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Abstract

Using upgrades—fees that customers pay to access a premium quality product

after the purchase of a regular one—can significantly affect consumer welfare. On

the one hand, regular consumers benefit from the ability to access a monopolist’s

higher-quality goods at a discounted price. On the other hand, the monopolist will

seek to capture surplus from these gains from trade by offering a different price

menu for all goods. Whether consumer welfare rises or falls when a firm introduces

upgrades depends on the relative magnitudes of these two effects. The aim of this

research is to disentangle the two effects in the context of an international airline

that offers economy class passengers the option to pay an additional fee to upgrade to

business class. I develop and estimate a model of airline pricing to assess the effects

of such upgrades via counterfactual simulations. I show that the upgrade option

improves the allocation of passengers across cabins, which leads to an increase in

consumer and producer welfare of 1.5% and 2%, respectively.
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1 Introduction

Offering upgrades is a popular practice in industries characterized by multiproduct offer-

ings and limited capacity. Airlines, freight transport providers, car rental companies and

hotels offer products of various quality and allow customers to access premium-quality

products through either retail sales or upgrades. Upgrades can generate up to 10% and

8% of revenues in the car rental (AllianzTravel) and the airline (OAG) industries; how-

ever, they have received little attention in the empirical economics literature, because of

lack of accessible data.

Firms complement the retail sales channel with upgrades to sequentially price dis-

criminate and manage limited inventory. However, the effects on total welfare of the

introduction of this new sales channel are ambiguous. On the one hand, the availability

of an upgrade option provides the seller with extra flexibility in selling products, increas-

ing producer surplus. In particular, through upgrades, firms can find customers who

value premium products below the listed price among those who already hold a regu-

lar product. According to theoretical research, this may alleviate allocative inefficiencies

by reducing mismatch between supply and demand (Gallego and Stefanescu, 2009; Cui,

2017). Moreover, existing evidence suggests that airlines’ revenues could increase after the

introduction of upgrade options (Cui et al., 2019). On the other hand, the effect on cus-

tomers is less straightforward. Upgrades increase the welfare of consumers who can enjoy

premium products at discounted prices. However, introducing an upgrade option modifies

the seller’s pricing problem, potentially influencing prices for retail sales, with ambiguous

effects on consumer welfare. Existing theoretical studies (Varian, 1985; Aguirre et al.,

2010; Bergmann et al., 2015) do not consider sequential price discrimination strategies

featuring a dynamic multiproduct offering and limited inventory, thus leaving open the

question of what the effects of upgrade options are on consumers.

This paper studies how introducing upgrades affects welfare in the context of the

airline industry. In particular, I analyze new proprietary data from an international airline

that employs upgrades to allocate premium-cabin seats.1 I find both that upgrades are

a relevant sales channel for premium products and that the airline employs them for

1 The identity of the airline is confidential. In terms of size, in 2018, the airline studied in this paper
had revenues between $10 and $20B. As a benchmark, American Airlines made $43B (macrotrends).
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price discrimination. I then estimate a structural model to quantify the effect of the

upgrade option on welfare. My results indicate that, on average, both consumers and the

monopolist benefit from the upgrade option.

There are at least three compelling reasons to study ticket upgrades in the airline

industry. First, the airline sector is one of the world’s largest industries, contributing

approximately 5% to global GDP (IATA, 2018). Second, ticket upgrades are extensively

used in the industry, with upgrade programs being implemented by all major interna-

tional airlines (see, for example, the websites of United Airlines, Delta Airlines, American

Airlines, China Southern Airlines, Lufthansa and KLM). Third, the airline industry has

low profit margins, as margins average around 1.2% and profits per passenger equal $2.25

(IATA, 2023): this makes revenues generated from upgrades a vital contributor to the

overall profitability of the industry (McKinsey, 2019).

In this paper, I use a novel transaction-level dataset obtained from the revenue man-

agement department of an international airline. The dataset contains all 268,035 ticket

purchases made over 1,600 flights, connecting two monopolistic routes, during the period

between September and December 2018. For each ticket in the dataset, I have access to

information such as the final price paid, timing of purchase and cabin class (economy,

premium economy or business class). Notably, the dataset shows whether customers in

lower class cabins upgraded to premium cabins and, if so, at which price.

This dataset enables me to find new evidence about upgrades and validate well-

established facts about retail sales in the airline industry. Regarding upgrades, I am able

to establish two significant findings. First, upgrades serve as a valuable sales channel, with

the airline utilizing them to sell 16% of their premium seat tickets, thereby generating

2% of total revenues. Second, the airline uses upgrades to sell higher quality seats at a

discounted price. On average, customers who upgrade to premium cabins save 15% off

the retail price of seats in those cabins. This is in line with the theory of sequential price

discrimination, whereby the firm first selects demand through retail sales and then offers

the high-quality product again at lower prices. The retail pricing data also exhibit char-

acteristics consistent with those described in the economics literature on airline pricing.

In line with Williams (2022) and Lazarev (2013), the airline engages in dynamic pricing

to implement intertemporal price discrimination among customers. Those who purchase
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their tickets early appear to have a lower willingness to pay (WTP) for travel than those

who purchase at the last minute. Furthermore, in line with Aryal et al. (2023), the airline

engages in intratemporal price discrimination by offering products of different qualities at

various prices to segment customers based on their value for comfort.

To measure the changes in consumer and producer welfare resulting from the upgrade

sales channel, I construct a structural model of supply and demand, building on Aryal et

al. (2023). On the supply side, I approximate the airline decision process by a two-period

problem with capacity constraints, where the airline chooses prices for two products:

economy and business class seats. In both periods, the airline sells economy and business

class seats through the retail channel. In the last period, given availability in the premium

cabin, the airline sells upgrades to customers holding an economy class ticket from the

initial period. As a result, the airline’s dynamic programming problem encompasses

multiple products and upgrades. The model allows me to capture crucial aspects of airline

price discrimination strategies, including intertemporal (dynamic pricing), intratemporal

(regular vs premium cabin) and sequential (upgrades) price discrimination.

On the demand side, customers randomly enter the airline ticket market and, upon

arrival, make decisions to purchase an economy or a business class ticket, or not to fly.

If customers buy an economy class ticket in t = 0, they have the option to upgrade to

business class in the last period, t = 1. When modeling customer’s upgrade option, I

make two assumptions. Firstly, I impose that customers do not anticipate the possibility

of an upgrade. While this assumption simplifies the problem solution and aligns with

the practice in much of the prior literature,2 it rules out strategic thinking on the part

of consumers. Additionally, I allow customers to be inattentive. Specifically, the airline

sends a notification (e.g., an email) to all economy class ticket holders two days before

departure, but only a fraction of them actually pay attention to the notification itself.

Allowing for inattention enhances the model’s credibility in two ways. First, it mirrors

how firms in the airline industry offer upgrades (as reported by Tripadvisor; see also

Appendix A.1 for an example). Second, it aligns with customers’ patterns of response

to notifications in the travel industry, where only 20% of customers open travel-related

emails (as reported by Constant Contact and campaignmonitor.com).

2 For example, Williams (2022) and Aryal et al. (2023) implement a similar assumption; one relevant
exception is Lazerev (2013), who allows consumers to strategically time their initial ticket purchase.
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To account for price differences across flights and over time, I specify a model with

random preference coefficients. Each simulated flight at each time is characterized by an

idiosyncratic demand shock, which characterizes flight-time specific distributions of WTP

and value for comfort. The airline sets optimal prices based on these demand shocks.

Variation in demand shocks across flights and over time, then, leads to variation in simu-

lated prices and sales. By assuming optimal pricing alongside demand-side restrictions, I

am able to identify customers’ preferences and arrival rate over time. I estimate the model

at the route level using the simulated method of moments, where I match the distribution

of prices and ticket sales.3 The estimated parameters allow the model to approximate the

observed distributions of prices and quantities.

Using these estimates, I conduct counterfactual simulations to examine how the up-

grade option affects pricing decisions and welfare. First, I discuss the impact of upgrades

on pricing decisions and their interaction with capacity constraints conditional on the

demand shock. On the one hand, irrespective of capacity constraints, the airline uses up-

grades to sequentially price discriminate among initial-period customers, thereby affecting

initial-period prices. In particular, since the airline anticipates that some initial-period

economy class ticket holders will upgrade to business class, the opportunity cost of raising

initial-period premium-cabin prices decreases. However, how the upgrade option interacts

with capacity constraints and how it affects the airline pricing problem depend on the

demand shock. In the case of a low demand shock in the initial period, the airline expe-

riences few sales in both cabins, and it uses the upgrade option only to sequentially price

discriminate among initial-period customers: this alone does not affect last-period prices.

On low-value flights, then, the upgrade option increases welfare by enabling the airline

to fill empty seats in the premium cabin and granting customers access to this cabin

at a discount. In contrast, in the case of large, positive initial-period demand shocks,

the probability of business class selling out in the initial period is large and the airline

potentially misses out on high-value sales from high-value travelers in the last period.

In such a scenario, the airline uses the upgrade option as a costless way to reduce this

probability. By anticipating that high-value customers who have bought economy class

tickets in the initial period can upgrade in the final period, the airline further increases

initial-period business class prices as a way to restrict the number of its retail sales in the
3 Focusing on route-level demand is consistent with practices in the industry (see IATA).
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initial period. Furthermore, beyond distorting initial-period prices, the upgrade option

also affects prices in the last period due to its interaction with capacity constraints. In

fact, upgrading customers compete with retail buyers for business class in the final period.

On high-value flights, then, the upgrade option increases welfare by reducing the number

of early sellouts in the premium cabin and improving the efficiency of seat allocation over

time.

Second, I quantify the welfare effects of the upgrade option for both travelers and the

airline. From a welfare standpoint, the availability of the upgrade option has a positive

impact on both producer and consumer surplus, thereby increasing efficiency. Overall,

producer surplus increases by an average of $1,553 (2%) per flight, which is significant in

an industry with a 1.2% profit margin. Overall, consumer surplus increases by an average

of $1,227 (1.5%) per flight, which is equivalent to consumer gains associated to a $6.50

subsidy to all boarding travelers, when the airline does not implement the upgrade option.

The increase in producer surplus is driven by the revenue generated from the upgrade fees,

which compensates for the fewer sales resulting from higher prices. Concurrently, the main

driver of the increase in consumer surplus is the utility gain experienced by customers

who choose to upgrade, thereby accessing business class at a discount. This compensates

the loss in utility due to the higher retail prices of the premium product.

Literature review

This paper builds on three domains of literature. First, a recent literature in operations

management that focuses on upgrading. Most papers study how sellers can benefit from

upgrades from both the theoretical (Gallego and Stefanescu, 2009; Cui et al., 2018; Cui

and Shin, 2018) and empirical perspectives (Cui et al., 2019; Yilmaz et al., 2017). In

particular, Cui et al. (2019) study the effects of specific upgrade products known as add-

ons, which require the purchase of a regular product before the premium product can

be accessed, in a quasi-experiment within the airline industry. I extend this literature in

at least two ways. One, none of these studies empirically quantify the consumer welfare

changes resulting from upgrades. Two, I incorporate the possibility of customer inatten-

tion to the upgrade option, modeling it as a behavioral parameter following an approach

similar to Gabaix (2019).
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Second, this paper also extends the empirical literature studying how price discrimi-

nation affects welfare. Most empirical papers focus on either intratemporal (Leslie, 2004;

Crawford and Shum, 2007) or intertemporal price discrimination (Lazarev, 2013; Cho et

al., 2018). Only Chandra (2020) and Aryal et al. (2023) consider both aspects. I con-

tribute to this line of research by developing an empirical model that allows me to consider

upgrades as an additional sales channel through which the airline engages in sequential

price discrimination.

Finally, this paper builds on recent airline industry studies, including Dana et al.

(2022), Aryal et al. (2023), Williams (2022), Lazarev (2013), and Li et al. (2014).

Williams (2022) and Lazarev (2013) analyze the effects of dynamic pricing on consumers;

Li et al. (2014) investigate customers’ incentives to delay ticket purchases, and Aryal et

al. (2023) examine a monopolist selling vertically differentiated products with dynamic

pricing. Meanwhile, Dana et al. (2022) consider a dynamic pricing inventory control

problem. However, these papers do not take into account the role of the upgrade option in

sequential price discrimination and inventory management, overlooking important factors

that influence pricing decisions.

In particular, I build on the methods used by Williams (2022) and Aryal et al. (2023)

in modeling and estimation. Williams (2022) considers a single product monopolistic

airline engaging in dynamic pricing. Aryal et al. (2023) expand this framework, by

investigating a firm combining dynamic pricing with vertical product differentiation. My

paper further enriches the setting described by Aryal et al. (2023) by allowing the airline to

sell upgrades. In terms of demand and supply modeling, my framework introduces a novel

decision problem on both the demand side—as customers decide whether to upgrade—and

the supply side, as the firm optimally chooses the upgrade price. In terms of identification

strategy, I adopt the approaches of both Williams (2022) and Aryal et al. (2023) by

leveraging supply-side constraints to argue separate identification of arrival rates and

customer preferences. As for estimation, I follow Aryal et al. (2023) by implementing the

simulated method of moments to estimate a random coefficient demand model. In terms

of findings, my paper is closely related to that of Williams (2022), who demonstrates

that his airline uses dynamic pricing to intertemporally price discriminate and to manage

inventory, by reserving capacity for high-value customers in later periods. Similarly, my
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results indicate that upgrades not only work as a way to price discriminate but also,

conditional on the size of the demand shock, can serve as a tool to improve inventory

allocation over time.

2 Data and descriptive evidence

This project uses a new transaction-level dataset from an international airline that sells

premium-cabin seats with upgrades in the last two days before departure. The dataset

contains information on both upgrades and retail sales. Analysis of the upgrade data

reveals two facts: firstly, upgrades are a relevant sales channel and, secondly, the airline

employs upgrades to sell premium-cabin seats at a discounted price. Examination of the

retail price data shows the airline’s dynamic pricing strategy across multiple products.

Overall, the data align with the theory of price discrimination: the airline uses intertem-

poral and intratemporal price discrimination along the retail channel, while engaging in

sequential price discrimination with upgrades.

2.1 Data description

The dataset contains the universe of ticket purchases for all 1,600 flights operating on two

monopolistic routes between September and December 2018, for a total of 268,035 ticket

purchases. While I am unable to disclose the specific routes, one route is domestic and has

a duration similar to that of a flight from New York to Miami (approximately 3 hours),

while the other route is international and has a duration similar to that of a flight from

New York to Mexico City (approximately 6 hours). For each transaction in the dataset,

there is both traveler and product information. The traveler information includes the

traveler’s gender, age, reason for traveling (business or leisure) and flyer-ID (whether the

traveler is a member of a loyalty program). The product information includes the ticket

price, timing of purchase and final travel class (economy, premium economy or business

class).4 In the case of an upgrade, the dataset records the upgrade fee. Additionally, the

4 The dataset also contains the ticket’s fare, which encompasses other features of the ticket, such
as flexibility or refundability, potentially impacting ticket quality and the final price paid. However,
discussions with the airline revealed that this information is not accurate, and thus, it is not utilized in
this paper. For the purposes of this study, I consider all tickets within a cabin to have the same quality.
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product information displays flight characteristics such as the day and time of departure

and the aircraft model.

2.2 Quantity of upgrades

The airline sells a large fraction of seats by means of upgrades in the last two days before

departure; this practice generates substantial revenues. I provide two pieces of evidence

to support this claim. First, I present the aggregate number of transactions and revenues

generated by upgrades in relation to retail sales. Second, I analyze the seat allocation

over time, taking into account both retail and upgrade sales.

Compared to retail sales of premium cabin seats (premium economy and business

class), upgrades serve as a relevant sales channel in terms of both transactions and rev-

enues. According to Table 1, a large group of travelers chooses to fly in premium cabins

because of the availability of the upgrade option, and the fees associated with these up-

grades contribute significantly to the overall revenues of the airline. Over all premium

cabin transactions, 29% of the seats in premium economy and 10% of those in business

class are sold by means of an upgrade. Considering revenues, upgrading fees account

for 10% of premium economy and 6% of business class revenues. In aggregate, 16% of

travelers fly in premium cabins by means of upgrade purchases. The associated upgrade

fees account for 6% of premium-cabin revenues and nearly 2% of total revenues.

Furthermore, when we consider sales over time, the airline allocates a large number

of the seats in premium cabins in the last two days before departure. Figure 1 shows

how the airline sells seats in premium cabins over time, distinguishing between retail and

upgrade sales. In the last two days before departure, the number of seats allocated in

premium economy through upgrades is five times the number of seats allocated by means

of retail sales in the same period. We observe a similar trend for business class, where as

many upgrades as retail sales take place in the last two days before departure.

2.3 Price of upgrades

The pricing data show that accessing a premium cabin is cheaper via an upgrade than via

a retail purchase. I provide two pieces of evidence to support this claim. First, I analyze

the time series of prices associated with accessing premium cabins. Second, I discuss the
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results of conditional mean regressions.

Figure 2 provides visual evidence of the discount offered through upgrades. It com-

pares the average final price paid to access premium cabins by the time of initial ticket

purchase, so that the final upgrade price is the summation of the lower-cabin ticket and

the upgrade fee. Customers flying in premium economy and business class by means of

an upgrade consistently enjoy discounts from the retail price.

Similarly, specification (1) examines the extent of these discounts. It compares the

final prices paid to access premium cabins via retail sales and via upgrades:

Pi = α + βupI{upgrade sale}i + εi (1)

where Pi is the final price paid for ticket i to access a premium cabin. The coefficient

α represents the average final price to access premium cabins through retail purchases,

whereas βup measures the savings (from the average final retail price) offered to travelers

who access premium cabins through upgrades.

I estimate (1) separately for business and premium economy class. Table 2 shows

that customers who upgrade to business class spend, on average, 13% less than they would

have had they purchased a business class ticket at retail price. Similarly, Table 3 indicates

that customers who upgrade to premium economy save, on average, 18% off the average

retail price. Because the final paid prices might depend on the level of capacity already

sold and on the time of initial purchase, selection is a concern for specification (1). Large

absolute values of βup might be due to variation in prices across flights with different level

of sold capacity either in the last two days before departure or at the time of the initial

purchase. Similarly, large absolute values of βup might capture differences in prices due to

variation in the time of initial purchase. I control for these effects by adding the levels of

unsold capacity, time of the initial purchase and flight fixed effects as control variables to

regression (1). Appendix A.2 shows that the estimation results remain robust to adding

these controls.
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2.4 Airline’s price discrimination strategies

The evidence from retail prices, along with that related to the upgrade channel, shows

that the airline’s pricing strategies are consistent with its engaging in price discrimination

of various degrees that have been extensively discussed in the literature. In particular,

the airline engages in intertemporal, intratemporal and sequential price discrimination.

The airline allocates the majority of its seats through the retail channel. Along this

channel, it implements pricing strategies consistent with well-established theories of price

discrimination discussed in the existing literature. The data presented in Table 1 indicate

that the airline sells 95% of its seats via the retail channel, which contributes up to 98%

of total revenues. Figure 3 displays the airline’s pricing patterns over time, providing

support for pricing strategies that align with those described in the airline economics

literature. These include the use of dynamic pricing to intertemporally price discriminate

across consumers. Previous studies such as Williams (2022) and Lazarev (2013) have

highlighted that customers who purchase tickets earlier in the booking horizon tend to

exhibit a lower willingness to pay for travel than those making last-minute purchases.

Furthermore, similarly to how airlines behave in the analysis of Aryal et al. (2023), the

airline employs intratemporal price discrimination by offering seats with distinct levels of

comfort at distinct prices. In this way, the airline caters to different customer segments

based on their willingness to pay and value for comfort.

On the other hand, customers accessing premium cabins at a discount, after making

their initial retail purchase, supports the theory of sequential price discrimination, dis-

cussed in Cui et al. (2019). In the first stage of retail sales, the airline sorts customers

into different cabins based on their preferences. For instance, customers with a lower

willingness to pay prefer to purchase an economy class ticket rather than a business class

ticket. However, the marginal customer in economy class would have bought a business

class seat had it been more affordable. Therefore, after the retail stage, the airline offers

these marginal economy class customers the opportunity to upgrade to a higher cabin at

a discounted price, effectively using upgrades as a sequential screening tool.
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3 Model

In this section, I present a model that captures the supply and demand dynamics of the

airline industry. On the supply side, I consider a capacity-constrained monopolistic airline

that optimally chooses prices. In particular, in any day t of the booking horizon the airline

chooses the optimal prices for two products: economy and business class. For simplicity,

t ∈ {0, 1}, with t = 0 being the initial period of the booking horizon and t = 1 the depar-

ture day. Additionally, in t = 1, the airline sells upgrades, allowing those who bought an

economy class ticket in t = 0 to pay a fee and access business class. I assume full integra-

tion of firm’s pricing decisions, meaning that prices are determined by the firm’s solving

a dynamic programming problem that considers multiple cabins and upgrades simultane-

ously. This supply model reproduces relevant features of the airline’s price discrimination

strategies, including intertemporal, intratemporal and sequential price discrimination. On

the demand side, customers randomly enter the market for airline tickets and, upon ar-

rival, make a decision regarding whether to purchase an economy or a business class ticket

or, alternatively, to not fly at all. I assume that customers do not expect the possibility

of an upgrade when making their purchase decision. In t = 1, when the airline offers

the upgrade possibility, only a fraction of customers pay attention to the offer and then

consider whether to upgrade. This demand specification embeds uncertainty in the num-

ber of travelers shopping for a ticket, heterogeneity in preferences and inattention to the

upgrade option.

3.1 Demand

The demand model is developed in three steps. First, following Williams (2022) and Aryal

et al. (2023), I describe the retail sales market for airline tickets: how consumers arrive to

the market and how they choose between buying economy or business class or not flying

at all. Then, I describe how economy ticket holders decide to upgrade. Last, I describe

the random coefficient structure of the demand process.

Along the retail channel, first, customers randomly arrive to the airline ticket market,

and then, without expecting the upgrade option, they make their retail purchase decision.

Customers arrive to the airline ticket market in each period t ∈ {0, 1} of the booking

horizon, starting from the initial period t = 0 until departure day t = 1. In each period t,
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a number Nt of customers arrive, following a Poisson process with parameter λt. Similarly

to their counterparts in the models of Williams (2022) and Aryal et al. (2023), customers

are of discrete types: they have a probability θt of flying for business-related reasons (H-

types), and a probability of 1 − θt of flying for leisure (L-types). Once customers enter

the market, they maximize their utility by choosing between an economy or business class

seat or deciding to exit the market. Customers make this decision without expecting the

possibility of an upgrade. As in Aryal et al. (2023), customers differ in willingness to

pay and value for comfort,5 and goods are vertically differentiated: all customers prefer

business to economy Class seats when they are sold at the same price. By defining j as

the product choice, pEC as the price for economy class and pBC as the price for business

class, I specify the utility function for individual i of type k as:

uikj =



vikξik − pBC j= business class seat

vik − pEC j= economy class seat

0 j= ∅

(2)

where the utility of not flying (j = ∅) is normalized to 0. In specification (2), vik represents

the willingness to pay for traveling and ξik > 1 represents the value for comfort from flying

in business class. I assume that vik and ξik are random variables independently drawn from

type-specific distributions. In particular, I assume vkt ∼ Exp(βkt) and ξkt ∼ Unif(1, γkt),

where βkt and γkt are allowed to vary over time.

I make three assumptions when modeling the upgrade decision. First, only travelers

who buy a ticket in economy class in t = 0 can upgrade. This assumption prevents

t = 1 economy class buyers from upgrading to business class. Allowing only one cohort of

travelers to upgrade greatly simplifies the simulation of the model, but still allows me to

analyze how upgrades work. Second, travelers are naive and do not expect to be offered the

upgrade option: in specification (2), utility does not include the future possibility of being

upgraded. This assumption is in line with recent revenue management literature stating

that, in the long run, “it is unlikely that customers will adapt strategically to upgrades”

5 Demand shocks are a measure of the desirability of a flight. For instance, if there is a conference
at the destination, business-type customers are likely to have a high WTP for flights departing before
the conference; on the other hand, around Thanksgiving, leisure-type customers are willing to pay more
given their need to travel over the vacation period.
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(Gallego et al., 2009). Additionally, this assumption simplifies the problem since it does

not require customers to form expectations about future prices. Since customers do not

expect to receive the upgrade option, its only implication is a new decision problem in

period t = 1 for those customers who had bought an economy class ticket in t = 0 and

are attentive to the notification from the airline. Third, I assume only a fraction αk of

economy class ticket holders of type k pay attention to the notification sent by the airline.

For these attentive economy class ticket holders, the decision to upgrade reduces to a

comparison between the utility from flying in business class with an upgrade and the

utility from flying in economy, given the retail price originally paid for an economy ticket.

Therefore, customer i of type k who purchased an economy class ticket in period t = 0 at

p0,EC chooses to upgrade if and only if the following inequality holds:

vikξik − p0,EC − pUP︸ ︷︷ ︸
utility from flying in business class after an upgrade

≥ vik − p0,EC︸ ︷︷ ︸
utility from flying in economy class

(3)

with pUP being the upgrade fee. Based on expression (3), from the airline’s point of view,

the customer’s probability of buying an upgrade, conditional on her having purchased an

economy class ticket in period t = 0, is given by the following expression, where for ease

of notation I omit indexes:

sUP (p0,EC , p0,BC , pUP ) =
∫ ∫

1{vξ − pUP ≥ v}dF̃v,ξ (4)

with F̃v,ξ(x, y) = P
(
v ≤ x, ξ ≤ y

∣∣∣v − p0,EC ≥ max{vξ − p0,BC , 0}
)

.

In summary, the following set defines the demand for an individual flight:

{
{βkt, γkt︸ ︷︷ ︸

Ψt

, αk}k∈{H,L}, λt, θt
}
t∈{0,1}

(5)

where Ψt = {βkt, γkt}k∈{H,L} represents the random demand shock for an individual flight

in period t, whose realization is ψt. I make parametric assumptions on the distribution

of each component of the demand shock. In particular, I assume that βkt is distributed

according to a Normal distribution truncated at 0, βkt ∼ TruncNorm(µkt, σkt), and γkt

according to a Uniform starting from 1, γkt ∼ Uniform(1, κkt).6 Because of the random

6 As highlight in Section 3.2, these parametric assumptions are known by the airline.
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nature of Ψt, demand differs across flights; on the other hand, arrival rates, mixture of

types and inattention parameters are common across flights.

3.2 Supply

I describe the airline pricing problem in three steps. First, I define the main features of

the decision problem. Second, I focus on the information structure and how it changes

over time. Third, I formally describe the maximization problem.

For any given flight, the airline solves a dynamic multiproduct pricing problem with

capacity constraints and zero marginal costs. The problem is dynamic because the airline

operates in two distinct periods: t = 0, the initial period, and, t = 1, the last period.

The pricing problem is multiproduct, as the airline must determine prices for two types of

products: economy and business class seats. In particular, at the beginning of any period

t, the airline sets the vector pt of prices for both economy and business class, denoted

as pt,EC and pt,BC , respectively. Moreover, in the last period t = 1, the airline sets pUP ,

which customers who bought an economy class ticket in t = 0 can pay to upgrade to

business class. The problem involves capacity constraints.7 This means that the total

number of economy and business class flying passengers cannot exceed the total number

of seats available in these cabins, represented by c0,EC and c0,BC , respectively. If, in any

period t, the airline sells more tickets than the available remaining capacity (ct,EC and

ct,BC), it reimburses customers for their purchases of the extra tickets. I assume that the

airline chooses the upgrade price simultaneously with the retail prices. However, first,

the firm allocates retail passengers, and then, if there is capacity remaining in premium

cabins, it sells upgrades. Last, I assume that the marginal cost of a ticket sale is zero, as

in Williams (2022). This implies that costs are given by intratemporal and intertemporale

shadow values of sales.

The set of state variables It relevant for pricing decisions in period t, which includes

what the firm knows about demand, changes over time. This is summarized in the fol-

7 Capacity constraints are exogenously given. This is in line with the models described in Williams
(2022) and Aryal et al. (2022). They do not consider capacity dispatchment as a part of the airline
decision problem.
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lowing expression (6):

I0 = {ψ0, c0,EC , c0,BC}

I1 = {ψ1, c1,BC , p0, ψ0, Q
H
0,EC , Q

L
0,EC}

(6)

On one hand, the airline learns about demand over time. In particular, the airline always

knows the arrival rates λs, the mixtures of types θs, the levels of inattention αs and the

parametric distribution of the demand shock Ψt. However, just before setting prices in

each period t, the airline learns about the time-specific demand shock ψt. This means that

the airline decides t = 0 prices based on ψ0 and by forming expectations about Ψ1. Then,

after t = 0 sales take place, the airline learns about ψ1 and takes it into account for t = 1

pricing decisions. On the other hand, the set of state variables It of the pricing problem

changes over time. In particular, the set I0 is {ψ0, c0,EC , c0,BC}, which means that the

airline sets initial prices based on the observed demand shock ψ0 and the number of seats

in both cabins that can be sold (c0,EC and c0,BC). In contrast, the set I1 is larger than

I0. Indeed, beyond accounting for ψ1 and levels of unsold capacities at the beginning of

t = 1 (c1,EC
8 and c1,BC), when setting t = 1 prices, the airline also considers initial-period

prices p0, the initial demand shock ψ0, and the number of H-type and L-type travelers

who had bought an economy class ticket in t = 0, QH
0,EC , Q

L
0,EC respectively. To see why,

we need to consider that in t = 1 the airline optimally sets prices along both the retail and

the upgrade channel. When maximizing t = 1 expected profits and evaluating expected

revenues from t = 1 sales, the airline takes into account that that a portion of these

revenues depends on upgrade sales. Given the upgrade price, the number of travelers

upgrading depends on the upgrade probability, which in turn depends on t = 0 prices

and ψ0, as described in expression (4), and on the total number of travelers holding an

economy class ticket.

More formally, in period t = 0, the airline chooses p0 = (p0,EC , p0,BC) by solving the

8 From expression (6), the number of seats available for sale at the beginning of period t=1, c1,EC ,
can be computed as c1,EC = c0,EC −QH

0,EC −QL
0,EC .
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following dynamic problem:

V0(I0) = max
p0

E
[
R0(I0)+

∑
c1,BC ,Q

H
0,EC ,Q

L
0,EC

P
(
c1,BC , Q

H
0,EC , Q

L
0,EC

∣∣∣I0, p0
)
EΨ1

[
V1(I1)

∣∣∣c1,BC , p0, ψ0, Q
H
0,EC , Q

L
0,EC

]]
.

(7)

In expression (7), I take the first expectation over the number of travelers arriving and

shopping for a ticket, and the mixture of types; the term R0(I0) represents the rev-

enues from sales in t = 0 in both cabins, that cannot exceed capacity constraints;

the term P(c1,BC , Q
H
0,EC , Q

L
0,EC |I0, p0) is the state transition probability. The last term

EΨ1

[
V1(I1)|c1,BC , p0, ψ0, Q

H
0,EC , Q

L
0,EC

]
is the expected value of V (I1), where expectations

are taken with respect to Ψ1, and V (I1) represents expected revenues at the optimal t = 1

prices. In particular, V (I1) is given by

V (I1) = max
p1,EC ,p1,BC ,pUP

E
[
R(I1)

]
(8)

where expectations are taken with respect to the total number of customers arriving and

shopping for a ticket, and the mixture of types.

As evident from expressions (8), in t = 1, the airline simultaneously chooses the

retail and upgrade prices. However, it first allocates retail purchases and then, if there

are empty premium cabin seats, allocates upgrades. This assumption reflects the airline

practice of offering seats by means of upgrades and retail sales at the same time. However,

by prioritizing retail sales, I do not consider the potential misallocation and consequent

potential reduction in consumer surplus that may arise from sales to upgrading customers

instead of higher-value retail customers.

I make three assumptions that simplify the problem on the supply side. First, the

booking horizon includes two periods only. While increasing the number of periods would

make the pricing problem more realistic, it would also significantly increase computational

complexity. For example, let us consider a firm selling retail tickets over t ∈ {0, 1, ..., T},

with T being the departure day and the upgrade sales period. The firm’s information set

in the last period T includes previously realized prices, previously realized demand shocks

and type-specific economy class sales. As the airline is forward looking, the information

sets of all periods t include previously realized prices and demand shocks, along with

expected future prices, demand shocks and expected future realizations of economy class
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retail sales. Evaluating expectations and optimal prices for any combination of variables

in the state space is not feasible. Therefore, to keep the problem tractable, I consider

only a two-period problem. Second, I assume that all tickets within a class (economy

and business) have the same quality. In reality, tickets within the same class may have

varying levels of flexibility, refundability, or additional services and thus different prices.

However, by assuming uniform quality within each class,9 I decrease the number of prices

that the airline needs to determine: this reduces the dimensionality and complexity of the

model. At the same time, it still allows me to analyze the main tradeoffs of the upgrade

option. Last, on the demand side, I impose that customers are not strategic. That is, as

discussed in Section 3, customers do not delay the purchase of a business class ticket in

t = 0 in the hope of being offered an upgrade in t = 1. Additionally, customers do not time

their purchase strategically. These two assumptions greatly simplify the dynamic pricing

problem since I do not need to consider customers’ expectations when I evaluate the firm’s

optimal decisions. Furthermore, the assumptions remove any commitment issues on the

part of the firm. Since customers are not strategic, the firm’s ability to commit to certain

pricing strategies becomes irrelevant.

The mechanics of the model described in expressions (7) and (8) are similar to those

in Aryal et al. (2023) and Williams (2022). In particular, Aryal et al. (2023) assume that

the distribution of type-specific preferences is constant over time, and that this parameter

is known to the firm form the initial period for each flight. This assumption implies that

intertemporal variation in arrival rates, the composition of customer types, and level of

unsold capacity jointly drive the intertemporal variation in prices within a flight. In

my case, intertemporal variation in the demand shock,which then determines time–flight-

specific preferences, further contributes to intertemporal price variation at the flight level.

With this slightly more general modeling assumption, I can explain large within-flight

intertemporal price variation, which is particularly noticeable for business class. On

the other hand, this increases the complexity of my model’s solution as the numerical

approximation of the firm’s t = 1 revenue expectation becomes more demanding. As

in Aryal et al. (2023), Williams (2022) models type-specific preferences to be constant

over time and known by the firm from the beginning of the booking horizon so that

9 The lack of reliable data on tickets’ flexibility or refundability, as described in Section 2.1, is another
reason I make this assumption.
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the variation in the arrival rate, mixture of types and level of unsold capacity drive the

intertemporal variation in prices. Additionally, Williams (2022) includes firm-specific

idiosyncratic shocks, which play a role similar to that of the demand shocks in Aryal et

al. (2023) and in the model delineated in my paper. In particular, these elements explain

the within-time price variation across flights with the same levels of unsold capacity.

4 Econometric model, estimation and identification

In this section, first, I review the main parametric assumptions of the structural model

described in Section 3 and I discuss its identification. Second, I describe estimation.

4.1 Econometric model and identification

In this section, first, I review the main parametric assumptions of the structural model

described in Section 3. Then, I discuss its identification.

According to the parametric assumptions governing the distribution of the demand

shocks, the set Θ, defined as

Θ =
{
{µkt, σkt, κkt, αk}k∈{H,L}, λt, θt

}
t∈{0,1}

∈ R18, (9)

fully describes the primitives of the model. In particular, the set {µkt, σkt, κkt, αk}k∈{H,L}
fully describes the distribution of Ψt.

Similarly to Aryal et al. (2023) and Williams (2022), I claim identification of the

model. In particular, I use both demand-side and supply-side restrictions as identifying

moments:

(i) the distribution of realized prices for j ∈ {EC,BC} and t ∈ {0, 1};

(ii) the average retail sales for j ∈ {EC,BC}, t ∈ {0, 1} and k ∈ {H,L};

(iii) the average fraction of business class retail sales over all sales in any period t ∈ {0, 1}

for any type k ∈ {H,L}; and

(iv) the average number of upgrades for k ∈ {H,L}.
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The mean of the realized prices, along with their distribution, provides information about

the mean, µ, and the variance, σ, of the WTP. If customers’ WTP is highly volatile,

optimally set prices display high variance. Similarly, if the average WTP is high, the

airline charges higher prices on average. The ratio between total sales of H-types and

L-types is informative of the customers mixture, θ. A large L-type sales’ share indicates

a large share of arriving L-type customers. When we consider a specific type, the ratio of

business class retail sales to economy class sales is informative of the value for comfort,

κ. Given some prices, a large proportion of business class purchases indicate a large value

for comfort. With preferences identified, the average number of sales provides insight into

the arrival rate, λ: if more shoppers enter the market, more sales take place. Finally, the

share of upgrading customers describes the average number of attentive travelers within

each type.

4.2 Estimation

In this section, I discuss how I estimate the model. In the first part, I present the simu-

lated method of moments (SMM) estimator. In the second part, I discuss the parameter

estimates and model fit.

I describe the SMM procedure in two steps: I first outline the evaluation of the

empirical moments and then that of their simulated counterparts. The approach is in line

with that in Aryal et al. (2023) and Nevo et al. (2016). I define the optimal estimator θ̂

for θ ∈ Θ as the solution of the following problem:

arg min
θ
L(θ) = arg min

θ

(
mdata −m(θ)

)′(
mdata −m(θ)

)
(10)

where mdata−m(θ) is a 1xM vector, which is the difference between the observed moments,

mdata, and the corresponding simulated ones, m(θ), with M being the number of moments.

In particular, I obtain θ̂ by minimizing L(θ) over 100,000 different values of θ with grid

search. Solving problem (10) requires evaluation of both mdata and m(θ). I compute mdata

from the original dataset in two steps. First, I aggregate the initial purchase dates (in

terms of their distance from the departure day) into two periods: t=0 includes all days

of the booking horizon except the last two, which, in turn, constitute t = 1. At the same

time, similarly to Aryal et al. (2023), I assume that the type k is observable from the
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reason for traveling.10 Then, for all flights, I compute the total number of sales for any

type and average prices in any period. The second element needed to solve problem (10)

is m(θ), which requires solving the decision problem of the firm. First, for N s(= 100)

different demand realizations draws from the same θ, I solve the airline’s pricing problem

defined by expressions (7) and (8); then, I evaluate the simulated moments m(θ). As

the pricing decisions are dependent on cEC and cBC , I solve the pricing problem of the

airline separately for various combinations of total capacities observed in the data. Last, I

evaluate estimates and bootstrap standard errors by resampling flights with replacement

100 times.

Before describing the parameter estimates, I discuss three procedural assumptions

employed for the estimation. First, I estimate preferences at the aircraft–route level. The

estimation at the aircraft level is because of the dependence of the optimal simulated

prices on the initial capacity levels. Therefore, the demand estimates reflect aircraft-

specific tastes. Given the available data, estimation at the route level implies two different

sets of estimates: one for the domestic and one for the international route. Moreover,

estimation at the route level is consistent with practices in the industry (IATA). The

second assumption is that I consider the premium economy class, when it is available, to

be part of business class. Considering the firm’s setting of optimal prices for two products,

rather than three, simplifies the pricing problem and eases the simulation of the model.

The third assumption is to impose µH0 = µH1, σH0 = σH1 and µL0 = µL1. This partially

reduces the flexibility of the model but simplifies minimization problem (10), as it reduces

the search to one over only 15 rather than 18 parameters. This simplification still allows

me to match the data generally well.

Tables 4 and 5 show estimation results for the largest aircraft in the data flying on

10 I consider travelers reporting business to be their reason for travel to be H-types and the others
L-types.
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the international route.11,12 The mean willingness to pay for an economy ticket for a flight

on the international route is $306 for H-types and $220 for L-types. On average, there is

a 40% difference in WTP between the types. As a benchmark in the literature, Aryal et

al. (2023) find a 20% difference between types. However, the difference in the value for

comfort per flight across types is not as large: in t = 0, H-types value comfort 3% more

than L-types, whereas in t = 1, H-types value comfort 15% more than L-types. In terms

of the value placed on business class compared to that on economy class, my estimates

suggest that the two types value business class, on average, twice as much as economy

class. In comparison to the estimates of the value for comfort in Aryal et al. (2023), where

travelers value the comfort of the premium product on average 50% more than they value

the regular product, my findings indicate a greater taste for quality. This is likely due to

the larger average premium cabin retail prices observed in my data.

The average number of customers shopping for a ticket in t=0 is 488, whereas in

t = 1, it is 50. The stark decrease is consistent with how I divide the booking horizon,

as t = 0 includes the large majority of days before departure. On the other hand, the

fraction of customers traveling for business purposes slightly increases over time. This

finding is consistent with findings in Aryal et al. (2023) and Williams (2022). Regarding

the inattention parameters, which measure the fraction of economy class ticket holders

who open the email sent by the airline containing the notification on the upgrade option,

they are 0.15 and 0.09 for H-types and L-types. As a benchmark, travel industry surveys

report that between 20% and 40% of people receiving a travel-related email open it.13

From demand estimates, I compute demand elasticities. By considering the average

value of WTP and the average prices on the international route, the simulated average

elasticities over time for an economy class ticket are -2.07 and -3.12 for business-type

and leisure-type travelers, respectively. These estimates align with the literature. As a

11 There are 294 flights of this kind. I estimate the model for those flights displaying pEC,0 ∈ [200, 400],
pEC,1 ∈ [200, 650], pBC,0 ∈ [200, 650] and pBC,1 ∈ [700, 3000]. I consider only flights displaying all these
four prices, for a total number of 104 flights. I select the sample in this way in order to eliminate outliers,
and reduce the size of the price grid over which the airline makes its optimal pricing decision, in order to
increase the speed of the simulation.

12 This particular aircraft has capacities of 247 for economy class, 21 for premium economy, and 31
for business class. I set the capacities to cEC = 247 and cBC = 51 in the simulation, as I assume that
business class includes the premium economy class seats. In Appendix A.7.2, I show estimation results
for the smallest aircraft in the data as well. At the beginning of Section A.7, I describe the main aircraft
in the data.

13 See: ConstantContact and campaignmonitor.com.
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benchmark, Williams (2023) finds an elasticity of -3.3 for an economy class ticket, by

averaging over time and across types. Aryal et al. (2023) find that price elasticity for

leisure passengers is -3.9, and for business passengers, it is -0.51.

4.3 Goodness of fit: Discussion

In this section, first, I discuss the model’s ability to fit the data for large aircraft flying on

the international route. Second, as an illustration of robustness, I describe the relevance

of the inattention parameters for fitting purposes. Finally, I describe a measure to assess

the fit of the model.

Overall, the model approximates the data well for prices and sales along both the

retail and upgrade channels. Figures 4, 5 and 6 show how the simulated prices and sales

fit the observed data along each channel. In Figures 4 and 5, the boxplot represents the

central 50% of the distribution with the median, whereas the lower and upper bounds

represent the minimum and maximum. The red box represents the data, whereas the

blue box represents the simulated distribution across the bootstrap estimates. Figure 6

displays the model predictions for upgrade prices and sales. The blue line represents the

distribution observed in the model, whereas the red line represents the average distribution

across the bootstrap estimates. The model’s fitted values are generally accurate for both

retail and upgrade channels, with a few exceptions. In particular, for the last period, my

model predicts simulated prices that are lower than the observed ones for business class.

The assumption of constant willingness to pay over time, which ensures computational

tractability, likely explains this result. As a robustness check of the model’s fitting ability,

I estimate it for small aircraft flying on the domestic route,14 and I show its fit in Appendix

A.7.2. Despite differences in patterns in the observed data with respect to the large aircraft

flying on the international route, the estimated model fits the data well, especially for retail

prices and sales.

With respect to the empirical airline demand models described in Aryal et al. (2023)

and Williams (2022), my framework includes inattention coefficients (αH and αL). These

parameters play a crucial role in fitting the relevant moments in the data, in particular

those related to upgrades sales. Appendix A.6 shows the importance of the inattention
14 The most popular flight on the domestic route does not have premium economy, and it displays

cEC = 153 and cBC = 16.
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coefficients by considering the estimates and fit of a model with fully attentive customers

(αH = αL = 1). Visually, the model with fully attentive customers fits the data worse

than a model with inattentive travelers, in particular for upgrade sales. In fact, when all

customers pay attention to the airline’s notification related to the upgrade option, the

estimated model predicts an excessively large number of upgrading customers.15

To formally assess the model fit, I take the same approach as Asker et al. (2014).

In particular, I consider the sum of the squared differences between the observed and

predicted moments, scaled by the observed moments. Evaluating the vector of observed

and predicted moments, respectively x and x̂, I compute

S2 = 1− (x− x̂)′(x− x̂)
x′x

(11)

as a measure of fit. In particular, the term (x−x̂)′(x−x̂)
x′x

can be interpreted as the weighted

average of the square percentage differences between the observed and predicted moments.

The value of S2 is by construction less than or equal to 1, and higher values of S2 indicate

better model fit, with S2 = 1 indicating a model’s perfectly predicting the data. The

simulation results are consistent with the visual inspection: S2 =0.975 for the model

allowing for inattention, which is larger than S2 =0.965 for the model with fully attentive

travelers.

5 Counterfactual

In this section, I describe how the upgrade option affects airline pricing decisions and

welfare. In Section 5.1, I describe the role of the upgrade option as a sequential price

discrimination tool and its role in managing limited inventory. In Section 5.2, firstly, I

analyze the aggregate welfare consequences arising from the introduction of upgrades.

Afterwards, I focus on the distributional welfare effects of upgrades between travelers and

the firm.

15 Considering inattentive customers has consequences for the counterfactual results. In particular,
travelers’ being fully attentive implies that the introduction of the upgrade option generates larger pricing
distortions than in the case of inattentive travelers. In Appendix A.3, I explore the role of upgrades as
a sequential price discrimination tool, and I compare the case where travelers are inattentive with one
where travelers are fully attentive. The pricing distortions are larger with inattentive travelers.
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5.1 The economics of upgrades and the role of demand shocks

To understand how upgrades work, I compare the airline’s pricing decisions with and

without upgrades under scenarios with and without capacity constraints. On one hand,

the difference in prices between the scenarios with and the scenario without upgrades, in

the absence of capacity constraints, illustrates the role of upgrades as a sequential price

discrimination tool. On the other hand, comparing these differences with those observed

when the airline faces capacity constraints shows how the airline uses upgrades as a way to

manage inventory. In this section, I first discuss how these two channels work on average

across all flights, and then I discuss how these two channels work differently conditional

on the demand shock.

Table 6 shows how the upgrade option affects on average the airline’s pricing problem

with and without capacity constraints. In the absence of capacity constraints, there exists

no connection between the retail pricing decisions in the two periods, and the upgrade

option influences prices only in t = 0. Specifically, when setting prices in t = 0, the airline

anticipates that some economy class ticket holders may choose to upgrade to business class

if given the possibility of accessing this cabin at a reduced price. Introducing the upgrade

option, then, leads to two effects. On one hand, the average opportunity cost of decreasing

economy class ticket prices diminishes: lower prices for economy class incentivize more

customers to purchase tickets in this cabin, thus increasing the number of potentially

upgrading travelers. Introducing upgrades results in a 1.3% average decrease in economy

class prices. On the other hand, the average opportunity cost of increasing business class

ticket prices decreases since customers who did not purchase business class retail initially

can still upgrade in t = 1. The introduction of upgrades leads to an average increase of

1.6% in business class prices.

Table 6 also shows how capacity constraints (with total capacity in economy class set

at cEC = 247 and in business class set at cBC = 51) affect the airline’s pricing decisions

on average across flights and how they interact with the upgrade option. When the firm

introduces capacity constraints, the low demand for economy class and high demand for

business class relative to the constraints result in a slight change in prices for economy

class and a significant increase in retail prices for business class due to scarcity. Moreover,

compared to the case without constraints, the introduction of upgrades impacts both
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t = 0 and t = 1 prices. Sequential price discrimination affects t = 0 prices, whereas the

interplay between upgrades and capacity constraints affects both t = 0 and t = 1 prices.

On average, as shown in Figures 7 and 8, when the airline introduces the upgrade option,

it further increases—with respect to those in the scenario without capacity constraints—

business class prices in t = 0 to reduce the number of premium-cabin sales and sellouts

in the initial period and then allow for potentially higher-value retail sales in t = 1.

In this way, the upgrade option works as an inventory management tool, leading to an

average 3% increase in t = 0 business class prices. As a consequence, the introduction of

the upgrade option reduces sales of business class in t = 0 more if there are constraints

than if there are not. The airline compensates the loss in revenues from reduced business

class sales by decreasing economy class prices in t = 0 slightly more (1.6%) if there

are constraints, to induce more customers to access economy class and then potentially

upgrade. Furthermore, when there are capacity constraints, the upgrade option also

induces price changes in t = 1. Indeed, due to limited capacity in the premium cabin,

upgrading customers compete with retail customers for the same seats in business class.

This enables the airline to increase business class retail prices in t = 1. Moreover, due

to upgrading customers leaving economy class emptier, the airline finds it optimal to

decrease its t = 1 price to attract more passengers and fill the vacant seats.16

The role of demand shocks

Whether the upgrade option, beyond working as a way to sequentially price discriminate,

also serves as a tool to manage inventory depends on the size of the t = 0 demand shocks.

In case of low initial demand shocks, upgrades work mainly as a tool to sequentially price

discriminate. Conversely, in case of a large demand shock, upgrades work as a tool to both

sequentially price discriminate and manage inventory. In the former case, upgrades reduce

the spoilage issue of an empty business class by allowing economy class ticket holders to

fill the premium cabin, whereas in the latter, upgrades reduce the spillage problem of

16 In Appendix A.8, I show the effects of the upgrade option with and without capacity constraints
while considering welfare. The counterfactual results indicate that the upgrade option increases consumer
and producer surplus in both scenarios.
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early sellouts.17

When the airline faces low initial demand shocks, the probability of selling out in

either cabin is negligible. This implies that capacity constraints have little effect on the

pricing problem of the airline and, thus, the airline uses upgrades mainly to sequentially

price discriminate among t = 0 travelers. As shown in Tables 7 and 8, the percentage

changes in t = 0 prices, and then retail sales, induced by the introduction of the upgrade

option are the same with and without constraints in the case of low demand shocks.

Because of low demand for tickets in t = 0, due to the low initial demand shock, the airline

faces practically no capacity constraints in t = 1, and therefore, upgrades have negligible

effects on t = 1 prices. The latter fact is shown in Table 9, where the percentage changes

induced by the upgrade option in t = 1 display high variance and are not statistically

meaningful. In general, on unpopular flights, characterized by low initial demand shocks,

upgrades work as a sequential price discrimination tool and mitigate spoilage issues in

the premium cabin.

Conversely, in the case with a large demand shock, the airline, beyond using the

upgrade option to sequentially price discriminate among t = 0 customers, uses it to

manage limited inventory. Specifically, in the case of a large initial-period demand shock,

the probability of business class selling out in t = 0 is large. To avoid the risk of it selling

out and the airline then missing out on high-value sales in the last period, the airline

exploits the upgrade option to increase business class prices in t = 0. With respect to the

situation without capacity constraints, the increase in t = 0 business class prices due to

the introduction of the upgrade option is larger when there are capacity constraints, as

shown in Table 7. This is due to upgrades serving as a tool to manage inventory. This

large increase in premium cabin prices has two effects shown in Tables 8, 10 and 11. On

one hand, it reduces business class initial sales and sellouts; on the other hand, it increases

economy class initial sales and sellouts because of customers buying the regular product

rather than the more expensive premium one in t = 0. This benefits the airline as the

number of potentially upgrading travelers increases. Furthermore, in t = 1, upgrading

customers compete with retail purchasers for the same business class seats. This induces

17 Empty flights and early sellouts are widely recognized problems in the airline industry: “Hold
inventory (high) for too long, and they could risk having a plane depart with empty seats (spoilage). The
stakes are incredibly high—sell too much too early at a lower price, and airlines might sell out too early
missing out on high yielding last-minute sales (spillage)” (Alaska Airlines).
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the airline to increase t = 1 business class retail prices, as shown in Table 9. In case of

a large demand shock, many economy class ticket holders upgrade: with respect to the

scenario without upgrades; this leads to more business class sellouts and fewer economy

class sellouts at the end of t = 1, as shown in Table 11. In general, on popular flights,

characterized by large demand shocks, upgrades, beyond serving as a sequential price

discrimination tool, work as an inventory management tool and mitigate spillage issues

in the premium cabin.

5.2 Welfare effects of the upgrade option

In this section, first, I describe how the introduction of the upgrade option affects total

welfare; then I discuss how it affects travelers and the airline separately. To provide

further context, in Appendix A.4, I present a comparison of the welfare gains from the

upgrade option with the gains from dynamic pricing – with respect to uniform pricing –

and a free upgrade policy.

Aggregate welfare effects. The upgrade option increases the surplus of both travelers

and the airline, thereby increasing efficiency, as shown in Table 12. In particular, consumer

surplus increases by an average of 1.5% per flight, proving that the welfare gains enjoyed

by upgrading customers outweigh the consumer welfare losses arising from higher business

class prices. By looking at the average number of passengers boarding the plane when the

airline does not implement upgrades, such an increase in consumer surplus is equivalent

to a $6.5 subsidy to all boarding travelers. On the firm side, the airline’s surplus increases

by 2% per flight, primarily because of the substantial revenues generated by upgrade fees.

As a benchmark, the global profit margin in the airline industry in 2023 averages around

1.2% (IATA). Moreover, Cui et al. (2019) find a 4% increase in revenues when an airline

introduced add-on products18.

Effects on consumers. The introduction of the upgrade option modifies the airline’s

pricing problem, and thus it affects how the same customer behaves in the scenarios with

18 Cui et al. (2019) study an airline that allowed economy class ticket holders to upgrade to premium
economy. There is no retail channel for premium economy. Their framework misses the interaction
between capacity constraints and the upgrade option for the premium product.
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and without upgrades and how welfare is distributed among travelers. Tables 13 and

14 provide a summary of the changes in customers’ decisions based on simulations of

500 flights. Table 15 illustrates how consumer welfare and its distribution across cabins

change when the upgrade option is removed.

Table 13 shows how the upgrade option affects the allocation of passengers across

cabins. For instance, in the presence of the upgrade option, 181,032 customers enter the

market for airline tickets but do not purchase any tickets. However, when the upgrade

option is eliminated and different prices come into play, 861 of these customers switch to

economy class, and 52 switch to business class. Table 13 aligns with Table 12, showing

that the upgrade option reduces business class retail sales and increases economy class

retail sales. Despite this, the number of passengers flying in business class is higher with

the upgrade option because of the 3,568 upgrading travelers. Furthermore, the upgrade

option allows more travelers to fly. Table 14 presents the changes in consumer behavior

in percentage terms. It indicates the percentage of customers who change their decisions

when the upgrade option is eliminated. In particular, 99.5% of customers who do not

buy a ticket when there are upgrades continue to prefer the outside option even without

upgrades. However, 0.5% of them switch to economy class in the absence of the upgrade

option. According to Tables 13 and 14, 2.5% of customers (88 in total) who upgrade to

business class switch to a business class retail purchase when the upgrade option is not

available. This demonstrates the “cannibalization effect” induced by upgrades, as the

introduction of the upgrade option eliminates part of the business class retail sales.

Table 15 illustrates how consumer welfare and its distribution across cabins change

when the upgrade option is removed. The simulation results indicate that, on average,

customers gain $1,227 (+1.5%) per flight from the upgrade option. The upgrade option

primarily benefits those customers in economy class with a relatively high WTP and

value for comfort, who are able to upgrade to business class. When the upgrade option is

eliminated, two distinct segments of customers emerge from this group. The first segment

consists of customers with a relatively lower WTP and value for comfort, who end up

flying in economy class. The second segment comprises customers with a relatively higher

WTP and value for comfort, who immediately purchase business class tickets at retail

prices. Both segments enjoy the benefits of the upgrade option, as they gain access to
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the premium cabin at a discounted price. Furthermore, the upgrade option benefits those

customers with a low WTP and low value for comfort, who choose to purchase economy

class tickets under both scenarios. These customers benefit from the upgrade option as

it leads to lower prices in economy class. On the other hand, the upgrade option reduces

the welfare of customers who choose to buy business class via the retail channel in both

scenarios. These customers, with a very high WTP and value for comfort, experience a

loss in welfare due to the higher business class prices when the upgrade option is in place.

Effects on the firm. The upgrade option modifies how the airline generates revenues

between the two cabins, as shown in Table 16. Introducing upgrades increases revenues

from the retail sales for economy class but starkly decrease revenues from retail sales for

business class. These effects are attributable to the lower prices in economy class, resulting

in higher sales, and to the higher prices in business class, leading to cannibalization of

retail sales. However, the net effect of the upgrade option on revenues is positive. Table 17

presents the changes in the distribution of revenues across products resulting from the

introduction of the upgrade option. Similarly to the original data in Table 1, up to 2.4%

of total revenues are derived from upgrade fees.

6 Conclusion

This paper investigates the welfare implications of introducing upgrades within the airline

industry. To achieve this, I analyze proprietary data from an international airline that

employs upgrades to allocate premium-cabin seats. The data show how the airline uses

upgrades and allow me to estimate a structural model. The empirical analysis shows

that upgrades are a relevant sales channel for premium products and that the airline

employs them for price discrimination and inventory management purposes. After esti-

mating a structural model that captures key aspects of airline pricing decisions, including

multiproduct offering, dynamic pricing, and capacity constraints, I quantify the effect

of upgrades on welfare through counterfactual simulations. My results indicate that, on

average, both consumers and the firm benefit from the upgrade option.

There are many interesting avenues for future research based on the findings pre-

sented in this paper. One natural direction is to explore the interaction between upgrade
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mechanisms and competition. While my analysis focuses on a monopolistic seller imple-

menting upgrades, it would be valuable to examine the effect of upgrade mechanisms in

competitive settings. Upgrades might soften competition among firms and increase market

power, with potentially negative consequences for customers. Additionally, considering

the impact of strategic customer behavior would offer insights. Strategic customers may

time their initial purchase decisions19 or delay the purchase of premium products to take

advantage of future upgrade discounts. Although these strategic dimensions are not in-

cluded in the current analysis for computational tractability, they might influence how

the upgrade option affects welfare.

19 As in Lazarev (2013).

31



References

[1] aa.com. Upgrade with miles. https://www.aa.com/i18n/aadvantage-program/

miles/redeem/award-travel/upgrade-with-miles.jsp, 2023. Accessed on 2023-

10-24.

[2] Inaki Aguirre, Simon Cowan, and John Vickers. Monopoly price discrimination and

demand curvature. American Economic Review, 100(4):1601–1615, 2010.

[3] allianztravelinsurance.com. 5 upsells to avoid when renting a car. https://

www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.

htm#:˜:text=Car%20rental%20companies%20make%2010,or%20a%20hard-sell.

%22. Accessed on 2023-10-24.

[4] Gaurab Aryal, Charles Murry, and Jonathan W Williams. Price discrimination in

international airline markets. The Review of Economic Studies, page rdad037, 03

2023.

[5] John Asker, Allan Collard-Wexler, and Jan De Loecker. Dynamic inputs and resource

(mis) allocation. Journal of Political Economy, 122(5):1013–1063, 2014.

[6] Dirk Bergemann, Benjamin Brooks, and Stephen Morris. The limits of price discrim-

ination. American Economic Review, 105(3):921–957, 2015.

[7] campaignmonitor.com. Ultimate email marketing benchmarks for 2022: By

industry and day. https://www.campaignmonitor.com/resources/guides/

email-marketing-benchmarks/, 2022. Accessed on 2023-10-24.

[8] Ambarish Chandra. Price discrimination along multiple dimensions: New evidence

from a regional airline. Available at SSRN 3694848, 2020.

[9] Sungjin Cho, Gong Lee, John Rust, and Mengkai Yu. Optimal dynamic hotel pricing.

In 2018 Meeting Papers, volume 179, 2018.

[10] Gregory S. Crawford and Matthew Shum. Monopoly quality degradation and regu-

lation in cable television. The Journal of Law and Economics, 50(1):181–219, 2007.

32

https://www.aa.com/i18n/aadvantage-program/miles/redeem/award-travel/upgrade-with-miles.jsp
https://www.aa.com/i18n/aadvantage-program/miles/redeem/award-travel/upgrade-with-miles.jsp
https://www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.htm#:~:text=Car%20rental%20companies%20make%2010,or%20a%20hard-sell.%22
https://www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.htm#:~:text=Car%20rental%20companies%20make%2010,or%20a%20hard-sell.%22
https://www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.htm#:~:text=Car%20rental%20companies%20make%2010,or%20a%20hard-sell.%22
https://www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.htm#:~:text=Car%20rental%20companies%20make%2010,or%20a%20hard-sell.%22
https://www.campaignmonitor.com/resources/guides/email-marketing-benchmarks/
https://www.campaignmonitor.com/resources/guides/email-marketing-benchmarks/


[11] Ruomeng Cui and Hyoduk Shin. Sharing aggregate inventory information with

customers: Strategic cross-selling and shortage reduction. Management Science,

64(1):381–400, 2018.

[12] Yao Cui, Izak Duenyas, and Ozge Sahin. Pricing of conditional upgrades in the

presence of strategic consumers. Management Science, 64(7):3208–3226, 2018.
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Tables

Table 1: Distribution of transactions and revenues across products and sales channels

Economy Premium
Economy

Business

Transactions 239,771 7,820 21,278
Retail 239,771 (100%) 5,542 (71%) 19,030 (90%)
Upgrades 2,278 (29%) 2,248 (10%)
Revenues (000) 66,490$ 4,653$ 23,437$
Retail (000) 66,490$ (100%) 3,841$ (90%) 22,365$ (94%)
Upgrades (000) 474$ (10%) 1,298$ (6%)

Notes: Revenues are expressed in thousand $. Percentages are with respect to
total transactions (or revenues) of the corresponding class. When considering
upgrades, I include also auction upgrades.

Table 2: Business class, evidence of discount

Variable Estimate
Average retail price (no upgrade) 1,337.98***

(8.82)
Savings due to upgrades -171.98***

(13.46)
Number of transactions 17,413

Notes: Results are in $ and computed using sales of business
class seats. When considering the final price paid after upgrades,
I also include auction upgrades. I drop sales to customers with
flyers-IDs. Standard errors are in parentheses: *** p < 0.01, **
p < 0.05, * p < 0.1. Standard errors are clustered at the flight
level.
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Table 3: Premium economy class, evidence of discount

Variable Estimate
Average retail price (no upgrades) 701.78***

(6.88)
Savings due to Upgrade -128.93***

(4.55)
Number of transactions 7,455

Notes: Results are in $ and computed using sales from premium
economy class seats. When considering the final price paid after
upgrades, I also include auction upgrades. I drop sales to cus-
tomers with flyers-IDs. Standard errors are in parentheses: ***
p < 0.01, ** p < 0.05, * p < 0.1. Standard Errors are clustered
at the flight level.

Table 4: Preferences – large aircraft on the international route

t=0 t=1
Parameter Estimate Parameter Estimate
(µH0, σH0) (306.8,95.6) (µH1, σH1) (306.8,95.6)

((1.99),(4.97)) ((1.99),(4.97))

κH0 3.3 κH1 3.7
(0.0) (0.0)

(µL0, σL0) (220.4,230.0) (µL1, σL1) (220.4,300.0)
((21.86),(0.0)) ((21.86),(0.0))

κL0 3.22 κL1 3.2
(0.01) (0.02)

Notes: Bootstrap estimates and standard errors for flights in the
international route on large aircraft (with cEC = 247 and cBC =
51). The data used for estimation include 98 flights. I use 100
bootstrap samples, by resampling at the flight-level.
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Table 5: Arrival process and inattention – large aircraft on the international route

Parameter Estimate
λ0 488

(0.0)
λ1 50

(0.0)
θ0 0.1

(0.0)
θ1 0.2

(0.01)
αH 0.15

(0.01)
αL 0.09

(0.01)

Notes: Bootstrap estimates
and standard errors for
flights on the international
route on large aircraft (with
cEC = 247 and cBC = 51).
The data used for estimation
include 98 flights. I use 100
bootstrap samples by resam-
pling at the flight level.

38



Table 6: Counterfactual in levels, role of capacity constraints

WITH capacity constraints WITHOUT capacity constraints

With upgrades Without upgrades With upgrades Without upgrades
(1) (2) (3) (4)

pEC,0 303 308 313 317
(3.33) (2.95) (2.95) (2.49)

pEC,1 418 422 430 430
(5.29) (5.64) (5.28) (5.28)

pBC,0 1,305 1,268 1,152 1,134
(12.77) (11.32) (14.23) (11.96)

pBC,1 996 983 848 848
(13.92) (24.15) (15.61) (15.61)

pUP 297 268
(134) (115)

passengersEC 164.5 167.2 145.69 150.27
(2.85) (3.24) (2.25) (2.82)

passengersBC 29.3 23.82 42.36 35.13
(0.86) (0.83) (1.73) (1.61)

upgrades 7.11 7.78
(0.19) (0.25)

Notes: I simulate the estimates and bootstrap standard errors for large aircraft on the international route.
I use 10 bootstrap samples, each simulating 500 aircraft. The scenario with capacity constraints considers
cEC = 247 and in business class cBC = 51. The variable passengersk indicates the number of passengers
flying in cabin k.
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Table 7: Price change in t = 0, sequential price discrimination and inventory management

WITH capacity
constraints –

Overall change

WITHOUT capacity
constraints –

Change due to SPD
Demand shock %∆p0,EC %∆p0,BC %∆p0,EC %∆p0,BC

H,H -0.002
(0.012)

0.042
(0.015)

0.005
(0.006)

0.023
(0.011)

H,M 0.004
(0.007)

0.035
(0.008)

-0.003
(0.002)

0.001
(0.003)

M,H -0.032
(0.015)

0.034
(0.008)

-0.034
(0.015)

0.000
(0.001)

H,L 0.000
(0.000)

0.005
(0.008)

0.001
(0.002)

0.002
(0.003)

L,H -0.106
(0.029)

0.084
(0.041)

-0.106
(0.002)

0.084
(0.041)

M,M -0.009
(0.003)

0.031
(0.008)

-0.010
(0.004)

0.013
(0.006)

M,L -0.005
(0.005)

0.038
(0.016)

-0.011
(0.005)

0.036
(0.018)

L,M -0.005
(0.011)

0.028
(0.013)

-0.005
(0.011)

0.028
(0.013)

L,L 0.016
(0.017)

0.012
(0.012)

0.016
(0.017)

0.012
(0.012)

Notes: I simulate 500 flights operating on the international route, and I report
the percentage change induced by the introduction of the upgrade option. The
overall change considers the percentage difference in t = 0 prices arising from the
introduction of the upgrade option when the airline faces capacity constraints, thus

∆p = pu − pNOu

pNOu
, where pu is the price when the upgrade option is available,

whereas pNOu is the price when the upgrade option is not available. Columns
under “change due to SPD” indicate the percentage change due to the introduc-
tion of the upgrade option when the airline does not face capacity constraints and,
thus, associated with the use of upgrades as a sequential price discrimination (SPD)
tool. Demand shocks are the t = 0 leisure-type demand shocks, in the form of
βleisure,0, γleisure,0, where H represents a realization of the random coefficient in the
top 20% of its distribution, L a realization in the bottom 20%, and M a realization
in the rest. Bootstrapped standard errors over 10 samples are recorded.
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Table 8: Quantity change in t = 0, sequential price discrimination and inventory man-
agement

WITH capacity
constraints –

Overall change

WITHOUT capacity
constraints –

Change due to SPD
Demand shock %∆q0,EC %∆q0,BC %∆q0,EC %∆q0,BC

H,H 0.027
(0.014)

-0.067
(0.026)

0.021
(0.008)

-0.027
(0.012)

H,M 0.015
(0.005)

-0.060
(0.012)

0.007
(0.007)

-0.004
(0.005)

M,H 0.110
(0.030)

-0.088
(0.007)

0.093
(0.039)

-0.031
(0.017)

H,L 0.000
(0.000)

-0.002
(0.007)

-0.000
(0.001)

-0.002
(0.005)

L,H 0.445
(0.111)

-0.191
(0.066)

0.435
(0.106)

-0.186
(0.063)

M,M 0.035
(0.111)

-0.060
(0.066)

0.025
(0.011)

-0.025
(0.011)

M,L 0.015
(0.010)

-0.056
(0.020)

0.023
(0.010)

-0.059
(0.028)

L,M 0.033
(0.031)

-0.047
(0.018)

0.032
(0.031)

-0.046
(0.018)

L,L -0.017
(0.026)

-0.009
(0.015)

-0.017
(0.026)

-0.009
(0.015)

Notes: I simulate 500 flights operating on the international route, and I report the
percentage change induced by the introduction of the upgrade option. The overall
change considers the percentage difference in t = 0 quantities arising from the in-
troduction of the upgrade option when the airline faces capacity constraints; thus,

∆q = qu − qNOu

qNOu
, where qu is the realized quantity when the upgrade option is

available, whereas qNOu is the quantity when the upgrade option is not available.
Columns under “change due to SPD” indicate the percentage change due to the in-
troduction of the upgrade option when the airline does not face capacity constraints
and, thus, associated to the use of upgrades as a sequential price discrimination
(SPD) tool. Demand shocks are the t = 0 leisure-type demand shocks, in the form
of βleisure,0, γleisure,0, where H represents a realization of the random coefficient in
the top 20% of its distribution, L a realization in the bottom 20% and M a realization
in the rest. Bootstrapped standard errors over 10 samples are recorded.
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Table 9: Leisure-type demand shock and the effect of introducing upgrades on t = 1 prices

Demand shock %∆p1,EC

H,H 0.016
(0.061)

H,M 0.016
(0.016)

M,H 0.011
(0.025)

H,L 0.007
(0.033)

L,H -0.008
(0.052)

M,M 0.004
(0.012)

M,L 0.023
(0.019)

L,M -0.007
(0.015)

L,L 0.005
(0.046)

Demand shock %∆ p1,BC

H,H 0.145
(0.138)

H,M 0.114
(0.060)

M,H 0.096
(0.041)

H,L 0.015
(0.042)

L,H 0.049
(0.063)

M,M 0.064
(0.024)

M,L 0.025
(0.030)

L,M 0.035
(0.036)

L,L 0.061
(0.069)

Notes: I simulate 500 flights operating on the international route under the two scenarios:
with and without upgrades. In both cases, the airline faces the same demand shocks and
capacity constraints. I evaluate optimal prices for any flight under the two scenarios and
then consider their relative difference, in particular the Change in p = pU −pNoU

pNoU , with pU

being the scenario with upgrades and pNoU being the scenario without upgrades. Demand
shocks are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where
H represents a realization of the random coefficient in the top 20% of its distribution, L a
realization in the bottom 20% and M a realization in the rest. Bootstrapped standard errors
over 10 samples are recorded.
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Table 10: Leisure-type demand shock and the effect of introducing upgrades on t = 1
retail sales

Demand Shock %∆q1,EC

H,H 0.210
(0.123)

H,M 0.119
(0.073)

M,H 0.209
(0.131)

H,L 0.080
(0.109)

L,H 0.192
(0.136)

M,M 0.225
(0.095)

M,L 0.153
(0.074)

L,M 0.176
(0.084)

L,L 0.096
(0.077)

Demand Shock %∆q1,BC

H,H -0.175
(0.095)

H,M -0.071
(0.058)

M,H -0.046
(0.088)

H,L -0.008
(0.030)

L,H 0.011
(0.065)

M,M -0.029
(0.046)

M,L 0.016
(0.020)

L,M 0.003
(0.028)

L,L -0.022
(0.026)

Notes: I simulate 500 flights operating on the international route under two scenarios: with
and without upgrades. In both cases, the airline faces the same demand shocks. Demand
shocks are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where
H represents a realization of the random coefficient in the top 20% of its distribution, L a
realization in the bottom 20% and M a realization in the rest. I evaluate retail sales for
any flight under the two scenarios and then consider their difference, in particular, Change
in q = qU −qNoU

qNoU , with qU being the quantity in the scenario with upgrades and qNoU the
quantity in the scenario without upgrades. Bootstrapped standard errors over 10 samples
are recorded.
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Table 11: Leisure-type demand shock and the effect of introducing upgrades on sellouts

Demand Shock %∆sellout0,EC
H,H 0.02870

(0.05563)
H,M 0.01446

(0.00965)
M,H 0.00000

(0.00000)
H,L 0.00000

(0.00000)
L,H 0.00000

(0.00000)
M,M 0.00000

(0.00000)
M,L 0.00378

(0.00613)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout0,BC
H,H -0.17494

(0.06752)
H,M -0.07696

(0.03174)
M,H -0.09009

(0.03779)
H,L 0.00000

(0.00000)
L,H 0.00000

(0.00000)
M,M -0.01770

(0.00620)
M,L 0.00000

(0.00000)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout1,EC
H,H -0.00305

(0.05567)
H,M -0.04342

(0.03066)
M,H 0.00000

(0.00000)
H,L -0.30982

(0.07834)
L,H 0.00000

(0.00000)
M,M -0.00394

(0.00398)
M,L -0.01508

(0.01322)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout1,BC
H,H 0.25012

(0.13784)
H,M 0.18193

(0.04648)
M,H 0.16662

(0.05424)
H,L 0.00417

(0.01318)
L,H 0.00000

(0.00000)
M,M 0.05332

(0.01599)
M,L 0.00000

(0.00000)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Notes: I simulate 500 flights operating on the international route under two scenarios: with
and without upgrades. In both cases, the airline faces the same demand shocks. Demand
shocks are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where
H represents a realization of the random coefficient in the top 20% of its distribution, L a
realization in the bottom 20% and M a realization in the rest. I evaluate the fraction (over
the 500 simulations) of flights that sell out; in particular, Change in selloutk = selloutUk −
selloutNoU

k , with selloutUk being the fraction of flights that sell out in cabin k in the scenario
with the upgrade option and selloutNoU

k being the fraction of flights that sell out in cabin k
in the scenario without the upgrade option. Bootstrapped standard errors over 10 samples
are recorded.
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Table 12: Counterfactual in levels, introducing the upgrade option

With upgrades Without upgrades ∆ = With−Without upgrades
pEC,0 303 308 -5

(3.33) (2.95) (1.05)
pEC,1 418 422 -4

(5.29) (5.64) (2.57)
pBC,0 1,305 1,268 37

(12.77) (11.32) (3.94)
pBC,1 996 983 13

(13.92) (24.15) (15.74)
pUP 297

(134)

passengersEC 164.5 167.2 -2.698
(2.85) (3.24) (0.51)

passengersBC 29.3 23.82 5.478
(0.86) (0.83) (0.21)

upgrades 7.11
(0.19)

selloutEC 0.01 0.03 -0.02
(0.004) (0.009) (0.007)

selloutBC 0.166 0.096 0.07
(0.016) (0.015) (0.01)

CS 81,978 80,751 1,227
(3,017) (3,049) (178)

PS 80,451 78,897 1,553
(2,251) (2,214) (146)

TS 162,430 159,649 2,780
(5,244) (5,239) (280)

Notes: I evaluate the estimates and bootstrap standard errors for large aircraft on the international
route. I use 10 bootstrap samples, each simulating 500 aircraft. The variable passengersk indicates the
number of passengers flying in cabin k. The variable selloutsk indicates the fraction of flights (over the
500 simulated flights) that sell out in cabin k. CS, PS and TS indicate average (per flight) consumer,
producer and total surplus, respectively.
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Table 13: Counterfactual, change in the absolute number of retail sales

Without Upgrades
Eliminating upgrades... Outside Option EC BC total

W
it

h
U

pg
ra

de
s

Outside Option 181,032 861 52 181,945
(1,588) (83) (11) (1,593)

EC 2,050 79,200 1,013 82,263
(315) (1,738) (48) (1513)

EC + UP 57 3,423 88 3,568
(15) (83) (13) (92)

BC 132 192 10,725 11,049
(28) (30) (401) (395)

total 183,271 83,676 11,878
(1,776) (1,738) (408)

Notes: I simulate 500 flights under two scenarios: with and without upgrades for 10 bootstrap
samples. I report bootstrap estimates and standard errors. I evaluate how the behavior of
consumers changes when the upgrade option is eliminated.

Table 14: Counterfactual, change in retail sales as percentage of original purchases

Without Upgrades
Eliminating upgrades... Outside Option EC BC

W
it

h
U

pg
ra

de
s

Outside Option 99.5% 0.5% 0.0%
(0.0) (0.0) (0.0)

EC 2.5% 96.3% 1.2%
(0.4) (0.4) (0.1)

EC + UP 1.6% 95.9% 2.5%
(0.4) (0.5) (0.4)

BC 1.2% 1.7% 97.1%
(0.3) (0.3) (0.5)

Notes: I simulate 500 flights under two scenarios: with and without upgrades
for 10 bootstrap samples. I report bootstrap estimates and standard errors. I
evaluate how the behavior of consumers changes in percentage terms when the
upgrade option is eliminated.
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Table 15: Counterfactual, consumer surplus net effects

Eliminating Upgrades ↗ Outside Option EC BC

Outside Option 0 -39,666 -5,386
(0) (8,063) (1,983)

EC 110,666 153,748 -74,069
(13,496) (41,835) (9,154)

EC + UP 8,132 531,122 36,301
(2,413) (21,090) (5,938)

BC 174,542 15,366 -297,130
(37,143) (3,996) (22,976)

Notes: I simulate 500 flights under the scenarios with and without upgrades
for 10 bootstrap samples. I report bootstrap estimates and standard errors.
I evaluate consumer surplus for any passenger in all 500 flights under the
two scenarios and then consider their difference: CSscenario with upgrades−
CSscenario without upgrades. Results are in $.

Table 16: Producer surplus counterfactual, aggregate revenues across cabins

Cabin With Upgrades Without upgrades ∆
EC 53.588$

(1.299)
52.759$
(1.304)

+829$
(89)

BC 24.929$
(1.067)

26.139$
(1.099)

-1.210$
(120)

UP 1.935$
(71)

0$
0

+1.935$

total 80.452$
(2.136)

78.898$
(2.101)

+1.553$
(138.9)

Notes: I simulate 500 flights under the scenarios: with and without up-
grades for 10 bootstrap samples. I report bootstrap estimates and stan-
dard errors. I evaluate producer surplus for any flight under the sce-
narios with and without upgrades; then, I consider the average across
the 500 flights. Results are in $.
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Table 17: Producer surplus counterfactual, distribution of revenues across cabins

Cabin With Upgrades Without upgrades
EC 0.666

(0.007)
0.669
(0.008)

BC 0.310
(0.007)

0.331
(0.008)

UP 0.024
(0.001)

0
(0)

Notes: I simulate 500 flights under the scenarios: with
and without upgrades for 10 bootstrap samples. I re-
port bootstrap estimates and standard errors. I evalu-
ate the average distribution of producer surplus across
products per scenario.

Figures

Figure 1: Distribution of sales over time

Notes: The horizontal axis shows the booking horizon by period before departure. The vertical axis
displays the total number of tickets purchased over all flights in the dataset. I exclude travelers belonging
to frequent flyer programs.
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Figure 2: Discount over time

Notes: The horizontal axis shows the booking horizon split by period before departure. The vertical
axis displays the final paid price paid to access premium cabins. I exclude travelers belonging to frequent
flyer programs.

Figure 3: Evolution of retail prices over time

Notes: The horizontal axis shows the booking horizon by period before departure. The vertical axis
displays the retail price paid to access economy, premium economy and business class. I exclude travelers
belonging to frequent flyer programs and upgrade sales.
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Figure 4: Prices

Notes: Price distribution for flights flying on the international route on aircraft with cEC = 247 and
cBC = 51. The box represents the central 50% of the distribution with the median within it; the lower
and upper bounds of the whisker represent the minimum and maximum of the distribution. The red box
represents the actual distribution, whereas the blue one represents that for the simulated bootstrapped
data.

Figure 5: Retail sales

Notes: Distributions of simulated and actual retail purchases of tickets for flights on the international
route on aircraft with cEC = 247 and cBC = 51. The box represents the central 50% of the distribution
with the median within it; the lower and upper bounds of the whisker represent the minimum and
maximum of the distribution. The red box represents the actual distribution, whereas the blue one
represents that for the simulated bootstrapped data.
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Figure 6: Upgrade prices and upgrade sales

Notes: Distributions of simulated and actual prices and quantities of upgrades for flights on the inter-
national route on aircraft with cEC = 247 and cBC = 51. The red line represents the actual CDF of
upgrade prices, whereas the blue line represents the average CDF of upgrade prices across the bootstrap
estimates.
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Figure 7: Counterfactual over time with capacity constraints

Notes: I evaluate the estimates and bootstrap 95% confidence intervals for large aircraft on the inter-
national route with capacity constraints. I use 10 bootstrap samples, each simulating 500 aircraft. In
the sellouts panels, I report the fraction of flights experiencing sellouts in the corresponding cabin over
time. Economy class sellouts decrease over time, as travelers upgrade upgrade to business class and leave
economy class.

Figure 8: Counterfactual over time without capacity constraints

Notes: I evaluate the estimates and bootstrap 95% confidence interval for large aircraft on the interna-
tional route without capacity constraints. I use 10 bootstrap samples, each simulating 500 aircraft.
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A Appendix

A.1 Appendix – Example of an upgrade notification

Figure 9: Example of a notification email for an upgrade offer

Notes: Email notifying for an upgrade possibility

A.2 Appendix - Upgrade discount: Robustness check

The evidence from regression (1) remains robust even after I control for various confound-

ing factors, including load factors and time and flight fixed effects. I summarize the results

in Tables 18 and 19.

By defining t as the time of the initial purchase (so that t = T − 2 indicates the

second-to-last day of the booking horizon when the airline allows upgrade sales) and f

as the flight on which transaction i takes place, I estimate the following specification for

robustness checks:

Pitf = α + βupI{upgrade sale}i + LFtfγ1 + LFT−2fγ2 + tδ + FEf + εi (12)

with LFt indicating the load factor, defined as the ratio of realized sales up to period t

to the total capacity. Similarly to in the analysis in Section 2.3, here, I estimate regres-

sion (12) separately for business and premium economy class. The results in Tables 18

and 19 show that, in all four specifications, the extent of the discount is statistically
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significant.

Low average final prices to access the premium cabin might occur on flights expe-

riencing few premium-cabin sales. These flights might have low prices. Therefore the

discounts observed in regression (1) might capture cross-flight price differences due to

variation in unsold capacity rather than within-flight price differences. I account for this

possibility in column (1), where I control for the load factor level at the time of the ini-

tial purchase. The price difference between retail and upgrade sales is still statistically

different from 0.

Similarly, the airline might try to fill capacity in the premium cabin on those flights

with an emptier premium cabin in the last two days before departure, when the upgrade

program starts. Therefore, a lower level of LFT−2 might imply low premium-cabin retail

prices, and thus, the observed discount from regression (1) might detect a load factor

difference in the two days before departure across flights. This turns out not to be case,

as the coefficient βUP in column (2) is still statistically significant.

The difference between retail and upgrade final prices paid might be due to the initial

ticket purchase date. In particular, as prices tend to increase over time, it might be that

most upgrading customers have made their lower-cabin ticket purchase very early on in

the booking horizon, when prices are typically low. This might imply low average final

prices paid after an upgrade simply because of the low initial retail prices. I control for

this effect in column (3) by including a time trend effect. The price difference between

retail and upgrade sales remains statistically different from 0.

Finally, I jointly consider the load factor and time and flight fixed effects. I include

flight fixed effects as upgrades might take place on specific flights that, for unobserved

idiosyncratic reasons, might display low premium seat prices. Even with these controls,

the price difference between retail and upgrade sales is still statistically different from 0.
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Table 18: Business class

Variable estimate
(1)

estimate
(2)

estimate
(3)

estimate
(4)

Average retail price (no upgrade) 1,040.30***
(12.87)

1068.92***
(31.11)

1,437.07***
(16.22)

1,150.04***
(153.92)

Savings due to upgrade -166.86***
(14.35)

-144.03***
(14.18)

-197.19***
(15.47)

-200.60***
(19.86)

LFt yes no no yes
LFT−2 no yes no no
t no no yes yes
Flight FE no no no yes

Notes: Results are in $ and computed from sales of business class seats. I drop sales to customers with flyers-IDs and sales with
auction upgrades. Standard errors are in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are clustered at the
flight level.

Table 19: Premium economy class

Variable estimate
(1)

estimate
(2)

estimate
(3)

estimate
(4)

Average retail price (no upgrade) 526.49***
(8.30)

588.21***
(16.20)

786.88***
(5.80)

529.31***
(12.13)

Savings due to upgrade -112.24***
(7.43)

-115.76***
(8.53)

-149.61***
(7.42)

-111.13***
(7.53)

LFt yes no no yes
LFT−2 no yes no no
t no no yes yes
Flight FE no no no yes

Notes: Results are in $ and computed from sales of premium economy class seats. I drop sales to customers with flyers-IDs and
sales with auction upgrades. Standard errors are in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are clustered
at the flight level.

A.3 Appendix – Estimation: The role of inattention parameters

(αL, αH) with no capacity constraints

In this section, I analyze the effects of the upgrade option in the case with fully attentive

economy class ticket holders when the airline does not face capacity constraints. The

sequential price discrimination effect on the t = 0 customer is larger than that with

inattentive travelers. In particular, since the probability that economy class ticket holders

buy an upgrade increases, the opportunity cost of both raising business class prices and

decreasing economy class prices decreases. Indeed, by charging higher business class and

lower economy class prices, the number of economy class ticket buyers increase, thereby
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increasing the number of upgrading customers.

Table 20: Role of upgrades with attentive customers and without capacity constraints

With Upgrades Without Upgrades
Attentive travelers
αH = αL = 1

Inattentive travelers
αH = 0.2, αL = 0.1

(1) (2) (3)
pEC,0 282 313 317

(2.8) (2.95) (2.49)
pEC,1 430 430 430

(5.28) (5.28) (5.28)
pBC,0 1,238 1,152 1,134

(12.56) (14.23) (11.96)
pBC,1 848 848 848

(15.61) (15.61) (15.61)
pUP 242 268

(115) (115)
passengersEC 98.09 145.69 150.27

(1.83) (2.25) (2.82)
passengersBC 106.68 42.36 35.13

(1.77) (1.73) (1.61)
upgrades 78.62 7.78

(0.99) (0.25)

Notes: I evaluate the estimates and bootstrap standard errors for large aircraft on the international
route when there are no capacity constraints under the case in which all travelers are attentive to
the upgrade option (Column (1)) and under the case in which only the estimated fraction of travelers
are attentive to the upgrade option (Column (2)). I use 10 bootstrap samples, each simulating 500
aircraft. The variable passengersk indicates the number of passengers flying in cabin k.

A.4 Appendix – Counterfactual benchmarks: Uniform pricing

and free upgrades

In this section, to benchmark the welfare gains of the upgrade option within the literature,

I consider two other scenarios: uniform pricing and free upgrades. The results in Table

21 show that, as the airline increases its pricing flexibility, both revenues and consumer

surplus increase.
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Table 21: Counterfactual – Various scenarios

With Upgrades Without Upgrades Uniform Pricing Free Upgrades
(1) (2) (3) (4)

pEC,0 303 308 317 308
(3.33) (2.95) (2.58) (2.95)

pEC,1 418 422 317 422
(5.29) (5.64) (2.58) (5.64)

pBC,0 1,305 1,268 1,156 1,268
(12.77) (11.32) (6.1) (11.32)

pBC,1 996 983 1,156 983
(13.92) (24.15) (6.1) (24.15)

pUP 297 0
(134) 0

passengersEC 164.5 167.2 168.74 153.55
(2.85) (3.24) (2.86) (3.23)

passengersBC 29.3 23.82 20.51 37.47
(0.86) (0.83) (0.84) (0.66)

upgrades 7.11 13.64
(0.19) (0.26)

selloutEC 0.01 0.03 0.04 0.01
(0.004) (0.009) (0.011) (0.003)

selloutBC 0.166 0.096 0.095 0.354
(0.016) (0.015) (0.014) (0.022)

CS 81,978 80,751 80,156 83,645
(3,017) (3,049) (3,016) (3,013)

PS 80,451 78,897 77,823 78,897
(2,251) (2,214) (2,188) ((2,214))

TS 162,430 159,649 157,980 162,544
(5,244) (5,239) (5,177) (5,203)

Notes: I evaluate the estimates and bootstrap standard errors for large aircraft on the international route.
I use 10 bootstrap samples, each simulating 500 aircraft. The variable passengersk indicates the number of
passengers flying in cabin k. The variable selloutsk indicates the fraction of flights (over the 500 simulated
flights) that sell out in cabin k. CS, PS and TS indicate average (per flight) consumer, producer and total
surplus, respectively.

The scenario of uniform pricing (Column (3)) considers a restrictive pricing regime

where the airline sets a constant price over time for the two cabins in t = 0 after the

realization of the initial demand shock and no upgrades are allowed. As the firm is

constrained in its pricing decisions, producer surplus is lower than in the scenario with

dynamic pricing but no upgrades (Column (2)). Relatively low business class prices in

t = 0 lead to early sellouts in the premium cabin, whereas low economy class prices in
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t = 1 lead to sellouts in the lower class cabin at the end of t = 1. Overall, early business

class sellouts prevent high-value t = 1 customers from accessing high-quality products in

t = 1, thereby leading to smaller consumer surplus with respect to that in the situation of

dynamic pricing without upgrades. The results on prices, sellouts and total surplus align

with the analysis of Williams (2022).

The second scenario involves the airline offering upgrades for free (Column (4)) while

implementing dynamic pricing. With free upgrades, the upgrade option does not modify

the opportunity cost of selling any seat in any period. Consequently, the airline pricing

problem is the same as in the scenario without upgrades (Column (2)). As the airline

cannot capture surplus from upgrading customers, upgrades benefit only customers. This

leads to the highest levels of total surplus among all the counterfactual scenarios.

When the firm implements dynamic pricing, the introduction of the upgrade option

increases producer surplus by 2%; transitioning from a uniform pricing regime to dynamic

pricing results in a 1.3% increase in revenues. My model predicts that the upgrades

are relatively more important in increasing revenues than the dynamic pricing. This

result is primarily driven by the two-period assumption of the model. With more time

periods, dynamic pricing would likely yield higher gains, as the airline could employ better

intertemporal and intratemporal price discrimination strategies across customers with

varying demands over time.20 Additionally, with more than two periods, the scope of the

upgrade option would be diminished, as the airline would aim at extracting surplus over

the booking horizon through dynamic pricing rather than relying on last-day upgrades.

Thus, the counterfactual results presented in this paper provide an upper bound on the

effects of the upgrade option.

A.5 Appendix – Counterfactual results: The role of demand

shocks

In this section, I complement the evidence in Tables 9, 10, and 11 regarding the effects

of the upgrade option arising from various demand shocks by showing how different real-

izations of initial demand shocks lead to variation in upgrades sales, prices and surplus.

20 As a benchmark in the literature, Williams (2022) finds that dynamic pricing increases revenues by
8% in a four-period model and one cabin.
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Overall, as the demand shock increases, pUP increases, and the number of upgrading trav-

elers increases. Concurrently, producer and consumer surplus increase with the size of the

demand shock.

Table 22: Leisure-type demand shock and upgrades

Demand Shock Average
pUP

H,H 437.626
(26.806)

H,M 353.364
(13.033)

M,H 400.284
(10.213)

H,L 201.505
(32.788)

L,H 298.517
(24.283)

M,M 286.710
(6.956)

M,L 226.218
(31.344)

L,M 257.299
(8.939)

L,L 257.919
(23.094)

Demand Shock Average
qUP

H,H 6.132
(1.134)

H,M 6.997
(0.549)

M,H 6.662
(0.383)

H,L 8.287
(1.703)

L,H 6.275
(0.850)

M,M 8.721
(0.334)

M,L 6.228
(0.650)

L,M 5.358
(0.612)

L,L 3.370
(0.518)

Notes: I simulate 500 flights operating on the international route under the scenario with
upgrades. Demand shocks are the t = 0 leisure-type demand shocks, in the form of
βleisure,0, γleisure,0, where H represents a realization of the random coefficient in the top
20% of its distribution, L a realization in the bottom 20% and M a realization in the rest. I
evaluate the optimal upgrade price and corresponding realized upgrade sales. Bootstrapped
standard errors over 10 samples are recorded.
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Table 23: Leisure-type demand shock and surplus

Demand Shock Change in
PS

H,H 1,844.5
(1,092.2)

H,M 1,766.0
(367.1)

M,H 1,521.7
(475.4)

H,L 1,179.7
(222.4)

L,H 2,362.9
(650.4)

M,M 1,981.8
(217.9)

M,L 835.0
(122.6)

L,M 1,164.7
(214.0)

L,L 534.7
(235.8)

Demand Shock Change in
CS

H,H 1,641.1
(1,737.9)

M,H 1,687.4
(830.6)

H,M 430.9
(717.7)

H,L 978.8
(177.8)

L,H 4,098.5
(1,011.3)

M,M 1,415.0
(244.8)

M,L 838.0
(306.5)

L,M 1,002.9
(386.4)

L,L 331.9
(269.7)

Notes: I simulate 500 flights operating on the international route under the scenarios with
and without upgrades. Demand shocks are the t = 0 leisure-type demand shocks, in the
form of βleisure,0, γleisure,0, where H represents a realization of the random coefficient in
the top 20% of its distribution, L a realization in the bottom 20% and M a realization
in the rest. I evaluate the surplus in both scenarios and take the difference; for example,
Change in PS = PSU−PSNoU , where PSU is the producer surplus in the scenario with the
upgrade option and PSNoU is the producer surplus in the scenario without it. Bootstrapped
standard errors over 10 samples are recorded.

A.6 Appendix – Estimation: The role of inattention

In this section, I show estimation results under the assumption that all customers pay

attention to the email sent by the airline regarding the upgrade option. The focus is on

the large aircraft flying on the international route.

The moments used for estimation are the same as those in Section 4.2, and the

simulated model restricts αH = αL = 1 to assume fully attentive travelers. The estimation

results are slightly different than those reported in Section 4.2, and visually, assuming fully

attentive travelers leads to a worse model fit. When we assume fully attentive travelers,

the model implies a larger number of upgrading customers, which modifies the airline’s

pricing strategies by inducing higher business class prices over the booking horizon with

respect to those in the scenario with inattentive customers. Since sales are generated
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together with prices in the simulation routine, the demand estimates reported in Tables 24

and 25 are different from those in Tables 4 and 5.

Table 24: Preferences – International route, attentive customers

t=0 t=1
parameter estimate parameter estimate
(µH0, σH0) (314.24,94.24) (µH1, σH1) (314.24,94.24)

((45.64),(45.64)) ((45.64),(45.64))
κH0 3.23 κH1 2.95

(0.0) (0.01)
(µL0, σL0) (324.39,193.08) (µL1, σL1) (324.39,220.05)

((8.72),(136.72)) ((8.72),(25.0))
κL0 3.5 κL1 3.27

(0.0) (0.0)

Notes: Parameters for flights on the international route on aircraft
with cEC = 247, cP E = 21, cBC = 30. In the simulated airline problem,
business class includes premium economy. I report bootstrap standard
errors in parentheses. I use 100 bootstrap samples by resampling at the
flight level.

Table 25: Arrival process and inattention - international route, attentive customers

parameter estimate
λ0 512.0

(0)
λ1 42.45

(3.9)
θ0 0.07

(0.0)
θ1 0.13

(0.0)

Notes: Parameters for
flights on the international
route on aircraft with
cEC = 247, cP E = 21,
cBC = 30. In the simulated
airline problem, business
class includes premium
economy. I report boot-
strap standard errors in
parentheses. I use 100
bootstrap samples by
resampling at the flight
level.
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Figure 10: Prices – International route, attentive customers

Notes: Simulated and actual price distributions for flights on the international route on aircraft with
cEC = 247, cBC = 51, assuming fully attentive travelers (αH = αL = 1). The box represents the central
50% of the distribution with the median within it; the lower and upper bounds of the whisker represent
the minimum and maximum of the distribution. The red box represents the actual distribution, whereas
the blue one represents that for the simulated bootstrapped data.
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Figure 11: Retail sales – International route, attentive customers

Notes: Simulated and actual price distributions for flights on the international route on aircraft with
cEC = 247, cBC = 51, assuming fully attentive travelers (αH = αL = 1). The box represents the central
50% of the distribution with the median within it; the lower and upper bounds of the whisker represent
the minimum and maximum of the distribution. The red box represents the actual distribution, whereas
the blue one represents that for the simulated bootstrapped data.

63



Figure 12: Upgrade sales and prices – International route, attentive customers

Notes: Distributions of simulated and actual price and quantities of upgrades for flights on the interna-
tional route on aircraft with cEC = 247, cBC = 51, assuming fully attentive travelers (αH = αL = 1).
The red line represents the actual CDF of upgrade prices, whereas the blue line represents the average
CDF of upgrade prices across the bootstrap estimates.

A.7 Appendix – Small-size aircraft

A.7.1 Appendix – Distribution of aircraft size and upgrades

The number of upgrades varies based on the size of the aircraft. This paper does not

delve into the discussion of how the airline deploys different aircraft on different routes;

instead, I consider it to be exogenously determined.

The dataset used in this study consists of 11 types of aircraft, each varying in terms of

capacity for economy, premium economy, and business class. The largest aircraft, which

belongs to the Boeing 787 Dreamliner family, has a total of 247 seats in economy class

(cEC), with 21 seats in premium economy class (cPE) and 30 seats in business class (cBC).

On the other hand, the smallest aircraft, the Boeing 757-200, does not have a premium

economy class and features 153 seats in economy class (cEC) and 16 seats in business class

(cBC). Analysis of the data, as shown in Table 26, reveals that the airline tends to deploy
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larger aircraft on the international route. Moreover, Table 1 illustrates that the majority

of upgrades occur between economy and premium economy classes, leading to a higher

number of upgrades on larger aircraft.

Table 26: Distribution of upgrades relative to aircraft size

Domestic Route International Route
aircraft

size
upgrades flights upgrades

per flight
upgrades flights upgrades

per flight
Large 58 15 3.8 1.932 294 6.5
Small 231 284 0.8 366 329 1.1

Notes: I report the distribution of the largest (labeled “Large”, with cEC = 247, cP E =
21, cBC = 31) and smallest aircraft (labeled “Small”, with cEC = 153, cBC = 16) over the two
routes. I also show the total number of upgrades by aircraft type.

A.7.2 Appendix – Estimation: Small aircraft

In this section, first, I present the estimation results on consumers’ preferences, arrival

rate, type mixture, and inattention coefficients for the smallest aircraft in the data, which

operates on the domestic route. Then, I show how the estimated model fits the data.

The estimation results and fit for the small aircraft align with those of the larger

aircraft.21 Indeed, both aircraft have similar goodness of fit, according to the measure

described in expression (11): the S2 for small aircraft is 0.98 and that of the large one

0.975. However, due to the lower mean and variances of the observed prices on the domes-

tic route, travelers exhibit lower mean and variances for both their willingness to pay and

value for comfort than on the international route. Additionally, since the small aircraft

has fewer seats, the expected arrival rate is lower than that for the international route.

Notably, the estimates for the inattention coefficients are similar to those observed for

the international route. By considering the average WTP and average prices, the simu-

lated demand elasticities are -1.68 and -2.42 for business-type and leisure-type travelers,

respectively.

Figures 13, 14 and 15 display how the model fits the observed prices, retail sales and

21 In the original dataset, there are 284 small-sized aircraft flights on the domestic route. Similarly
to in the case of large aircraft, discussed in Footnote 11, I estimate the model on a subset of flights to
attain higher speed in the simulation algorithm and neglect outliers. I estimate the model on flights
with pEC,0 ∈ [200, 400], pEC,1 ∈ [250, 650], pBC,0 ∈ [300, 1100] and pBC,1 ∈ [400, 1500]. The final sample
consists of 79 flights.
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upgrades. With respect to the large aircraft on the international route, the simulated

upgrade prices and sales for the small aircraft do not perfectly match the observed ones.

This discrepancy arises from the fact that my model seldom predicts zero upgrade sales

whereas zero upgrades are common in the actual data. Specifically, in the sample used

for estimation of demand for small aircraft, the data show that almost 50% of flights do

not have any upgrades.

Table 27: Preferences – Small aircraft on the domestic route

t=0 t=1
parameter estimate parameter estimate
(µH0, σH0) (319.6,119.5) (µH1, σH1) (319.6,119.5)

((2.81),(2.19)) ((2.81),(2.19))

κH0 1.96 κH1 1.91
(0.02) (0.04)

(µL0, σL0) (230.0,140.0) (µL1, σL1) (230.0,229.9)
((0.0),(0.0)) ((0.0),(1.0))

κL0 2.27 κL1 2.1
(0.0) (0.0)

Notes: Bootstrap estimates and standard errors for flights on the
domestic route on aircraft with cEC = 153 and cBC = 16. The
data used for estimation include 79 flights. I use 100 bootstrap
samples, by resampling at the flight level.
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Table 28: Arrival process and inattention – Small aircraft on the domestic route

parameter estimate
λ0 300

(0.0)
λ1 20.3

(1.71)
θ0 0.1

(0.01)
θ1 0.2

(0.0)
αH 0.19

(0.01)
αL 0.1

(0.01)

Notes: Bootstrap esti-
mates and standard errors
for flights on the domes-
tic route on aircraft with
cEC = 153 and cBC = 16.
The data used for estima-
tion include 79 flights. I
use 100 bootstrap samples,
by resampling at the flight
level.

Figure 13: Prices – Small aircraft on the domestic route

Notes: Simulated and actual price distributions for flights on the domestic route on aircraft with cEC =
153 and cBC = 16.
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Figure 14: Retail sales – Small aircraft on the domestic route

Notes: Simulated and actual price distributions for flights on the domestic route on aircraft with cEC =
153 and cBC = 16. The box represents the central 50% of the distribution with the median within it;
the lower and upper bounds of the whisker represent the minimum and maximum of the distribution.
The red box represents the actual distribution, whereas the blue one represents that for the simulated
bootstrapped data.
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Figure 15: Upgrade sales and prices – small aircraft on the domestic route

Notes: Distributions of simulated and actual price and quantities of upgrades for flights on the domestic
route on aircraft with cEC = 153 and cBC = 16. The red line represents the actual CDF of upgrade
prices, whereas the blue line represents the average CDF of upgrade prices across the bootstrap estimates.

A.7.3 Appendix - counterfactual: small aircraft

In this section, I assess the welfare consequences of the upgrade option in the context

of small aircraft by counterfactual simulation. These results offer robustness for those

presented in Section 5. First, I show that the upgrade option modifies the pricing strategy

of the airline for small aircraft in a similar way as it does that for large aircraft. Then,

I discuss the aggregate welfare consequences of upgrades and their distributional welfare

consequences. Finally, I compare the impact of upgrades across aircraft of different sizes.

Economics of upgrades on small aircraft

Similarly to Table 6, Table 28 shows the effects of the introduction of the upgrade option

with and without capacity constraints. In this way, I distinguish sequential price discrimi-

nation from inventory management. The scenario without capacity constraints illustrates

how the upgrade option works as a way to sequentially price discriminate among t = 0

travelers. When the airline faces capacity constraints, upgrades work as a way to both

price discriminate and manage inventory. In particular, with capacity constraints, the

percentage change in t = 0 business class prices due to the introduction of the upgrade

option is larger than that without capacity constraints. In this way, the airline reduces

initial sellouts in business class. Higher t = 0 business class prices increase the number of

travelers switching from the premium product to economy class. In turn, this reduces the
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airline’s incentives to decrease initial economy class prices, so that the percentage decrease

in economy class prices with capacity constraints is lower than that without them.

Table 28: Counterfactual in levels – Small aircraft on the domestic route

WITH capacity constraints WITHOUT capacity constraints

With upgrades Without upgrades With upgrades Without upgrades
(1) (2) (3) (4)

pEC,0 287 289 318 322
(4.35) (3.9) (4.69) (4.67)

pEC,1 401 406 423 423
(5.8) (6.25) (6.92) (6.92)

pBC,0 955 919 798 783
(9.46) (10.53) (8.23) (8.99)

pBC,1 805 785 715 715
(10.08) (7.71) (6.08) (6.08)

pUP 204 141
(124) (80)

passengersEC 88.35 90.02 66.64 68.1
(1.72) (1.67) (1.58) (1.62)

passengersBC 9.45 7.09 21.25 18.67
(0.22) (0.27) (1.05) (1.04)

upgrades 3.34 3.5
(0.11) (0.01)

Notes: I simulate the estimates and bootstrap standard errors for small aircraft on the domestic route. I
use 20 bootstrap samples, each simulating 500 aircraft. The scenario with capacity constraints considers
cEC = 153 and in business class is cBC = 16. The variable passengersk indicates the number of passengers
flying in cabin k.

Tables 29 and 30 show how the upgrade option works conditional on t = 0 leisure-

type demand shocks. Similarly to Tables 7 and 8 for large aircraft, they show two facts.

First, the airline’s incentives to increase business class prices after the introduction of

the upgrade option are stronger when the airline faces capacity constraints and a high

demand shock (HH, HM, MH) is realized. In this way, the airline reduces initial-period

retail sales and sellouts for the premium product. Second, when facing low demand shocks

(LM, ML), the upgrade option works mainly as a way to sequentially price discriminate

among t = 0 customers, and its effects with or without capacity constraints are similar

since capacity constraints almost never bind.
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Table 29: Price change, sequential price discrimination and inventory management –
Small aircraft on the domestic route

WITH capacity
constraints -

Overall change

WITHOUT capacity
constraints -

Change due to SPD
Demand shock %∆p0,EC %∆p0,BC %∆p0,EC %∆p0,BC

H,H -0.004
(0.008)

0.042
(0.023)

0.001
(0.003)

0.012
(0.015)

H,M 0.010
(0.005)

0.065
(0.017)

0.000
(0.000)

0.028
(0.010)

M,H -0.011
(0.016)

0.103
(0.030)

-0.033
(0.013)

0.034
(0.011)

H,L -0.000
(0.005)

0.018
(0.019)

0.000
(0.000)

0.011
(0.015)

L,H -0.037
(0.024)

0.037
(0.024)

-0.040
(0.022)

0.039
(0.022)

M,M -0.004
(0.006)

0.062
(0.013)

-0.013
(0.007)

0.026
(0.011)

M,L 0.000
(0.002)

0.011
(0.017)

-0.001
(0.003)

0.031
(0.019)

L,M -0.007
(0.006)

0.007
(0.006)

-0.008
(0.008)

0.008
(0.008)

L,L 0.000
(0.000)

-0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Notes: I simulate 500 flights operating on the domestic route, and I report the
percentage change induced by the introduction of the upgrade option. The over-
all change considers the percentage difference in t = 0 prices arising from the in-
troduction of the upgrade option when the airline faces capacity constraints; thus,

∆p = pu − pNOu

pNOu
, where pu is the price when the upgrade option is available whereas

pNOu is the price when the upgrade option is not available. Columns under “change
due to SPD” indicate the percentage change due to the introduction of the upgrade
option when the airline does not face capacity constraints and, thus, associated with
the use of upgrades as a sequential price discrimination (SPD) tool. Demand shocks
are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where H
represents a realization of the random coefficient in the top 20% of its distribution,
L a realization in the bottom 20% and M a realization in the rest. Bootstrapped
standard errors over 20 samples are recorded.
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Table 30: Quantity change, sequential price discrimination and inventory management –
Small aircraft on the domestic route

WITH capacity
constraints -

Overall change

WITHOUT capacity
constraints -

Change due to SPD
Demand shock %∆q0,EC %∆q0,BC %∆q0,EC %∆q0,BC

H,H 0.023
(0.012)

-0.102
(0.056)

0.020
(0.032)

-0.023
(0.029)

H,M 0.008
(0.006)

-0.106
(0.028)

0.039
(0.014)

-0.053
(0.019)

M,H 0.074
(0.027)

-0.188
(0.041)

0.216
(0.087)

-0.076
(0.021)

H,L 0.000
(0.004)

-0.009
(0.027)

0.001
(0.002)

-0.038
(0.039)

L,H 0.215
(0.147)

-0.051
(0.042)

0.280
(0.176)

-0.057
(0.038)

M,M 0.028
(0.012)

-0.090
(0.019)

0.071
(0.036)

-0.042
(0.017)

M,L 0.002
(0.005)

-0.008
(0.015)

0.005
(0.006)

-0.009
(0.011)

L,M 0.030
(0.031)

-0.000
(0.000)

0.042
(0.058)

-0.002
(0.006)

L,L 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

-0.000
(0.000)

Notes: I simulate 500 flights operating on the domestic route, and I report the
percentage change induced by the introduction of the upgrade option. The overall
change considers the percentage difference in t = 0 quantity arising from the in-
troduction of the upgrade option when the airline faces capacity constraints; thus,

∆q = qu − qNOu

qNOu
, where qu is the quantity when the upgrade option is available

whereas qNOu is the quantity when the upgrade option is not available. Columns
under “change due to SPD” indicate the percentage change due to the introduc-
tion of the upgrade option when the airline does not face capacity constraints and,
thus, associated with the use of upgrades as a sequential price discrimination (SPD)
tool. Demand shocks are the t = 0 leisure-type demand shocks, in the form of
βleisure,0, γleisure,0, where H represents a realization of the random coefficient in the
top 20% of its distribution, L a realization in the bottom 20% and M a realization
in the rest. Bootstrapped standard errors over 20 samples are recorded.

Tables 31, 32, 33, 34 and 35 show the effects of the introduction of the upgrade option

for t = 1 prices, sales and sellouts on small aircraft flying on the domestic route. The

results align with those for large aircraft flying on the international route in Tables 9, 10,

11, 22 and 23.
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Table 31: Leisure-type demand shock and the effect of introducing upgrades on prices –
Small aircraft on the domestic route

Demand shock %∆p1,EC

H,H 0.011
(0.040)

H,M -0.003
(0.020)

M,H 0.018
(0.021)

H,L -0.002
(0.044)

L,H 0.026
(0.051)

M,M 0.002
(0.009)

M,L -0.001
(0.017)

L,M 0.009
(0.020)

L,L 0.001
(0.025)

Demand shock %∆p1,BC

H,H 0.138
(0.091)

H,M 0.076
(0.038)

M,H 0.050
(0.033)

H,L 0.021
(0.048)

L,H 0.042
(0.052)

M,M 0.066
(0.016)

M,L 0.042
(0.023)

L,M 0.046
(0.035)

L,L 0.041
(0.056)

Notes: I simulate 500 flights operating on the domestic route under two scenarios: with and
without upgrades. In both cases, the airline faces the same demand shocks and capacity
constraints. I evaluate optimal prices for any flight under the two scenarios and then consider
their relative difference, in particular the Change in p = pU −pNoU

pNoU , with pU being the scenario
with upgrades and pNoU being the scenario without upgrades. Demand shocks are the
t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where H represents a
realization of the random coefficient in the top 20% of its distribution, L a realization in the
bottom 20% and M a realization in the rest. Bootstrapped standard errors over 20 samples
are recorded.
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Table 32: Leisure-type demand shock and the effect of introducing upgrades on retail
sales – Small aircraft on the domestic route

Demand Shock %∆q1,EC

H,H 0.149
(0.173)

H,M 0.153
(0.080)

M,H 0.099
(0.086)

H,L 0.087
(0.172)

L,H -0.004
(0.123)

M,M 0.103
(0.052)

M,L 0.100
(0.085)

L,M 0.037
(0.091)

L,L 0.040
(0.086)

Demand Shock %∆q1,BC

H,H -0.123
(0.099)

H,M -0.063
(0.073)

M,H -0.029
(0.075)

H,L 0.011
(0.078)

L,H 0.066
(0.096)

M,M -0.055
(0.038)

M,L -0.002
(0.058)

L,M -0.010
(0.053)

L,L -0.005
(0.108)

Notes: I simulate 500 flights operating on the domestic route under two scenarios: with
and without upgrades. In both cases, the airline faces the same demand shocks. Demand
shocks are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where
H represents a realization of the random coefficient in the top 20% of its distribution, L a
realization in the bottom 20% and M a realization in the rest. I evaluate retail sales for any
flight under the two scenarios and then consider their percentage difference, in particular
Change in q = qU −qNoU

qNoU , with qU being the quantity in the scenario with upgrades, and
qNoU the quantity in the scenario without upgrades. Bootstrapped standard errors over 20
samples are recorded.
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Table 33: Leisure-type demand shock and the effect of introducing upgrades on sellouts
– Small aircraft on the domestic route

Demand Shock %∆sellout0,EC
H,H 0.00781

(0.02034)
H,M 0.00000

(0.00000)
M,H 0.00000

(0.00000)
H,L 0.00000

(0.00000)
L,H 0.00000

(0.00000)
M,M 0.00024

(0.00108)
M,L 0.00000

(0.00000)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout0,BC
H,H -0.10278

(0.05829)
H,M -0.08073

(0.04807)
M,H -0.13829

(0.03135)
H,L 0.00000

(0.00000)
L,H 0.00000

(0.00000)
M,M -0.03197

(0.00969)
M,L 0.00000

(0.00000)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout1,EC
H,H -0.00574

(0.03102)
H,M -0.00829

(0.01130)
M,H 0.00000

(0.00000)
H,L -0.04520

(0.05046)
L,H 0.00000

(0.00000)
M,M -0.00026

(0.00118)
M,L 0.00000

(0.00000)
L,M 0.00000

(0.00000)
L,L 0.00000

(0.00000)

Demand Shock %∆sellout1,BC
H,H 0.18410

(0.08090)
H,M 0.17803

(0.06451)
M,H 0.04519

(0.05242)
H,L 0.05660

(0.03717)
L,H 0.00870

(0.02517)
M,M 0.11107

(0.02889)
M,L 0.01086

(0.01523)
L,M 0.01111

(0.01115)
L,L 0.00955

(0.01999)

Notes: I simulate 500 flights operating on the domestic route under the two scenarios: with
and without upgrades. In both cases, the airline faces the same demand shocks. Demand
shocks are the t = 0 leisure-type demand shocks, in the form of βleisure,0, γleisure,0, where H
represents a realization of the random coefficient in top 20% of its distribution, L a realization
in the bottom 20% and M a realization in the rest. I evaluate the fraction (over the 500
simulations) of flights that sell out; in particular Change in selloutk = selloutUk −selloutNoU

k ,
with selloutUk being the fraction of flights that sell out in cabin k in the scenario with the
upgrade option, and selloutNoU

k being the fraction of flights that sellout in cabin k in the
scenario without the upgrade option. Bootstrapped standard errors over 20 samples are
recorded.
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Table 34: Leisure-type demand shock and upgrades – Small aircraft on the domestic route

Demand Shock Average
pUP

H,H 385.8
(26.417)

H,M 260.0
(14.105)

M,H 275.6
(13.978)

H,L 141.9
(15.661)

L,H 173.6
(22.838)

M,M 181.9
(6.478)

M,L 172.7
(15.421)

L,M 167.2
(18.929)

L,L 191.7
(30.638)

Demand Shock Average
qUP

H,H 3.1
(0.625)

H,M 3.5
(0.252)

M,H 3.6
(0.230)

H,L 3.4
(0.475)

L,H 2.7
(0.592)

M,M 4.2
(0.234)

M,L 2.7
(0.224)

L,M 2.1
(0.297)

L,L 1.3
(0.279)

Notes: I simulate 500 flights operating on the domestic route under the scenario with
upgrades. Demand shocks are the t = 0 leisure-type demand shocks, in the form of
βleisure,0, γleisure,0, where H represents a realization of the random coefficient in the top
20% of its distribution, L a realization in the bottom 20% and M a realization in the rest. I
evaluate the optimal upgrade price and corresponding realized upgrade sales. Bootstrapped
standard errors over 20 samples are recorded.
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Table 35: Leisure-type demand shock and surplus – Small aircraft on the domestic route

Demand Shock Change in
PS

H,H 709
(562.154)

H,M 558
(189.943)

M,H 117
(238.668)

H,L 267
(109.010)

L,H 510
(125.451)

M,M 381
(60.948)

M,L 284
(57.854)

L,M 253
(44.803)

L,L 173
(79.297)

Demand Shock Change in
CS

H,H 1,000
(737.058)

H,M 234
(206.631)

M,H 537
(496.190)

H,L 241
(179.311)

L,H 491
(197.730)

M,M 440
(176.876)

M,L 194
(81.951)

L,M 184
(49.300)

L,L 108
(69.081)

Notes: I simulate 500 flights operating in the domestic route under the scenarios with and
without upgrades. Demand shocks are the t = 0 leisure-type demand shocks, in the form
of βleisure,0, γleisure,0, where H represents a realization of the random coefficient in the top
20% of its distribution, L a realization in the bottom 20% and M a realization in the rest.
I evaluate surplus in both scenarios and take the difference, for example Change in PS =
PSU − PSNoU , with PSU is the producer surplus in the scenario with the upgrade option
and PSNoU is the producer surplus in the scenario without it. Bootstrapped standard errors
over 20 samples are recorded.

Aggregate welfare effects of the upgrade option

Table 36 compares the average effect of the upgrade option in terms of welfare. Then, I

analyze the effects of the upgrade option over time and present them in Figure 16. The

results are similar to those in Table 12 and Figure 7.
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Table 36: Counterfactual in levels – Small aircraft on the domestic route

With Upgrades Without Upgrades ∆ = With−Without upgrades
pEC,0 287 289 -2

(4.35) (3.9) (1.08)
pEC,1 401 406 -5

(5.8) (6.25) (2.58)
pBC,0 955 919 36

(9.46) (10.53) (3.58)
pBC,1 805 785 20

(10.08) (7.71) (9.42)
pUP 204

(124)

passengersEC 88.35 90.02 -1.672
(1.72) (1.67) (0.35)

passengersBC 9.45 7.09 2.365
(0.22) (0.27) (0.15)

upgrades 3.34
(0.11)

selloutEC 0.0 0.01 -0.0
(0.002) (0.004) (0.003)

selloutBC 0.201 0.122 0.079
(0.019) (0.014) (0.017)

CS 31,274 30,919 355
(1,157) (1,157) (100)

PS 32,319 31,968 351
(940) (942) (60)

TS 63,594 62,887 706
(2,076) (2,077) (124)

Notes: I evaluate the estimates and bootstrap standard errors for small aircraft on the domestic route. I
use 20 bootstrap samples, each simulating 500 aircraft. The variable passengersk indicates the number of
passengers flying in cabin k. The variable selloutsk indicates the fraction of flights (over the 500 simulated
flights) that sell out in cabin k. CS, PS and TS indicate average (per flight) consumer, producer and
total surplus respectively.
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Figure 16: Counterfactual over time – Small aircraft on the domestic route

Notes: I evaluate estimates and bootstrap 95% confidence intervals for means for small aircraft on the
domestic route. I use 20 bootstrap samples, each simulating 500 aircraft.

Distributional welfare effects of the upgrade option

Tables 37, 38 and 39 show how customers’ behavior and welfare change according to the

new pricing decisions arising from the introduction of the upgrade option. The results

align with those for the international route reported in Section 5.2.
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Table 37: Counterfactual, change in the absolute number of retail sales – Small aircraft
on the domestic route

Without Upgrades
Eliminating upgrades... Outside Option EC BC total

W
it

h
U

pg
ra

de
s

Outside Option 114,814 478 15 115,307
(1,044) (113) (4) (1043)

EC 804 42,756 570 44,130
(138) (818) (75) (862)

EC + UP 14 1,598 50 1,662
(3) (50) (8) (53)

BC 41 110 2,897 3,048
(12) (20) (107) (113)

total 115,673 44,942 3,532
(995) (837) (138)

Notes: I simulate 500 flights under the two scenarios: with and without upgrades for 20
bootstrap samples. I report bootstrap estimates and standard errors. I evaluate how the
behavior of consumers changes when the upgrade option is eliminated.

Table 38: Counterfactual, change in retail sales as percentage of original purchases –
Small aircraft on the domestic route

Without Upgrades
Eliminating upgrades... Outside Option EC BC

W
it

h
U

pg
ra

de
s

Outside Option 99.6% 0.4% 0.0%
(0.1) (0.1) (0.0)

EC 1.8% 96.8% 1.3%
(0.3) (0.4) (0.2)

EC + UP 0.8% 96.1% 3.0%
(0.2) (0.5) (0.5)

BC 1.4% 3.6% 95.0%
(0.4) (0.6) (0.8)

Notes: I simulate 500 flights under the two scenarios with and without upgrades
for 20 bootstrap samples. I report bootstrap estimates and standard errors. I
evaluate how the behavior of consumers changes in percentage terms when the
upgrade option is eliminated.
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Table 39: Counterfactual, consumer surplus net effects – Small aircraft on the domestic
route

Eliminating Upgrades ↗ Outside Option EC BC

Outside Option 0 -17,073 -1,366
(0) (4,929) (876)

EC 57,163 36,743 -40,394
(14,443) (38,522) (10,247)

EC + UP 1,443 132,920 9,537
(663) (4,550) (2,176)

BC 47,135 1,589 -50,081
(17,723) (2,389) (10,026)

Notes: I simulate 500 flights under the scenarios with and without upgrades
for 20 bootstrap samples. I report bootstrap estimates and standard errors. I
evaluate consumer surplus for any passenger on all 500 flights under the two
scenarios and then consider their difference: CSscenario with upgrades −
CSscenario without upgrades. Results are in $.

Tables 40 and 41 show how the introduction of upgrades reduces business class retail

sales while at the same time increasing total revenues, thanks to an increase in revenues

from economy class and upgrade fees. The results are similar to those discussed in Sec-

tion 5.2.

Table 40: Producer surplus counterfactual, aggregate revenues across cabins – Small
aircraft on the domestic route

Cabin With Upgrades Without Upgrades ∆
EC 26.768$

(0.734)
26.357$
(0.725)

+411$
(62)

BC 4.977$
(0.248)

5.612$
(0.268)

-635$
(103)

UP 575$
(20)

0$
0

+575$

total 32.320$
(0.917)

31.969$
(0.919)

+351$
(59.0)

Notes: I simulate 500 flights under the scenarios: with and without
upgrades for 20 bootstrap samples. I report bootstrap estimates and
standard errors. I evaluate producer surplus for any flight under the
scenarios with and without upgrades; then, I consider the average across
the 500 flights. Results are in $.
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Table 41: Producer surplus counterfactual, distribution of revenues across cabins –
Small aircraft on the domestic route

Cabin With Upgrades Without Upgrades
EC 0.828

(0.005)
0.825
(0.005)

BC 0.154
(0.005)

0.175
(0.005)

UP 0.018
(0.001)

0
(0)

Notes: I simulate 500 flights under the scenarios with
and without upgrades for 20 bootstrap samples. I report
bootstrap estimates and standard errors. I evaluate the
average distribution of producer surplus across products
by scenario.

Comparison across aircraft sizes

Table 42 compares the percentage changes in relevant outcomes resulting from the in-

troduction of the upgrade option across aircraft with different levels of capacity. The

upgrade option has similar effects across aircraft of different sizes. However, in terms of

producer surplus, the upgrade option generates relatively more incremental revenues on

large aircraft. This is due to the fact that, when there is a small demand shock along

the domestic route, the airline does not use the upgrade option to sequentially price dis-

criminate among t = 0 travelers, as shown in Table 29. With respect to the international

route, two factors likely explain this result. On one hand, with respect to travelers on the

international route, domestic travelers have a lower value for comfort. On the other hand,

the prices of economy class and upgrades are similar across the domestic and international

routes. Therefore, when there is a low realization of demand, the share of economy class

ticket holders at the margin for business class have smaller taste for comfort and are then

less likely to purchase an upgrade. Therefore, the upgrade option does not affect the

pricing problem of the airline in case of small demand shocks.
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Table 42: Counterfactual – Comparison across different aircraft

%∆ = XWith Upgrades−XWithout Upgrades

XWithout Upgrades

Outcome Small Aircraft Large Aircraft
pEC,0 -0.007 -0.016

(0.0) (0.0)
pEC,1 -0.012 -0.009

(0.01) (0.01)
pBC,0 0.039 0.029

(0.0) (0.0)
pBC,1 0.024 0.013

(0.01) (0.01)
passengersEC -0.019 -0.016

(0.0039) (0.0028)
passengersBC 0.334 0.23

(0.0332) (0.0114)
fraction of upgrading passengers* 0.05 0.05

(0.0045) (0.0023)
selloutEC -0.478 -0.7482

(0.4438) (0.136)
selloutBC 0.6582 0.7453

(0.1818) (0.1593)
CS 0.012 0.015

(0.002) (0.002)
PS 0.011 0.020

(0.002) (0.002)
TS 0.011 0.017

(0.001) (0.002)

Notes: I evaluate the percentage change from introducing the upgrade option for
small and large aircraft over 500 flights. For example, the variable selloutsk considers
the percentage change due to the introduction of the upgrade option in the fraction
of sellouts in cabin k. Row * considers the fraction of customers in economy class in
t = 0 who upgrade to business class. Bootstrapped standard errors over 10 samples
are recorded.

A.8 Appendix – Counterfactual: The role of capacity constraints

In this section, to understand how the upgrade option functions, I consider the interaction

between the upgrade option and capacity constraints, following the discussion in Section

5.1. Without capacity constraints, the upgrade option works as a way to sequentially

price discriminate among t = 0 customers. With capacity constraints, upgrades also serve

as a way to manage inventory. To support my claims, first, I show the effect of the
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introduction of the upgrade option on average across all simulated flights, and then, I

show how the results change based on demand shocks.

A.8.1 Appendix – Counterfactual: No capacity constraints

In this section, I focus on the role of upgrades in the absence of capacity constraints on

average across all flights. When there are no capacity constraints, upgrades serve as a

tool to sequentially price discriminate among t = 0 customers, which affects t = 0 prices.

This increases welfare for both travelers and the firm.

In the absence of capacity constraints, introducing upgrades leads to an increase in

business class prices and a decrease in economy class prices in t = 0, with no impact

on t = 1 prices. The pricing decisions in one period do not affect the decisions in the

other period. This happens because the intertemporal connection between prices lies in

the evolution of remaining capacity over time but, in this scenario, there are no capacity

constraints. In this scenario, upgrades serve as a tool for sequential price discrimination,

allowing the airline to implement second-degree price discrimination twice. In period

t = 0, it screens all customers between higher- and lower-quality products; then, in

period t = 1, it sorts lower-quality product holders into those who choose to upgrade and

those who do not. The effects of the upgrade option on t = 0 prices are similar to the

effects of introducing an intermediate-quality good between economy and business class

in period t = 0. This concept is similar to the idea of “versioning” discussed by Varian

(1989), where a new version of a product is marketed at an intermediate price, the overall

number of customers increases and the welfare of both consumers and the seller rises.

Similarly, as shown in Table 43, the upgrade option increases the number of travelers

flying and welfare for both customers and travelers.
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Table 43: Counterfactual, role of capacity constraints – Large aircraft on the international
route

WITH capacity constraints WITHOUT capacity constraints

With Upgrades Without Upgrades With Upgrades Without Upgrades
(1) (2) (3) (4)

pEC,0 303 308 313 317
(3.33) (2.95) (2.95) (2.49)

pEC,1 418 422 430 430
(5.29) (5.64) (5.28) (5.28)

pBC,0 1,305 1,268 1,152 1,134
(12.77) (11.32) (14.23) (11.96)

pBC,1 996 983 848 848
(13.92) (24.15) (15.61) (15.61)

pUP 297 268
(134) (115)

passengersEC 164.5 167.2 145.69 150.27
(2.85) (3.24) (2.25) (2.82)

passengersBC 29.3 23.82 42.36 35.13
(0.86) (0.83) (1.73) (1.61)

upgrades 7.11 7.78
(0.19) (0.25)

selloutEC 0.01 0.03 0 0
(0.004) (0.009) (0.0) (0.0)

selloutBC 0.166 0.096 0 0
(0.016) (0.015) (0.0) (0.0)

CS 81,978 80,751 87,248 85,897
(3,017) (3,049) (3,655) (3,675)

PS 80,451 78,897 84,414 82,536
(2,251) (2,214) (2,587) (2,558)

TS 162,430 159,649 171,663 168,434
(5,244) (5,239) (6,216) (6,211)

Notes: I evaluate the estimates and bootstrap standard errors for large aircraft on the international route.
I use 10 bootstrap samples, each simulating 500 aircraft. The variable passengersk indicates the number of
passengers flying in cabin k. The variable selloutsk indicates the fraction of flights (over the 500 simulated
flights) that sell out in cabin k. CS, PS and TS indicate average (per flight) consumer, producer and total
surplus, respectively.

A.8.2 Demand shock without capacity constraints

In this section, I complement the evidence from Table 7 on the consequences of the upgrade

option without capacity constraints, conditional on the demand shock. I consider the

effects of the introduction of the upgrade option. The results are similar to those in Table
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10: as the demand shocks increase, upgrade prices increase, together with the number of

upgrade sales.

Table 44: Leisure-type demand shock and upgrades – Large aircraft on the international
route

Demand shock Average
pUP

H,H 355.404
(22.339)

H,M 282.196
(11.118)

M,H 334.264
(10.015)

H,L 191.543
(26.889)

L,H 299.346
(30.034)

M,M 267.218
(7.772)

M,L 209.548
(22.396)

L,M 259.447
(13.379)

L,L 253.358
(38.295)

Demand shock Average
qUP

H,H 8.994
(1.190)

H,M 11.199
(0.401)

M,H 6.944
(0.269)

H,L 9.272
(1.699)

L,H 6.385
(0.852)

M,M 8.594
(0.346)

M,L 6.304
(0.623)

L,M 5.484
(0.609)

L,L 3.619
(0.537)

Notes: I simulate 500 flights operating on the international route under the scenario without
capacity constraints. I evaluate optimal upgrade prices for any flight and then simulate the
corresponding demand for upgrades. Results are in $, and demand shocks are in the form
of βleisure,0, γleisure,0. Bootstrapped standard errors are recorded.
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