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ABSTRACT. Using a unique data set from the sale of train tickets in Sweden, we study the “de-

clining price anomaly” in sequential auctions theoretically and empirically. First, our reduced form

analysis suggests that a model with ambiguity averse bidders fits the observed bidder behavior in

these auctions better than other existing models. Motivated by this, we study sequential second-

price auctions that closely resemble the auction mechanism for train tickets and assume bidders

have maxmin expected utilities over multiple priors. In the unique symmetric equilibrium, bidders

use their worst-case conditional beliefs to evaluate their payoffs. The equilibrium generates declin-

ing prices due to an underestimation of future payoffs that is brought on by ambiguity aversion. We

also provide a new revenue ranking between some common multi-unit auction formats and show

that ambiguity raises the seller’s revenue despite declining prices.

Finally, we non-parametrically estimate both the true distribution of valuations and the worst-

case beliefs using a novel identification technique that exploits bidders’ inter-temporal first order

conditions. Our estimation uncovers a first-order stochastic dominance relationship between beliefs

and the true distribution, which is consistent with ambiguity aversion. Our counterfactuals show

that, while ambiguity increases the seller’s revenue by at least 18% compared to the common prior

case, switching to sequential first-price auctions would further increase revenue by at least 11%.
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1. INTRODUCTION

Sequential auctions are one of the oldest and most commonly used auction formats for selling

multiple units of a good. In a canonical version of this format, goods are sold sequentially in

auctions to the highest bidder in each round. In much the same way, in 2010-11 the Swedish

rail road company (SJ) sold train tickets in over 6,500 online sequences of auctions where tickets

sold in a sequence were identical. Prices in these auctions on average declined 8.5% between

consecutive rounds which is a curious, but common, pattern for sequential auctions with identical

objects being sold. In fact, following the seminal work on wine auctions by Ashenfelter (1989),

many studies have documented instances of such “declining price anomalies,” which contradict the

theoretical predictions in standard sequential auctions (Milgrom and Weber (2000)).1

In this paper, we first empirically evaluate the reduced form implications of the existing formal-

ized theoretical explanations for this puzzle using our data set, and then develop and structurally

estimate a sequential auction model with ambiguity averse bidders, which best fits the reduced

form evidence. Specifically, there are three “preference-based” explanations of the declining price

anomaly in the literature: risk aversion (McAfee and Vincent (1993) and Mezzetti (2011)), loss

aversion (Rosato (2019)) and ambiguity aversion (Ghosh and Liu (2021)). While all three models

predict declining prices, they have different implications regarding the relationship between bids

and previous round prices in an independent private value (i.p.v.) paradigm: risk aversion predicts

history independence, loss aversion predicts negative history dependence and ambiguity aversion

predicts history dependence that can be positive or negative (depending on the set of bidders’ pri-

ors). We show that bidding in the train ticket auctions has a slight positive history dependence:

controlling for all other factors, a one percent increase in the price in round k− 1 corresponds to

0.04−0.08 percent increase in the bids in round k. Only a model with ambiguity averse bidders is

consistent with this pattern.

Given the reduced form results, we study a theoretical model of sequential second-price auc-

tions (sSPAs), which closely resembles the auction mechanism in our data set, with ambiguity

averse bidders in order to develop the basis of a structural analysis. Given the dynamic nature

of a bidder’s problem, ambiguity adds additional complications of dynamic inconsistency, which

we resolve by using a solution concept that generalizes weak perfect Bayesian equilibrium. We

prove the existence and uniqueness of a symmetric equilibrium in which bidders in each round use

their worst-case conditional beliefs to calculate their probability of winning. Thus, bidding can be

history-dependent, as worst case beliefs can change round to round depending on the right trunca-

tion of the valuation support which is precisely the conditioning bidders do in sequential auctions

with a monotone equilibrium.

1See Ashenfelter and Genovese (1992) (condominiums), McAfee and Vincent (1993) (wines), Beggs and Graddy
(1997) (art), Van den Berg et al. (2001) (roses), Lambson and Thurston (2006) (fur), and Snir (2006) (computers).
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Furthermore, we show that under simple conditions prices decline in equilibrium due to bidders’

inter-temporal pessimism resulting from ambiguity aversion. Since bidders use their worst-case

beliefs, they underestimate their ‘option value’ of participating in future rounds. Hence they bid

more aggressively in the current round causing prices to decline in future rounds as lower valuation

bidders, who are relatively less aggressive than the current round winner, will win future rounds in

a monotone equilibrium. We also show that sSPAs generate higher revenues compared to uniform

price auctions but lower revenues compared to sequential first price auctions (sFPAs) under a con-

sistency condition. Also, the revenue generated in a uniform price auction with ambiguity is the

same revenue generated in a model of sequential auctions (SPA or FPA) without ambiguity. Thus,

somewhat surprisingly, declining prices do not lead to lower revenues compared to a model where

prices are constant.

When bidders are ambiguity averse, the distribution of bids is affected by two distributions: the

true distribution of values and the distribution of values bidders use to calculate their payoffs, i.e.

their worst-case belief. It is not possible to identify both of these from auction data of a single-unit

auction without referring to exogenous variations as in Aryal et al. (2018). However, dynamic

bidding data from sequential auctions can be used to identify both the distributions without any

additional restrictions other than that of dynamic consistency, as was shown by Ghosh and Liu

(2021) (GL from now on) for sFPAs. The idea is to use first order conditions from sequential rounds

to map distributions of bids from multiple rounds to distributions of valuations and beliefs, thus

extending the idea of Guerre et al. (2000) (GPV henceforth) to sequential auctions with ambiguity.

We apply this to our setting of sSPAs and prove an identification result that allows us to back

out the model’s primitives. Specifically, for simplicity consider a two round sSPA. Since it is

weakly dominant to bid one’s valuation in the final round, it is straightforward to identify the

true distribution of values from final round bids. However, bids in the first round depend on the

bidder’s beliefs as well as her expected payoff, and therefore her bid, in the final round. Thus,

we can identify bidders (worst-case) beliefs using bidders’ bids from both rounds and the inter-

temporal first-order condition from the first round, which gives a tight connection between the two

bids and bidders’ beliefs.

Applying the above methodology to the train ticket auctions, our estimation recovers the true

distribution of valuations as well as bidders’ beliefs. Importantly the distribution of beliefs first

order stochastically dominates the true distribution of valuations, thus confirming the presence of

ambiguity from the bidders’ point of view. Using the recovered distributions we find that ambiguity

greatly contributes to the seller’s revenue: removing ambiguity or switching to a uniform price

auction would have decreased the revenue by 18% to 21%. Thus we find that declining prices may

be synonymous with higher revenues compared to the no ambiguity case in sequential auctions.

Finally, we also carry out an exercise where we replace the selling mechanism with sFPAs and find
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that this would have increased revenue by 11% to 15%. We also perform various other robustness

checks to check the validity of our approach.

This paper is related to a few strands of literature starting with price anomalies in auctions. As

mentioned previously, there is considerable evidence in support of declining prices in sequential

auctions. In addition Keser and Olson (1996) and Neugebauer and Pezanis-Christou (2007) doc-

ument the existence of this phenomenon in experimental settings. Chanel et al. (1996) and Deltas

and Kosmopoulou (2003) found evidence of increasing prices, all though the occurrence of declin-

ing prices seems to be more common (Ashenfelter and Graddy (2003), Ashenfelter and Graddy

(2011)). While all of these studies document the evidence of price anomalies, to the best of our

knowledge, the current paper is the first to empirically investigate the declining prices using a

structural econometrics approach as well as empirically test the existing theories that can account

for this anomaly.

Since the finding in Ashenfelter (1989), several explanations for puzzle have been offered. One

set of explanations suggest that specifics of the sale mechanism, such as winner’s option to buy

remaining units at the same price (Ashenfelter (1989)), absentee bidding (Ginsburgh (1998)), par-

ticipation fees (Menezes and Monteiro (1997)) and supply side uncertainty (Jeitschko (1999)), can

account for the anomaly. Another set suggests that the specific features of the goods being sold can

lead to declining prices. For example Bernhardt and Scoones (1994), Engelbrecht-Wiggans (1994),

Gale and Hausch (1994) and Kittsteiner et al. (2004) found that heterogeneity between the goods

can lead to declining prices. In a non-auction setting Sweeting (2012) showed that the selling price

of perishable goods declines as one gets closer to the expiry date.2 All these explanations, while

important, are specific to particular settings. However, declining prices have been observed across

a wide variety of formats, goods, and settings. Thus, while our setting may share some features

with the aforementioned papers, we evaluate more ‘general’ explanations of the anomaly so that

our structural methodology may be applicable to other data sets where this phenomenon has been

observed. Furthermore, the suitability of one explanation over another is not obvious since few

papers have compared the various approaches, as we do in our paper.

Our paper is also connected to the the literature on auctions with ambiguity. In various settings

Salo and Weber (1995), Lo (1998), Levin and Ozdenoren (2004), Chen et al. (2007) and Lao-

hakunakorn et al. (2019) study single-unit first and second price auctions with ambiguity. In the

presence of ambiguity Bose and Daripa (2009) and Auster and Kellner (2020) show that a dutch

2Given that we are studying perishable goods as well, this explanation may seem particularly relevant. However
there are some important differences. The sequential auctions for train tickets end within one hour of each other (so
less likelihood of entry and exit of bidders and the travel date is not that much closer to the final sequential auction
compared to the first) and the bidders are strategic. Thus prices are set by the bidders by competing against each
other and not by the seller who may have an incentive to lower prices as the travel date approaches. All these aspects
differentiate our setting from the baseball tickets environment studied in Sweeting (2012).
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auction can perform better than static auctions. Bose et al. (2006) and Bodoh-Creed (2012) study

optimal auctions under ambiguity. To the best of our knowledge, our paper and GL are the only pa-

pers that study sequential auctions where multiple units are sold in an environment with ambiguity.

We also provide a new revenue ranking for multi-unit auctions with ambiguity.

There is a rich literature on the estimation of variables of interest from auction data.3 Most

papers in this literature require the assumption of a common prior to identify and estimate the

valuation distributions. A notable exception is Aryal et al. (2018) who identify and estimate the

distribution of valuations in static auctions in the presence of ambiguity using variation in the

number of bidders. Complimenting this work, our identification result shows that considering data

from dynamic auctions can provide techniques to ascertain the presence of ambiguity and correctly

estimate the variables of interest.4

Jofre-Bonet and Pesendorfer (2003), Donald et al. (2006), Groeger (2014), Donna and Espı́n-

Sánchez (2018) and Kong (2021) study dynamic auctions using models with capacity constraints,

multi-unit demand, learning by doing, complementarities and synergies and affiliation respectively.

Much like our paper, in these papers bidding in different rounds is linked. However all these papers

are in the common prior framework. Furthermore, to the best of our knowledge, ours is the only

paper that tackles the declining price anomaly in sequential auctions using a structural approach.

Finally, our paper is also related to the literature on identification of games of incomplete in-

formation. While much of this literature assumes that players beliefs are correct in equilibrium,

Aguirregabiria and Magesan (2020) study dynamic discrete games with rational players who may

have incorrect beliefs. They show that an exclusion restriction, typically used to identify games

of incomplete information, provides testable nonparametric restrictions of the null hypothesis of

equilibrium beliefs as well as a function that only depends on a players beliefs which can be used

to estimate players beliefs. Complimenting this approach we show that data on players actions at

multiple points in time (bids in different rounds) can also be used to estimate biased (i.e. worst-

case) beliefs without appealing to an exclusion restriction.

The rest of the paper is organized as follows. Section 2 describes the auction mechanism in

our data set and provides summary statistics, including the pattern of declining prices. In this

section we also evaluate the existing models in a reduced form analysis and provide evidence in

support of the ambiguity aversion model. In Section 3 we first argue that the auction mechanism

used for train tickets closely resembles sSPAs. This section then provides the main theoretical

3See Athey and Haile (2007) and Hickman et al. (2012) for surveys. See Hortaçsu and McAdams (2018) for a survey
on multi-unit auctions.
4There are several papers that measure the effect of ambiguity on bidding in static auctions in experimental settings,
as in Chen et al. (2007). Beyond auction settings, most papers that carry out estimation exercises in the presence of
ambiguity consider experimental (laboratory or field) settings. See Cabantous (2007), Abdellaoui et al. (2011), and
Ahn et al. (2014) among others.



6 D. BOUGT, G. GHOSH, AND H. LIU

results regarding equilibrium existence and uniqueness, price path, and revenue rankings. Section

4 presents the empirical analysis, including the non-parametric estimation of model primitives and

counterfactual exercises. In Section F, we split the data into two time periods and provide further

evidence to support the ambiguity-based approach. Section 5 concludes.

2. AUCTION MECHANISM, DATA, AND REDUCED FORM ANALYSIS

2.1. Auction Mechanism. The data set we use consists of bids made in auctions for train tickets

sold by the Swedish rail road company (SJ). The auctions were executed online using Tradera’s

website, at the time a subsidiary of eBay. There were often multiple tickets sold in a group of

auctions, where the winner of one of the auctions within the group received one ticket. Within

a group, all tickets are observationally identical. Specifically, tickets within a group are for the

same route, same type of train, same class, and same departure time. All other features such as

seat number, aisle vs. window seat, and direction of the seat were not known until a winner of an

auction actually went to the train station and picked up the ticket on the day of departure.

Auctions within a group ran parallel for some time, before ending within a one hour time span.

The exact closing time of each auction differed within that hour. The difference in closing times

gave the auctions within a group a distinctive sequential nature. We therefore refer to a group of

auctions selling identical tickets as a sequence from here on. The closing time of an auction was

made public to the bidders at the same time as the auction was posted.

Figure 1 illustrates a sequence of three auctions. All auctions within a sequence start within

one hour of each other. Then all auctions in the sequence are active in parallel for about two

days. Lastly, all auctions within the sequence end, in a sequential manner, between 9 and 10 pm

two days prior to the departure of the train. We index auctions in a sequence by the ending order,

where auction 1 is the auction that ends first in a sequence, and so on. By this logic, the last auction

is auction K, where K is the total number of tickets in a sequence. We will often refer to an auction

within a sequence as a round.

FIGURE 1. Illustration of a sequence with 3 tickets

Auction 1
Auction 2
Auction 3

Auctions
start

9pm 10pm Train
departs

Auctions run parallel
for about two days

Auctions end
sequentially

2 days ±
few hours
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FIGURE 2. Auction screen shot

Figure 2 shows the screen faced by a bidder who is about to place a bid in an auction. Each

auction within a sequence is executed using an incremental bidding mechanism, which is often

referred to as the “proxy” bidding mechanism. In this mechanism, each auction is an ascending

price auction, where bidders can choose to actively participate, or they can choose to record a max-

imum willingness to pay (MWTP). Active bidders bid the smallest amount necessary to become

leaders of the auction, and can then raise their bid if a higher bid comes in. The smallest amount

necessary is equal to the (current leading bid + an increment).5 These bidders are often referred to

as incremental bidders because they only raise the leading bid by one increment at a time. On the

other hand, if a bidder records an MWTP, then the website will place bids in increments (so called

“ proxy” bids) on the bidder’s behalf when new bids are placed by other bidders. The website will

do so until another bidder records a bid that is higher than the first bidder’s MWTP. As a result, a

bidder who wins an auction having placed an MWTP only has to pay the second highest bid plus

an increment, or, if the second highest bid is within an increment of the MWTP, her own bid. Thus

this auction format is a hybrid between second price and first price auction (see Hickman (2010)

for a formal analysis of this mechanism).

To illustrate how proxy bidding works consider the following example. If a bidder records an

MWTP, call it bid1, that is higher than the current highest recorded MWTP of some other bidder,

call it bid2, then the new leading bid becomes lead = min{bid2+ increment, bid1}. Now, if a third

5The increments in these auctions were: 1 Swedish Krona (SEK) if the leading bid is in the interval 1–99 SEK, 5 SEK
for 100–249 SEK, 10 SEK for 250–999 SEK, 25 SEK for 1000–2499, 50 SEK for 2500–4999 SEK and 100 SEK for
5000 SEK and up.
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bidder records a bid, call it bid3, that is higher than lead, but lower (or equal) to bid1. Then the

website will keep the bidder who placed bid1 as the leader of the auction, and raise the leading bid

on behalf of this bidder to lead′ = min{bid3 + increment, bid1}. The bidder who placed bid1 will

win the auction if no more bids are placed, and she will pay the price lead′.

2.2. Data Description. There were 42,007 tickets (auctions) grouped into 7,202 sequences that

were conducted between November 10, 2010 and June 6, 2011. In the reduced form analysis, we

consider sequences of 15 tickets since this includes over ninety five percent of the data.6 There

are 35,157 tickets grouped into 6,874 sequences with 15 tickets or less. The ticket information

contained in the data includes departure-destination pairs, departure time and date, and the type of

train (i.e. fast train or regional train).7

The data set contains all bids made in the auctions for train tickets. A bidder who engaged in

incremental bidding could have recorded multiple bids in the same auction. We therefore treat the

highest bid that a bidder records in an auction as the bidder’s revealed bidding strategy. A further

complication is that we cannot treat most winning bids as revealed strategies. That is due to proxy

bidding and the fact that most auctions are settled using the second price rule (see table 1). Thus,

we treat the winning bids as prices only, and treat non-winning bids as revealed bidding strategies.

In addition to the bids, the data also contains bidder identifiers and the date, hour, and minute that

the bid was placed.

In the following sections we describe some features of the data. In many cases we divide the

data into two categories. One is the set of all bids that were submitted. The other is a subset of bids

that were placed in an auction after the previous round of the sequence ended. These bids capture

the sequential nature of the auctions.

2.2.1. Summary statistics. As we discussed before, the bidding mechanism implies that winners

of an auction on occasion have to pay their own bid. This happens about 9 percent of the time (see

table (1)). If one considers auctions where the winning price was greater than 99 SEK, the share

increases to 14 percent.

Another feature of the proxy bidding mechanism is that the increment that a bidder must raise

the current leading bid by increases as the current leading bid increases. This has implications

for the available bidding range to a bidder. As can be seen in table 2, at the time of placing their

highest bid, 72 percent of bidders were free to place any bid as long as it was higher than the

6In the entire data set there were sequences of up to 30 tickets. Even when the the entire data set is considered the
declining price pattern can still be observed.
7See Andersson et al. (2012) and Andersson and Andersson (2017) for additional information about the data.
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TABLE 1. Pricing Rule

All Auctions Price> 99
Number Percent Number Percent

price=2nd highest bid + increment 31,941 91 14,995 86
price=highest bid 3,216 9 2,364 14
Total 35,157 100 17,379 100

current leading bid. 20 percent of bidders were restricted to place a bid that surpassed the current

leading bid by at least 5 SEK.

TABLE 2. Highest Bid by
Increment Category

Increment Number Percent
1 SEK 107,254 72
5 SEK 29,926 20
10 SEK 12,226 8
25 SEK 6 0
missing 72 0
Total 149,484 100

TABLE 3. Summary Statis-
tics: Auctions

Auctions=35157
Mean SD

Price 131.90 128.43
Bidders in auction 4.25 2.31
Bids 11.02 8.79

On average 4 bidders participated in each auction and 11 in a sequence. The average sequence

consisted of 5 tickets. Almost all tickets were for either intercity or fast train trips. There was a

fairly even distribution of the weekday of train departure. The auctions were conducted in close

succession with less than ten minutes between closing times. This suggests that there was no

discounting for tickets sold in later rounds of a sequence. The average price of tickets was 131.90

SEK, not conditioning on train types. The average price decline between two auctions within a

sequence was about 9%.

Turning to all the bids, the average bid in the auctions was about 90.69 SEK. Importantly this

was below the price at which the bid increments changed. In addition, on average, bidders led the

auction only once. That is bidders typically did not lead the auction multiple times which suggests

that bidders were bidding as if they were in a sealed bid mechanism.

2.3. Declining Prices. To formally document that prices decline we estimate equation (1):

(1) ln(pricek, j) = β0 +β1k+β2k2 +β3xk +θ j + εk, j

where pricek, j is the price of auction k in sequence j, xk captures auction-specific covariates, and

θ j is a sequence fixed effect.

Figure 3 and Table 6 confirm the declining price path. The decline is stronger early on, and the

price path evens out towards the end in sequences of many tickets. Our preferred specification for
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TABLE 4. Summary Statistics: Sequences
Sequences=6874
Mean SD

ln(Pricek / Pricek−1) -0.09 1.05
Bidders in sequence 10.75 6.48
Tickets in sequence 5.11 2.82
Traintype: Intercity 0.48 0.50
Traintype: Regional 0.01 0.08
Traintype: X2000 0.52 0.50
Sunday 0.07 0.26
Monday 0.15 0.36
Tuesday 0.16 0.36
Wednesday 0.18 0.38
Thursday 0.16 0.37
Friday 0.14 0.34
Saturday 0.14 0.35
Minutes between auctions 8.65 5.96

TABLE 5. Summary Statistics: Bids

All Bids
Bids=387579

Highest Bids
Bids=149484

Non-Winning Bids
Bids=114327

Mean SD Mean SD Mean SD
Bid 90.69 100.76 106.20 114.43 98.30 108.56
Share incremental bid 0.28 0.45 0.24 0.43 0.23 0.42
Share auction elapsed 89.36 22.43 87.58 24.51 85.94 25.74
Share leading bid 0.42 0.49 0.70 0.46 0.61 0.49
Bids by bidder 2.59 3.02 . . .
Leading bids by bidder 1.08 0.95 . . .
Share ever leading 0.78 0.41 . . .
Share leading and returning 0.25 0.43 . . .

documenting declining prices is column (2) of table 6 where the sequence fixed effects are included

to deal with unobserved sequence heterogeneity. The estimates in column (3), which uses sequence

observable characteristics as controls instead of sequence fixed effects, are not statistically different

from the estimates in column (2). This suggests that auction heterogeneity is captured well in the

variables observed in the data.8 In Appendix D we show that the documented decline in prices is

robust to alternative specifications as well as holding sequence length fixed.

8An important assumption in our estimation in section 4 is that auction heterogeneity is observed. The fact that the
estimates in column 2 and 3 of table 6 are very similar is consistent with this assumption.
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FIGURE 3. Visual - Declining Price
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TABLE 6. Declining Price - K ≤ 15

(1) (2) (3)
VARIABLES ln Price ln Price ln Price

k -0.141*** -0.136*** -0.170***
(0.00816) (0.0124) (0.0160)

k squared 0.00546*** 0.00451*** 0.00560***
(0.000784) (0.000939) (0.00129)

Observations 34,982 34,982 34,955
Sequence FE YES YES
Sequence Controls YES
Auction Controls YES YES

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors clustered at the sequence level. In column
(3), θ j is replaced by sequence specific observable variables x j. The variables in x j are the same variables
that we use to homogenize bids in section 4.

2.4. Bidder Behavior. The standard sequential auction model studied in Milgrom and Weber

(2000) predicts constant prices in the i.p.v. setting.9 Intuitively this occurs due to a ‘no-arbitrage’

condition which equates the demand and supply effect on prices as the auctions proceed. Another

aspect of equilibrium bidding in the standard auction model is that of history independence: prices

in previous rounds do not affect a bidders bid in a round. Under i.p.v. a bidder will bid more

aggressively as the rounds progress due to shrinking relative supply but will not be affected by

previous round prices, as prices only scale a bidders current round payoff.

9In an affiliated values setting prices increase. See pages 219-220 of Krishna (2009) for a full and concise treatment.
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The price prediction of the standard model is clearly refuted by the data. As we discussed in

the introduction, risk aversion, loss aversion and ambiguity aversion can theoretically explain such

a price trend. However, the three models have different predictions regarding history dependence

of bids on previous round prices in an i.p.v. framework. Specifically, risk aversion predicts his-

tory independence for the same reason as the standard model. Loss aversion predicts a negative

relationship due to a ‘discouragement effect’. And finally, with ambiguity aversion bidding can be

history-dependent (positive or negative), since bidders use their worst-case beliefs conditional on

previous round prices. A fuller description of the three models can be found in Appendix A.

We now document the relationship between various observable variables and bidding within a

sequence and make a case for ambiguity aversion as a plausible explanation for declining prices,

over other explanations. Some of the variables we consider include the number of bidders (de-

mand), the number of items left (supply), and the price in the previous auction (history). The main

comparative static on equilibrium bidding that distinguishes the preference based explanations

from each others is the relationship between bids in a round and the price-history in the sequence.

We aim to evaluate that relationship and estimate equation (2) to evaluate the relationships between

bidding and observables:

ln(bidi,k, j) = β0 +β1 ln(pricek−1, j)+β2nk, j +β3(K j− k)+θi, j + εi,k, j.(2)

Here bidi,k, j is the bid placed by bidder i in auction k of sequence j. nk, j is the number of bidders in

auction k of sequence j, and K j is the number of tickets for sale in sequence j. θi, j captures bidder-

sequence fixed effects. This implies that identification comes from bidders who have participated

in at least two of the auctions in sequence j. Furthermore, this implies that valuation for the object

is held constant, given that we have included bidder specific fixed effects, when evaluating how the

covariates of interest impact bidding behavior.

The main parameter of interest is β1, which captures the potential history dependence of round

k bids on round k− 1 prices. A complication is that auctions are not purely sequential but run

parallel before ending sequentially. Hence, bids made while auctions run parallel are made when

the history is unknown. For this reason, equation (2) will be estimated using bids made after

auction k−1 has ended.

Before stating the results, it is important to note that it is possible that the effect of the number

of bidders, i.e. the demand effect, is not identified when we include a sequence fixed effect. The

reason being that, in theory, it is the total number of bidders in the sequence that matters. However,

the auction mechanism did not require a one-to-one mapping between the number of items left and

the total number of bidders in the sequence. Bidders were free to participate in whatever auction

they wanted. In section 3 we document that the average number of bidders in a sequence decline
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throughout, but it is not as clear of a picture as a theory with single unit demand would predict.10

An added benefit from this though is that we do have proper within sequence variation in the

number of bidders that is distinguishable from the number of items left. It is not clear however

that the best measure of the demand effect is the total number of bidders in an auction. The reason

is that such a variable, which is measured at closing of the auction, is affected by the bidding

itself. The proxy bidding mechanism is an ascending price auction, with the implication being that

a potential bidder with a low valuation who finds the auction late might discover that the current

leading bid is above what that bidder is willing to bid. This is especially true if bidders with high

valuations have arrived early in the auction and thus driven up the leading bid.11 To get around this

challenge, we are using the number of bidders at the time of the bid in addition to the total number

of bidders participating in the auction. The number of bidders who have participated at the time of

the bid might also better reflect the information that a bidder has when placing the bid.12

TABLE 7. Bidder Behavior - K ≤ 15

(1) (2)
VARIABLES ln bid ln bid

ln price(k-1) 0.0759*** 0.0487***
(0.0143) (0.0101)

Bidders when Bidding 0.0600*** 0.0671***
(0.00416) (0.00636)

(K-k) -0.0776*** -0.0422***
(0.00377) (0.00266)

Bidders in current auction -0.0636***
(0.00585)

ln Current Lead when Bidding 0.379***
(0.0121)

Observations 25,963 25,947
BidderXSequence FE YES YES
BidderXRound Controls YES YES

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors that are clustered at bidder X sequence level.
Current Lead when Bidding is the bid that must be surpassed when the bidder places the bid.

Table 7 reports the results from estimating equation (2). All estimates indicate that bids are

history dependent. It can further be rejected the coefficient on ln price(k−1) is less than or equal

to 0 (p < 0.01 when testing H0 : βln price(k-1) ≤ 0). Among the preference based explanations that

10With single unit demand and constant participation, the number of bidders and units should always decline by one
after each round.
11In other words, this is a reverse causality issue: it can be argued that high bids leads to few observed bidders in an
auction. In an effort to control for this, we also include the current leading bid when we use total number of bidders
at closing.
12A regression without any bidder number variable returns similar estimates.
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can account for the declining price pattern, only the ambiguity aversion model can account for the

documented positive relationship between bids in a round and the price in the previous round in

an i.p.v. paradigm. We show this is indeed the case in the theoretical model in the next section.

This evidence suggests that neither risk nor loss aversion can alone account for the declining price

anomaly as these preferences structures predict zero and negative history dependence respectively.

While being positive, the magnitude of the history dependence is small. A one percent increase

in the price in round k−1 corresponds to 0.04-0.08 percent increase in the bids in round k. It also

appears as if bidders bid more aggressively if there are many bidders present in the auction when

they make their bid. Bidders also bid more aggressive when there are few tickets left. This captures

the supply effect.

While the number of bidders at the time of bidding has a positive effect on bids, the number of

bidders at the end of an auction seems to be negatively related to the bid. As we mentioned before,

the source of this relationship could be the open bidding nature of the auction as late arriving low

valued bidder do not submit bids if the current leading bid at the time is too high.

3. MODEL AND ANALYSIS

3.1. Setting Up a Theoretical Model. In this section we study a model of sequential auctions

with ambiguity, adapted to the data on hand, and establish theoretical results that will aide our

structural analysis. All proofs can be found in Appendix B. Here we first discuss the modeling

assumption in light of the actual auction mechanism in the data.

3.1.1. Second price auctions. As we discussed before, the auction mechanism is a hybrid of first

and second price auctions. However for a few reasons these auctions were closer to SPA. First,

over 90 percent of the time winners don’t pay their own bids as can be seen in table 1. Second, the

bid increment is fairly small (1 SEK) and bidders are only allowed to bid in whole numbers. This

makes the payment close to the bid of the second highest bidder. Over 70 percent of the highest

bids by a bidder in an auction were made when the bid increment was still 1 SEK. (Table 2).

3.1.2. Sealed bids. An important aspect of the auction mechanism is its open nature. That is,

bidders can observe the current and past bids in any given auction within a sequence. This calls

to question whether bidders are bidding incrementally and learning from current bids within an

auction. In an i.p.v. setting without ambiguity, of course sealed bid second price auctions are

strategically equivalent to ascending price or English auctions. However, such equivalence does

not hold in the presence of ambiguity as bidders can be learning and updating their worst-case

beliefs within a round ( cf. Auster and Kellner (2020)). This can complicate matters as one has to

account for updating of worst-case beliefs not only across rounds but also within a round. However,
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based on the data, it appears as if bidders are not bidding incrementally but rather as if they were

in a sealed bid auction.

While on average bidders were submitting two to three bids per auction, on average bidders

submitted a leading bids only once as can seen from table 5. Furthermore, as can be seen in table

8, about 80 percent of the time a bidder led the auction only once. This suggests that most of the

time a bidder submitted a bid which was the maximum amount she was willing to bid in an auction.

Once the price moved beyond her bid, she did not bid again in the auction. Thus, bidders seemed

to be bidding as if they were in a sealed bid auction. One reason for this could be that all though

the auction mechanism allows had an open nature, bidders can also record their highest bid and

the mechanism will increase the price incrementally. This could end up saving the bidders time as

they do not have to be actively involved.

TABLE 8. Leading Bids
Leading bids by a bidder Frequency Percent Cumulative

0 32,241 21.57 21.57
1 88,972 59.52 81.09
2 18,567 12.42 93.51
3 5,908 3.95 97.46
4 2,160 1.44 98.91
≥ 5 1,636 1.09 100

Note: The table reports the frequency of the counts that a given bidder is submitting a bid that at the point of
submission is the leading bid.

3.1.3. Single-unit demand. A common theoretical assumption to guarantee the existence of an

equilibrium in sequential auctions is single-unit demand. We believe this to be a suitable assump-

tion for the train auctions for two reasons. First, since the goods were train tickets on a specific

route on a specific day which can only be used by one person, a bidder would not have any use

for more tickets unless buying for other passengers. Second, in the data, the magnitude of multiple

wins for the same bidder is relatively small compared to single-unit wins. For all sequences with

less than 15 tickets, 87% of tickets were sold to bidders who only won one unit.

3.1.4. Fixed number of bidders. In many empirical settings, the number of bidders is endogenous

to the environment and mechanism. In a sequential auction setting modeling the number of bidders

as endogenous or uncertain takes on an additional layer of complication as entry and exit can occur

not only before a sequence but also between auction rounds. While allowing the number of bidders

to be flexible may be relevant in many settings, for a few reasons that we state below we believe

that it is reasonable to fix the number of bidders in the framework we study.

While the auctions ran for about two days, they end sequentially within a span of an hour, two

days before the departure date. Such a mechanism does not allow for a lot of time for auction entry
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between rounds: if bidders intend on competing for a ticket they are likely to be participating in or

be aware of all rounds. Further evidence for lack of entry is provided in figure 4. This figure is a

result of regressing the number of bidders in an auction round on the position of the auction in the

sequence. Since the average number of bidders declines, it suggests that no entry is taking place

between rounds. Furthermore, since the slope of the decline is less than one, combined with our

argument of single unit demand, it suggests that there is little or no exit between rounds.

FIGURE 4. Average number of bidders
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Note: Since we combine across all sequences, the absolute number of bidders is not indicative of the number
of bidders in a round conditional on sequence size.

While we have argued for lack for entry or exit of bidders between rounds, the number of bidders

at the start of a sequence can still be endogenous. In a private value paradigm with zero entry fees

(it was free for bidders to participate in the auctions) the only reason for a bidder to not participate

would be that their valuation is below the reserve price which in the data set was quite small. Thus

the likelihood of such an event is quite small. Since we can observe all bidders and their respective

bids, the only remaining possibility is bidders who entered a sequence but never submitted a bid in

any round which, while possible, may not be in the bidder’s best interest.

3.1.5. No reserve price. The reserve price in each auction was set at 1 SEK. No bidder who values

a ticket below this amount would participate in the auction. Thus there is no loss in generality in

assuming that the lowest valuation in the support of values was equal to the reserve price.

3.1.6. Continuous bidding space. Bidders were only allowed to submit bids using a discrete bid

space: bidders had to submit bids in multiples of 1 SEK. Solving a model with a discrete action

space leads to bidders playing mixed strategies, which are not easy to handle in empirical work.

As is the convention in structural estimation of auctions, we assume that the bidding space is a

continuum. This allows the use of differential equations to solve for an equilibrium and also aids

our identification strategy.
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3.1.7. Independent private values. When a bidder won a train ticket in an auction the ticket in-

formation was sent to their telephones and could only be used by the owner of phone. As such it

seems reasonable that the ticket was for personal consumption. Furthermore, most ticket winners

won only one ticket. These observations point towards an i.p.v. paradigm. In addition since in our

structural analysis we ‘wash out’ all trip specific fixed effects, it seems prudent to assume an i.p.v.

in the theoretical model.

3.2. Model. K ≥ 2 units of a good (identical tickets) are sold, one in each round, sequentially

in sealed-bid second-price auctions with no reserve price. There are N ≥ K + 1 bidders. Each

bidder i has a unit demand and values the good at vi ∈ [v,v]. Bidders draw their values from a

common distribution function F with a strictly positive density function f . The distribution F

belongs to a compact and convex set of atom-less and piecewise smooth distributions ∆. Bidders

do not know the distribution F ; instead, their prior beliefs are described by the set ∆ following

the multiple-priors approach of Gilboa and Schmeidler (1989). Accordingly, we assume bidders

have maxmin expected utility (MEU): in each round they maximize the minimum expected utility

over the set of priors ∆, conditional on the available information. Finally, we assume that bidders

follow prior-by-prior Bayesian updating.

The timing of the game is as follows. In each round k = 1, . . . ,K, bidders submit sealed bids.

The bidder who submits the highest bid wins the unit and pays the second highest bid. The winning

bidder leaves the auction and the winning bid is announced.13 The remaining bidders compete in

the next round using the same procedure until all units are sold. Let pk be the winning bid in round

k. A public history in round k is a sequence of winning bids p̃k−1 = (p1, . . . , pk−1). Finally, ties

are broken via a fair coin-flip.14

We impose the following regularity condition on the set of priors, which allows us to obtain

equilibria in closed form. For any y ∈ [v,v], conditional on the event that a bidder’s value is less

than y, the set of posterior distributions, denote by ∆y, is

∆y =

{
Fy(·) =

F(·)
F(y)

: [v,y]→ [0,1], ∀F ∈ ∆

}
.(3)

In addition, we need the following definitions that are slight variations of those in Topkis (2011).

Let ≥FOSD be the first-order stochastic dominance partial order on ∆, i.e., F1 ≥FOSD F2 if and only

13Announcing the winning price in sSPA alters the game as the bidders know the highest valuation amongst the
remaining bidders in the next round, making the game asymmetric and possibly precluding the existence of an equi-
librium. Thus this is a common assumption in the study of sSPA. See Milgrom and Weber (2000). However, in our
reduced form exercise we do not observe the winning bid and thus have to use prices. Despite this difference, note that
history dependence between a highest winning and bids in the next round also implies history dependence between
prices and bids in the next round due to correlation between the highest and second highest bids.
14The tie-breaking rule will be irrelevant since we consider monotone equilibria.
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if F1(x) ≤ F2(x) for all x ∈ [v,v]. For any F1,F2 ∈ ∆, let F1∨F2 be the join of F1 and F2.15 Note

that F1∨F2 ≥FOSD Fi for i = 1,2. If the join of every pair of distributions in ∆ belongs to ∆, then

∆ is a semi-lattice. A semi-lattice ∆ is complete if every nonempty subset of ∆ has a join in ∆.

Assumption 3.1. For each y ∈ [v,v],∆y is a complete join semi-lattice.

Let F̄ ∈ ∆ be such that F̄ ≥FOSD F for all F ∈ ∆. Furthermore, let F̄(·|y) ∈ ∆y be such that

F̄(·|y) ≥FOSD F(·|y) for all F ∈ ∆.16 Finally, for some results, we will need the following sto-

chastic order. Let ≥rh be the reverse-hazard rate stochastic dominance relation. From Shaked and

Shanthikumar (2007) 1.B.41, F1 ≥rh F2 if and only if F1(x)F2(y)≤ F1(y)F2(x) for all x ≤ y. Note

that if F1 ≥rh F2 then F1 ≥FOSD F2.

Let bi,k denote bidder i’s bid in k-th auction. If bidder i wins auction k then bi,k+l = 0 for all

l = 1, . . .K − k. A strategy for a player i, βi = {βi,1, . . . ,βi,K}, is a sequence of bid functions,

where βi,k(vi, p̃k−1) is bidder i’s bid in auction k given the history of winning bids. A strategy βi

is monotone if for each k = 1, . . . ,K, βi,k is increasing in vi for all p̃k−1. Denote βββ k = {βi,k}N
i=1

and βββ = {βk}K
k=1. A strategy profile βββ is symmetric if βi = β j , β , for all i, j = 1, . . . ,N. As is

common in auctions, we focus on monotone and symmetric strategies and drop the subscript with

respect to bidders. To slightly abuse notations, we use β to denote a monotone and symmetric

strategy profile.

3.3. Payoffs and Equilibrium Concept. Observe that, since strategies are monotone, a bid-

der with the k-th highest value will win the k-th round. Therefore, the previous winning bids,

p1, . . . , pk−1, can be mapped back to the realized values, y1 ≥ . . . ≥ yk−1, of the winners before

round k. By induction backwards, the bidding functions can be rewritten as βk(v,yk−1), as in round

k a bidder believes that all other remaining bidders’ values are bounded above by yk−1.

It is well known that in dynamic decision problems under ambiguity optimal (sequentially ra-

tional) choices made by agents can violate dynamic consistency (Siniscalchi (2011)). In order to

accommodate possible time inconsistency that can occur for MEU maximizing bidders, we follow

the multiple-selves approach introduced by Strotz (1955) and use consistent planning equilibrium

as our solution concept which we define below.17

In a SPA a bidders expected payment conditional on winning is the expected next highest bid.

In addition a bidder’s continuation payoff in any round of a sSPA with ambiguity is her next self’s

expected payoff (evaluated with her current self’s worst-case belief). Thus, formally, a bidder’s

15The join F1∨F2 is the point-wise lower envelope of F1 and F2.
16See example 4.3 in GL to see cases where F̄ and F̄(·|y) are different. That is F̄(·|y) , F̄(·)/F̄(y) for some y.
17Alternatively we can impose conditions on the set of priors to ensure dynamic consistency which we do in the next
section to ensure identification.
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payoff is given by

ΠK(v,z,yK−1) = min
F∈∆

(
F(z)

F(yK−1)

)N−K z∫
v

(v−βK(x,yK−1))d
(

F(x)
F(z)

)N−K

,

and, for k = 1, . . . ,K−1,

(4)

Πk(v,z,yk−1) = min
F∈∆

(
F(z)

F(yk−1)

)N−k z∫
v

(v− βk(x,yk−1))d
(

F(x)
F(z)

)N−k

+

yk−1∫
z

Γk+1(v,x,F)d
(

F(x)
F(yk−1)

)N−k

where the first term is the bidder’s current round payoff and the second term is her continuation

payoff if she bids as if her valuation was z in the current round. In order to define the equilibrium

we also define a term Γk+1 recursively as

(5)

Γk+1(v,x,F)=

(
F(v)
F(x)

)N−k−1 v∫
v

(v−βk+1(z,v))d
(

F(z)
F(v)

)N−k−1

+

x∫
v

Γk+2(v,w,F)d
(

F(w)
F(x)

)N−k−1

and

ΓK(v,x,F) =

(
F(v)
F(x)

)N−K v∫
v

(v−βK(z,x))d
(

F(z)
F(v)

)N−K

.

In words, Γk+1(v,x,F) is the payoff in round k+1 to a bidder with value v who bids according

to the strategy βββ in k+ 1 and all future rounds, given the value of round k’s winner, x, evaluated

using some belief F . Importantly, the belief F also enters the bidder’s continuation payoff. Then

we have the following definition.

Definition 3.2. A strategy profile β = (βk)
K
k=1 is a consistent planning equilibrium if for each

k = 1, . . . ,K, v, and yk−1, we have

v ∈ argmax
z

Πk(v,z,yk−1).

3.4. Equilibrium and Implications. With this definition in place, we now state our theoretical

result on the equilibrium existence and uniqueness.

Proposition 3.3. In the unique symmetric equilibrium bidders follow the strategy

βk(v,yk−1) =

v∫
v

βk+1(x,v)d
F̄(x|yk−1)

N−k−1

F̄(v|yk−1)N−k−1 ,
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for k = 1, . . . ,K−1, and

βK(v,yK−1) = v.

In the final round of a sSPA, it is weakly dominant for a bidder to bid her valuation. This is

independent of what belief a bidder has about the valuations of others. However, as can be seen

in equation (4), in a general round k, a bidder’s optimal bid will depend on what belief she uses to

calculate her payoff. From equation (4) we can see that a simple point-wise minimization to find

the minimizer can not be done since we do not know how the payoff function in the next round

behaves with respect to current round prices. Thus, the crucial step in the proof is establishing

a monotonicity property of the function Γk+1(v,x,F) in x, which we do recursively. That allows

us to pin down a bidder’s belief in a round. It turns out that Γk+1(v,x,F) is weakly decreasing

in x and is less than v−βk(v,yk−1) for x ≥ v. As a result, the integrand in the objective function

of the minimization problem is monotone decreasing, which implies that the worst-case belief–

the minimizer–is the lower envelope of the set of conditional distributions. This also explains the

closed-form of the equilibrium strategies.

To understand the optimal bidding function, note that at the margin, a bidder with valuation v

is calculating her optimal bid conditional on the event that she is the highest valued bidder in the

current round (first order condition in round k). Now, suppose the bidder contemplates bidding a

little less. This deviation would only matter if there was another bidder with a valuation equal to

hers. For this deviation to not be profitable, her current round payoff in this event must equal her

next round payoff. That is her current round payment βk(v,yk−1) (if she won the second highest bid

would be approximately equal to her bid since there is another bidder with valuation v) must equal

what she would pay in expectation in the next round, the expected second highest bid amongst

bidders with valuations lower than hers. Importantly the expectation is taken with respect to the

bidder’s worst case belief in the current round. From the closed form of the equilibrium strategies

we can see that bidding in all rounds except the final round can be history-dependent which is a

consequence of the dependence of worst-case conditional beliefs on the price history.

3.4.1. Declining prices. With regard to prices note that in sSPAs the price in a round is the second

highest bid. Thus, in equilibrium the price in round k will be the bid placed by the bidder with the

second highest valuation in that round. That is,

pk = βk(yk+1,yk−1).

Bidders in the next round observe the winning bid and hence the valuation of the winner, yk. Thus,

the expected price in the next round calculated at some F ∈ ∆ is given by the expected bid of the
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second highest valued bidder out of N− k bidders conditional on the value being less than yk−1.

E [Pk+1|pk] =

yk+1∫
v

βk+1(x,yk)dF(N−k)
2 (x|x≤ yk+1),

where F(N−k)
2 is the distribution of the second highest value out of N− k draws. Our next result

states a simple condition under which prices are declining in sSPAs.

Proposition 3.4. If for any y ∈ [v,v], F̄(·|y)≥rh F(·)/F(y) then pK−1 ≥ EF [PK|pK−1]. If in addi-

tion F̄(·|y)≥rh F̄(·|y′)/F̄(y|y′) for y≤ y′ then pk ≥ EF [Pk+1|pk].

It is important to note that the above condition is only a sufficient condition for declining prices.

While in general, as GL show, prices in sequential auctions with ambiguity can have more compli-

cated trends based on the set of priors, declining prices can be theoretically observed under simple

conditions as the one stated above. Furthermore, in the next section we show that we can also

observe declining prices under the assumption of dynamic consistency.

3.4.2. Dynamic consistency. From the bidding functions, we can observe that in all but the last

round, a bid depends on a bidder’s worst-case belief. Furthermore, worst-case beliefs depends on

previous prices and thus can change from round to round. This means that in a K round auction

there can be K + 1 objects to recover: K worst-case beliefs and one true distribution of values.

Furthermore, the worst-case beliefs could be different for each previous round price observed in

the data leading to non-identification of beliefs without further restrictions on the set of priors. To

circumvent this issue GL showed that if the set of priors is rectangular then the worst-case belief

is invariant to conditioning. Rectangularity essentially implies that the set of priors is closed under

iterated expectations. This has a few implications. One, under rectangularity of priors Epstein

and Schneider (2003) showed that the bidder’s preferences are dynamically consistent. Two, it

simplifies the equilibrium bidding in sSPAs and allows straightforward comparisons with other

auction formats. And finally, it allows us to identify bidders’ beliefs as well as the true data

generating process from data. Thus, we can restate the equilibrium as follows.

Corollary 3.5. If ∆ is rectangular then in the unique symmetric equilibrium bidders follow the

strategy

βk(v) =
v∫

v

βk+1(x)d
(

F̄(x)
F̄(v)

)N−k−1

, for k ≤ K−1, and βK(v) = v, where

F̄(x) = min
F∈∆

F(x).

Furthermore, in this case pk ≥ EF [Pk+1|pk], that is prices are declining.
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In Lemma 5.1 of GL the authors show that under rectangularity the lower envelope of set of pri-

ors is invariant to conditioning (right truncation). That is F̄(·|y) is equal to F̄(·)/F̄(y). Substituting

in the equilibrium bid functions the bid functions in the above Corollary are clear. Furthermore,

note that under dynamic consistency, we have

pk =

yk+1∫
v

βk+1(x)d
F̄(x)N−k−1

F̄(yk+1)N−k−1 ≥
yk+1∫
v

βk+1(x)d
F(x)N−k−1

F(yk+1)N−k−1

≥
yk+1∫
v

βk+1(x)dF(N−k)
2 (x|x ≤ yk+1) = EF [Pk+1|pk],

where the first inequality is strict when F , F̄ , since the conditional distribution F̄(·)/F̄(yk) first-

order stochastically dominates F(·)/F(yk) and βk+1 is increasing. The second inequality follows

from simple algebraic manipulation of the distributions.

GL showed that the lower envelope of the set of distributions is unique. Thus, from the above

Corollary, we know that the empirical distributions of bids depend on two distributions: the true

distribution of valuations, F , and bidders’ worst case beliefs, F̄ .

3.5. Revenue Comparisons. The following results can found in Bougt et al. (2024). Now we

compare the resulting revenues from two alternative auction formats, sFPAs and uniform price

auction (UPA). This will guide the counter factual analysis that is performed in section 4.2.2. In

the absence of ambiguity the revenue equivalence theorem states that all three formats will generate

the same revenue in expectation. However, this is no longer true in the presence of ambiguity. In

fact we will show that under dynamic consistency, there is a clear revenue ranking between the

three formats.

GL proved the existence and uniqueness of an equilibrium in monotone strategies in sFPAs with

ambiguity under assumption 3.1. In addition they proved the following result.

Proposition 3.6. (Proposition 5.2 from GL) If ∆ is rectangular, then the equilibrium in sFPAs is

given by

β
I
k (v) =

1
F̄(v)N−k

v∫
v

βk+1(x)dF̄(x)N−k, ∀k ≤ K−1 and β
I
K(v) =

1
F̄(v)N−K

v∫
v

xdF̄(x)N−K.

From the above and Corollary 3.5 notice that bidding in round k+ 1 of sFPAs is the same as

bidding in round k of sSPAs. Thus we have the following.

Corollary 3.7. Suppose β II
k is the equilibrium bidding function in round k of sSPAs. Then under

rectangularity, for k < K,β II
k (v) = β I

k+1(v).
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A commonly used static multi-unit auction format is the UPA with the highest losing bid as the

selling price. This auction format is the multi-unit analogue of a single-unit SPA and thus com-

parable to sSPAs. This auction also has a symmetric equilibrium in weakly dominant strategies.

Bidders bid truthfully and bid their own valuations since their bid only affects their probability of

winning and not the price they pay. Thus the price in equilibrium is the K +1-th highest valuation

out of N valuations. Then it is straightforward to show that the expected revenue calculated using

some F ∈ ∆ in this auction format is

Rup
F = KEF

[
V (N)

K+1

]
= KEF

[
V (N−K)

1

]
,

where V (m)
l be the random variable denoting the l-th highest draw out of m draws from some

distribution F .

Now we compare the revenue across the two sequential auction formats and the UPA. Let R f ormat
F

be the expected revenue calculated using F ∈ ∆ and f ormat ∈ {I, II,up}. Since we will always

calculate the revenue with respect to some F across formats, from now on we drop the subscript.

The expected revenue in final round of sequential SPA is the second highest valuation of the

remaining N−K +1 bidders. This is equal to

EF

[
V (N−K)

1

]
.

Thus the final round of sequential SPA generates Rup/K expected revenue. Furthermore, due to

declining prices we know that the expected revenue (in a round) progressively declines in sSPA.

Thus sSPAs generate more revenue than UPA.

Under rectangularity we know from Corollary 3.7, β II
k (v) = β I

k+1(v). Let PI
k and PII

k be the price

in round k in sFPAs and sSPAs respectively. Then, since the equilibrium is monotone, for k < K

we get,

EF
[
PI

k+1
]
= EF

[
β

I
k+1

(
V (N)

k+1

)]
= EF

[
β

II
k

(
V (N)

k+1

)]
= EF

[
PII

k
]
.

Now, since prices are a supermartingale in sFPAs, as was shown in GL, we know that for k < K

EF
[
PI

k
]
≥ EF

[
PI

k+1
]
= EF

[
PII

k
]
,

and for k = K, since prices are a supermartingale in sSPAs we know that

EF
[
PII

K
]
≤ EF

[
PII

K−1
]
= EF

[
PI

K
]
.

Thus the revenue from sFPAs is higher than sSPAs. The above arguments are collected in the

following result.

Proposition 3.8. If ∆ is rectangular then RI ≥ RII ≥ Rup with a strict inequality if ∆ is not a

singleton.



24 D. BOUGT, G. GHOSH, AND H. LIU

The intuition for the first revenue comparison in the above result is based on declining prices.

For the second revenue comparison note the following. In the final round of sSPAs bidders bid

their true valuation. Thus there is no difference between the expected revenue in the final round of

a sSPA with ambiguity and without. That is pessimism does not affect final round bids. However,

this is not true in the final round of sFPAs, as bidders use the lower envelope of the set of conditional

distribution to calculate their bid. Thus, the bid in the final round of sFPAs is higher with ambiguity

than without. This has two effects. First, it implies that revenue in the final round of sFPAs

will be higher than the revenue in the final round of sSPAs. Second, the discrepancy caused by

pessimism and the lack of it in the final round bids in sFPAs and sSPAs, respectively, implies that

the continuation payoff in round K− 1, from the bidder’s point of view, is lower in sFPAs than

sSPAs. Therefore, bidders in round K− 1 shade their bids more in sSPAs than in sFPAs, leading

to lower revenue in sSPAs than sFPAs in round K−1. The argument applies to remaining rounds.

4. EMPIRICAL ESTIMATION

In a seminal paper, GPV showed that empirical distributions of bids in auctions can be mapped

back to a distribution of valuations in an i.p.v. paradigm, under the assumption of a common prior.

That is their methodology is applicable as long as the true data generating process is the same as

the bidder’s beliefs. As we have established in the previous section for sSPAs, and GL showed for

sFPAs, this agreement between the truth and beliefs may not exist in the case of multiple-priors

and ambiguity aversion. This makes the task of estimation arduous. However, GL showed that

data from sFPAs where bidders bid in multiple rounds can be used to non-parametrically identify

bidders valuations and estimate the true distribution of valuations as well as bidders’ beliefs. The

idea in that paper was to use first order conditions in multiple rounds to estimate the distribution of

values along with the beliefs. In Appendix B.3 we formally show that the identification result from

GL can be applied to our setting as well. However, for completeness we show how multi-round

bidding in sSPAs can be used to estimate the true distribution of values as well as bidders beliefs.

Remark 4.1. As we stated in section 3.4.2, under general conditions identification and estimation

in sSPAs with ambiguity may be impossible due to changes in worst-case beliefs. Thus, as we

alluded to before, we will estimate the model under the assumption of dynamic consistency. Under

this assumption the worst-case beliefs are invariant to prices, and thus bidding will be history

independent as stated in Corollary 3.5. However, this is in contradiction to what we observe in

the data as we showed in section 2.4. We showed that bidding is history-dependent and indeed

this was the reason we argued that ambiguity aversion is the most suitable explanation for the

declining prices observed in the auctions. However the history dependence was small, and thus

our estimation procedure should not miss much. Furthermore we carry out robustness checks
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where we simulate the pricing data using our estimates of beliefs and valuation distribution and

find it to be close to actual pricing data.

4.1. Identification Strategy. Let Gk(bk) represent the bid distribution in the k-th round of a K

round sSPAs, and gk(bk) the corresponding bid densities. Let φk = β
−1
k be the inverse bidding

strategy. In equilibrium, bidding strategies are monotone and increasing. Thus,

Gk(bk) = F(φk(bk)) and gk(bk) = f (φk(bk))φ
′
k(bk).

The aim of the identification exercise is to back out the primitives of the model, F and F̄ from

bidding data. Our main identification result states that the valuations and beliefs can be identified

from the bid distributions, the number of bidders, and the the number of items in a sequence. It is

summarized in the following proposition.

Proposition 4.2. For any K ≥ 2 unit sSPAs with single unit demand and any bidder i who partici-

pated in at least one of the final two rounds, her valuation can be identified as

vi =

bi,K; if bi,K > 0

bi,K−1 +
(N−K+1

N−K

)
(bi,K−1−bi,K−2)

gK−2(bi,K−2)
gK−1(bi,K−1)

; if K > 2 & bi,K−1 > 0

The worst case beliefs can be identified using

f̄ (v)
F̄(v)

=
d log F̄(v)

dv
=

1
(N− k−1)(bk+1−bk)φ

′
k(bk))

=
f (v)

(N− k−1)(bk+1−bk)gk(bk)

and the integrating constant given by F̄(v̄) = 1.

The above states that F(v) and F̄(v) can be recovered from data on (losing) bids and the num-

ber of participants from sequential auctions that are at least two rounds (i.e. they are sequential

auctions). Note that it is sufficient to observe the bids of the “always” loser(s).

We know that with single unit demand a bidder will place a positive bid in the final round if

and only if she has not won a unit yet. Given that bidders bid their valuation in the final round of

sSPAs, we can recover their valuations simply from their bids. This would be the sole strategy if a

data set only contained bids from sequences where K = 2. Further, when K > 2, then we can also

recover pseudo-valuations of bidders who did not participate in the final round using their bids in

consecutive rounds. The formula stated in the proposition follows from the first order conditions of

a bidder’s optimization problem in rounds K−1 and K−2. Finally, we find an expression for the

reversed hazard rate of F̄(v) also using first order conditions. The details can be found in Appendix

B.

The obvious benefit of being able to create pseudo-valuations using bidding in rounds other than

the final round is that it has the potential of increasing power when estimating F(v) and F̄(v).
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However, there is an additional benefit to this result. In general, the estimation of (first-price)

auction models rely on bidding being characterized by first order conditions.18 While this has

solid theoreitcal foundations, it is not without challenges. As Bajari and Hortasu (2005) write:

”Despite the introduction of powerful new methods to estimate these (auction)

models, many applied researchers are not comfortable with the strict rationality

assumptions imposed in the econometric analysis. This scepticism is not without

merit. [...] our ability to verify or reject bidder rationality is imperfect in empirical

auctions. Hence, in most applications, the strong rationality assumptions of struc-

tural auction models will be identifying assumptions. Moreover, nonparametric

structural models of auctions are often just identified, since we can often perfectly

rationalize observed bids with an appropriately constructed model...”

The method outlined here do, to some extent, address these concerns. We do also rely on strong

assumptions implied by first order conditions to characterize bidding in early rounds and to recover

bidders’ worst case beliefs. However, we can test those assumptions by comparing recovered

pseudo-valuations, which also rely on first order conditions, of bidders who participate in the

last round, against the same bidders’ revealed valuations. The latter can be recovered using a

weaker assumption that bidding in the last round is characterized by a weakly dominant strategy.

Thus, our model is in a sense over-identified, and we can therefore test if our different identifying

assumptions are consistent with each other.

4.2. Non-parametric Estimation. While tickets within a sequence are for the same train, tickets

in different sequences vary across dimensions such as type of train used, route, departure day of

the week, and so on. Thus, in order to carry out a structural estimation of F and F̄ using the

above identification procedure, we need to homogenize the bids for different sequences. Using the

sequence specific covariates we homogenize bids by removing the effect of these variables that are

common to all bidders in a sequence. In Appendix E we discuss this procedure which is based on

a similar exercise in Shneyerov (2006).

While bidders rarely bid multiple times within an auction, as suggested by the fact that bidders

lead auctions on average once, there are instances where bidders record multiple bids. This is due

to the incremental bidding nature of the auction mechanism. For such bidders, we use the highest

bid they placed in the auction as their revealed bidding strategy. In addition, we consider the bids

for bidders who increase their bids between rounds. This is because any rational bidder should

increase her bid between rounds due to diminishing number of tickets. This logic is true both in a

common prior as well as in our framework with ambiguity and dynamic consistency.

18See Donald and Paarsch (1993); Guerre et al. (2000); Campo et al. (2011) for some examples.
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4.2.1. Results. Figure 5 displays the recovered distributions. The distribution of valuations in-

cludes valuations recovered from multiple rounds. Visually one can see that ˆ̄F(v) ≥FOSD F̂(v),

indicating that the subset of bidders for whom the necessary objects are nicely identified do be-

have as if they are ambiguity averse. The confidence interval also suggest that the stochastic

relation between ˆ̄F(v) and F̂(v) is statistically significant. Further, table 9 lists the results from

a Kolmogorov-Smirnov test. The first row of table 9 confirms that F̂(v) ≥ ˆ̄F(v) for all v and the

second row confirms that the inequality is strict for some v.

FIGURE 5. F̂(v) and ˆ̄F(v)
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Note: Recovered from bidders who increased their bids between auctions. Observations refer to the number
of recovered valuations used in the estimations. Confidence intervals are constructed by a bootstrapping
procedure where the distributions have been estimated 1,000 times after which the range of valuations have
been divided into 500 bins of equal width. The 95% confidence interval is constructed by taking the 2.5 and
97.5 percentile of a each distribution from the re-sampled observation. The mean observations per bin is the
average number of re-sampled observations within each bin.

TABLE 9. Kolmogorov Smirnov Test

H0 Max Distance P-value
F(v)≥ F̄(v) 0.0003 0.999
F(v)≤ F̄(v) 0.7923 0.000
F(v) = F̄(v) 0.7923 0.000

Note: The test performed is a one sample Kolmogorov Smirnov test where Dn = sup
v
|F̂n(v)− ˆ̄F(v)|.

We ended section 4.1 by discussing how dynamic bidding can be used to test if the assump-

tion that bidding in early rounds of a sequence can be characterized by first order conditions is

consistent with the assumption that bidding in the last round is characterized by a weakly domi-

nant strategy. To test this, we want to compare a bidder’s revealed valuation to the same bidder’s
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pseudo-valuation. As is outlined in Proposition 4.2, the bid in the last round of a sequence is

treated as a bidder’s revealed valuation, while the pseudo-valuation is recovered using the first or-

der conditions that characterize optimal bidding in earlier rounds. We estimate equation (6) to test

the hypothesis that these two methods recover the same valuation. Note,

(6) v̂im = γ1D1,m + γ2D2,m +θi + εim.

v̂im is bidder i’s recovered valuation that was constructed using method m, where m = 1 indicates a

revealed valuation, and m = 2 indicates a pseudo-valuation. D j,m = 1 if j = m and 0 otherwise.19

We estimate equation (6) both with and without θi, which is a bidder fixed effect. The inclusion of

θi allows for a comparison of v̂i1 and v̂i2 that should be the same.

The estimation of equation (6) can be found in table 10. The results in column (2) is validat-

ing that there is no systematic difference between revealed valuations and constructed pseudo-

valuations. It is evidence in favor of the hypothesis that bidding in earlier round is characterized

by first order conditions as well as of our approach.

Column (1) reveals another reassuring pattern that is worth noting. That is, if the bidder fixed

effect is not included, then recovered pseudo-valuations are slightly higher than revealed valua-

tions. This should not be surprising as there should be selection of higher valuation bidders who

do not have their valuations revealed through bidding in the last round. That is because bidders

with higher valuations are more likely to win earlier rounds.

TABLE 10. Valuation Evaluation

(1) (2)
VARIABLES Valuation Valuation

Revealed valuation 11.30*** 11.53***
(0.11) (0.06)

Pseudo valuation 1.13*** -0.10
(0.29) (0.31)

Observations 4,059 4,059
Bidder FE NO YES

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors clustered at the bidder level. Revealed
valuations are bids made for the last item in the sequence. Pseudo-valuations has been recovered using the
second part of proposition 4.2.

4.2.2. Counter factual analysis. We perform three counter factual experiments based on our re-

covered distributions of valuations and beliefs. First, is a robustness check of our method. We

use our estimated model primitives to generate auction outcomes and compare them against the

19We really estimate v̂im = γ1 + γ̄2D2,m +θi + εim such that γ1 can be interpreted as mean revealed valuation, and γ̄2
can be interpreted as the difference in mean for pseudo-valuations relative to revealed valuations.
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results from the reduced form analysis. Second, we check the revenue implications of ambiguity

by calculating the revenue generated in a counterfactual model where the bidders beliefs were the

same as the true (recovered) distribution of valuations. And finally, we calculate the revenue that

would be generated in alternate auction formats to see if the seller could have done better/worse

by using some other commonly used auction formats.

To offer evidence on the internal consistency of our approach we use the mean distributions,

F̂(v) and ˆ̄F(v), that we have estimated to simulate prices in sequences of auctions. In this exercise

we hold K fixed to be able to compare the price pattern in the simulated data to the price pattern

estimated using equation (1) in the non-homogenized raw data. By holding K fixed we can nor-

malize both patterns by the average price in auction K. Hence, we can compare the price pattern in

terms of price ratios, where the normalizing price for an object k is the hypothetical average price

that would have realized if no ambiguity were present. The result of this exercise for K = 5, which

is the average length of a sequence in the data, can be seen in figure 6. The result suggests that the

simulated price pattern falls within the 95% confidence interval of the price pattern estimated in

the raw data.20

FIGURE 6. Price Pattern - Simulated vs. Reduced Form
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Note: The simulated price pattern is generated using the mean distributions, F̂(v) and ˆ̄F(v). The sequences
in the simulated sample holds length fixed at K = 5, and uses N ∈ {6, ...,21}. The fraction of the sample
with a particular N matches the fraction in the true data for K = 5. 87% of sequences where K = 5 have
N ∈ {6, ...,21}, 10% of sequences have N ≤ 5, and the remainder has N > 21. The estimated price pattern is
the normalized predictions from estimating equation (1) on the sub-sample where K = 5 and N ∈ {6, ...,21}.
The estimates are normalized by the predicted price in the last auction. The left panel predictions are based
on a dummy regression: ln(pricek j) = ∑

K j
i=1 γiDi,k +θ j +βxk + εk j. The right panel is based on a prediction

where a linear quadratic relationship is imposed: ln(pricek j) = β0 +β1k+β2k2 +β3xk +θ j + εk j.

20A joint test fails to reject the null hypothesis that the price trend in the raw data is the same as for the simulated
price trend (p-value of an F-test of the dummy regression is 0.22, and the p-value of and F-test of the linear quadratic
regression is 0.15).
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In the next part of the counter factual analysis we change some aspect of the environment to see

what implications the change has for revenues. We first ask how much revenue would SJ lose if

there was no uncertainty regarding F(v)?21 To do this exercise we compute bidders’ optimal bids

as if they knew the true distribution of (pseudo) values, F̂ . This is done by calculating optimal bids

as in Corollary 3.5 but replacing F̄ with F̂ .

The second question we ask is how much revenue would SJ have gained by selling the tickets

through sequences of first price auctions while maintaining the uncertainty regarding F(v). From

the estimation, since we know F̂ , ˆ̄F and bidders’ pseudo valuations we can do the above exercise

by using the optimal bidding function for sFPAs given in Proposition 3.6. The results can be found

in table 11. The findings suggest that SJ’s revenues would decrease by something in the range of

18.6 and 21.2% if there was no uncertainty regarding F(v).22 On the other hand, if SJ had been

able to change the selling mechanism to a first price auction instead, then their revenues would

increase by something in the range of 11.5 to 15.4%.

TABLE 11. Revenue Changes
(1) (2)

Mean %∆ in Revenues CI
Remove Uncertainty −19.7% [−21.2%,−18.6%]
Change to first price 13.5% [11.5%,15.4%]

Note: The changes in revenues are calculated using the revenue made in sequences of second price auctions
when uncertainty is present as the baseline.

5. CONCLUSION

Using a data set comprised of bids placed in sequential train ticket auctions in Sweden, we stud-

ied various aspects of bidder behavior. Prices in these auctions show a declining trend, confirming

the presence of the declining price anomaly. While there are many theoretical explanations for

such price trends, we first argued using a reduced form analysis that a predictions from a model

with ambiguity averse bidders match aspects of the data better than other models that also provide

an explanation for the declining price anomaly. Then, we studied a theoretical model of sSPAs

with ambiguity and showed that prices in this set up decline as a result of pessimism about future

rounds. Finally, adapting the first-order approach from the seminal work of Guerre et al. (2000)

to our setting with sequential auctions and ambiguity, we non-parametrically estimated the true

data generating process as well as bidder’s beliefs under dynamic consistency. We showed that

21Note that revenue equivalence holds between selling mechanisms when uncertainty is removed. We are aware that
the mechanism used by Tradera (and eBay) can be considered a hybrid between first and second price auctions, but as
we have motivated in section 3, we base our structural approach on the assumption that the data was generated through
sequences of second price auctions.
22The mean is given by 1−1.245

1.245 , while the CI is given by [ 1−1.229
1.229 , 1−1.269

1.269 ]. These numbers can be found in table 12.
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TABLE 12. Revenue Comparisons
(1) (2) (3) (4)

Average Lower Bound Upper Bound CI
No Ambiguity (distributions used) F̂ F̂.975 F̂.025
first price=second price=uniform price 1.000 0.971 1.031

Ambiguity (distributions used) F̂ ˆ̄F F̂.975
ˆ̄F.975 F̂.025

ˆ̄F.025
first price 1.412 1.329 1.509 [1.370, 1.464]
second price 1.245 1.192 1.307 [1.229, 1.269]
uniform price 1.000 0.971 1.031

Note: The revenues are from sequences with (N,K) pairs that match the SJ data, where 1 ≤ K ≤ 10 and
K < N ≤ 20. There are 5,279 sequences in the SJ data that satisfy this criteria. 1,000 sequences have been
simulated for each (N,K) pair, after which the average revenue has been calculated. A weighted average of
these averages have then been used to get total revenues. The weights correspond to the frequency in the
real data of the (N,K) pair relative to the total number of sequences that satisfy the restriction above. Lastly,
the revenues have been normalized by the revenues made in the hypothetical case of no ambiguity where
valuations have been drawn from F̂(v) (column 1).

the estimated belief first-order stochastically dominates the estimated value distribution, further

confirming the presence of ambiguity as the driving force behind declining prices. A future avenue

of research might be using other variations, such as exogenous variations in the number of bidders,

to relax dynamic consistency assumption and identify changing worst case beliefs.

APPENDIX A. EXPLANATIONS OF DECLINING PRICES

Risk aversion: Informally, Ashenfelter (1989) argued that risk aversion could possibly explain

the anomaly since, theoretically, prices in later rounds are more variable than the current round and

hence risk-averse bidders may bid more in the current round to avoid future price variations.23 This

logic was formalized in McAfee and Vincent (1993) but the results required that the bidder’s utility

function satisfy non-decreasing absolute risk aversion (NDARA) in wealth which is an unconven-

tional assumption.24 Using an additively separable utility function with a convex cost function,

which captures ‘aversion to price risk’, Mezzetti (2011) proved the existence of a monotone equi-

librium that generated declining prices. Hence, NDARA preferences and aversion to price risk can

account for the declining price anomaly. Importantly, the equilibria under both preference struc-

tures are characterized by history-independent bidding in the i.p.v. paradigm, which is a prediction

that can be tested using data.

23For example, in Krishna (2009) (page 226):“[Even] though prices are expected to decline in the future, his greater
aversion to risk offset the incentive to wait for a random future price, which is lower on average.”
24McAfee and Vincent (1993) write that “Ashenfelter suggests that declining prices is consistent with risk averse
bidders....We show that this intuition is not likely to be satisfied in practice.”
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Loss aversion: Rosato (2019) studied a sequential auction model where bidders have expecta-

tions based reference dependent preferences ((Köszegi and Rabin, 2006)), within an i.p.v. para-

digm. The winning bid in a round is part of forming reference points for the bidders who remain

in the next round. The equilibrium in this setting is also characterized by declining prices due

to a ‘discouragement effect’: a higher winning bid in a round leads to less aggressive bidding in

the next round, and since bidders choose bids conditional on being pivotal, they underestimate the

discouragement effect. This model also predicts a negative relationship between winning bids in

the a round and bids in the next, which can be tested empirically.

Ambiguity aversion: GL studied sequential First Price Auctions (sFPAs) with ambiguity averse

bidders with maxmin expected utility (MEU) (Gilboa and Schmeidler, 1989). They showed that

when bidders are ambiguity averse they use their worst-case conditional belief, which is given by

the lower envelope of the set of conditional distributions, to calculate their expected payoff in each

round, where the conditioning is with respect to the previous round prices. Since bidders use their

worst-case beliefs, they underestimate their future payoffs and bid more aggressively in the current

round causing prices to decline in the future rounds as lower valuation bidders, who are relatively

less aggressive than the current round winner, will win future rounds in a monotone equilibrium.

Since bidders use their worst-case beliefs conditional on previous round prices, bidding can be

history-dependent, in contrast to the risk-aversion and the standard model.

APPENDIX B. PROOFS

B.1. Proof of Proposition 3.3. We solve for the equilibrium strategies backward starting from

the final round. In the final round bidders have a weakly dominant strategy to bid their valuation.

Given this, their payoff in the final round is given by

min
FyK−1 ∈∆yK−1

FyK−1(v)
N−Kv−

v∫
v

xdFyK−1(x)
N−K = min

FyK−1∈∆yK−1

v∫
v

(v− x)dFyK−1(x)
N−K

Since v− x is decreasing in x, the above payoff function is minimized by the lower envelope of

∆yK−1 that is F̄(·|yK−1). Now, define the following payoff function for round K.

ΓK
(
v,y,FyK−2

)
=

v∫
v

(v− x)d
FyK−2(x)

N−K

FyK−2(y)N−K

This is the consistent planning bidder’s evaluation of her round K payoff in round K−1 given her

‘belief’ about the distribution of values in round K−1, FyK−2 ∈∆yK−2 and the round K−1 winner’s

valuation y. Clearly ΓK is increasing in v and decreasing in y. Now consider the payoff in round

K− 1. Suppose bidders are following some strategy βK−1 in this round that possibly depends on

previous round prices and a bidder bids as if her valuation is z≥ v. Then,
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(7)

ΠK−1(v,z,yK−2) = min
FyK−2∈∆yK−2

z∫
v

(v− βK−1(x,yK−2))dFyK−2(x)
N−K+1

+

yK−2∫
z

ΓK(v,x,FyK−2)dFyK−2(x)
N−K+1

Let F̂yK−2 minimize the above payoff. Taking first order conditions with respect z and setting z = v,

v−βK−1(v,yK−2)= ΓK(v,v, F̂YK−2)= v−
v∫

v

xd
F̂yK−2(x)

N−K

F̂yK−2(v)N−K
=⇒ βK−1(v,yK−2)=

v∫
v

βK(x)d
F̂YK−2(x)

N−K

F̂yK−2(v)N−K
.

Now, note that for v≤ y,

v−βK−1(x,yK−2)≥ v−βK−1(v,yK−2) = ΓK(v,v, F̂YK−2)≥ ΓK(v,y, F̂YK−2)

since βK−1(·,yK−2) is increasing and ΓK is non-increasing in the second argument. Thus, inspecting

(7) it is clear that in F̂YK−2(·) = F̄(·|yK−2). Thus

βK−1(v,yK−2) =

v∫
v

βK(x)d
F̄(x|yK−2)

N−K

F̄(v|yK−2)N−K .

Next, we consider the consistent planning payoff function ΓK−1.

ΓK−1(v,y,FyK−3) =

v∫
v

(v− βK−1(x,y))d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1 +

y∫
v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

=

v∫
v

v− x +
x∫

v

F̄(z|y)N−K

F̄(x|y)N−K dz

d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

+

y∫
v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

Now, note that the first term in the above is non-increasing in y due to the Envelope Theorem. For

the second term, note that the derivative with respect to y,

(N−K +1)
fyK−3(y)
FyK−3(y)

ΓK(v,y,FyK−3)−
y∫

v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

≤ 0

since ΓK(v,y,F) is non-increasing in y as we established in step 1 of the proof. Thus, ΓK−1(v,y,FyK−3)

is non increasing in y.
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A bidder’s payoff function in round K−2 is given by

ΠK−2(v,z,yK−3) = min
FyK−3∈∆yK−3

z∫
v

(v− βK−2(x,yK−3))FyK−3(x)
N−K+2

+

yK−3∫
z

ΓK−1(v,x,FyK−3)dFyK−3(x)
N−K+2.

Let F̂K−3 minimize the above payoff function. Then, first order conditions and z = v imply

v−βK−2(v,yK−3) =ΓK−1(v,v, F̂yK−3) =

v∫
v

(v−βK−1(x,v))d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1
=⇒

βK−2(v,yK−3) =

v∫
v

βK−1(x,v)d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1

Now note that
v∫

v

βK−1(x,v)d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1
=

v∫
v

x−
x∫

v

F̄(z|v)N−K

F̄(x|v)N−K dz

d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1

Again, it is straightforward to show that the above is increasing in v using the Envelope Theorem.

Now note that

v−βK−2(x,yK−3)≥ v−βK−2(v,yK−3) = ΓK−1(v,v, F̂yK−3)≥ ΓK−1(v,y, F̂yK−3)

where the second inequality follows monotonicity of βK−2(·,yK−3) and the fourth inequality fol-

lows from the monotonicity of ΓK−1(v, ·,F). Thus F̂yK−3 = F̄(·|yK−3) and

βK−2(v,yK−3) =

v∫
v

βK−1(x,v)d
F̄(x|yK−3)

N−K+1

F̄(v|yK−3)N−K+1

The proof for the remaining rounds follows exactly the same procedure. The independence of

F̄(·|y) from the bidders valuation follows from the assumption that ∆ is a semi-lattice. For a proof

see Step 5 of the proof of Proposition 4.1 of Ghosh and Liu (2021).
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B.2. Proof of proposition 3.4. Note,

E [Pk+1|pk] =

yk+1∫
v

βk+1(x,yk)dF(N−k)
2 (x|x ≤ yk+1)

=

yk+1∫
v

βk+1(x,yk)d

(
(N − k)

(
F(x)

F(yk+1)

)N−k−1

− (N − k − 1)
(

F(x)
F(yk+1)

)N−k
)

≤
yk+1∫
v

βk+1(x,yk)d

(
(N − k)

(
F̄(x|yk−1)

F̄(yk+1|yk−1)

)N−k−1

− (N − k− 1)
(

F̄(x|yk−1)

F̄(yk+1|yk−1)

)N−k
)

≤
yk+1∫
v

βk+1(x,yk)d
(

F̄(x|yk−1)

F̄(yk+1|yk−1)

)N−k

where the first inequality follows from the monotonicity of βk+1(·,yk) and F̄(·|y)≥rh F(·)/F(y).25

The second inequality follows from the monotonicity of βk+1(·,yk). Now, consider the case k =

K−1. Then using the above inequality and the equilibrium strategy in the final round we can see

that

E [PK|pK−1]≤
yK∫
v

βK(x)d
(

F̄(x|yK−2)

F̄(yk+1|yK−2)

)N−K−1

≤
yK∫
v

βK(x)d
(

F̄(x|yK−2)

F̄(yk+1|yK−2)

)N−K

= pK−1(yK,yK−2)

Now, let k = K−2.

E [PK−1|pK−2] ≤
yK−1∫
v

βK−1(x,yK−2)d
(

F̄(x|yK−3)

F̄(yK−1|yK−3)

)N−K−1

=

yK−1∫
v

x∫
v

βK(z)d
F̄(z|yK−2)

N−K

F̄(x|yK−2)N−K d
(

F̄(x|yK−3)

F̄(yK−1|yK−3)

)N−K−1

≤
yK−1∫
v

x∫
v

βK(z)d
F̄(z|yK−3)

N−K

F̄(x|yK−3)N−K d
(

F̄(x|yK−3)

F̄(yK−1|yK−3)

)N−K−1

=

yK−1∫
v

βK−1(x,yK−3)d
(

F̄(x|yK−3)

F̄(yK−1|yK−3)

)N−K−1

= pK−2

where the inequality follows from the supposition in the statement of the proposition. The remain-

ing cases can be proved analogously.

25The final condition implies that F̄(x|yk−1)
F̄(yk+1|yk−1)

≥FOSD
F(yk+1|yk−1)
F(yk+1|yk−1)

=
F(yk+1)
F(yk+1)

(From equation 1.B.43 of Shaked and Shan-
thikumar (2007), reverse hazard rate dominance is equivalent to conditional stochastic dominance, which implies
F̄(·|yk−1)/F̄(yk+1|yk−1)≥FOSD F(·)/F(yk+1)). Finally, note that if G≥FOSD H then G(n)

2 ≥FOSD H(n)
2
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B.3. Proof of proposition 4.2. Let Gk(bk) represent the bid distribution in the k-th round of a

K round sSPAs, and gk(bk) the corresponding bid densities. Let φk = β
−1
k be the inverse bidding

strategy. In equilibrium, bidding strategies are monotone and increasing. Thus,

Gk(bk) = F(φk(bk)) and gk(bk) = f (φk(bk))φ
′
k(bk).(8)

In order to identify the true F we need to back out the valuations of the bidders from their bids.

This is straightforward for all bidders who participated in the final round since in the final round it

is a weakly dominant strategy to bid truthfully. Thus, v of any bidder in the final round is given by

v = bK = φK(bK).(9)

Having identified the bidders’ values in the final round, we turn to the remaining rounds. To do

so, we first calculate the equilibrium payoff in the final round. Rectangularity ensures that

ΠK(v,bK,yK−1) =Π(v,v,yK−1) = min
F∈∆

v∫
v

(v− x)d
(

F(x)
F(yK−1)

)N−K

=

v∫
v

(v− x)d
(

F̄(x)
F̄(yK−1)

)N−K

.

Now, consider the bidder’a payoff in round K−1. It is given by

ΠK−1(v,bK−1,yK−2) =

φK−1(bK−1)∫
v

(v− φ
−1
K−1(x))d

(
F̄(x)

F̄(yK−2)

)N−K+1

+

yK−2∫
φK−1(bK−1)

ΠK(v,v,x)d
(

F̄(x)
F̄(yK−2)

)N−K+1

.

First order conditions with respect to bK−1 and the equilibrium condition, φK−1(bK−1) = v, imply

v−bK−1 =ΠK(v,v,φK−1(bK−1)) =

v∫
v

(v− x)d
(

F̄(x)
F̄(v)

)N−K

.

Now, note that the above can also be written as

bK−1F̄(φK−1(bK−1))
N−K =

φK−1(bK−1)∫
v

xdF̄(x)N−K.

Taking derivative of the above with respect to bK−1 we get

F̄(φK−1(bK−1))
N−K + bK−1(N − K)F̄(φK−1(bK−1))

N−K−1 f̄ (φK−1(bK−1))φ
′
K−1(bK−1)

= φK−1(bK−1)(N − K)F̄(φK−1(bK−1))
N−K−1 f̄ (φK−1(bK−1))φ

′
K−1.

Rearranging and using the fact that φk(bk) = v we have
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v = bK−1 +
F̄(φK−1(bK−1))

(N−K) f̄ (φK−1(bK−1))φ
′
K−1(bK−1)

= bK−1 +
F̄(v)

(N−K) f̄ (v)φ ′K−1(bK−1)
.(10)

Using equations (8) and (9) in (10) and rearranging we have

f̄ (v)
F̄(v)

=
f (v)

(N−K)(bK−bK−1)gK−1(bK−1)
.(11)

Thus, if K = 2, we have valuations from observable bids given equation (9), and the above expres-

sion along with the fact that F̄(v̄) = 1 gives F̄ in terms of observable bids, and distributions that

can be estimated from bids. We can therefore conclude that F and F̄ is identified from bids placed

in sequences of auctions with only 2 items for sale.

Next consider the round K− 2. Let ΠK−1(v,x) be the bidder’s equilibrium expected payoff in

the next round conditional on the current rounds winner’s valuation x. Then, a bidder’s expected

payoff from bidding bK−2 is

ΠK−2(v,bK−2,yK−3) =

φK−2(bK−2)∫
v

(v− φ
−1
K−2(x))d

(
F̄(x)

F̄(yK−3)

)N−K+2

+

yK−3∫
φK−2(bK−2)

ΠK−1(v,x)dF̄(x)N−K+2.

First order conditions imply

v−bK−2 =ΠK−1(v,φK−2(bK−2)) =

v∫
v

(v−φ
−1
K−1(x))d

(
F̄(x)

F̄(φK−2(bK−2))

)N−K+1

Note that the above can be written as

bK−2F̄(φK−2(bK−2))
N−K+1 =

φK−2(bK−2)∫
v

φ
−1
K−1(x)dF̄(x)N−K+1

Taking the derivative of the above equation with respect to bK−2 we get

F̄(φK−2(bK−2))
N−K+1 + bK−2(N − K + 1)F̄(φK−2(bK−2))

N−K f̄ (φK−2(bK−2))φ
′
K−2(bK−2)

= φ
−1
K−1(φK−2(bK−2))(N − K + 1)F̄(φK−2(bK−2))

N−K f̄ (φK−2(bK−2))φ
′
K−2(bK−2)

Noting that φK−2(bK−2) = v, and hence, φ
−1
K−1(φK−2(bK−2)) = bK−1. Thus the above simplifies to

bK−1−bK−2 =
F̄(v)

(N−K +1) f̄ (v)
1

φ ′K−2(bK−2)
(12)
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Now, using equations (10) and (12) to solve for f̄ (v)
F̄(v) we have

v = bK−1 +

(
N−K +1

N−K

)
(bK−1−bK−2)

φ ′K−2(bK−2)

φ ′K−1(bK−1)
.

Lastly, using the mappings from distributions of bids to the distribution of valuation we get

v = bK−1 +

(
N−K +1

N−K

)
(bK−1−bK−2)

gK−2(bK−2)

gK−1(bK−1)
(13)

Equations (9) and (13) are the results for recovery of valuations.

Lastly, for the expression for f̄ (v)
F̄(v) for K ≥ 2. Start with the payoff in an arbitrary round k

Πk(v,bk,yk−1) =

φk(bk)∫
v

(v− φ
−1
k (x))d

(
F̄(x)

F̄(yk−1)

)N−k

+

yk−1∫
φk(bk)

Πk+1(v,v,x)d
(

F̄(x)
F̄(yk−1)

)N−k

.

First order conditions imply

bkF̄(φk(bk))
N−k−1 =

φk(bk)∫
v

φ
−1
k+1(x)dF̄(x)N−k−1

Differentiate the above with respect to bk, rearranging, and using the mappings from distributions

of bids to valuations gives us

f̄ (v)
F̄(v)

=
d log F̄(v)

dv
=

1
(N− k−1)(bk+1−bk)φ

′
k(bk))

=
f (v)

(N− k−1)(bk+1−bk)gk(bk)
.

B.4. Identification of F̄ and F . In this section we show that the result from GL can be applied in

our setting as well under the assumption of rectangularity. As we discussed before in section 3.4.2

the advantage of this assumption is that under it bidders worst-case beliefs do not depend on their

own valuation which limits of number of objects that need to be identified. Suppose K = 2. Let

v = b2 +

(
N−1
N−2

)
(b2−b1)

g1(b1)

g2(b2)
≡ ζ (b1,b2,G1,G2).(14)

The following is the identification result from GL.

Proposition B.1. (Proposition 5.5 in Ghosh and Liu (2021)) For any distributions GGG1 and GGG2, there

exist distributions F, F̄ : [v,v]→ [0,1] such that GGG1 and GGG2 are the equilibrium joint distribution of

bids in rounds 1 and 2 of a sequence of first-price auctions with ambiguity if and only if
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C1 : The joint distribution of bids in any round is given by

GGGk(b1, . . . ,bN−k+1) =
N−k+1

∏
i=1

Gk(bi).

C2 : b1 = b2 and b1 < b2. Furthermore, there exists an increasing function ψ(·) such that

ψ(bi,2) = bi,1 ≤ bi,2 for i ∈ {1, . . . ,N}, and bi,k is bidder i’s bid in auction round k. Finally,

G2(b)≤ G1(b) for any b.

C3 : The function ζ (ψ(b2),b2,G1,G2) is strictly increasing on [b2,b2].

Moreover when F̂ , F̄ exist they are unique with support [v,v] and satisfy the equations F(v) =

G2(ζ
−1(v,G1,G2)) and (11).

The above result shows how round specific bid distributions can be used to identify the distribu-

tions F and F̄ in sFPAS. Due to Corollary 3.7 this result from GL applies to our setting of sSPAs

as well as long as K ≥ 3.
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