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Abstract
In this paper, a social media platform governs the exchange of information among
users with preferences for sincerity and conformity by providing personalized feeds.
We show that the pursuit of engagement maximization results in the proliferation of
echo chambers. A monopolistic platform implements an algorithm that disregards
social learning and provides feeds that primarily consist of content from like-minded
individuals. We study the consequences on learning and welfare resulting from tran-
sitioning to this algorithm from the previously employed chronological feed. While
users’ experience improves under the platform’s optimal algorithm, social learning
is worsened. Indeed, learning vanishes in large populations. However, the platform
could create value by using its privileged information to design an algorithm that
balances learning and engagement, maximizing users’ welfare. We discuss inter-
operability as a possible regulatory solution that would eliminate entry barriers in
platform competition caused by network effects, thereby inducing competing plat-
forms to adopt the socially optimal algorithm.
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1 Introduction

More than a third of Americans get their news from Facebook, which has 2.9 billion
users worldwide (Gottfried and Shearer, 2019). Instagram, another platform owned by
Meta, has 1.1 billion users. While both platforms were once considered harmless places
for communication and content sharing, the current consensus suggests otherwise. They
have been criticized for causing polarization and spreading misinformation, promoting
echo chambers, and fueling hate speech (Silverman, 2016; Allcott and Gentzkow, 2017).
The 2016 US presidential election was a significant example, as Facebook was accused of
failing to combat fake news (Solon, 2016).

However, the biggest issue seems not to be just the leniency of the platforms, but also
the impact of personalized content (Faelens et al., 2021). The news feed is a customized
scroll of friends’ content and news stories that appears on most social media platforms.
Until around 2016, it used to be chronological (posts were displayed in the order they
were written).1 Now, a proprietary algorithm controls what appears on the screen, con-
sidering factors such as the users’ friends, joined groups, liked pages, targeted advertisers,
and popular stories to provide a personalized feed.2 Since platforms’ revenues come from
advertising, their primary goal is to maximize engagement, which may not align with
promoting informative communication. When the feed was chronological, observing just
a few friends from one’s neighborhood could provide a representative view of it. How-
ever, this is no longer the case, and it seems likely that under personalized feeds, agents
will be biased and make incorrect extrapolations (Bandy and Diakopoulos, 2021). The
following quote illustrates this tension (Lauer, 2021): “If Facebook employed a business
model focused on efficiently providing accurate information and diverse news, rather than
addicting users to highly engaging content within an echo chamber, the algorithmic out-
comes would be very different”. Thus, there is a need for research that guides the optimal
regulatory approach, understanding the incentives of platforms in designing their optimal
algorithm and how they would respond to regulation.

Two main trends have emerged when proposing policies to alleviate this situation:
intervening directly on the information that is passed on and intervening on the platform
structure. Information-targeting policies include censoring, fact-checking, nudging, or
providing platform-generated content. Structural interventions could consist of capping
how many times information can be relayed (the depth of the network) or the number of
others with whom a typical user shares information (the breadth of the network), shut-

1 Social media platforms began transitioning from chronological feeds to personalized feeds at different
times. Facebook started implementing personalized feeds in 2009, while Twitter and Instagram tran-
sitioned between 2015 and 2016. Younger platforms, like TikTok, have provided curated content since
their launch.

2 For an in-depth investigation of Facebook’s algorithm and its negative effects, see Horwitz et al. (2021),
which is based on an internal document review.
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ting down certain communities (deplatforming), or regulating the level of homophily that
the algorithm can induce. Our work follows a market structure approach, examining the
incentives of an engagement-maximizing monopolist platform when providing users who
have preferences for expressing their opinion truthfully and to conform with others in
their personalized feed. We find that the monopolist optimally provides a feed in which
the messages of those friends with the most similar views are shown, which often worsens
social learning with respect to the traditional feed where users observe friends’ messages
in chronological order.3 In fact, as the population grows larger, the platform’s optimal
algorithm leads to no learning. It simply matches users with those who perfectly conform
to their views. As this algorithm is sub-optimal for user welfare, we discuss whether com-
petition can incentivize platforms to adopt the socially optimal “user optimal” algorithm
(the one that maximizes user welfare).

Social media platforms feature network effects (the more people use a platform, the
more valuable the platform’s services become), which result in high barriers to entry and
induce a winner-takes-all (or most) market dynamic. To address this issue, we propose
interoperability. Two platforms are interoperable if the users of one are able to interact
with the users of the other. This is the case, for instance, in the cell phone and email
industries. If an entering email company was not permitted to interconnect with Google
or Yahoo, the mail account it provides would be much less useful than a Google or Yahoo
mail account. With interoperability, the entry barrier would be removed and competition
could discipline platforms, forcing them to implement the socially optimal algorithm.

It is worth noting that most successful platforms, such as Facebook, Instagram, Tik-
Tok, and Twitter,4 are enormous in size and monopolies in their respective fields.5 Al-
though these platforms can be broadly described as social media platforms that enable
public posting and private communication, they differ in their core functionality. Each
site dominates a specific field: photography (Instagram), short videos (TikTok), recipro-
cal communication with friends (Facebook), and micro-blogging (Twitter). While network
effects are mainly the cause for this market tipping, personalized algorithms account for
the increase in engagement and addictive behavior in such platforms, independently of
their field (Guess et al., 2023). Moreover, it is rooted in the public consciousness that
personalized feeds create echo chambers, foster polarization and enable the spread of mis-
information, even though their opaqueness poses a challenge in substantiating such claims.

3 Most platforms, among them Facebook or Instagram, provide users with a personalized feed by default.
Twitter, on the other hand, allows allows users to choose their feed’s display mode directly in the
timeline screen.

4 Even though Twitter has been rebranded to X, we stick in this paper to the well known old name.
5 Regarding monopoly structures in the social media platform market, a quote from the Bundeskartel-

lamt (the German competition protection authority) in its case against Facebook (B6-22/16, “Face-
book”, p. 6) states: “The facts that competitors are exiting the market and there is a downward trend
in the user-based market shares of remaining competitors indicate a market tipping process that will
result in Facebook becoming a monopolist.” (Franck and Peitz, 2023).
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Still, there is crescent evidence on the harm platforms cause, both at the platform level,
as Horwitz et al. (2021) report (“[t]ime and again, the documents show, Facebook’s re-
searchers have identified the platform’s ill effects”), and at the consumer level, as Bursztyn
et al. (2023) show (they find that users would be willing to pay to have others, including
themselves, deactivating their TikTok and Instagram accounts). However, platforms are
able to create value through their superior level of information.6 Thus, it is essential
to investigate how personalization algorithms affect social welfare, as their repercussions
have emerged as a significant economic concern.

We highlight three main contributions of this paper. First, we build a model of commu-
nication and learning through personalized feed where a strategic engagement-maximizing
platform chooses an algorithm that provides personalized feeds and users post messages.
We assume that an individual (she) joins a social media platform for two main reasons.
First, to engage in communication with peers about some underlying topic. This social
activity generates utility through two channels: expressing one’s own views (in the sense
of being loyal to own innate opinions; sincerity), and conforming with the rest (in the
sense of matching the opinions that neighbors have shared; conformity).7 The strength
of these incentives depends on model parameters. In particular, we encompass situations
in which conformity is almost negligible. Second, to learn some valuable information (the
state of the world) and make the best decision outside the platform.8 The effectiveness of
the Covid-19 vaccine, which triggered significant public debate,9 is our leading example.
People have used social media platforms to express their views about the benefits and
risks of vaccination, driven by both a desire for sincerity and conformity, as well as the
need for information. Learning was needed to make the best possible decision on getting
vaccinated or not. Simultaneously, expressing dissenting opinions proved to be socially
taxing, as individuals were hesitant to differ from their peers. Users sought to communi-
cate their personal viewpoints or knowledge, recognizing that vaccination was a pivotal
societal concern.

6 Quoting Scott Morton et al. (2019): “The speed, scale, and scope of the internet, and of the ever-more
powerful technologies it has spawned, have been of unprecedented value to human society.”

7 Conformity is a driving-force in social media behavior (Mosleh et al., 2021). It is defined as the act
of matching attitudes, beliefs and behaviors to group norms (Cialdini and Goldstein, 2004). Here
we treat conformity as a behavioral bias included at the outset, but it has been widely found as a
product of rational models. See Bernheim (1994) for a theory of conformity and Chamley (2004) for
an overview.

8 The first component of the utility function is similar to the payoffs in Galeotti et al. (2021), where
agents prefer taking actions closer to those of their neighbors and to their own ideal points. Utility
is given by a weighted average of two loss functions representing miscoordination and distance from
favourite action, and the action is not necessarily a message, as it is in our within-the-platform utility.
However, one of their motivating examples perfectly fits our model: “the action may be declaring
political opinions or values in a setting where it is costly to disagree with friends, but also costly to
distort one’s true position from the ideal point of sincere opinion”.

9 Loomba et al. (2021) find that the acceptance of the Covid-19 vaccine in US and UK declined an
average of 6 percentage points due to misinformation.
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Because of advertising revenues, profit maximization leads platforms to user engage-
ment maximization.10 We define user engagement as being equal to the payoffs users
derive from interacting on the platform. In contrast, learning is seen as a long-term
reward and does not affect engagement. This implies that the platform has no innate
incentives to foster learning. Deciding on how much time to spend scrolling down (for
which the user only takes into account the immediate joy of interacting within the plat-
form) entails a different mental process than that of deciding on which content to post or
even which platform to register on.11 Inside the platform, users communicate by posting
messages about the topic of interest and then learn through reading the messages that
appear in their personalized feed. The feed is a subset of the population from which she
reads the messages. It is designed by the platform, which leverages its information on
users’ similarities in views. We assume the platform knows perfectly how similar users are,
and utilizes this information to maximize its profits. We might think of similarities being
derived from past interactions and users’ personal data by using sophisticated machine
learning techniques.12

Our second contribution is to study the properties of the platform’s optimal algorithm.
We show that it displays to each user the messages of their most similar neighbors.
Remarkably, this result persists even when conformity has minimal weight. We refer to
this algorithm as the “closest” algorithm. In turn, users report truthfully their innate
opinion. Surprisingly, this algorithm does not always harm social learning compared to
the traditional chronological feed. However, when the network grows large, the closest
algorithm provides no learning: a user would be matched with copies of herself. This
contrasts with classical results where large societies learn better (Golub and Jackson,
2010). Remarkably, users are generally satisfied with this outcome, as the payoff stream
coming from conformity is maximized. Still, the closest algorithm is socially sub-optimal,
so we analyze how to improve it in this asymptotic context and propose a measure to
break echo chambers. It consists of adding a user with opposite views to each feed.
This would improve learning (to the point of making it perfect) at a low cost coming
from conformity. The “breaking echo chambers” algorithm outperforms both the closest
and the chronological algorithms in most cases. However, it is plausible that real-world
users may disregard information from a completely opposing source, making its practical

10 An ad-revenue-maximizing platform as in Mueller-Frank et al. (2022) maximizes revenues by maxi-
mizing the number of users that observe advertisements.

11 This assumption could be also interpreted following the Dual Process Theory as in Benhabib and Bisin
(2005). Becoming engaged is a rather automatic process that corresponds with the intrinsic happiness
derived within the platform, while taking explicit decisions (posting messages or eventually choosing
whether to register in a platform) is a control process where the user rationally acts to achieve a goal.
For an overview on Dual Process Theory, see Grayot (2020).

12 Facebook’s FBLearner Flow, a machine learning platform, is able to predict user behavior through the
use of personal information collected within the platform. See Biddle (2018) for a news piece on it.
The early paper Kosinski et al. (2013) already showed that less sophisticated techniques could predict
a wide range of personal attributes by just using data on “likes”.
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enforcement complicated. Moreover, the user optimal algorithm is still socially preferred,
and hence we must consider its practical implementation.

Our third contribution is to discuss whether competition would suffice for platforms to
implement the user optimal algorithm. Due to network effects, this is not necessarily the
case. We show that under almost all conditions, both the user optimal algorithm and the
closest algorithm feature network effects, which creates entry barriers that protect large
incumbents (monopolists) and deter competition. We propose interoperability to elimi-
nate entry barriers by shutting down network effects at the firm level. Interoperability
compels platforms to connect, so that users from different platforms can be neighbors. A
user’s feed would consist in a subset of all her friends, independently of which platform
they are registered in, designed by the platform she has joined. Hence, users will choose
the platform that provides the best service (in this paper, the best algorithm), disregard-
ing how many users it has. Then, competing platforms would be forced to implement the
user optimal algorithm; otherwise, they would risk losing their user base. The pursuit of
this goal aligns with the intentions of EU regulators, as reflected in the Digital Markets
Act,13 which mandates certain large social platforms to achieve interoperability in their
messaging communications in the immediate future. Quoting Kades and Morton (2020):
“Interoperability eliminates or lowers the entry barrier, which is the anticompetitive ad-
vantage the platform has maintained and exploited. Users will not switch to a new social
network until their friends and families have switched. [...] Interoperability causes network
effects to occur at the market level – where they are available to nascent and potential
competitors – instead of the firm level where they only advantage the incumbent.”

The rest of the paper is organized as follows. After the literature review, Section 2
introduces the model. Section 3 analyzes the equilibrium of the game and Section 4 char-
acterizes the main algorithms appearing in the paper. Section 5 deals with the robustness
of the model through some extensions, while Section 6 discusses interoperability in the
context of platform competition. Section 7 concludes.

1.1 Related literature

The effects of personalized feeds on social welfare have not, to the best of our knowledge,
been studied from a theoretical perspective. However, a recent paper by Guess et al.
(2023) examines the empirical effects of Facebook’s and Instagram’s feed algorithms. The
study reveals that transitioning users back to chronological feeds decreases the time they
spend on the platforms as well as their overall activity (i.e., engagement). Additionally,
it leads to a reduction in the proportion of content derived from ideologically like-minded
sources, thereby diminishing the impact of the echo-chamber effect.

13 See regulation (EU) 2022/1925 of the European Parliament and of the council of 14 September 2022
on contestable and fair markets in the digital sector and amending Directives (EU) 2019/1937 and
(EU) 2020/1828.
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In broad terms, our paper is related to two areas of literature. The first area stud-
ies the impact of revenue-maximizing platforms on social learning. This is a growing
field, and we highlight two papers for their similarities to our work. Mueller-Frank et
al. (2022) build a model of network communication and advertising where the platform
controls the flow of information. In equilibrium, the platform may manipulate or even
suppress information to increase revenue, even though this ultimately decreases social
welfare. In a model where agents decide whether or not to pass on (mis)information, Ace-
moglu et al. (2021) studies the algorithm choice of an engagement-maximizing platform.
They show that when the platform has the ability to shape the network, it will design
algorithms that create more homophilic communication patterns. Thus, in line with our
results, both papers find that platforms’ incentives are not aligned with users’ preferences
and that engagement-maximizing behavior harms social welfare. Homophilic communi-
cation patterns, commonly known as echo chambers or “filter bubbles”, were introduced
in Pariser (2011): to increase metrics like engagement and ad revenue, recommendation
systems connect users with information already similar to their current beliefs. This
hypothesis is further discussed in Sunstein (2017), while Chitra and Musco (2020) exper-
imentally check its effects on polarization and show the large impact of minor algorithm
changes. Relatedly, Demange (2023) shows that platforms promote the visibility of their
most influential individuals. Additional research on media platforms providing distorted
content for economic reasons can be found in Reuter and Zitzewitz (2006), Ellman and
Germano (2009), Abreu and Jeon (2019), and Kranton and McAdams (2022). Hu et al.
(2021) shows that rational, inattentive users prefer to learn from like-minded neighbors,
while Törnberg (2018) shows that echo chambers harm social welfare by increasing the
spread of misinformation.

Not just the mentioned literature, but also empirical work (Sagioglou and Greite-
meyer, 2014; Levy, 2021) reveals the need for further intervention or regulation on social
media platforms. This topic constitutes the second strand to which our paper is closely
related. Franck and Peitz (2023) provides perspective on social media platform compe-
tition, claiming that market power (mainly represented by the network effects) leads to
suboptimal outcomes for society. It suggests that it may not be the platform with the
best offer that dominates the market. Biglaiser et al. (2022) provides a micro-foundation
for incumbent advantage. Essentially, network effects prevent users to migrate to even
Pareto-superior equilibria if they receive stochastic opportunities to migrate to an en-
trant. This is also covered in Kades and Morton (2020), who also provide an overview
on interoperability for digital markets. Popiel (2020) and Evens et al. (2020) assert that
regulations to manage digital platform markets in the US and EU, respectively, are inade-
quate in addressing their negative effects. In response to this need, there has been a surge
of recent papers examining interventions. Regarding structural interventions, Jackson et
al. (2022) examines how limiting the breadth and/or depth of a social network improves
message accuracy. The work of Benzell and Collis (2022) aligns with our own, as they
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analyze the optimal strategy of a monopolistic social media platform and evaluate the
impact of taxation and regulatory policies on both platform profits and social welfare.
However, in their paper, the platform chooses net revenue per user rather than shaping
communication among users. The authors apply their model to Facebook and find that
a successful regulatory intervention to achieve perfect competition would increase social
welfare by 4.8%. Finally, Agarwal et al. (2022) provides empirical evidence of the negative
consequences of deplatforming (shutting down a community on a platform), mainly due
to migration effects, which supports a call for globally applicable regulations.

There is a plethora of recent empirical contributions regarding informational inter-
ventions: Habib et al. (2019), Hwang and Lee (2021) or Mudambi and Viswanathan
(2022). Mostagir and Siderius (2023b) models community formation and shows that the
effect of interventions is non-monotonic over time. Additionally, there is another im-
portant aspect to consider when analyzing informational policies: Mostagir and Siderius
(2022) demonstrates that cognitive sophistication matters when faced with misinforma-
tion, and Mostagir and Siderius (2023a) finds that different populations (Bayesian and
DeGrootians) react differently to certain interventions. While some papers, such as Mosta-
gir and Siderius (2023a), include cases where sophisticated users are outperformed by their
naive counterparts, Pennycook and Rand (2019, 2021) show that higher cognitive ability
is associated with better ability to discern fake content. In our model, the results hold
for both Bayesian and DeGrootian users, but the sophisticated agents always learn bet-
ter. Finally, we also relate to the literature on learning in networks, for both naive and
sophisticated users: DeMarzo et al. (2003), Acemoglu and Ozdaglar (2011), Jadbabaie et
al. (2012), Molavi et al. (2018) or Mueller-Frank and Neri (2021).

2 Model

We first outline the model. There is an underlying state of the world denoted by θ ∈ R,
and every user receives a private signal about it. Users join a social media platform
to communicate through messages, deriving utility through two streams. Within-the-
platform utility depends on the posted messages and the users’ original opinions about
θ. The larger the within-the-platform utility, the more engaged a user is. Outside-the-
platform utility (or action utility), is given by a quadratic loss function accounting for the
deviation of the user’s action from θ. Such an action is based on both private signals and
the messages learnt within the platform. We interpret within-the-platform utility as media
user utility, representing the immediate payoff a consumer obtains while spending time
in the platform. Total utility, on the other hand, corresponds to a sort of citizen utility,
capturing the overall payoff an agent derives from her entire experience on the platform
and the subsequent behavior.14 The platform’s revenue is given by total engagement,

14 The concepts of media user utility and citizen utility are taken from Pariser (2011).
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so its primary concern is maximizing users’ within-the-platform utility. To achieve this
goal, the platform selects a subset of neighbors whose messages appear in each user’s
personalized feed by leveraging information on users’ similarity.

Now, let us describe the model in detail. There is a set, N , of n users that join
a social media platform described by the undirected graph G. Each node in the graph
represents a user in the platform, and two nodes are linked if they are friends on the
platform. In this paper, the network structure does not play a significant role, so we will
consider a complete network moving forward.15 Every user is friend of the others and
hence neighborhoods equal the whole network. Each user receives a private signal θi ∈ R
about θ. Conditional on θ, signals {θ1, ..., θn} are jointly normal and their structure is
given by:


θ1

θ2
...

θn

 ∼ N (θ,Σ) ,

where θ = (θ, ..., θ) and Σ = (σij) is an n × n symmetric and positive definite matrix
with Σii = σ2 for every i. We denote by ρij the correlation between θi and θj, so that
ρij = σij

σ2 for every i, j. The random variable θi is user i’s private signal on θ, intepreted
as her private opinion on the state of the world.16 Users know their private signals, the
distribution of all signals, the covariance matrix Σ, and the distribution of the state of
the world: we assume improper priors on θ.17 Thus, user i’s posterior distributions are
θj|θi ∼ N (θi, σ2(1− ρij)) for all j ∈ N and θ|θi ∼ N (θi, σ2).

Regarding communication, each user i simultaneously posts a message mi ∈ R. Then,
she observes her personalized feed. This subset is strategically chosen by the platform
through an algorithm that will be defined later. In reality, social media platforms rank
friends’ posts and users observe as many as their scrolling time allows them to. For the
purpose of this analysis, we assume that all users spend a fixed amount of time reading

15 All our results hold if we consider a general network. The only necessary condition is that the
algorithm has some neighbors to choose from when constructing the feed. However, since a general
network structure does not offer any particular insight, we opt to work with a complete network for
convenience.

16 The signal θi is interpreted as the information the user has about the state of the world prior to her
entry on the social platform, that might be based on inherent personal characteristics as well as on
information collected privately. As information sources, as well as ideology, might be similar, different
users’ private information might be correlated. This is captured by the matrix Σ.

17 For a discussion of improper priors, see Hartigan (1983). The distribution of the prior is assumed to be
uniformly distributed along the whole real line. The technical consequence of this assumption is that
the posterior distribution of the state of the world conditional on one’s signal is normal. Intuitively,
one could think that every user considers herself as central; no extreme user would acknowledge that
she is, indeed, extreme.
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messages, i.e., the number of observed messages is exogenously fixed, and that the number
of available friends’ posts exceeds it. Without loss of generality, we assume that every user
observes the same number of messages k ∈ N. The key assumption here is exogeneity:
neither the users nor the platform are able to adjust the number of messages that will be
read.18 Although user behavior on social media platforms is highly diverse, existing data
support these assumptions.19

Users derive utility after communication takes place. Their within-the-platform utility
has three components: (i) a fixed and common positive value for joining the platform,
v; (ii) sincerity: agents dislike deviating from their own signals,20 and (iii) conformity:
matching others’ opinions is rewarded. Formally, user i’s realized within-the-platform
utility is

ui(mi,m−i,Si, θi) = v − β
Sincerity︷          ︸︸          ︷

(θi −mi)2−(1− β)

Conformity︷                  ︸︸                  ︷∑
j∈Si

(mi −mj)2

k
, (1)

where β ∈ (0, 1) represents how much sincerity is weighted with respect to conformity,
and Si ⊂ N denotes user i’s personalized feed. We assume the cardinality of all {Si}ni=1

to be exogenously set to k ∈ N, where k ≤ |N |.21 Within-the-platform utility is not the
only source of utility for users, as they are also concerned about taking an action that
matches the state of the world. Platform communication allows them to learn about θ
and optimize the decision making proccess. Total realized utility is the weighted average
of within-the-platform utility and action utility (the squared distance of the action from
the state of the world):

Ui(mi,m−i, ai,Si, θi, θ) = λ

v − β(θi −mi)2 − (1− β)
∑
j∈Si

(mi −mj)2

k

−(1−λ)
Action utility︷        ︸︸        ︷
(ai − θ)2 ,

(2)
where λ ∈ (0, 1) weights the relative importance of within-the-platform and action utili-
ties. Summarizing, user i observes θi, chooses a message mi and, after learning messages
{mj}j∈Si

, chooses an action ai to maximize the conditional expectation of Ui. The optimal
action a∗i is the best guess of θ conditional on the observed messages.

Next, we introduce the platform as a strategic agent of the game. It knows the
distributions and Σ, but not θ or {θi}ni=1. For each user i it chooses the set of neighbors

18 If we consider ki , kj , all the results of the paper go through.
19 According to the statistics portal Statista, an average Facebook user has 335 friends and spends 35

minutes on the platform, reading between 10 and 50 posts. However, at least 300 stories are produced
in her network (k << N). Regarding the assumption on a fixed k, Statista says that, on average,
users tend to consistently allocate a similar amount of screen time to social media platforms.

20 Due to improper priors, sincerity would yield the same results as if, instead of being punished for
deviating with her message mi from θi, the user were penalized for deviating from θ.

21 Should we consider a general network, it is assumed that k ≤ mini∈N |Ni| for every neighborhood Ni.
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that she will observe messages from. As explained above, such set is referred to as
personalized feed and is denoted by Si. We define the platform’s algorithm as the collection
of feeds provided to users: F = (S1, ...,Sn). The set of algorithms is denoted by A.

In this paper, we assume user’s engagement equals user’s within-the-platform utility.
The intuition hinges on the fact that the happier a user is inside the platform, the higher
the probability of her spending time reading more messages or coming back in the sub-
sequent periods. In other words: we think of users who are not forward-looking when
choosing how many messages to read (i.e., how much time they spend in the platform or
simply how much they engage). Thus, at this stage, they do not take long-term learning
into account but myopically value only the intrinsic incentives of the platform. This is
in line with the main case in Bonatti and Cisternas (2020), where consumers ignore the
link between their current actions and the future consequences. We refer to Appendix B
for an extension showing that if the user endogenously chooses her engagement level k,
the platform-optimal algorithm does not vary. Platforms’ revenues come essentially from
advertising, which depends directly on total engagement. Hence, the platform objective
is to maximize total engagement and its profit function is given by:

Πp(m,F) =
n∑
i=1
Ep[ui(mi,m−i,Si, θi)],

where Ep denotes the expected value conditional on the platform’s information.

In the main model of this paper, where there is just one monopolistic platform, all
users join it automatically. Hence, it does not need to focus on attracting users but rather
on maximizing their within-the-platform utility. Bursztyn et al. (2023) show that because
of Fear of Missing Out (FOMO), users may join a platform even when they would prefer
it not to exist (in the paper, they show that users would be willing to pay to have others,
including themselves, deactivating TikTok and Instagram). Hence, when the outside
option is to be alone, it is reasonable to assume that all users would join. However, in
Subsection 5.1, we formally show that if society is large enough, every user joins when we
introduce a previous step in which they have to decide whether to enter the monopolistic
platform or to stay out (the outside option yields no penalty for conformity or sincerity
but also no learning).

In summary, the game of communication and learning through personalized feed des-
cribed above consists of the following sequence of events:

1. The platform chooses an algorithm F and (publicly) commits to it.
2. Each user observes her private signal θi.
3. Each user i posts a message mi ∈ R.
4. Each user i observes the messages in her feed Si and chooses an action ai.
5. The state of the world is revealed and payoffs are realized.
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3 Equilibrium

Here we describe and analyze the equilibrium of the game. The equilibrium concept is
Bayesian Nash equilibrium. More specifically, we focus on Bayesian Nash equilibrium in
which every user plays a linear messaging strategy (i.e., her message is a linear function
of her private signal). In particular, we establish that against a profile of linear messaging
strategies, it is optimal to play linear. The platform chooses an algorithm F ∈ A. In
turn, each user decides on a message mi : R×A → R (which is a function of her private
signal and the algorithm) and an action ai : Rk × A → R (which is a function of her
private signal, the k − 1 messages appearing in her feed, and the algorithm). Note that
the algorithm is publicly disclosed before the users decide on their strategies. As we show
below, in equilibrium users truthfully report their private signal for any algorithm, and
the platform-optimal algorithm is the one that displays, for each user, the messages of
those neighbors who feature the highest correlation with her (in other words, the most
similar, or the closest friends). We refer to such an algorithm as the “closest” algorithm
and denote it by C.

Before formally deriving the equilibrium of the game, let us show two auxiliary results.
First, we prove that when users report their types truthfully, it is equivalent for the
platform to maximize profits and to maximize each user’s within-the-platform utility
separately (i.e., there are no inter-dependencies across feeds). This result also implies
that an algorithm that maximizes each user’s individual utility is precisely the algorithm
that an utilitarian social planner would implement.

Lemma 3.1. If mi = θi for all i ∈ N ,then

argmax
(S1,...,Sn)

{
n∑
i=1
Ep[ui]

}
=
(

argmax
S1⊆N

{Ep[u1]}, ..., argmax
Sn⊆N

{Ep[un]}
)
.

Proof. Truthtelling implies that

max
(S1,...,Sn)

{
n∑
i=1
Ep[ui]

}
= max

(S1,...,Sn)

−
n∑
i=1

1− β
k

∑
j∈Si

Ep[(θi − θj)2]


=
n∑
i=1

max
Si

−1− β
k

∑
j∈Si

Ep[(θi − θj)2]


 =

n∑
i=1

(
max
Si

{Ep[ui]}
)
.

�

Next, we derive the distribution of θ conditional on the messages observed in user i’s
personalized feed if there is truthful reporting, i.e., conditional on {θj}j∈Si

.

Lemma 3.2. The posterior distribution of θ conditional on {θj}j∈Si
is given by

θ|{θj}j∈Si
∼ N

(
1Σ−1
Si

θSi

1Σ−1
Si
1t
,

1
1Σ−1
Si
1t

)
,

11



where 1 is an n-vector of ones, ΣSi
is the submatrix of Σ induced by Si, and θSi

is the
subvector of (θj)j∈N induced by Si.

Proof. See Appendix C. �

Next, we derive the equilibrium of the game.

Proposition 3.3. The unique linear Bayesian Nash equilibrium is given by users playing
m∗i = θi, a

∗
i =

1Σ−1
Si

θt
Si

1Σ−1
Si
1t and the platform playing C, the closest algorithm.

Proof. We analyze first the optimal message for the user.22 Given user i’s type θi, the
algorithm F , the matrix Σ, and other users’ messages m−i(θ−i), she chooses a message
mi ∈ R that maximizes her expected within-the-platform utility, as action utility is not
affected by this choice:

Ei[ui(mi,m−i,Si, θi)|θi,F ] = v − β(θi −mi)2 − (1− β) 1
k
Ei

∑
j∈Si

(mi −mj(θj))2|θi,F


= v − β(θi −mi)2 − (1− β)

k

km2
i +

∑
j∈Si

Ei
[
mj(θj)2|θi,F

]
− 2mi

∑
j∈Si

Ei [mj(θj)|θi,F ]

 .
The first order condition with respect to mi yields

mi = βθi + (1− β)1
k

∑
j∈Si

Ei [mj(θj)|θi,F ] . (3)

Assuming linear messaging strategies for all users except i (i.e., mj(θj) = γjθj + δj for
some γj, δj ∈ R and all j , i), we can work further on the expectation term in (3) for
each j ∈ Si (note that the user knows both the algorithm and the covariance matrix Σ,
so she also knows which neighbors will appear in her feed) and obtain:

Ei [mj(θj)|θi,F ] = Ei [γjθj + δj|θi,F ] = γjEi[θj|θi,F ] + δj = γjθi + δj.

Plugging this into (3) yields

mi = βθi + (1− β)1
k

∑
j∈Si

(γjθi + δj) = βθi + (1− β)(γ̄iθi + δ̄i),

where γ̄i := 1
k

∑
j∈Si

γj and δ̄i := 1
k

∑
j∈Si

δj. Hence, user i’s optimal strategy is linear:
mi(θi) = γiθi + δi. This leads to the system of equations

 γi = β + (1− β)γ̄i
δi = (1− β)δ̄i

∀i ∈ {1, ..., n}.

22 As the utility function is additive separable and the choice of mi does not affect that of ai and vice
versa, we can study the optimal decisions independently.
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Its unique solution is γi = 1 and δi = 0 for all i ∈ N . Thus, the optimal message is
m∗i = θi and every user reports truthfully her type. Now, leveraging its knowledge of Σ,
the platform chooses an algorithm F such that

F∗ = argmax
F=(S1,...,Sn)

−
n∑
i=1

1
k

∑
j∈Si

Ep
[
(θi − θj)2

] .
But by Lemma 3.1, this is equivalent to maximizing each user’s within-the-platform utility,
i.e., to finding

S∗i = argmax
Si⊆N

−∑
j∈Si

Ep
[
(θi − θj)2

] = argmax
Si⊆N

−∑
j∈Si

(2σ2 − 2σij)


= argmax

Si⊆N

∑
j∈Si

σij

 ∀ i.

The algorithm that induces such feeds is precisely C, the closest algorithm. The platform
displays to each user the messages of those k neighbors who exhibit the highest correlation
with her. Thus, in equilibrium, m∗i = θi for all i and F∗ = C. Next, we calculate user i’s
optimal action, which maximizes E[(ai− θ)2] given the observed messages θSi

. Hence, the
optimal action is a∗i = Ei[θ|θSi

] =
1Σ−1
Si

θt
Si

1Σ−1
Si
1t by Lemma 3.2. �

For an explicit example of how the platform designs C leveraging Σ, please refer to
Appendix A. Note that the second-order moments of θj still depend on j (the posterior
variance is σ2(1− ρij)), but the first-order moments do not (the posterior mean is always
θi). Therefore, the platform cannot affect the message choice by providing feeds, but only
the action.

Corollary 3.4. For any algorithm F ∈ A, users play truthtelling.

Indeed, even if the algorithm is unknown and the user does not know who she will be
matched to, truthtelling is still the equilibrium strategy. In expectation, every other user
is equivalent for user i, and then Ei [mj(θj)|θi] = γjEi[θj|θi] + δj = γjθi + δj. Hence, user
i plays m∗i = θi and it is the platform’s best reply to implement C.

Corollary 3.5. If the algorithm is not publicly disclosed, users play truthtelling and the
platform implements the closest algorithm C.

The platform’s practice of pairing each user with those who are most similar to her
contributes to the formation of echo chambers: each individual learns the messages of her
like-minded neighbors. These echo chambers align with the concept of “filter bubbles”
in Pariser (2011). Pariser argued that individualized personalization through algorithmic
filtering could lead to intellectual isolation and social fragmentation. In the next section,
we delve into the consequences of the closest algorithm in terms of social welfare and
social learning.
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It is worth noting that these echo chambers emerge due to the inclination of truth-
telling users to seek conformity. However, even when we significantly reduce the influence
of conformity within the utility function (β close to 1), the equilibrium outcome remains
unaltered, and echo chambers arise in the same manner.23 Furthermore, in Subsection
5.2 we show that the platform has stronger preferences for feed similarities than the
user. Finally, the result of engagement being maximized in equilibrium is consistent with
the findings of Guess et al. (2023), who empirically demonstrate that personalization
algorithms significantly increased user engagement compared to chronological feeds.

4 Algorithms and learning

Under C, each agent observes a feed composed of her most similar neighbors, her echo
chamber. Still, she benefits from the k messages received to learn about θ. Opting to
join the platform always improves expected action utility compared to an outside option
in which she only knows her private signal θi. However, we are curious about the extent
to which this improvement occurs, particularly in relation to population growth. The
monopolistic platform prioritizes user engagement and disregards the effect of ai on the
user’s total utility. As a result, it selects the most similar users to design the feed. When
the pool from which the platform selects becomes infinitely large, it ends up choosing
copies of the user to maximize conformity. Hence, the induced echo chamber provides her
with no new information. We show that it is possible to improve on the closest algorithm
by artificially adding to the user’s feed an individual with opposite views, which enables
her to learn the state of the world. We refer to this enhanced algorithm as the “breaking
echo chambers” algorithm.

Now, let us study the economic consequences of the implementation of the closest
algorithm. We call learning to the reduction on the expected value of the action utility
resulting from reading messages. Choosing action ai = Ei[θ|{θj}j∈Si

] implies that the
expected value of the action utility is precisely the posterior variance of θ:

E
[
(ai − θ)2|{θj}j∈Si

]
= E

[
(Ei[θ|{θj}j∈Si

]− θ)2|{θj}j∈Si

]
= Var [θ|{θj}j∈Si

] .

We can compare learning through different algorithms by comparing the posterior vari-
ances they induce. In this section, we will compare C with the random algorithm, (that
we denote R), which is the chronological algorithm that used to be implemented before
personalization algorithms gained traction in the late 2010s. The random algorithm pro-
vides user i with a feed comprising k randomly chosen messages from N . To explicitely
compare both algorithms, we use Lemma 3.2: Var [θ|{θj}j∈Si

] = 1
1Σ−1
Si
1t .

23 When β = 1 (and only sincerity matters), the platform cannot influence engagement through its
algorithm, and thus, it is indifferent regarding algorithm choice.
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Given that the closest algorithm matches a user with her most similar neighbors,
one might initially assume it to be the worst algorithm in terms of learning. Perhaps
surprisingly, this is not always the case. There are certain signal structures where the
closest algorithm can actually enhance learning compared to a particular feed (which can
be seen as a specific realization of the random algorithm). A simple example illustrates
such a scenario. Consider a small network composed by four individuals (N = 4), and a
feed length of k = 3. The distribution of signals, conditional on θ, is as follows:

θ1

θ2

θ3

θ4

 ∼ N (θ,Σ) ; Σ =


1 0.8 0.7 0.5

0.8 1 0.3 0.6
0.7 0.3 1 0.4
0.5 0.6 0.4 1

 .

The closest algorithm induces SC1 = {1, 2, 3}. Assume that a particular draw from the
random algorithm induces SR1 = {1, 3, 4}. Posterior variances are Var[θ|{θ1, θ2, θ3}] = 0.58
for the closest algorithm and Var[θ|{θ1, θ3, θ4}] = 0.68 for the random algorithm. In this
case, learning is better under C, the algorithm provided by the engagement-maximizing
platform. This occurs because there are two forces that affect user 1’s learning: her
covariances with the others in her feed, but also the covariances among the others. These
two forces may interact in such a way that a more similar individual to user 1 yields better
learning based on her relationship with the rest of the users in the feed. However, this
phenomenon only occurs when N is small. As the population size grows, the similarities
to user 1 become the dominant force, and the closest algorithm performs worse. We can
observe this in Figure 1, where we plot realizations of learning under R and C as N
increases for a population growing from N = k to N = 5000 and parameters λ = 0.5,
β = 0.2 and k = 30.
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Figure 1: User’s posterior variance as the population grows.
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Let us focus now on algorithms’ performance in large populations. Regarding the
society expansion process, we assume that the covariances between new users (that are
added one by one) and existing users are drawn from a continuous distribution with a
cumulative distribution function that has support in [−σ2, σ2] and is centered at 0. The
resulting covariance matrix (the expanded Σ) must be symmetric and positive definite.

Proposition 4.1. Under the closest algorithm, user i’s learning becomes negligible as
N →∞:

lim
N→∞

Var[θ|{θj}j∈SCi ] = σ2.

Proof. See Appendix C. �

In general, learning does not monotonically change with neighborhood growth for a
fixed k under the closest algorithm (see Figure 1). Although the platform can select more
similar users, the degree of similarity between them also matters. As demonstrated in the
example above, the correlations among the users appearing in the feed may counterbalance
the increasing similarities with user i. Therefore, it is possible that adding a more similar
neighbor enhances learning. However, this phenomenon disappears as N becomes larger,
and learning non-monotonically diminishes, eventually leading to its absence in the limit.
When the platform has an infinite pool of users to choose from, it provides a feed formed
by copies of the user, so that she conforms with everyone. However, the user’s posterior
variance converges to σ2 because, in expectation, she only reads the information she
already has. Thus, learning vanishes and the user learns the same as if she were alone.

On the other hand, the expected posterior variance of the random algorithm is σ2

k
,

and realizations vary around this value. Given that the probability that a realization of
the random algorithm coincides with the closest feed is

(
k!(N−k)!

N !

)
, which vanishes as N

grows large, we have that:

Corollary 4.2. As N grows large, the probability that the random algorithm outperforms
the closest algorithm in terms of learning converges to 1:

lim
N→∞

P
[
Var[θ|{θj}j∈SRN ] < Var[θ|{θj}j∈SCN ]

]
= 1.

When society grows large, within-the-platform utility is maximized at the expense of
learning, which is minimized. The next result shows for which values of λ and β the user
is better-off under C than under R.

Proposition 4.3. If N →∞, total expected utility under C is greater than total expected
utility under R if and only if

λ >
1

2− β .

Proof. When N → ∞, total expected utility under C is −(1 − λ)σ2, and total expected
utility under R is −λ(1− β)k−1

k
σ2 − (1− λ)σ2

k
. �
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Remember that the weight of conformity in the utility function is λ(1− β). When λ

is large and β is small, conformity is highly important for the user and she is willing to
sacrifice learning. In this scenario, C is preferred. Otherwise, the user prefers the more
balanced combination given by R.
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Figure 2: User’s total utility as the population grows.

In Figure 2, we observe that total utility under C increases concavely with N for the
same parameters as in Figure 1. This phenomenon is primarily driven by network effects,
which occur when a platform’s value increases as more people use it. The increase in
total utility occurs because the growth of N widens the pool from which the platform
can select users to construct the personalized feed. As a result, the platform can choose
more similar neighbors, thereby increasing utility by improving the conformity term.
While action utility may be negatively impacted, this effect is not sufficient to offset the
benefits of increased conformity resulting from greater similarity. In contrast, the random
algorithm is not influenced by the size of the network, so it does not exhibit network
effects. Network effects are key to understand platform competition, as we will see in
Section 6.

Moving forward, since the closest algorithm performs poorly in terms of learning and
there is no learning at all in the limit, we shift our focus to potential measures to en-
hance the engagement-maximizing algorithm. A regulator could enforce the inclusion of
neighbors in the feed based on different selection criteria. We examine the effects on user
utility when an extra user is added to a feed that has already been selected by the closest
algorithm and the population grows large. We consider three different possibilities: (i)
selecting a user following the closest algorithm (i.e., C with k+ 1 feed length), (ii) adding
a user uncorrelated with any other user in the feed, and (iii) introducing a user who
is maximally negatively correlated with every other user in the feed, the breaking echo
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chambers algorithm.

We find that if conformity is not disproportionaly weighted compared to learning (i.e.,
if λ is not too large), the breaking echo chambers algorithm outperforms C. It leads to
maximal learning with a small loss in conformity. While this algorithm may be imple-
mentable with regulatory enforcement, its long-term viability in the real world remains
questionable. Although opposite content can be enforced, whether through sponsored
public service announcements with regular frequency or by directly incorporating dissimi-
lar views into the feed, any user may simply choose to disregard artificially added content
and, perhaps naively, opt not to engage with it.

Now, for the sake of technical simplicity, let us assume that when population size is
sufficiently large, the closest algorithm can select a pool of k users with arbitrarily high
correlations satisfying that these correlations are identical among all users within the pool.
Formally, for every ε > 0, there is a Ñ such that if N > Ñ , then there are k − 1 users in
the network such that ρjl = 1− ε for all j, l in the pool and user i.

Proposition 4.4. Assuming the closest algorithm can select a pool of k users with ar-
bitrarily high correlations verifying that these correlations are identical among all users
within the pool as N → ∞, the effects on user’s expected utility of adding an extra user
are as follows:

(i) If the user is chosen according to the closest algorithm, both conformity and the
posterior variance of θ do not vary and are kept to 0 and σ2 respectively.

(ii) If the chosen user is uncorrelated with everyone else appearing in the feed, conformity
becomes −σ2

k+1 , and the posterior variance of θ decreases to σ2

2 .
(iii) Breaking echo chambers algorithm: if the chosen user is maximally negatively cor-

related to everyone else appearing in the feed, conformity becomes −2σ2

k+1 and the
posterior variance decreases to 0.

Finally, the breaking echo chambers algorithm is always better than R. It outperforms (ii)
and C if and only if

λ ≤ k + 1
2(1− β) + k + 1 .

Proof. See Appendix C. �

Even though the breaking echo chambers algorithm could improve the overall perfor-
mance of both C and R while providing perfect learning, it is still weakly worse than the
utilitarian optimal algorithm. We define the user optimal algorithm (U) as the one that
maximizes each user’s expected utility, representing the best service a platform can offer
to each user. For each user i, this algorithm induces the following feed (remember that
users always report truthfully, as stated in Corollary 3.4):

SUi = argmax
Si⊆N

−λ(1− β)1
k

∑
j∈Si

Ep[(θi − θj)2]− (1− λ)Ep[(ai − θ)2]

 .
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Given that ai = Ei[θ|{θj}j∈SUi ] and the only feed that affects user i’s action utility is SUi ,
we can establish the following corollary to Lemma 3.1:

Corollary 4.5. The user optimal algorithm is the utilitarian optimal algorithm:

argmax
U=(SU1 ,...,SUn )

{
n∑
i=1
Ep[Ui]

}
=
argmax
SU1 ⊆N

{Ep[U1]}, ..., argmax
SUn⊆N

{E[Un]}
 .

For an example of the user optimal algorithm, please refer to Appendix A. Since it
is socially preferred, it is worth discussing its potential implementation. Moreover, in
this section we have shown that the closest algorithm is not convenient from a learning
perspective. Section 6 will delve into how competition may encourage platforms imple-
menting U . However, before exploring that, the next section is dedicated to addressing
the model’s robustness: first, examining how the model responds when an entry stage
is introduced; second, exploring modifications to the assumptions concerning the signal
structure; and third, studying the game for näıve users.

5 Extensions

5.1 Outside option and entry problem

In the main model, we assume users join the monopolistic platform at the outset. Hence,
it does not need to worry about attracting them and platform’s profits are the sum of
all users’ engagement. Bursztyn et al. (2023) show empirically that the “Fear of Missing
Out” (FOMO) induce users to join social platforms even though they would prefer them
not to exist. In our model, this translates as follows. The outside option, which consists
of being alone outside the platform, yields expected action utility −(1 − λ)σ2 (the user
only learns her signal) and within-the-platform utility −λṽ < 0 (because of FOMO). If
v+ṽ ≥ (1−β) 2k

k−1σ
2, then every user would join the platform, irrespective of the algorithm

(a payoff of λ(v− (1−β) 2k
k−1σ

2) is the worst possible case, so if the outside option is even
worse, no user would opt for it). A high level of FOMO (i.e., a large ṽ) would result in all
users joining a monopolistic platform. Moreover, if N →∞ and C is implemented, every
user would join provided that v + ṽ ≥ 0.

Now, let us consider a scenario where there is no FOMO when users decide whether
to join the platform or stay out. In this case, users know of the algorithm the platform
intends to implement, but they remain uncertain about the similarity matrix Σ; a user
lacks information about the similarities with her peers in a platform until she becomes
aware of their identities. The outside option yields utility −(1 − λ)σ2, representing the
payoff derived from being alone. As the platform’s algorithm is public, users can compute
the expected payoff from entering under that algorithm and compare it to the outside
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option. The user enters if and only if the following inequality holds:24

E

λ
v − (1− β)

∑
j∈Si

(θi − θj)2

k

− (1− λ)(ai − θ)2

 > −(1− λ)σ2.

Since the matrix Σ remains unknown to users prior to entry, they must estimate it.25 Note
that under the closest algorithm and assuming a uniform distribution for peers covariances
(i.e., if σ̃ij is user i’s estimated covariance between her and user j, then σ̃ij ∼ U [−σ2, σ2]),
this equation becomes:

λv − λ(1− β)2σ2(k + 1)
N

− (1− λ)E[(ai − θ)2] > −(1− λ)σ2.

Estimating action utility for a finite N prior entry is unfeasible, so we use Proposition 4.1
to set a bound: E[(ai − θ)2] ≤ σ2. This simplifies the inequality to a sufficient condition
for user entry. When

v − (1− β)2σ2(k + 1)
N

> 0,

the user chooses to enter. Hence, for any given v, there exists a threshold N̄ such that if
N > N̄ , all users opt to join. In a monopolistic scenario with a large population (which
is the focus of our analysis), all users join, making the closest algorithm the one that
maximizes the platform’s profits. Notably, other scenarios exist, such as instances where
the population is not as large, prompting the platform to implement an algorithm that
considers learning to attract users. Remember that when users decide which platform to
join, they take into account total utility. Hence, when the platform cares about attracting
users, learning must be taken into account. This is the case when multiple platforms
compete in the market: they need to be attractive enough in terms of total expected
utility to be joined and then they also need to maximize engagement. This situation is
explored in Section 6.

5.2 Other signal structures

So far, we have assumed equal variances across users with heterogeneous correlations.
This assumption appears most plausible as differences in opinion or ideology may exert
a stronger influence than disparities in learning accuracy. Nevertheless, we find it worth-
while to investigate alternative signal structures within our model. Should we relax the
assumption of equal variances (σ2

i , σ
2
j ), the platform would not only consider similarity

24 Here, we abstract from considering multiple equilibria scenarios and solely focus on the situation where
all users coordinate on entering. This outcome would also arise if the equilibrium concept were strong
Nash equilibrium or coalition-proof Nash equilibrium.

25 The task of estimating an entire covariance matrix surpasses our capabilities. Hence, we allow users
to estimate the covariances their peers have with them, i.e., a row of the matrix. For simplicity, we
assume a uniform distribution for these covariances; under the closest algorithm, a user will be paired
with those possessing the k highest covariances: {N−k

N σ2, N−k+1
N σ2, ..., N−1

N σ2, σ2}.
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but also accuracy when selecting users:

S∗i = argmax
Si

−∑
j∈Si

Ep
[
(θi − θj)2

] = argmax
Si

−∑
j∈Si

(σ2
i + σ2

j − 2σij)


= argmax

Si

−∑
j∈Si

(σ2
j − 2σij)

 ∀ i.

Note that similarity carries twice the weight of accuracy. If it was the user who chose a
feed that maximizes her within-the-platform utility, such a feed (let us denote it by S̃i)
would be given by:

S̃i = argmax
Si

−∑
j∈Si

Ei
[
(θi − θj)2|θi

] = argmax
Si

−∑
j∈Si

(σ2
j − σij)

 .
Hence, the platform has a stronger preference for similarity than the user, who weights
similarity and accuracy equally. This implies that the echo chambers result is slightly
more subtle than a trivial consequence of conformity. Once we introduce heterogeneous
variances, we observe that the platform prefers to build an echo chamber, while the user
might prefer to receive a more balanced feed.

Finally, we analyze the simpler scenario where variances can differ, but users’ signals
are uncorrelated. In this case, the platform implements

S∗i = argmax
Si

−∑
j∈Si

Ep
[
(θi − θj)2

] = argmax
Si

−∑
j∈Si

(σ2
i + σ2

j − 2σij)


= argmax

Si

−∑
j∈Si

σ2
j

 ∀ i.

In this scenario, the platform aims to match users with those who exhibit the highest
learning accuracy. This stands in stark contrast to the primary model, as the platform’s
interests are now fully aligned with individual learning.

5.3 Näıve users

Näıve users are mechanical individuals who share their beliefs and update them using the
DeGroot rule (DeGroot, 1974). Therefore, they mechanically report their private signal
(so they post m∗i = θi) and then update their beliefs taking the average of the observed
messages (so their action is ai = 1

k

∑
j∈Si

mj = 1
k

∑
j∈Si

θj). Following the reasoning in
Proposition 3.3, an engagement-maximizer platform will implement the closest algorithm
C in equilibrium. However, when applied to näıve users, the closest algorithm always
harms learning.

Proposition 5.1. When users are näıve, the posterior variance Var
[
θ| 1
k

∑
j∈SCi

θj
]

given
the closest algorithm is larger than the posterior variance induced by any other algorithm.
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Proof. Before showing that Var
[
θ| 1
k

∑
j∈SCi

θj
]
≥ Var

[
θ| 1
k

∑
j∈SFi

θj
]

for any algorithm F ,
we need to characterize the posterior variance of θ when just the average of the observed
messages is learnt.

The posterior distribution of the average message conditional on θ follows 1
k

∑k
j=1 θj|θ ∼

N
(

1
k

∑k
j=1 θj,

σ2

k
+ 1

k

∑
j∈Si

σij
)
. As we have assumed improper priors for θ,

θ|1
k

k∑
j=1

θj ∼ N

1
k

k∑
j=1

θj,
σ2

k
+ 1
k

∑
j∈Si

σij

 .
Hence, Var[θ| 1

k

∑
j∈Si

θj] = σ2

k
+ 1

k

∑
j∈Si

σij. The closest algorithm features the largest
posterior variance among any algorithm, because by definition it chooses the neighbors
whose signals feature the largest covariances with that of i. �

Addressing learning among näıve users is crucial, not only because the literature on
platforms and social networks often model users following a boundedly-rational approach,
but also due to potential concerns among policymakers regarding how platforms treat
them. Here we show that C is the worst possible algorithm for näıve users in terms of
learning. This finding, combined with the results presented in Section 4 for Bayesian
users, underscores the importance of considering the implementation of the user opti-
mal algorithm. Therefore, we dedicate the next section to analyzing the challenges that
may arise during the implementation of this algorithm through platform competition and
exploring the role of interoperability as a potential regulatory solution.

6 Discussion: Interoperability

In Section 4, we introduced the breaking echo chambers algorithm, an improvement over
the closest algorithm that provides perfect learning. However, the success of this algorithm
might be unrealistic, and it is still weakly worse than the user optimal algorithm in
terms of consumer welfare. We propose platform competition as the setting to incentivize
the implementation of the user optimal algorithm. In a perfectly competitive market,
platforms must implement it, as they would otherwise lose their user base due to an à
la Bertrand argument. However, despite the low cost of entry in digital markets, they
typically feature high entry barriers created by network effects, that protect incumbents
and deter competition. We propose interoperability as a measure to shift platform-level
network effects to market-level network effects, reducing entry barriers and promoting
competition.

To provide some intuition, alongside this section we consider a large incumbent, which
corresponds to a quasi monopolist like Twitter, and small entrants, like for example
Mastodon.26 Entry is costless, and platforms attract consumers based on the expected
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utility they offer. Theoretically, if users prefer the user optimal algorithm, any entrant
platform implementing it could attract the incumbent’s user base if the incumbent does
not modify its algorithm choice (i.e., if Mastodon’s algorithm were superior to Twitter’s,
a significant migration would likely occur).27 However, two intrinsic aspects of social
media platforms complicate this situation and discourage competition: network effects
and incumbent data advantage.28

Network effects indicate that the expected utility of being on a platform (prior to entry)
increases with the size of the network. Consequently, larger platforms find it easier to
attract and retain users (they find it difficult to leave Twitter and join Mastodon if almost
no friend has done so, even though Mastodon’s service might be better). We show below
(Proposition 6.1) that both the closest and the user optimal algorithm feature network
effects. Hence, total expected utility depends not only on the implemented algorithm
but also on size: platforms compete alongside two dimensions, algorithm choice and
size. The incumbent, with network effects on its side, holds market power, creating high
entry barriers for potential competitors. The entrant’s success in the market no longer
depends on its technology (here, the algorithm it implements), but on breaking through
the incumbent’s network advantage.

Now, let us show formally that both C and U feature network effects. We assume that
if a user has not joined a platform yet, she expects the posterior variance of θ under the
closest algorithm to be weakly increasing with network size.29 In other words: as more
users join the platform, her expected posterior variance will rise, as she expects herself
to be matched with more similar friends and hence to learn less about θ. Under this
assumption and for λ not too small, both the user optimal and the closest algorithms
feature network effects.

Proposition 6.1. Assuming user i’s expected posterior variance to be weakly increasing
in N , then

λ ≥ k − 1
k(1 + (1 + β)2(k + 1))

ensures that the closest algorithm exhibits network effects. The user optimal algorithm
features network effects for all λ ∈ (0, 1).

Proof. For simplicity, we denote Ui as U . Let g(N) represent the expected posterior
variance of user i when the network size is N , prior to entry. If N = k, the neighbor pool

26 As of July 2023, Twitter had 237 million active users, while Mastodon accounted for 1.5 million users.
27 Remember that when users make the decision to join a platform, whether they are comparing its

benefits to other platforms or the outside option, they take into account their overall utility.
28 As mentioned in the literature review, Biglaiser et al. (2022) provides a microfoundation for incumbent

advantage.
29 We have seen that learning non-monotonically diminishes when N is expanded. We assume that, in

expectation, for a user who has not joined the platform yet and hence does not know Σ, it behaves
monotonically.
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is i.i.d., making g(k) = σ2

k
. By Proposition 4.1, we also know that limN→∞ g(N) = σ2.

The weakly increasing nature of g(N) implies that g(N + 1) − g(N) < σ2 − σ2

k
< k−1

k
σ2

for all N .

The closest algorithm features network effects if the expected utility of joining a plat-
form implementing this algorithm increases with population size, i.e., if E[U(N + 1)] −
E[U(N)] > 0 for all N . As derived in Subsection 5.1, the expected utility prior to entry
under C is E[U(N + 1)] = v − λ(1− β)2σ2(k+1)

N+1 − (1− λ)g(N + 1). Thus,

E[U(N + 1)]− E[U(N)] = λ(1− β)2σ2(1 + k)
N(N + 1) − (1− λ)(g(N + 1)− g(N)).

Using that g(N + 1)− g(N) < k−1
k
σ2, we obtain that if

λ ≥ k − 1
k(1 + (1− β)2(k + 1)) ,

then C features network effects. (Note that there always exist such λ, as the right-hand-
side of the inequality is less than 1.)

Finally, U also exhibits network effects for all λ ∈ (0, 1): larger neighborhood sizes
result in a larger algorithm selection pool, leading to higher expected user utility since
the platform aims to maximize individual welfare. �

Note that if we set β = 0.5, the bound for λ is below 0.1 for k ≥ 10 and decreases with
k. For scenarios where sincerity is highly valued (β = 0.9), the threshold for λ is below
0.2 for k ≥ 20, and even when sincerity is of utmost importance (β = 0.1), the threshold
for λ remains below 0.1 for k ≥ 5. Therefore, in most cases, the closest algorithm exhibits
network effects.

However, network effects are not the sole deterrent to competition in our model. In our
model, we find incumbent data advantage. It refers to the fact that when a user decides to
leave the incumbent and join a competing platform, the new platform has no information
about past interactions, i.e., it does not know her values in the similarity matrix Σ.
Initially, the new platform cannot personalize the user’s feed because the data does not
migrate with her (if a user migrates from Twitter to Mastodon, the data does not migrate
with her, and Mastodon needs a few periods to adjust its personalized feed). The presence
of network effects and incumbent data advantage discourages competition, leading to
market concentration and ”winner-takes-all” dynamics that result in a monopoly. Even if
a potential entrant adopts the user optimal algorithm, it would not suffice to break through
the incumbent’s advantage if its size is large enough. Moreover, when under pressure,
the incumbent can slightly modify its algorithm (or claim to do so). For example, major
monopolists like Facebook or Twitter have heavily campaigned to demonstrate algorithmic
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changes or an increase in their efforts to combat fake news in response to public outcry,
with the aim of deterring potential competitors, as evidenced in Horwitz et al. (2021).

We advocate for interoperability as a tool to shift network effects from the platform
level to the market level, making them available to competitors and not just an incum-
bent advantage. Interoperability refers to complete interaction between different plat-
forms: two platforms become interoperable when their users can interact with each other.
Hence, an entrant platform could use the whole population to provide each user with
the personalized feed it desires: messages posted in the incumbent platform could be
displayed in the entrant platform and viceversa. As a consequence, the only dimension
platforms compete within is on the algorithm choice. This forces both platforms to play
user optimal algorithm in equilibrium, in the spirit of à la Bertrand competition. Draw-
ing on the example of Twitter and Mastodon, interoperability would mean that a user on
Mastodon can be friends with users from both platforms. Mastodon would have access
to the public content of all their friends who are on Twitter and use the information to
generate a personalized feed that includes messages from both platforms.30 The same
principle applies in reverse: Twitter can display a user’s friends’ messages, regardless of
the platform they are registered on. We could even strenghten this notion of interoper-
ability adding data portability: in the event of migration, data would travel with the user.
This would eliminate incumbent data advantage.

Interoperability has been successfully implemented in industries such as cell phones
and email. Naturally, the level playing field created by interoperability disadvantages
platforms with significant network effects, as consumer adoption decisions are no longer
influenced by size. Conversely, smaller platforms would fear losing if they competed for the
market and thus prefer interoperability to be able to compete in the market (Belleflamme
and Peitz, 2020).31 Aiming “at preventing gatekeepers from imposing unfair conditions
on business and end users and at ensuring the openess of important digital services”,32 the
European Comission has introduced interoperability as a regulatory measure in the Euro-
pean Union. The following subsection delves more into it, also discussing the challenges
that might arise, before Section 7 sets the concluding remarks of the paper.

30 In this paper we have considered a complete network. However, results apply for general networks,
and they are more convenient in this section: under interoperability, each user could keep their
neighborhood irrespective of which platform each of her friends is member of. One would care about
which friends are in the market, but not in which platform, identically as it happens with the mobile
phone industry. We care whether a friend has a mobile phone, but not which is her company, and we
keep our neighborhood independently of which companies we are registered at.

31 Still, becoming interoperable is always a decision for the small platform to make. Regulators just
require large platforms to make it possible.

32 This quote is extracted from Questions and Answers: Digital Markets Act: Ensuring fair and open dig-
ital markets, available at https://ec.europa.eu/commission/presscorner/api/files/document/
print/en/qanda_20_2349/QANDA_20_2349_EN.pdf.
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6.1 Interoperability in the EU: the Digital Markets Act

In July 2022, the European Council passed the Digital Markets Act (DMA), a significant
regulatory measure. Under this act, “gatekeeper” platforms and services are mandated
to provide interoperability for chats with users on other services. Gatekeeper platforms,
defined as those entities exerting substantial market influence and possessing or expected
to possess a firmly established and enduring market position, are designated by the Euro-
pean Commission. The DMA’s primary objective is to extend interoperability to various
communication tools, with a particular focus on messaging applications. For instance,
under the DMA’s provisions, a WhatsApp user should be able to send a message to a
Telegram user, and an iPhone owner should be able to send an online message to an
Android user through the iMessage App. However, these means of communication have
traditionally required a shared platform, resulting in the concentration of market power.

Under the DMA, gatekeepers’ communication services, including messaging applica-
tions, are now required to provide the necessary interfaces for horizontal interoperability.
Compliance entails ensuring interoperability in fundamental functionalities, such as end-
to-end messaging, voice and video calls, and the sharing of images, voice messages, videos,
and files. The compliance timeline varies, ranging from four years for voice and video calls
to immediate action for end-to-end messaging between two individuals. WhatsApp has
already initiated efforts toward achieving interoperability with other applications.33 How-
ever, this endeavor raises significant concerns, particularly for services that promise end-
to-end encryption. Cryptographers widely agree that maintaining encryption between
different apps may prove challenging, if not impossible, potentially posing substantial
implications for user privacy.

7 Conclusion

We have built a model of communication and learning through personalized feed. An
engagement-maximizing monopolist platform lacks incentives to consider social learning;
therefore, it chooses to display messages from similar neighbors. Our findings reveal that
not only is this outcome suboptimal in terms of social welfare, but asymptotically, learning
is persistently hindered, to the point that it vanishes. This observation encourages explor-
ing strategies to motivate platforms to adopt the utilitarian optimal algorithm (the user
optimal algorithm), given the challenges in implementing measures that would improve
the closest algorithm (the breaking echo chambers algorithm). While fostering platform
competition seems a viable approach, the presence of entry barriers created by network
effects obstruct its effectiveness. Nevertheless, if interoperability is enforced, this obstacle
would vanish.

33 See, for example, this recent article: https://www.theverge.com/2023/9/10/23866912/
whatsapp-cross-platform-messaging-eu-dma-meta.
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Indeed, interoperability might offer broader benefits than those discussed in this pa-
per. For example, Farronato et al. (2023) show that when users have heterogeneous
preferences, a single platform might not be as effective as multiple platforms: network
effects and platform differentiation offset each other when market tips. In principle, in-
teroperability might solve this issue: network effects would happen at the market level
(so they would be maximized) while at the same time there would still be platform dif-
ferentiation. Addressing the effects of interoperability in a dynamic setting of competing
platforms where heterogeneous users can multi-home is a natural continuation for this
paper. Specifically, we aim to address two key questions: firstly, whether the necessary
standards for interoperability could restrain innovation, and secondly, whether super-
large platforms can maintain their dominance over time due to factors beyond algorithm
competition.
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A Example
Here we present the feeds that user 1, with a network (Figure 3; we only draw the links
corresponding to user 1 for simplicity) composed by 20 users (N = 20), would receive
under the closest algorithm (Figure 4), the random algorithm (Figure 5), and the user
optimal algorithm (Figure 6). Note that we assume k = 6, λ = 0.5 and β = 0.5.

Σ =



1.00 −0.20 -0.15 0.24 0.20 0.05 0.14 0.01 0.13 −0.12
−0.20 1.00 −0.00 −0.12 0.21 0.08 −0.13 −0.07 −0.07 0.13
−0.15 −0.00 1.00 −0.38 −0.20 −0.06 −0.17 0.02 −0.09 −0.24
0.24 −0.12 −0.38 1.00 −0.23 −0.20 0.04 0.05 0.03 0.07
0.20 0.21 −0.20 −0.23 1.00 −0.00 0.11 −0.09 −0.09 0.04
0.05 0.08 −0.06 −0.20 −0.00 1.00 0.27 −0.17 0.06 0.06
0.14 −0.13 −0.17 0.04 0.11 0.27 1.00 0.23 0.21 −0.02
0.01 −0.07 0.02 0.05 −0.09 −0.17 0.23 1.00 0.10 0.17
0.13 −0.07 −0.09 0.03 −0.09 0.06 0.21 0.10 1.00 0.02
−0.12 0.13 −0.24 0.07 0.04 0.06 −0.02 0.17 0.02 1.00
0.21 0.06 0.04 0.05 0.01 0.13 −0.02 0.16 −0.02 0.14
0.17 0.05 −0.29 0.06 0.39 −0.05 0.14 −0.22 −0.14 −0.00
−0.14 0.24 0.23 −0.15 −0.07 0.28 0.20 0.08 −0.01 0.08
0.14 −0.18 0.20 0.02 −0.11 −0.29 −0.34 −0.16 −0.04 −0.01
0.01 0.03 0.22 0.02 −0.23 −0.02 −0.39 −0.33 −0.11 0.15
−0.16 0.25 −0.24 0.09 0.06 −0.04 −0.13 −0.16 0.18 0.08
−0.26 0.21 0.15 −0.16 0.04 −0.04 0.03 −0.01 −0.09 0.11
−0.12 0.10 −0.06 −0.23 0.13 0.09 −0.07 0.20 −0.13 0.30
0.35 −0.01 0.15 −0.04 0.06 −0.02 −0.22 −0.19 −0.01 −0.12
−0.16 0.10 −0.22 −0.16 0.05 −0.02 −0.02 −0.09 0.10 0.06

0.21 0.17 −0.14 0.14 0.01 −0.16 −0.26 −0.12 0.35 −0.16
0.06 0.05 0.24 −0.18 0.03 0.25 0.21 0.10 −0.01 0.10
0.04 −0.29 0.23 0.20 0.22 −0.24 0.15 −0.06 0.15 −0.22
0.05 0.06 −0.15 0.02 0.02 0.09 −0.16 −0.23 −0.04 −0.16
0.01 0.39 −0.07 −0.11 −0.23 0.06 0.04 0.13 0.06 0.05
0.13 −0.05 0.28 −0.29 −0.02 −0.04 −0.04 0.09 −0.02 −0.02
−0.02 0.14 0.20 −0.34 −0.39 −0.13 0.03 −0.07 −0.22 −0.02
0.16 −0.22 0.08 −0.16 −0.33 −0.16 −0.01 0.20 −0.19 −0.09
−0.02 −0.14 −0.01 −0.04 −0.11 0.18 −0.09 −0.13 −0.01 0.10
0.14 −0.00 0.08 −0.01 0.15 0.08 0.11 0.30 −0.12 0.06
1.00 −0.22 −0.04 0.10 0.13 0.19 −0.22 0.05 0.07 −0.20
−0.22 1.00 −0.13 0.05 −0.08 −0.03 0.14 0.02 −0.01 0.13
−0.04 −0.13 1.00 −0.29 −0.00 −0.23 0.14 0.06 −0.13 −0.15
0.10 0.05 −0.29 1.00 0.45 0.14 −0.06 −0.03 0.29 0.11
0.13 −0.08 −0.00 0.45 1.00 −0.02 −0.03 0.12 0.32 −0.02
0.19 −0.03 −0.23 0.14 −0.02 1.00 0.03 −0.16 −0.07 0.26
−0.22 0.14 0.14 −0.06 −0.03 0.03 1.00 0.00 −0.04 0.21
0.05 0.02 0.06 −0.03 0.12 −0.16 0.00 1.00 0.08 0.08
0.07 −0.01 −0.13 0.29 0.32 −0.07 −0.04 0.08 1.00 −0.02
−0.20 0.13 −0.15 0.11 −0.02 0.26 0.21 0.08 −0.02 1.00


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The closest algorithm selects the most similar users to 1, and we have colored in salmon
their covariances in the matrix Σ as well as their nodes in Figure 4. The user optimal
algorithm selects the pool of neighbors that maximize user 1’s expected utility (conditional
on the platform’s information). We have colored the background of their covariances
with user 1 in yellow, as well as their nodes in Figure 6. For this specific realization
of Σ, C provides a posterior variance of 0.2061, while U induces a posterior variance of
0.1033, hence increasing learning. Regarding conformity, user 1 loses 0.6376 utils due to
conformity under C, while she loses 0.7177 utils under U . In overall terms, the total utility
is -0.2624 under C and -0.2311 under U . Note that, on average, R penalizes conformity
with 0.9825 utils and induces a posterior variance of 0.1667, providing an overall expected
utility of -0.3289.
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Figure 3: User i’s network
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Figure 4: Closest feed
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Figure 5: Random feed
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Figure 6: User optimal feed

In summary: C minimizes the loss coming from conformity, but this comes at the
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price of learning. R enhances learning, but, driven by conformity, overall utility is worse.
Finally, U finds the pool of neighbors that maximize expected utility by balancing con-
formity and learning.

B Endogenous choice of k

Here, we allow a user who prioritizes the immediate rewards of interacting within the
platform to determine her level of engagement. It remains optimal for the platform to
implement the closest algorithm. Hence, fixing k and focusing on the platform maximizing
within-the-platform utility as a proxy for engagement is equivalent to letting the user
choose her engagement level in terms of platform’s optimal algorithm decision.

Proposition B.1. If a user who cares about within-the-platform utility could choose k

endogenously, C still arises in equilibrium.

Proof. Assume that k is endogenously chosen by user i. The reward for being in the
platform is now v(k), which we assume to be an increasing and concave function. Now, a
feed Si is a (personalized) order among all other users, so that for all k ∈ N there is some
Si(k) ⊆ N such that |Si(k)| = k and Si(k) ⊆ Si(k + 1).

Given a feed Si, the user chooses the optimal number of messages to read following

k∗ = argmax
k∈N

v(k)− (1− β)1
k

∑
j∈Si(k)

E[(θi − θj)2]


= argmax

k∈N

v(k) + (1− β)1
k

∑
j∈Si(k)

σij

 (4)

This k∗ yields some within-the-platform utility ūi. Now fix ūi and modify Si by taking
the most similar user to user i (say, user r) and putting her at the top of the feed (i.e.,
redefining Si(2) = {i, r} and keeping the rest of the users in the same order). This implies
that when the user reoptimizes and chooses (k∗)′, necessarily (k∗)′ ≥ k∗ because the second
term in (4) is now larger. Repeating this process yields to the platform implementing the
closest algorithm C, as we wanted to show. �

C Omitted proofs

Proof of Lemma 3.2

Proof. Let us assume, for simplicity, that the signals user i observes in her personalized
feed Si are θSi

= {θ1, ..., θk}. We know that (θ1 ... θk) ∼ N (θ,ΣSi
) because of the proper-

ties of the multinormal distribution. Now, the posterior distribution of θ conditional on
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θSi
is proportional to the likelihood function:

g(θ|θSi
) ∝ (2π det(ΣSi

))−1/2 exp
[
−1

2(θ − θSi
)tΣ−1

Si
(θ − θSi

)
]

= (2π det(ΣSi
))−1/2 exp

[
−1

2
(
θ21Σ−1

Si
1t − 2θ1Σ−1

Si
θSi

+ θtSi
Σ−1
Si

θSi

)]
.

Manipulating the expression:

g(θ|θSi
) =

√
1ΣSi

1t

2π exp
[
−1

2

(
θ21Σ−1

Si
1t − 2θ1Σ−1

Si
θSi

+
(θtSi

Σ−1
Si
1)2

1Σ−1
Si
1t

)]

=
√
1ΣSi

1t

2π exp

−1
2


θ −

1Σ−1
Si

θSi

1Σ−1
Si
1t√

1
1Σ−1
Si
1t


2 .

This is the distribution function of a normal random variable with mean
1Σ−1
Si

θSi

1Σ−1
Si
1t and

variance 1
1Σ−1
Si
1t . Thus,

θ|θSi
∼ N

(
1Σ−1
Si

θSi

1Σ−1
Si
1t
,

1
1Σ−1
Si
1t

)

as we wanted to show. �

Proof of Proposition 4.1

Proof. The feed length k is fixed. Given the generating process for new users, for every
ε > 0, there is some N̄ ∈ N such that if N > N̄ , there are user i’s neighbors j1, ..., jk−1

such that ρi,jr > 1− ε for all r ∈ {1, ..., k− 1}. On the other hand, applying the Cauchy-
Schwarz inequality to the correlations between the pairs formed by user i and two other
users, say jr and jl:

ρjr,jl ≥ ρjr,iρjl,i −
√

(1− ρ2
jr,i)(1− ρ2

jl,i
).

Using the bounds derived above, we obtain:

ρjr,jl ≥ (1− ε)2 − 2ε = 1− 4ε+ ε2 ∀ jr, jl.

Let us define δ = 4ε− ε2. For every δ > 0, there is some Ñ such that if N > Ñ , the feed
induced by the closest algorithm SCN ⊂ N verifies that if jr, jl ∈ SCN , ρjr,jl > 1 − δ (it is
enough to choose ε accordingly). Hence, we have that for the matrix A defined as

A := σ2


1 1− δ . . . 1− δ

1− δ 1 . . . 1− δ
...

...
. . .

...

1− δ . . . 1− δ 1

 ,

A ≤ ΣSCN , where ≤ refers to element-wise ordering and ΣSCN is the covariance matrix for
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the users in SCN . Now, we need an auxiliary result:

Lemma C.1. In this particular case, A ≤ ΣSCN implies Σ−1
SCN
≤ A−1.

Proof. Let A be the covariance matrix selected by the closest algorithm, i.e., A = ΣSCN :

A =



1 a12 a13 . . . a1n

a12 1 a23 . . . a2n

a13 a23 1 . . . a3n
...

...
...

. . .
...

a1n a2n a3n . . . 1


Let B be the following matrix

B =



1 b b . . . b

b 1 b . . . b

b b 1 . . . b
...

...
...
. . .

...

b b b . . . 1


with b = 1 − δ such that B ≤ A element-wise. We denote the elements of the inverse
matrices A−1 and B−1 as follows:

A−1 =



ā11 ā12 ā13 . . . ā1n

ā12 ā22 ā23 . . . ā2n

ā13 ā23 ā33 . . . ā3n
...

...
...

. . .
...

ā1n ā2n ā3n . . . ānn


,

and

B = α



1 b̄ b̄ . . . b̄

b̄ 1 b̄ . . . b̄

b̄ b̄ 1 . . . b̄
...

...
...
. . .

...

b̄ b̄ b̄ . . . 1


.

Now, as AA−1 = Id, ā11 + a12ā12 + a13ā13 + ...+ a1kā1k = 1. Moreover, A ≥ B implies
that ā11 + b

∑k
j=2 ā1j ≤ 1. On the other hand, as BB−1 = Id, α(1 + bb̄(k−1)) = 1. Hence,

ā11 + b
k∑
j=2

ā1j ≤ α(1 + bb̄(k − 1)), ∀ b ∈ (0, 1).

This implies that ā11 ≤ α and ∑k
j=2 ā1j ≤ α(k − 1)b̄. Following the same reasoning, we
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obtain
āii ≤ α ∀ i and āij ≤ αb̄ ∀ j , i.

Then, A−1 ≤ B−1 as we wanted to show. �

Therefore,

1Σ−1
SCN
1t ≤ 1A−11t ⇒ 1

1A−11t
≤ 1
1Σ−1
SCN
1t
⇒ 1

1A−11t
≤ Var[θ|{θj}j∈SNi

].

On the other hand, we have that Var[θ|{θj}SCN ] ≤ σ2 by construction (note that Var[θ|θi] =
σ2). Consequently, after calculating 1A−11t = k

σ2(1+(k−1)(1−δ)) , we finally get:

σ2(1 + (k − 1)(1− δ))
k

≤ Var[θ|{θj}SCN ] ≤ σ2

for every δ ∈ (0, 1). Finally, we have that δ → 0 as N → ∞. Then, taking limits in the
above expression we obtain that Var[θ|{θj}SCN ] = σ2.

�

Proof of Proposition 4.4

Proof. We have assumed that there is a pool of k− 1 users in N such that ρjl = 1− ε(N)
and limN→∞ ε(N) = 0 for all j, l belonging to such pool and user i. This pool is precisely
SCi .

Let us now prove the result. First, we will compute within-the-platform utility for the
three cases, and then learning. Expected within-the-platform utility is given by;

E[ui|θi,F ] = v − (1− β)
∑
j∈Si

E[(θi − θj)2|θi]
k + 1 .

Given that E[(θi − θj)2|θi] = E[(E[θj|θi]− θj)2|θi] = Var[θj|θi] = σ2(1− ρij), it holds that

E[ui|θi,F ] = v − (1− β)
∑
j∈Si

σ2(1− ρij)
k + 1 .

In case (i), the k user in i’s feed satisfy ρij = 1− ε(N). Hence,

lim
N→∞

E[ui|θi,F ] = lim
N→∞

v − (1− β)
∑
j∈Si

σ2(kε(N))
k + 1

 = v

In case (ii), there are k − 1 users in i’s feed satisfying ρij = 1 − ε(N), while the chosen
uncorrelated extra user (let us denote this user as k + 1) features ρi,k+1 = 0. Then,

lim
N→∞

E[ui|θi,F ] = lim
N→∞

v − (1− β)
∑
j∈Si

σ2((k − 1)ε(N) + 1)
k + 1

 = v − (1− β) σ2

k + 1 .
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In case (iii), there are k − 1 users in i’s feed satisfying ρij = 1 − ε(N), while the chosen
maximally negatively correlated extra user features ρi,k+1 = δ(N)−1 with limN→∞ δ(N) =
0. Hence,

lim
N→∞

E[ui|θi,F ] = lim
N→∞

v − (1− β)
∑
j∈Si

σ2((k − 1)ε(N) + (2− δ(N))
k + 1

 = v−(1−β) 2σ2

k + 1 .

Next, we calculate how adding an extra user affects learning. Case (i) is already solved
in Proposition 4.1: limNi→∞Var[θ|{θj}j∈Si

] = σ2. Cases (ii) and (iii) require some steps
more. The similarities between the k users (including user i) that originally form the feed
induce the following matrix

Σ = σ2


1 1− ε . . . 1− ε

1− ε 1 . . . 1− ε
...

...
. . .

...

1− ε . . . 1− ε 1

 ,

where limN→∞ ε = 0 and we have written ε instead of ε(N) for convenience. In case (ii),
adding an extra user implies that the extended matrix is

Σ′ =
 Σ 0

0 σ2

 , and (Σ′)−1 =
 Σ−1 0

0 1
σ2

 .
The posterior variance is given by:

lim
N→∞

Var[θ|{θj}j∈Si
] = lim

N→∞

1
1(Σ′)−11t

= lim
N→∞

1
1Σ−11t + 1

σ2

= lim
N→∞

1
k

σ2(1+(k−1)(1−ε)) + 1
σ2

= σ2

2 .

In case (iii), the extra user is maximally negatively correlated with all users in the pool.
Following a similar argument of that from Proposition 4.1, ρj,k+1 = δ(N) − 1 where
limN→∞ δ(N) = 0 for all j in the pool. Hence, the extended matrix is

Σ′′ = σ2



1 1− ε . . . 1− ε δ − 1
1− ε 1 . . . 1− ε δ − 1
...

...
. . .

...
...

1− ε . . . 1− ε 1 δ − 1
δ − 1 . . . δ − 1 δ − 1 1


.

Hence,

lim
N→∞

Var[θ|{θj}j∈Si
] = lim

N→∞

1
1(Σ′′)−11t

= lim
N→∞

σ2((k − 1)(δ − 2)δ + (k − 2)ε)
2δ(k − 1) + ε(k − 2)− 4(k − 1) = 0.
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Finally, we compute the total expected utility from each case and compare them.
Let us denote by E[Ui|θi,FBCE] user i’s total expected utility under the breaking echo
chambers algorithm. Then, E[Ui|θi,FBCE] = λv−(1−β)λ 2σ2

k+1 . E[Ui|θi, C] = λv−(1−λ)σ2

and E[Ui|θi,R] = λv − λ(1 − β) k
k+1σ

2 − (1 − λ) σ2

k+1 . Finally, the total expected utility
under (ii) is E[Ui|θi,F (ii)] = λv − λ(1 − β) σ2

k+1 − (1 − λ)σ2

2 . Simple algebra yields the
desired result. �
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