the fact that we can substituteAj
ibt = AibtÂ

j
int where lnAibt ≡ 1

|Bibt|
∑

j∈Bibt
lnAj

ibt

and ln Âj
ibt ≡ lnAj

int − lnAint. Since Kibt ≡ g(Wibt)

ϕA
1
ϕ
ibt

shifts the marginal costs of all products

equally, we can fully recover the marginal cost function for the purpose of running counterfac-

tuals by estimating (α, ϕ, {Kibt}(i,b,t), {Âj
ibt}(j,i,b,t)). In the following subsections, we describe

our step-by-step procedure for estimating each of the objects. However, before turning to

this procedure, we briefly discuss the intuitive sources of variation available to identify (α, ϕ),

which together govern the magnitude of scope economies.

4.1 Intuition for identification of scale and scope economies

To generate a straightforward estimating equation for (α, ϕ), first multiply (15) by Y j
ibt,

and divide this expression by its sum over all j ∈ Bibt, yielding:

MCj
ibtY

j
ibt∑

j∈Bibt
MCj

ibtY
j
ibt

=

(
Y j
ibt

Âj
ibt

) 1
α

∑
j∈Bibt

(
Y j
ibt

Âj
ibt

) 1
α

=

(
Y j
ibt

Aj
ibtF (Xibt)

) 1
α

(16)

where the second equality follows from (9) and Aj
ibt = AibtÂ

j
ibt. We can rearrange this

expression to generate the following estimating equation

lnY j
ibt = α ln

(
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

)
+ lnF (Xibt) + ln(Aj

ibt) (17)

Note that since F (Xibt) is homogenous of degree ϕ, this expression is identical to the

estimating equation derived in Orr (2022) when α = ϕ, in which case we can write:

lnY j
ibt = ϕ ln

(
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

)
+ lnF (Xibt) + ln(Aj

ibt)

= lnF

(
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

Xibt

)
+ ln(Aj

ibt) (18)
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where Orr (2022) shows that
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

Xibt will exactly equal the quantity of inputs

allocated to product line j under the assumption of non-joint production.

Equation (17) provides an estimating equation that generalizes equation (18) by allowing

input shares to enter with a freely variable coefficient α. More importantly, if a researcher

were to estimate α < ϕ, this provides evidence that allocating inputs across product lines

in a purely non-joint way does not scale up output in the same proportion as allocating

inputs through F (.). This implies returns to scale in F (.) must capture something beyond

the allocation of non-joint inputs across product lines. As the derivation of this technology

based on public and private tasks makes clear (see Appendix B), this is because F (.) also

captures returns to public tasks, which are not captured by
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

Xibt. In particular,

according to this model, α is equal to the overall intensity of private, rival tasks, βr, while

ϕ− α is equal to the overall intensity of public tasks, βp in production.

With this in mind, equation (17) suggests two separate sources of variation for identifying

ϕ and α. Since ϕ captures overall returns to scale in all inputs, regardless of whether they

are allocated to rival or non-rival tasks, exogenous variation in Xibt can be used to identify

the production function F (.), which will allow a researcher to recover overall returns to scale.

Since Xibt are chosen by the firm with knowledge of {Aj
ibt}j∈Bibt

, which makes estimation by

OLS infeasible, a researcher will generally need to find some way to instrument for Xibt.

Ideal instruments would include anything that shifts up the overall scale of the firm, Xibt,

holding overall productivity {Aj
ibt}j∈Bibt

fixed.

To then identify α, a researcher needs to leverage exogenous variation in the marginal cost

times output shares
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

. Note, however, that Y j
ibt and MCj

ibt both directly depend

on Aj
ibt, which again suggests the need for instruments. To find appropriate instruments, note

that Y j
ibt is determined by the interaction of both supply side and demand-side forces through

a firm’s pricing first-order conditions (6). This suggests relying on product-specific demand

shifters as a way to shift
MCj

ibtY
j
ibt∑

j∈Bibt
MCj

ibtY
j
ibt

within a firm, and thereby identify α.

While (17) suggests a straightforward instrumental variables estimation strategy to iden-

tify (ϕ, α), this particular strategy is unavailable when researchers only rely on demand-side

data, as Xibt will be unobserved. In the following subsection, we propose a two-step estima-

tor that leverages similar sources of variation for identifying (ϕ, α), while not requiring that

Xibt be known.

14



4.2 A two-step procedure

Step 1.

For simplicity of notation, rewrite equation (17) in the following way:

lnY j
ibt = α ln

(
ρjibt
)
+ lnF (Xibt) + ln(Aj

ibt) (19)

where:

ρjibt ≡
MCj

ibtY
jbt
i∑

j∈Bibt
MCj

ibtY
j
ibt

(20)

Notice that F (Xibt) is constant within a firm-brewery-market combination. Therefore, we

can use product-level variation within these production sets in order to estimate α without

requiring information about F (.) or Xibt. We can rewrite Equation 19 in the following way:

ln Ŷ j
ibt = α ln

(
ρ̂jibt
)
+ ln(Âj

ibt) (21)

where ln V̂ ar
j

ibt = lnV arjibt − 1
|Bibt|

∑
j∈Bibt

lnV arjibt
Having recovered the marginal costs using Equation 13, we can construct ln

(
ρ̂jibt
)
. Notice

that now we have the data to estimate α from equation (21) using OLS. However, as discussed

earlier, the estimate would likely be biased, since ρ̂jibt would generally be correlated with

Âj
ibt, the (demeaned) product-specific productivity shock. Notice that the bias may be

either positive or negative, depending on the correlation between the equilibrium output

of product j and all the characteristics of the production process captured in Aj
ibt. For

example, Jaumandreu and Yin (2016), Forlani et al. (2016), Orr (2022) show that (quantity)

productivity may be negatively correlated with product quality. This is because quality

tends to be costly to produce (Verhoogen 2008, Kugler and Verhoogen 2012), and therefore

firms might use smaller amounts of certain private inputs or less sophisticated processes

to make the same amount of lower-quality goods, which will then be captured by a larger

productivity term. Lower quality, at the same time, would then drive down the demand

for the product. In this case, the sign of the correlation between Aj
ibt and the equilibrium

Y j
ibt would depend on the market conditions. Overall, ex-ante, it is not clear whether higher

product-specific productivity would be associated with larger or smaller output.

Given the endogeneity of Âj
ibt, we use instrumental variables to estimate α. Specifically,

we use the demand shocks that affect the equilibrium output of product j but are not

correlated with the productivity term. As discussed earlier, given the estimated discrete

choice demand model, we can recover the mean utility of product (i, j) in market t, δ̂jit, and

15



Table 2: Scale and Scope Parameter Estimates

(1) (2) (3) (4)
OLS IV OLS IV

α̂ 0.977*** 1.020***
(0.007) (0.016)

1

ϕ̂
0.792*** 0.900***

(0.002) (0.016)
First Stage F-stat - 548.37 - 275.76

ϕ̂ - - 1.263 1.111
- - (.029) (.022)

ϕ̂− α̂ - - - .091
- - - (.022)

N 88468 88468 10920 10920

Notes: Standard errors, clustered by city, in parentheses. P-value < .01 : ∗∗∗, P-value< .05 : ∗∗,
P-value< .1 : ∗

obtain an estimate of the unobserved product appeal ξ̂jit of product (i, j) on market t (see

Equation 2). We will construct our instrument based on ξ̂jit. The first issue that we need

to resolve is that ξ̂jit may not be comparable across markets, as, given the way the demand

model is estimated, ξ̂jit should in fact be interpreted as the difference in the product’s appeal

for consumers on market t relative to that specific market’s outside option. As a result, if

the outside option differs by market, ξ̂jit may not be properly comparable across markets. To

deal with this, we define ξ̂jRit ≡ ξ̂jit − ξ̂rit as the difference in the product appeal relative to a

reference good r that is offered in all markets, which we take to be 6-packs of bug light.

Secondly, note that the estimate of ξ̂jRit would reflect both the unobserved product quality

as well as the market (e.g., city×time) specific taste shocks. To construct our instrument,

we remove the quality component from ξ̂jRit since, as discussed above, it may be correlated

with productivity. Specifically, we regress ξ̂jRit on a series of product×time fixed effects and

obtain the new residual, which takes out product-specific quality as well as any time-varying

dimensions to perceived quality (e.g. changes in packaging, national advertising campaigns,

etc.). The remaining variation ξ̂jRDM
it captures market variation in the perceived appeal of

different products due to local taste shocks, and therefore it should be uncorrelated with

supply conditions. In the end, we use ξ̂jRDM
it as our instrument, leveraging local taste shocks

relative to the baseline reference product r by market (e.g., city×time).

OLS and IV results can be found in columns (1) and (2) of Table 2 below. Notice that the

instrumental variable approach leads to a larger estimate of α. That implies that the OLS
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estimate was negatively biased, which is consistent with the productivity term Aj
ibt being

negatively correlated with product quality and eventually with the output.

After estimating α, equation (21) also allows us to obtain the productivity shocks {Âj
ibt}(j,i,b,t),

demeaned at the firm-brewery-market level. We will use these estimates as inputs into the

second step of our procedure to evaluate the remaining parameters of the marginal cost

function.

Step 2.

We can use the obtained estimate of α and {Âj
ibt}(j,i,b,t) and plug them into equation (15).

We can then multiply both sides of the equation by Y j
ibt and sum over all j ∈ Bibt to get the

following expression:

∑
j∈Bibt

MCj
ibtY

j
ibt = Kibt

∑
j∈Bibt

(
Y j
ibt

Âj
ibt

) 1
α̂


α̂
ϕ

(22)

where Kibt ≡ g(Wibt)

ϕA
1
ϕ
ibt

Taking logs, we can rewrite the equation in the following way:

ln

(∑
j∈Bibt

MCj
ibtY

j
ibt

)
=

1

ϕ
ln Ŷibt + lnKibt (23)

where Ŷibt ≡

(∑
j

(
Y j
ibt

Âj
ibt

) 1
α̂

)α̂

is the aggregator.

Again, while we can now estimate equation (23) using OLS, the estimate will be biased

since the output aggregator is likely to be correlated with input prices Wibt, as well as

the average productivity within a production set (e.g., firm-brewery-market) Aibt. For this

purpose, we rely on production set-level averages of relative local taste shifters ξ̂RDM
it =

1
|Bibt|

∑
j∈Bibt

ξ̂jRDM
it as our instrument.

Column (3) of Table 2 reports the OLS estimate of 1
ϕ
based on Equation 23 while column

(4) reports the IV estimate. Both columns use the IV estimate of α from column (2) of the

same table to construct the aggregator Ŷibt. Each specification also includes time, firm, and

city fixed effects. Notice that the OLS estimate of 1
ϕ
is negatively biased since the unit cost

g(Wibt) tends to be negatively correlated with the output.

At the bottom part of the table, we present point estimates and standard errors for ϕ̂

and ϕ̂ − α̂. As in Grieco et al. (2018), we also find evidence of scale economies, although

ours (1.11) are slightly smaller than their preferred average returns to scale estimates (1.17 -
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1.20). To account for uncertainty in the first step of the estimation, these standard errors are

constructed using block bootstrap, where we sample cities with replacement and conduct 100

replications of the two-step procedure for each bootstrap sample. Standard errors are based

on the sample standard deviation of the relevant statistic. Notice that using our estimates

and bootstrapped standard errors, we can construct a t-statistic for whether ϕ̂ is strictly

greater than α̂ and reject the null of no economies of scope in the beer industry. Finally,

equation (23) also allows us to obtain the estimates of Kibt.

5 The Impact of Scope Economies on Market Out-

comes

How do scope economies impact market outcomes in the US beer industry? We compare

the observed equilibrium with a counterfactual equilibrium in which we shut down economies

of scope (i.e., no joint production occurs, but the production technology otherwise stays the

same). In this counterfactual scenario, the marginal cost of producing good j by firm i at

brewery b for market t becomes

MCnon-joint,j
ibt =

1

ϕ
g(Wibt)

(
Y j
ibt

Aj
ibt

) 1
ϕ

1

Y j
ibt

= Kibt

(
Y j
ibt

Âj
ibt

) 1
ϕ

1

Y j
ibt

. (24)

(see equation 14 for the marginal cost of product j with joint production). Lemma 2 in the

Appendix shows that the marginal cost of production of a good is lower with joint production

when ϕ > α, which is what our estimates suggest for the US beer industry.

We quantify the impact of joint production on marginal costs in two steps. We first hold

quantities produced fixed, and compute the counterfactual marginal costs using equation

(24). We present the results in Figure 1, which shows cost changes (in log points) for each

product–market combination in our data when shutting down scope economies. The figure

shows that the marginal cost of production of a product in our sample increases by about

25 percent on average (at the observed quantities).

How do these cost increases impact pricing incentives? On the one hand, the increase

in the marginal cost of a product decreases the firm’s marginal incentives to sell it, which

creates an incentive to increase the price of the good to lower the quantity sold. On the

other hand, the existence of increasing returns to scale (i.e., ϕ̂ > 1 in the US beer industry)

suggests the existence of a tradeoff: an increase in price decreases quantity, which further

increases the marginal cost of production. This makes a price increase costly for the firm.

To quantify how these pricing incentives play out in equilibrium, Table 3 compares the
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Figure 1: Cost Change when Shutting Down Scope Economies at Observed Quantities
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Notes: The histogram displays the distribution of log(MCno scope economies)− log(MCobserved),
where MCobserved is the outcome in the observed equilibrium.

counterfactual equilibrium in which scope economies are shut down with the observed equi-

librium. In the counterfactual equilibrium, firms fully adjust prices and production. To

compute the counterfactual prices, we solve the system of first-order conditions of the pric-

ing game in Equation 6, replacing the marginal cost of production of good j withMCnon-joint,j
ibt

(see Equation 24).

Table 3 shows that shutting down scope economies causes prices to increase by 13.7

percent on average. The effects are heterogeneous across firms—the larger price increases

are among the firms with the largest number of products (Anheuser-Busch, Molson Coors,

and SABMiller), which have the most to lose when shutting down scope economies. Market

shares on average decrease by 1.7 percent, which makes production even less efficient, as firms

miss out on scale economies. Shutting down scope economies (including the interaction with

scale economies), causes an increase in the marginal cost of production to 26.3 percent on

average. As with prices, Anheuser-Busch, Molson Coors, and SABMiller are the firms with

the largest effects on their market shares and marginal costs of production.

Our estimates of economies of scope suggest that these have a first-order effect on market

outcomes. The results also show that scale and scope economies reinforce each other—when

both are present, they interact, making it cheaper for firms to sell each additional unit.

Our findings also show that scope economies and joint production have an economically

significant impact on productive efficiency, providing an (at least partial) explanation for

the existence of multiproduct firms in the US beer industry.
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Table 3: The Impact of Scope Economies on Market Outcomes

(1) (2) (3) (4) (5) (6)
Price change (in log points) Cost change (in log points) Share change (in log points)

Overall 0.137 0.263 -0.017
(0.001) (0.001) (0.001)

Anheuser-Busch 0.134 0.312 -0.030
(0.000) (0.001) (0.000)

FEMSA 0.025 0.078 0.019
(0.001) (0.001) (0.001)

Grupo Modelo 0.111 0.214 0.040
(0.001) (0.001) (0.001)

Coors Molson 0.173 0.258 -0.015
(0.001) (0.001) (0.001)

Pabst 0.120 0.118 -0.015
(0.001) (0.002) (0.001)

SABMiller 0.158 0.234 -0.036
(0.001) (0.001) (0.001)

Observations 86,392 86,392 86,392 86,392 86,392 86,392

Notes: Standard errors in parentheses. Each column displays regression coefficients of log(Xno scope economies)− log(Xobserved)
on a constant (columns 1, 3, and 6) or firm-level indicators, for X ∈ {price,marginal cost,market share}, and where Xobserved

is the outcome in the observed equilibrium.

6 Concluding Remarks

Why do multiproduct firms exist? Are economies of scope an empirically relevant expla-

nation for the existence of multiproduct firms? We shed light on these questions by proposing

a new method to estimate economies of scope and using the method to evaluate the impact of

economies of scope on market outcomes in the US beer industry. Our method requires data

commonly used for demand estimation (crucially, quantities produced and prices for each

product–market combination) but does not require input data, making it easy to implement

in other settings. We find that shutting down economies of scope (i.e., no joint production

takes place, but the production technology otherwise stays the same) leads to price and

marginal cost increases of 13 percent and 26 percent on average, respectively, which leads

to an average decrease in a product’s market share of 1.7 percent. Our findings explain the

prevalence of multiproduct firms in the US beer industry.
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Nevo, Aviv, “A Practitionerâs Guide to Estimation of Random Coefficients Logit Models

of Demand,” Journal of Economics & Management Strategy, 2000, 9, 513–548.

Orr, Scott, “Within-Firm Productivity Dispersion: Estimates and Implications,” Journal

of Political Economy, 2022, 130 (11), 2771–2828.

Panzar, John C and Robert D Willig, “Economies of scale and economies of scope in

multi-output production,” Bell Laboratories economic discussion paper, 1975, 33.

and , “Economies of scope,” The American Economic Review, 1981, 71 (2), 268–272.

Rosse, James N., “Estimating cost function parameters without using cost data: Illus-

trated methodology,” Econometrica, 1970, pp. 256–275.

Teece, David J, “Economies of scope and the scope of the enterprise,” Journal of economic

behavior & organization, 1980, 1 (3), 223–247.

Verhoogen, Eric A, “Trade, quality upgrading, and wage inequality in the Mexican man-

22



ufacturing sector,” Quarterly Journal of Economics, 2008, 123 (2), 489–530.

Zhang, Jingfang and Emir Malikov, “Off-balance sheet activities and scope economies

in US banking,” Journal of Banking & Finance, 2022, 141, 106534.

23



A Properties of the Cost Function

Proof of Lemma 1

Proof. When ϕ > α, it follows that

C(Yi,Ai,Wi) <
∑
j

C(Yj
i ,Ai,Wi) ⇔

∑
j

(
Y j
i

Aj
i

) 1
α

α

<

∑
j

(
Y j
i

Aj
i

) 1
ϕ

ϕ

,

which holds true given that ∑
j

(
Y j
i

Aj
i

) 1
x

x

is strictly increasing in x. A similar argument can be used to prove the other claims.

Statement and Proof of Lemma 2

Lemma 2 Consider a vector (Y 1
i , . . . , Y

J
i ) with Y j

i > 0. Then,

• the marginal cost of product j is lower under joint production (with a strict inequality

if Y k
i > 0 for some k ̸= j) when ϕ > α;

• the marginal cost of product j is grester under joint production (with a strict inequality

if Y k
i > 0 for some k ̸= j) when α > ϕ.

Proof. The marginal cost of production with joint and non-joint production is given by

MC joint,j
i =

1

ϕ
g(Wi)

∑
j

(
Y j
i

Aj
i

) 1
α


α
ϕ
−1(

Y j
i

Aj
i

) 1
α

1

Y j
i

,

MCnon-joint,j
i =

1

ϕ
g(Wi)

(
Y j
i

Aj
i

) 1
ϕ

1

Y j
i

,
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respectively, for (Y 1
i , . . . , Y

J
i ) ≥ 0. When ϕ > α, it follows that

MCnon-joint,j
i ≥ MC joint,j

i ⇔(
Y j
i

Aj
i

) 1
ϕ

≥

∑
j

(
Y j
i

Aj
i

) 1
α


α
ϕ
−1(

Y j
i

Aj
i

) 1
α

⇔

1 ≥

(Y j
i

Aj
i

) 1
α


ϕ−α
ϕ

/

∑
j

(
Y j
i

Aj
i

) 1
α


ϕ−α
ϕ

,

where the inequality is strict if Y k
i > 0 for some k ̸= j. When ϕ < α, it is straightforward to

establish that the reverse inequality holds.

B A Model of Public and Private Tasks

In this Appendix, we derive the output distance function (8) for the special case of

Cobb-Douglas production. For more general functional forms, see Cairncross et al. (2023).

For each input X, there are two tasks- a private task r, and a public task p. A firm

allocates Xrj
i units of X to product line j doing the private task (e.g. construction), and Xp

i

units of X to the public task (supervising), which affects all product lines at once. Output

of product line j is determined by the following production function

Y j
i =

Aj
it

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
(25)

Where C ≡
∏

X(βr
X)

βrX (βP
x )

β
p
X∏

X(βr
X+βp

X)
βr
X

+β
p
X
. Given Xi, the vector of aggregate inputs for the firm, we

can characterize the firm’s production possibility set by solving for their output distance

function, given by:

D (Yi,Xi,Ai) ≡ min
δ,Xi,{Xrj

i }j
δ

s.t.:
Y j

δ
≤ Aj

it

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
∀j

Xp
i +

∑
j

Xrj
i ≤ Xi, ∀X

(26)

This optimization problem has the following Lagrangian
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L = δ +
∑
j

λj
i

(
Aj

i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
− Y j

it

δ

)
+
∑
X

µX

(
Xi −Xp

i +
∑
j

Xrj
i

)

Since the production functions are increasing in all inputs, all constraints will bind with

equality, and therefore λj
i > 0 ∀j and µX > 0 ∀X, with:

Y j

δ
=

Aj
it

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
∀j (27)

and

Xp
i +

∑
j

Xrj
i = Xi ∀X (28)

Taking the first order condition for Xrj
i yields

λj
iβ

r
X

Aj
i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
Xrj

i

= λj
iβ

r
X

Y j
i

δ

Xrj
i

= µX (29)

The first order condition for Xp
it satisfies

∑
j

λj
iβ

p
X

Aj
i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
Xp

i

=
βp
X

δXp
i

∑
j

λj
iY

j
i = µX (30)

Let Xr
i ≡

∑
j X

rj
i . Rearrange and sum (29) for all j, yielding:

µXX
r
i =

βr
X

δ

∑
j

λj
iY

j
i (31)

Rearrange (30) and divide by (31)

Xp
i

Xr
i

=
βp
X

βr
X

(32)

Since Xi = Xr
i +Xp

i , substitute (32) into this expression, yielding:

Xr
i +

βp
X

βr
X

Xr
i = Xi

or:

Xr
i =

βr
X

βr
X + βp

X

Xi (33)
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and:

Xp
i =

βp
X

βr
X + βp

X

Xi (34)

Next, rearrange (29) and divide by (31), yielding:

Xrj
i =

λj
iY

j
it∑

k λ
k
i Y

k
i

Xr
i (35)

Substitute into (33), (34) and (35) into (27), which yields :

Y j
i

δ
=

Aj
i

C

∏
X

(
λj
iY

j
i∑

k λ
k
i Y

k
i

βr
X

βr
X + βp

X

Xi

)βr
X (

βp
X

βr
X + βp

X

Xi

)βp
X


Define α ≡

∑
X βr

X , βX = βr
X + βp

X , and ϕ ≡
∑

X βX . Rearranging and cancelling out

terms in the above yields::

(
Y j
i

δAj
i

) 1
α

=
λj
iY

j
i∑

k λ
k
i Y

k
i

(∏
X

(Xi)
βX

) 1
α

Sum over all j :

1

δ
1
α

∑
j

(
Y j
i

Aj
i

) 1
α

=

(∏
X

(Xi)
βX

) 1
α

Or:

δ =

(∑
j

(
Y j
i

Aj
i

) 1
α

)α

∏
X (Xi)

βX

This establishes that the firm’s distance function is D (Yi,Xi,Ai) =

∑
j

(
Y
j
i

A
j
i

) 1
α
α

∏
X(Xi)

βX
.16

Therefore a firm’s production possibility frontier can be characterized by (Yi,Xi) satisfying:(∑
j

(
Y j
i

Aj
i

) 1
α

)α

∏
X (Xi)

βX
= 1 (36)

Note that from this derivation of the firm’s distance function, we can see that α, which

16While we did not use the first order condition for δ, which implies δ2 =
∑

j λ
j
iY

j
i , we would use this

expression to solve for µX and λj
i
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we defined as α ≡
∑

X βr
X , should be interpreted as the share of rival or private inputs

in production, while overall returns to scale, ϕ ≡
∑

X βX depends both private and public

tasks, so α ≤ ϕ.

C Estimates of Demand Parameters

We use the estimates of the demand parameters directly from Miller and Weinberg (2017).

Specifically, we use the estimates from their baseline RCNL-1 model (see Table IV in Miller

and Weinberg (2017)).

Variables Parameter Estimate

Price γ -0.0887

Nesting Parameter ϱ 0.8299

Demographic interactions
Income × Price Π1 0.0007

Income × Constant Π2 0.0143

Income × Calories Π3 0.0043
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