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Abstract

Social media platforms govern the exchange of information between users by provid-
ing personalized feeds. This paper shows that the pursuit of engagement maximiza-
tion, driven by monetary incentives, results in low-quality communication and the
proliferation of echo chambers. A monopolistic platform disregards social learning
and creates feeds consisting of messages from like-minded individuals. However, the
platform could create value by using its privileged information to design algorithms
that balance learning and engagement, thereby maximizing users’ welfare. We find
that competition alone is not enough to discipline platforms to adopt such algo-
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would eliminate network effects, and competition would ensure that every platform
chooses the socially optimal algorithm in equilibrium.
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1 Introduction

More than a third of Americans get their news from Facebook1, which has 2.9 billion
users worldwide. Another platform owned by Meta, Instagram, has 1.1 billion users.
While both platforms were once considered harmless places for communication and con-
tent sharing, this is no longer the case. They have been criticized for causing polarization
and spreading misinformation, promoting echo chambers, and fueling hate speech2. The
2016 US presidential election was a significant example (Solon, 2016), as Facebook was
accused of failing to combat fake news. However, the biggest issue is not the leniency of
the platforms, but the impact of personalized content. The News Feed is a customized
scroll of friends’ content and news stories that appears on most social media platforms.
Since 2018, it is no longer chronological, but instead, a proprietary algorithm controls
what appears on the feed. The algorithm considers factors such as the users’ friends,
joined groups, liked pages, targeted advertisers, and popular stories to provide a person-
alized feed3. Since platforms’ revenues come from advertising, their primary goal is to
maximize engagement, which may not align with promoting informative communication.
When the feed was chronological, observing a portion of one’s neighbors could be repre-
sentative of the whole community or even society. However, this is no longer the case, and
it seems likely that under personalized feeds, agents will be biased and make incorrect
extrapolations. The following quote explains this tension. Lauer (2021): “if Facebook em-
ployed a business model focused on efficiently providing accurate information and diverse
news, rather than addicting users to highly engaging content within an echo chamber, the
algorithmic outcomes would be very different”.

Two main tendencies have emerged when proposing policies to alleviate this situa-
tion: intervening directly on the information that is passed on and intervening on the
platform structure. Information-targeting policies include censoring, fact-checking, nudg-
ing, or providing platform-generated content. Structural interventions could consist of
capping the depth or breadth of the network, shutting down certain communities (de-
platforming), or regulating the level of homophily that the algorithm can induce. Our
work follows a market structure approach, examining the incentives of an engagement-
maximizing monopolist platform when providing users with a personalized feed. We find
that the monopolist optimally provides a feed in which the messages of the most similar
neighbors are shown, often making social learning less informative than the traditional
random feed where users observe friends’ messages in chronological order4. This is a

1 See Gottfried and Shearer (2019).

2 See Willmore (2016) or Allcott and Gentzkow (2017).

3 For an in-depth investigation of Facebook’s algorithm and its negative effects, see Horwitz et al. (2021)
based on a review of internal documents.

4 Some platforms, as Facebook or Instagram, provide users with a personalized feed by default and it
is not possible to fully implement a chronological feed on one’s device, while Twitter allows the user
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socially sub-optimal outcome, so we investigate whether competition can incentivize plat-
forms to adopt the socially optimal algorithm (which we define as simply the one that
maximizes users’ sum of utilities). However, due to network effects, in equilibrium, plat-
forms choose the same algorithm and divide the user base among them. To address this
issue, we propose interoperability as a solution. Interoperability allows for total infor-
mation exchange between platforms, removing network effects. With interoperability,
competition disciplines platforms, forcing them to use the socially optimal algorithm in
equilibrium.

It is worth noting that most successful platforms, such as Facebook, Instagram, Tik-
Tok, and Twitter, are enormous in size and monopolies in their respective fields5. Al-
though these platforms can be broadly described as social media platforms that enable
public posting and private communication, they differ in core functionality. Each site
dominates a specific field: photography (Instagram), videos (TikTok), reciprocal commu-
nication with friends (Facebook), and micro-blogging (Twitter). When a new platform
emerges, it either finds a niche and quickly becomes a monopolist or must compete with
the incumbent. In the latter case, the entrant either has significantly better quality and
can overcome existing network effects (e.g. Facebook vs. MySpace) or the incumbent is
protected by network effects (e.g. Twitter vs. Mastodon). Even though a large platform
might be providing a suboptimal service through its personalized feed, its size makes it
up against a competing platform with a better service but smaller user base6. Interoper-
ability can put an end to this phenomenon by allowing users to choose the platform that
provides them with the best service, regardless of its size. With interoperability, compet-
ing platforms would be forced to implement the socially optimal algorithm, as otherwise,
users would leave.

We highlight three main contributions of this paper: first, we build a model of
communication and learning through personalized feed, where an strategic engagement-
maximizing platform chooses an algorithm and users post messages. We assume that an
individual (she) joins a social media platform for two main reasons. First, to engage in
communication with peers about some underlying topic. This social activity generates
utility through two channels: expressing one’s own views (in the sense of being loyal to
own innate opinions; sincerity), and conforming with the rest (in the sense of matching
the opinions that neighbors have shared; conformity7). Second, to learn about some state

to choose directly in the timeline screen.

5 Regarding monopoly structures in the social media platform market, a quote from the Bundeskartel-
lamt (the German competition protection authority) in its case against Facebook (B6-22/16, “Face-
book”, p. 6) states: “The facts that competitors are exiting the market and there is a downward trend
in the user-based market shares of remaining competitors indicate a market tipping process that will
result in Facebook becoming a monopolist”. (Franck and Peitz, 2022).

6 The outside option of leaving social media platforms is a difficult decision for an individual due to the
fear of missing out (Przybylski et al., 2013)
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of the world and make the best decision outside the platform. The Covid-19 vaccine could
serve as an example: even though vaccine effectiveness is a purely scientific matter, there
has been a considerable public debate about it8, with individuals sharing their views on
social media platforms for both sincerity and conformity, but also for learning purposes.
Learning is needed to make (the best possible) decision on getting vaccinated or not.
Maximizing revenues means maximizing user engagement9, which is a function of the
utility users derive from interacting on the platform. The idea is that a pleased user will
return to the platform. In contrast, learning is seen as a long-term reward and does not
affect engagement. Users communicate by sending messages about the topic of interest
and learn through reading the messages that appear in their personalized feed. The feed
is a subset of neighbors’ messages the platform chooses. We assume that users’ private
information is platform’s knowledge, so it can design the feed conditional on it. The
degree of machine learning techniques sophistication and the amount of data available
justify this assumption.10 We find that in equilibrium, a revenue-maximizing monopolist
platform chooses an algorithm that shows to each user the messages of her most similar
neighbors—we call this algorithm “closest” algorithm. In turn, users report truthfully
their innate opinion. We also show that, surprisingly, this algorithm does not always
harm social learning when users are sophisticated. Still, the “user optimal” algorithm is
socially preferred, so we wonder how this outcome could be implemented. This leads to
the second contribution of the paper.

Based on the platform-users game introduced above, we build a simple extension to
study competition. Platforms simultaneously decide on which algorithm to implement,
and then users choose which platform to join. Afterwards, the game of communication
and learning through personalized feed takes place. We find that the existence of network
effects permits platforms to keep playing the “closest” algorithm in equilibrium. Even if
a platform implements the socially optimal algorithm, a larger user base could make the
“closest” algorithm implemented by the other platform preferable for a given user. Thus,
competition is not enough to implement the socially optimal algorithm in equilibrium.
Intervention is then justified, and we look for a regulation policy that might work. This

7 Conformity is a driving-force in social media behavior (Mosleh et al., 2021). It is defined as the act
of matching attitudes, beliefs and behaviors to group norms (Cialdini and Goldstein, 2004). Here
we treat conformity as a behavioral bias included at the outset, but it has been widely found as a
product of rational models. See Bernheim (1994) for a theory of conformity and Chamley (2004) for
an overview.

8 The acceptance of the Covid-19 vaccine in US and UK declined an average of 6 percentage points due
to misinformation (Loomba et al., 2021).

9 An ad-revenue-maximizing platform as in Mueller-Frank et al. (2022) maximizes revenues by maxi-
mizing the amount of users that observe advertisements.

10 Facebook’s FBLearner Flow, a machine learning platform, is able to predict user behavior through the
use of personal information collected within the platform. See Biddle (2018) for a news piece on it.
The early paper Kosinski et al. (2013) already showed that less sophisticated techniques could predict
a wide range of personal attributes by just using data on “likes”.
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is our third contribution. We claim that the enforcement of interoperability removes net-
work effects and forces competing platforms to implement the socially optimal algorithm.
Interoperability allows platforms to connect, so that users from different platforms can
be neighbors. Hence, users will choose the platform that provides with the best service,
disregarding how many users it has. Consequently, any platform must implement the
socially optimal algorithm in equilibrium, as otherwise it would be empty.

The rest of the paper is organized as follows. After the literature review, Section 2
introduces our basic environment for a monopoly platform and n users game. Section 3
analyzes the equilibrium of that game and characterizes the main algorithms appearing
in the model. Section 4 extends the model to study platform competition and Section 5
analyzes the effects of interoperability. Section 6 concludes.

1.1 Related literature

This paper is related to two areas of literature. The first area studies the impact of
revenue-maximizing platforms on social learning. This is a growing field, and we highlight
two papers for their similarities to our work. In a model where agents decide whether or
not to pass on (mis)information, Acemoglu et al. (2021) studies the algorithm choice of the
platform, which maximizes engagement. They show that when the platform has the ability
to shape the network (which is equivalent to choosing personalized feeds, but without
constraints on pre-existing neighborhoods), it will design algorithms that create more
homophilic communication patterns, forming echo chambers. Mueller-Frank et al. (2022)
build a model of network communication and advertising where the platform controls
the flow of information. In equilibrium, the platform may manipulate or even suppress
information to increase revenue, even though this ultimately decreases social welfare.
Additional research on media platforms providing distorted content for economic reasons
can be found in Reuter and Zitzewitz (2006), Ellman and Germano (2009), Abreu and
Jeon (2019), and Kranton and McAdams (2020). The topic of homophilic communities
and echo chambers is discussed in Sunstein (2017). Hu et al. (2021) shows that rational,
inattentive users prefer to learn from like-minded neighbors, while Törnberg (2018) shows
that echo chambers harm social welfare by increasing the spread of misinformation.

Not just the mentioned literature, but also empirical work (cf. Sagioglou and Gre-
itemeyer (2014) or Levy (2021)) reveals the need for further intervention or regulation
on social media platforms. This topic constitutes the second strand to which our paper
is closely related. Franck and Peitz (2022) puts context to social media platform com-
petition, claiming that market power (mainly represented by the network effects) leads
to suboptimal outcomes for society. The current mechanics suggest that it may not be
the platform with the best offer that dominates the market. Popiel (2020) and Evens
et al. (2020) assert that regulations to manage digital platform markets in the US and
EU, respectively, are inadequate in addressing their negative effects. In response to this
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need, there has been a surge of recent papers examining interventions. Regarding struc-
tural interventions, Jackson et al. (2022) examines how limiting the breadth and/or depth
of a social network improves message accuracy. The work of Benzell and Collis (2022)
aligns with our own, as they analyze the optimal strategy of a monopolist social media
platform and evaluate the impact of taxation and regulatory policies on both platform
profits and social welfare. However, in their model, the platform chooses net revenue per
user rather than shaping communication among users. The authors apply their model
to Facebook and find that a successful regulatory intervention to achieve perfect com-
petition would increase social welfare by 4.8%, which supports our theoretical findings.
Finally, Agarwal et al. (2022) provides empirical evidence of the negative consequences
of deplatforming (shutting down a community on a platform), mainly due to migration
effects, which supports our call for globally applicable regulations.

There is a plethora of recent empirical contributions regarding informational inter-
ventions: Habib et al. (2019), Hwang and Lee (2021) or Mudambi and Viswanathan
(2022). Mostagir and Siderius (2023b) models community formation and shows that the
effect of interventions is non-monotonic over time. Additionally, there is another im-
portant aspect to consider when analyzing informational policies: Mostagir and Siderius
(2022) demonstrates that cognitive sophistication matters when faced with misinforma-
tion, and Mostagir and Siderius (2023a) finds that different populations (Bayesian and
DeGrootians) react differently to certain interventions. While some papers, such as Mosta-
gir and Siderius (2023a), include cases where sophisticated users are outperformed by their
naive counterparts, Pennycook and Rand (2019) and Pennycook and Rand (2021) show
that higher cognitive ability is associated with better ability to discern fake content. In
our model, the results hold for both Bayesian and DeGrootian users, but the sophisticated
users always learn better. Finally, we also relate to the literature on learning in networks,
for both naive and sophisticated users: DeMarzo et al. (2003), Acemoglu and Ozdaglar
(2011), Jadbabaie et al. (2012), Molavi et al. (2018) or Mueller-Frank and Neri (2021).

2 Model

We first outline the model. There is an underlying state of the world denoted by θ ∈ R,
and every user receives a private signal about it. Users join a social media platform
to communicate through messages, deriving utility through two streams. Within-the-
platform utility depends on the posted messages and the users’ original opinions about
θ. The larger the within-the-platform utility, the more engaged a user is. Outside-the-
platform utility, referred to as learning, is given by a quadratic loss function accounting for
the deviation of the user’s action from θ. Such an action is based on both private signals
and the messages learnt within the platform. We could interpret within-the-platform
utility as media user utility, representing the immediate payoff a myopic consumer obtains
while spending time in the platform. Total utility, on the other hand, corresponds to a
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sort of citizen utility, capturing the overall payoff a conscious agent derives from her entire
experience on the platform. Considering these aspects of user utility, the platform selects
a subset of neighbors whose messages appear in each user’s personalized feed by leveraging
information on users’ similarity. The platform’s revenue is given by total engagement, so
its primary concern is maximizing users’ within-the-platform utility.

Now, let us describe the model in detail. There is a set, N , of n users that join a social
media platform described by the undirected graph G. Each node in the graph represents
a user in the platform, and two nodes are linked if and only if they are friends on the
platform. The set of user i’s friends—her neighborhood—is called Ni. Each user receives
a private signal about θ, θi ∈ R. Conditional on θ, signals {θ1, ..., θn} are jointly normal
and their structure is given by:


θ1

θ2
...

θn

 ∼ N (θ,Σ) ,

where θ = (θ, ..., θ) and Σ is an n × n symmetric and positive definite matrix where
Σii = σ2 for every i and Σij = Cov(θi, θj) for every i, j. We denote by ρij the correlation
between θi and θj, so that ρij = Σij

σ2 for every i, j. We assume improper priors11 on θ. The
random variable θi is user i’s private opinion on θ, which is based on inherent personal
characteristics but also on information collected privately12. Users know their private
signals, the distribution of all signals, the covariance matrix Σ, and the distribution of
the state of the world. Thus, user i’s posterior distributions are θj|θi ∼ N (θi, σ2(1− ρij))
for all j ∈ N and θ|θi ∼ N (θi, σ2).

Regarding the communication phase, each user i simultaneously posts a message mi ∈
R. Then, she observes her personalized feed. This subset is strategically chosen by the
platform through an algorithm that will be defined later. In reality, social media platforms
order (rank) friends’ posts and users observe as many as their scrolling time allows them
to. For the purpose of this analysis, we assume that all users spend a fixed amount of
time reading messages, i.e., the number of observed messages is exogenously fixed, and
that the amount of available friends’ posts exceeds such a number. For simplicity, we
work under the assumption that every user observes the same number of messages, but
this is without loss of generality. The key assumption here is exogeneity: neither the users
nor the platform are able to adjust the number of messages that will be read. Although

11 For a discussion of improper priors, see Hartigan (1983).

12 The signal θi can be interpreted as the information the user has about the state of the world prior
to her entry on the social platform. As information sources, as well as ideology, might be similar,
different users’ private information might be correlated. This is captured by the matrix Σ.
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user behavior on social media platforms is highly diverse, existing data support these
assumptions13.

Users derive utility after communication takes place, following two payoff streams; (i)
sincerity: agents are punished for deviating from their own signals, and (ii) conformity:
matching others’ opinions is rewarded. This utility is called within-the-platform utility
and is given by

ui(mi;m−i,Si) = −β
Sincerity︷          ︸︸          ︷

(θi −mi)2−(1− β)

Conformity︷                  ︸︸                  ︷∑
j∈Si

(mi −mj)2

k
, (1)

where β ∈ (0, 1) represents the weight each of the streams receives and Si denotes user
i’s personalized feed. We assume the cardinality of all {Si}ni=1 to be exogenously set to
k ∈ N. Within-the-platform utility is not the only source of utility for users, as they
are also concerned about taking an action that matches the state of the world. Platform
communication allows them to learn about θ and optimize the decision making proccess.
Deciding on the action conditional on the messages learnt is what we call learning. Total
utility is the weighted average of within-the-platform utility and learning:

Ui(mi,m−i, ai,Si) = λ

−β(θi −mi)2 − (1− β)
∑
j∈Si

(mi −mj)2

k

− (1−λ)
Learning︷        ︸︸        ︷

(ai − θ)2 . (2)

The optimal action a∗i is the best guess of θ conditional on the observed messages, and
λ ∈ (0, 1) weights the relative importance of within-the-platform and learning utilities.
Thus, user i chooses a message mi and, after learning messages {mj}j∈Si

,she chooses an
action ai to maximize her (expected) utility Ui.

Next, we introduce the platform as a strategic agent of the game. It knows G and Σ,
but not θ or {θi}ni=1. For each user i it chooses the set of neighbors that she will observe
messages from. As explained above, this set is called personalized feed and denoted by
Si, has cardinality k (so it is a subset of Ni), and G is such that k ≤ mini∈N{|Ni|} for all
i. We define the platform’s algorithm as the mapping that provides for each user a feed:

F : N −→ ∏n
i=1Ni

(1, 2, ..., n) 7→ (S1, ...,Sn).

Engagement is defined as an increasing non-negative function of the sum of every
user’s within-the-platform utility. As explained above, the intuition hings on the fact
that the happier a user is in the platform, the higher the probability of her coming back

13 According to the statistics portal Statista, an average Facebook user has 335 friends and spends 35
minutes on the platform, reading between 10 and 50 posts. However, at least 300 stories are produced
in her network. Finally, on average, users tend to consistently allocate a similar amount of screen
time to social media platforms.
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in the subsequent periods. For simplicity, we assume that such a function is the identity
and as there are no costs in the model, profits are directly given by engagement:

Πp(m,F) =
n∑
i=1

ui(mi,m−i,Si).

The game of communicating and learning through personalized feed described above is
played by the platform and the users, and it consists of the following sequence of events:

1. The platform chooses an algorithm F and commits to it.
2. Each user observes her private signal θi.
3. Each user i sends a message mi ∈ R.
4. Each user i observes the messages in her feed Si and chooses an action ai.
5. The state of the world is revealed and payoffs are realized.

3 Equilibrium

Here we describe and analyze the equilibrium of the game. The equilibrium concept is
Bayes-Nash equilibrium. The platform’s strategy consists of the choice of an algorithm
F . In turn, each user decides on a pair (mi, ai) consisting of a message and an action that
maximize her expected payoff given F . Note that at the time of choosing the action, the
user has learnt the messages posted in her personalized feed. An equilibrium is given by
pairs of messages and actions for the users and an algorithm for the platform. Note that
the platform chooses an algorithm that maximizes its benefits given the induced equilib-
rium strategies of the users in the subsequent subgame. We restrict user i’s messaging
strategy to be a linear function of θi, i.e., mi(θi) = aiθi + bi with ai, bi ∈ R. Then, we find
that in equilibrium, users report truthfully their private signal and the optimal algorithm
for the platform is one that shows, for each user, the messages of those neighbors who
feature the highest correlation with her (in other words, the most similar, or the closest
friends). We refer to such an algorithm as the “closest” algorithm C.

Before formally deriving the equilibrium of the game, let us show two auxiliary results.
First, we prove that when users report truthfully their types, it is equivalent for the
platform to maximize engagement and to maximize each user’s within-the-platform utility
separately. I.e., there are no inter-dependencies across feeds. This result also implies
that an algorithm that maximizes each user’s individual utility is precisely the utilitarian
optimal algorithm that a social planner would implement.

Lemma 3.1. If mi = θi for all i ∈ N , then14

argmax
(S1,...,Sn)

{
n∑
i=1

ui

}
=
(

argmax
S1⊆N1

{u1}, ..., argmax
Sn⊆Nn

{un}
)
.

14 We assume, without loss of generality, that the feeds {Si}n
i=1 that maximize engagement are unique.
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Proof. By definition of within-the-platform utility, if types are reported truthfully the
only feed that affects user i is Si. Then,

max
(S1,...,Sn)

{
n∑
i=1
Ep[ui]

}
= max

(S1,...,Sn)


n∑
i=1
Ep

−β(θi −mi)2 − (1− β)
∑
j∈Si

(mi −mj)2

k

 =

= max
(S1,...,Sn)

−
n∑
i=1

1− β
k

∑
j∈Si

Ep[(θi − θj)2]
 =

n∑
i=1

 max
(S1,...,Sn)

−1− β
k

∑
j∈Si

Ep[(θi − θj)2]


 =

=
n∑
i=1

(
max
Si⊆Ni

{Ep[ui]}
)
.

�

Next, we derive the distribution of θ conditional on the messages observed in the
personalized feed if there is truthful reporting, i.e., {θj}j∈Si

.

Lemma 3.2. The posterior distribution of θ conditional on {θj}j∈Si
is given by

θ|{θj}j∈Si
∼ N

(
1tΣ−1

Si
θSi

1tΣ−1
Si
1
,

1
1tΣ−1

Si
1

)
,

where 1 is a n-vector of ones, ΣSi
is the submatrix of Σ induced by Si and θSi

=
(θj1 ... θjn), with jr ∈ Si.

Proof. Let us assume, for simplicity, that the signals user i observes in her personal-
ized feed Si are {θ1, ..., θk}. We know that (θ1 ... θk) ∼ N (θ,ΣSi

). Now, the posterior
distribution of θ conditional on {θj}Si

is characterized by its pdf:

g(θ|{θj}Si
) = (2π det(ΣSi

))−1/2 exp
[
−1

2(θ − θSi
)tΣ−1

Si
(θ − θSi

)
]

=

= (2π det(ΣSi
))−1/2 exp

[
−1

2
(
θ21tΣ−1

Si
1− 2θ1tΣ−1

Si
θSi

+ θtSi
Σ−1
Si

θSi

)]
.

Treated as the pdf of the posterior distribution of θ, the above expression is equivalent to

g(θ|{θj}Si
) =

√
1tΣSi

1

2π exp
[
−1

2

(
θ21tΣ−1

Si
1− 2θ1tΣ−1

Si
θSi

+
(θtSi

Σ−1
Si
1)2

1tΣ−1
Si
1

)]
=

=
√
1tΣSi

1

2π exp

−1
2


θ −

1tΣ−1
Si

θSi

1tΣ−1
Si
1√

1
1tΣ−1

Si
1


2 .

Thus,

θ|{θj}j∈Si
∼ N

(
1tΣ−1

Si
θSi

1tΣ−1
Si
1
,

1
1tΣ−1

Si
1

)

as we wanted to show. �

Next, we derive the equilibrium of the game.
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Proposition 3.3. If we consider linear messaging strategies for the users, the unique
Bayesian Nash equilibrium of the game is given by users playing

(
m∗i = θi, a

∗
i =

1Σ−1
Si

θt
Si

1Σ−1
Si
1t

)
and the platform playing C, the “closest” algorithm.
Proof. We analyze first the optimal message for the user15. Given user i’s type θi, the
algorithm F , and the matrix Σ, she chooses a message mi ∈ R such that it maximizes
her expected within-the-platform utility, as learning is not affected by this choice:

Ei[ui(mi,m−i,F)|θi,F ] = −β(θi −mi(θi))2 − (1− β) 1
k
Ei

 ∑
j∈Si(Σ)

(mi(θi)−mj(θj))2|θi,F

 =

= −β(θi −mi(θi))2 − (1− β)
k

kmi(θi)2 +
∑

j∈Si(Σ)
Ei
[
mj(θj)2|θi,F

]
− 2mi(θi)

∑
j∈Si(Σ)

Ei [mj(θj)|θi,F ]

 .
The first order condition with respect to mi yields

mi = βθi + (1− β)1
k

∑
j∈Si(Σ)

Ei [mj(θj)|θi,F ] . (3)

Assuming linear messaging strategies (mi(θi) = aiθi + bi, for some ai, bi ∈ R and all
i), we can work further on the expectation term from (3) for each j ∈ Si(Σ) (note that
given the algorithm and the covariance matrix, the user anticipates which neighbors will
appear in her feed) and obtain:

Ei [mj(θj)|θi,F , j ∈ Si] = Ei [ajθj + bj|θi,F , j ∈ Si] =

= ajEi[θj|θi,F , j ∈ Si] + bj = ajθi + bj.

Plugging this into (3) yields

mi = βθi + (1− β)1
k

∑
j∈Si(Σ)

(ajθi + bj) = βθi + (1− β)(āiθi + b̄i),

where āi := ∑
j∈Si

aj

k
and b̄i := ∑

j∈Si

bj

k
. This leads to a system of equations given by

 ai = β + (1− β)āi
bi = (1− β)b̄i

∀i ∈ {1, ..., n}

whose unique solution is ai = 1 and bi = 0 for all i ∈ N . Thus, the optimal message
is m∗i = θi and every user reports truthfully her type. Now, the platform chooses an
algorithm F such that

(S1, ...,Sn) = argmax
(S1,...,Sn)⊆

∏
Ni

−
n∑
i=1

1
k

∑
j∈Si(Σ)

Ep
[
(θi − θj)2

] .
15 As the utility function is additive separable and the choice of mi does not affect that of ai and vice

versa, we can study the optimal decisions independently.
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But by Lemma 3.1, this is equivalent to maximizing each user’s within-the-platform utility,
i.e., to finding

Si = argmax
Si⊆Ni

− ∑
j∈Si(Σ)

Ep
[
(θi − θj)2

] =

= argmax
Si⊆Ni

− ∑
j∈Si(Σ)

(2σ2 − 2Cov(θi, θj))

 = argmax
Si⊆Ni

 ∑
j∈Si(Σ)

Cov(θi, θj)

 ∀ i.

The algorithm that induces such feeds is precisely C, the “closest” algorithm. The platform
shows each user the messages of those neighbors that present the higher correlation to
her. Thus, in equilibrium, m∗i = θi for all i and F = C. Next, we calculate user i’s
optimal action. She maximizes E[(ai− θ)2] conditional on the observed messages. Hence,
the optimal action given {mj}j∈Si

= {θj}j∈Si
is a∗i = Ei[θ|{θj}j∈Si

] =
1Σ−1
Si

θt
Si

1Σ−1
Si
1t by Lemma

3.2. �

Under C, each agent observes a vicinity composed of her most similar neighbors, disre-
garding how close their messages would be to θ in expected terms. The “closest” algorithm
generates echo chambers: each user learns the messages of her like-minded neighbors. Still,
the user benefits from the k messages received to learn about θ. Thus, joining the plat-
form improves learning compared to an outside option in which she only knows θi. Note
that the monopolist platform has no incentive to care about users’ learning, as it does
not affect engagement. The action ai does not play a role when the platform chooses its
optimal algorithm. This might not be desirable from a social point of view.

Let us study learning in more detail. Note that choosing such an action ai = Ei[θ|{θj}j∈Si
]

implies that the expected value of learning is precisely the conditional variance of θ given
what the user learns by reading her personalized feed Si induced by some algorithm F ,
i.e., {θj}j∈Si

:

E
[
(ai − θ)2|{θj}j∈Si

]
= E

[
(Ei[θ|{θj}j∈Si

]− θ)2|{θj}j∈Si

]
= Var [θ|{θj}j∈Si

] .

Thus, algorithms could be ranked in learning terms by comparing the conditional variance
they induce. Let us define the “user optimal” algorithm (U) as the one that maximizes
each user’s (expected) utility. It is the best service a platform can provide with to the
user. For each user i, the algorithm induces the following feed:

SUi = argmax
Si⊆Ni

−λ(1− β)1
k

∑
j∈Si

Ep[(θi − θj)2]− (1− λ)Ep[(ai − θ)2]

 .
Then, as ai = Ei[θ|{θj}j∈SUi ] and the only feed that affects user i’s learning is Si, we can
write the following corollary to Lemma 3.1:
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Corollary 3.4. The “user optimal” algorithm is the utilitarian optimal algorithm:

argmax
(SU1 ,...,SUn )

{
n∑
i=1

Ui

}
=
argmax
SU1 ⊆N1

{U1}, ..., argmax
SUn⊆Nn

{Un}

 .
Finally, we highlight another algorithm, the “random” algorithm (R), mainly because

of its (past) relevance. The “random” algorithm provides user i with a feed consisting of
k messages chosen arbitrarily in Ni. It is the feed that was implemented in all platforms
before personalized algorithms were introduced in the late 2010s. We refer to Appendix
A for an explicit example of how the algorithms provide personalized feeds to users.

In terms of overall utility, the “user optimal” algorithm is weakly better than the rest.
It is socially preferred, and we will analyze how to incentivize platforms to implement it.
However, we also devote our attention to study the social consequences of the implemen-
tation of the “closest” algorithm over the “random” algorithm. The “closest” algorithm
always induces larger within-the-platform utility. In terms of learning, we could think
that it works the other way around: as the “closest” algorithm creates an echo chamber
for each user, learning must be harmed. Surprisingly, it is not the case in general. There
are some structures for the signal technology such that learning is improved if the “clos-
est” algorithm is implemented. The following simple example illustrates such a case. We
consider a neighborhood composed by four neighbors, and k = 3. The distribution of the
signals, conditional on θ, is given by:

(θ1 θ2 θ3 θ4)t ∼ N (θ,Σ) ; Σ =


1 0.8 0.7 0.5

0.8 1 0.3 0.6
0.7 0.3 1 0.4
0.5 0.6 0.4 1

 .

The “closest” algorithm induces SCi = {1, 2, 3}. Assume the “random” algorithm induces
SRi = {1, 3, 4}. Posterior variances are Var[θ|{θ1, θ2, θ3}] = 0.58 for the “closest” algorithm
and Var[θ|{θ1, θ3, θ4}] = 0.68 for the “random” algorithm. In this case, learning is better
under the algorithm that the engagement-maximizer platform provides. However, for the
majority of covariance matrix specifications, the “random” algorithm induces a smaller
posterior variance16.

Even though there is no clear domination between the “closest” and the “random”
algorithms, they are inferior to the “user optimal” algorithm regarding social welfare.
We devote the next section to analyzing whether competition would make platforms
implement the “user optimal” algorithm in equilibrium.

16 We are conducting simulations that suggest that around 70% of the times, the posterior variance
induced by the “random” algorithm is smaller than the posterior variance induced by the “closest”
algorith. This is still work in progress.
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3.1 Näıve users

Näıve users are mechanical individuals who share their beliefs and update them using the
DeGroot rule (DeGroot, 1974). Therefore, m∗i = θi and ai = 1

k

∑
j∈Si

mj = 1
k

∑
j∈Si

θj.
Following the reasoning in Proposition 3.3, an engagement-maximizer platform will im-
plement the “closest” algorithm C in equilibrium. However, when applied to näıve users,
the “closest” algorithm always harms learning.

Proposition 3.5. The posterior variance Var
[
θ| 1
k

∑
j∈SCi

θj
]

given the “closest” algorithm
is larger than the posterior variance induced by any other algorithm.

Proof. Before showing that Var
[
θ| 1
k

∑
j∈SCi

θj
]
≥ Var

[
θ| 1
k

∑
j∈SFi

θj
]

for any algorithm F ,
we need to characterize the posterior variance of θ when just the average of the observed
messages is learnt.

The posterior distribution of the average message conditional on θ follows 1
k

∑k
j=1 θj|θ ∼

N
(

1
k

∑k
j=1 θj,

σ2

k
+ 1

k

∑
j∈Si

Σij

)
. As we have assumed improper priors for θ,

θ|1
k

k∑
j=1

θj ∼ N

1
k

k∑
j=1

θj,
σ2

k
+ 1
k

∑
j∈Si

Σij

 .
Hence, Var[θ| 1

k

∑
j∈Si

θj] = σ2

k
+ 1

k

∑
j∈Si

Σij. The “closest” algorithm features the largest
posterior variance among any algorithm, because by definition it chooses the neighbors
whose signals feature the largest covariances with that of i. �

In the case of näıve users, we can state that the “closest” algorithm harms learning.
Next section explores how to incentivize platforms to move from this algorithm to the
“user optimal” algorithm. The results are valid both for sophisticated an näıve learners.

4 Platform competition

Let us study platform competition, restricting ourselves to the “closest” algorithm and the
“user optimal” algorithm, i.e., the algorithm that is preferred by a monopolist engagement-
maximizer platform and the algorithm that is socially optimal, respectively. The model
is as follows. There are two platforms, A and B, which simultaneously (at t = 0) decide
on which algorithm to implement: F ∈ {C,U}. In the subsequent period (t = 1), all n
users simultaneously decide which platform to join. Once algorithms and platforms are
chosen, the previously studied game of communicating and learning through personalized
feed takes place (at t = 2) and payoffs are realized.

Following Proposition 3.3, for any algorithm Fj, every user will truthfully report her
signal in equilibrium, and her action will be a∗i = E[θ|{θj}j∈SFj

i

], where Fj is the algorithm
platform j selects. Equilibrium payoffs are denoted by UFj (ρ), where ρ ∈ {0, ..., n} is the
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number of users that join platform j. From now on we will always talk about expected
payoffs but we will denote them as UFj (ρ) to simplify notation.

Next, note that the “user optimal” algorithm naturally features network effects: the
more neighbors available for the platform to match the user with, the (weakly) larger
the expected utility. Regarding the “closest” algorithm, we assume parameters β and λ

are such it also features network effects. To be precise, an algorithm F features network
effects if UFj (ρ) ≥ UFj (ρ′) if and only if ρ ≥ ρ′. Moreover, by definition of the “user
optimal” algorithm, it holds that UU(ρ) > UC(ρ) for every ρ. This fact, combined with
the network effects, imply that there exists ρ′ > 1

2 such that if ρ ≥ ρ′, UC(ρ) > UU(1− ρ),
and also that there exists ρ′′ < 1

2 such that if ρ ≥ ρ′, UU(ρ) > UC(1− ρ).

Throughout this section we assume a fixed user base per platform so that it ensures
each user to have at least k neighbors and receive a feed. On top of this, we consider ρ
users that will choose which platform to join. This assumption is made for tractability
terms; we should think in a large ρ compared with a small fixed user base. The equilibrium
concept is Mixed Strategy Nash Equilibrium (MSNE), and we rule out degenerated MSNE
at stage t = 1.

Proposition 4.1. When we restrict users’ platform joining decision to non-degenerated
Mixed Strategy Nash Equilibrium, the equilibrium under platform competition consists
of both platforms A and B playing the “closest” algorithm C and users splitting equally
between them.

Proof. We start by solving the subgame at t = 1. There are three cases:
First, if FA = U and FB = U , there are two PSNE: ρ = n and ρ = 0. The MSNE is

p = 1
2 , where p = P(user i joins platform A). Under the MSNE, the expected number of

users in each platform is ρ = n
2 . Second, if FA = C and FB = C, there are two PSNE:

ρ = n and ρ = 0. The MSNE is p = 1
2 and the expected number of users in each platform

under the MSNE is ρ = n
2 . In third place, if FA = C and FB = U , there are three PSNE:

ρ = n, ρ = 0 and ρ = ρ̄, where ρ̄ > 1
2 is given by UC(ρ̄) = UU(1− ρ̄). However, as ρ ∈ N,

this equilibrium has zero probability of taking place. Now, let us compute the MSNE.
The vector of (p1, ..., pn), where pi is the probability of user i joining platform A, should
satisfy Ei[A] = Ei[B] for all i. Furthermore, by symmetry we see that p1 = ... = pn = p

and

pn−1(UU(1)− UC(n)) + pn−2(1− p)(UU(2)− UC(n− 1)) + ...+

+...+ p(1− p)n−2(UU(n− 1)− UC(2)) + (1− p)n−1(UU(n)− UC(1)) = 0.

Denoting by aj = UU(j)−UC(n+ 1− j) for j ∈ {1, ..., n}, we have (1) |aj| > |an+1−j| for
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all17 j ∈ {n/2, ..., n}. Let us show why:

|aj| > |an+1−j| ⇔ |UU(j)− UC(n+ 1− j)| > |UU(n+ 1− j)− UC(j)|.

This inequality holds because of networks effects, as we see that either UU(j) > UC(j) >
UU(n + 1 − j) > UC(n + 1 − j) if UC(j) > UU(n + 1 − j) or UU(j) > UU(n + 1 − j) >
UC(j) > UC(n + 1 − j) if UU(n + 1 − j) > UC(j). Moreover, we have (2) aj > 0 for all
j ∈ {n/2, ..., n}. Finally, (1) and (2) together imply p > 1

2 . With this in hand, we solve
the subgame at t = 0. Restricting ourselves to non-degenerated MSNE at t = 1, the
closed form of the game is given by:

A|B FB = C FB = U

FA = C
(
n
2 ΠC

(
n
2

)
, n2 ΠC

(
n
2

)) (
pnΠC (pn) , (1− p)nΠU((1− p)n)

)
FA = U

(
(1− p)nΠU ((1− p)n) , pnΠC (pn)

) (
n
2 ΠU

(
n
2

)
, n2 ΠU

(
n
2

))
and it is clear that as p > 1/2, C is strictly dominant and the unique equilibrium is
(FA = C,FB = C). Hence, if we let two platforms compete, both choose to implement the
“closest type” algorithm and users split among both. Platform competition is not enough
to discipline platforms and force them to implement the “user optimal” algorithm. �

5 Interoperability

We define interoperability as the complete interaction between different platforms, which
implies the removal of network effects. Two platforms are interoperable if the users of one
are able to interact with the users of the other. Hence, platform A could use the whole
population to provide each user with the personalized feed it desires: messages posted
in platform B could be displayed in platform A and viceversa. Under interoperability,
UFj (ρ) = UFj (ρ′) for any ρ and ρ′, but also UU(ρ) > UC(ρ′) for any ρ and ρ′. The absence
of network effects directly implies the following result.

Proposition 5.1. Under interoperability, the equilibrium under platform competition con-
sists of both platforms A and B playing the “user optimal” algorithm U and users splitting
equally between them.

Proof. Now, if platform A plays FA = C and platform B plays FB = U , the unique NE
at t = 1 is for every player to join platform B. Hence, at t = 0 the normal form game for

17 We assume n is even; if n is odd, then n/2 should be replaced by n/2 + 1.
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the platforms is given by:

A|B FB = C FB = U

FA = C
(
n
2 ΠC

(
n
2

)
, n2 ΠC

(
n
2

)) (
0,ΠU (n)

)
FA = U

(
ΠU (n) , 0

) (
n
2 ΠU

(
n
2

)
, n2 ΠU

(
n
2

))
It is dominant for both platforms to play F = U , so the equilibrium is (FA = U ,FB =
U , ρ = 1/2) and the social optimum is implemented18. �

6 Conclusion

We have built a model of communication and learning through personalized feed. An
engagement-maximizing monopolist platforms has no incentives to take social learning
into account, so it chooses to show users the messages of those neighbors who are the
most similar to them. This is a suboptimal outcome in social welfare terms. We show
that competition is not enough to incentivize platforms to implement the “user opti-
mal” algorithm in equilibrium. Nevertheless, if interoperability is enforced, competing
platforms will select the socially optimal algorithm in equilibrium. Interoperability is
prevalent in certain telecommunications markets, such as cell phone and email services.
However, implementing it in social media platforms may be more challenging since user
private information is much more substantial, and privacy concerns may arise.

Our model can be further developed to investigate certain aspects that this paper does
not address. Specifically, future research can explore why and how monopolies arise by
constructing a model of dynamic competition with heterogeneous platforms.

18 We have assumed that ΠU (1) > ΠC(1/2), which should hold without further complication.
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A Example

Here we present the feeds that user i, with a neighborhood (Figure 1) composed by 13
users (Ni = 13), would receive under the “closest” algorithm (Figure 2), the “random”
algorithm (Figure 3), and the “user optimal” algorithm (Figure 4). Note that we assume
k = 5.

Figure 1: User i’s neighborhood.

Figure 2: “Closest type” algorithm feed.
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Figure 3: Random algorithm feed.

Figure 4: “User optimal” algorithm feed.
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