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Abstract: Developing countries often have to ration electricity when demand exceeds sup-

ply. This empirical study determines to what extent electricity from renewable resources

mitigates load shedding in South Africa. This effect is easily underestimated if demand

is unobserved, and because of the positive relationship of demand and solar electricity –

both of which peak during daytime. To address these endogeneity problems, we employ an

instrumental variables approach, yielding more accurate cost-benefit analyses for renewable

energy investments. Our results also show that every additional MWh of wind power re-

duces the extent of load shedding reliably by up to 0.74 MWh. However, wind power alone

typically does not bridge the entire gap between supply and demand. This gap may be

closed by an additional supply of solar electricity, reducing the probability of load shedding

events at critical periods of the day despite being out-of-sync with demand at other times.
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1 Introduction

Load shedding refers to the practice of disconnecting parts of the power grid at specific times

and in specific regions when electricity demand exceeds the available capacity for electricity

supply. This form of demand rationing protects the electricity system from an undersupply of

electricity, with the potential consequence of cascading brownouts, up to a total blackout. In

South Africa, it could take up to two weeks to restore full power supply after a blackout.1 But

also in the USA and Canada, cascading outages affected nine US states and most of Ontario

for more than a week in 2003 following the unplanned shutdown of a mid-sized power plant

(Borenstein et al., 2023).

While those events are the exception in OECD countries, they are prevalent in regions such

as Sub-Saharan Africa, India, Pakistan, and China (Fried and Lagakos, 2023), often resulting in

disastrous consequences across multiple dimensions. Load shedding not only disrupts industrial

production, education, and households, but also interferes with the provision of essential services

such as payment systems, telecommunications, and traffic lights, while also causing food safety

issues as there are risks to the cold chain. The South African Research Bank (SARB, 2022)

reports that load shedding increased from less than 10% of the time in 2015 to more than 33%

of the time in 2022, translating to approximately 3 to 10 calendar days per month.

The South African Government (2023) hopes that the deployment of decentralized renewable

energies, primarily wind and solar power, will help alleviate load shedding and simultaneously

decarbonize electricity supply. Our study aims to quantify these effects, answering two primary

research questions: (i) To what extent does electricity from decentralized and intermittent

renewable resources reduce load shedding in South Africa? (ii) Which source, wind or solar

power, is more effective in reducing load shedding?

An empirical investigation of these questions is relevant because theory does not predict an

unequivocal effect of electricity from renewable resources on load shedding. Load shedding

would even be exacerbated if wind and solar energy were mostly available when demand is low,

and missing when demand is high (the so-called duck curve problem; Schmalensee, 2022; Elliott,

2024). Evidence suggests, indeed, an increase in both the supply of electricity from renewable

resources and the increase in load shedding events in recent years in South Africa. Yet, this

correlation is hardly causal because much of the increase in load shedding may be attributed to

1Eskom (2024). “What is load shedding?” https://bit.ly/3RGJK6X (accessed on 19 January 2024).
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an aging fleet of coal-fired power plants, which causes increasing outages, higher maintenance

requirements, and a decrease in the electricity generation capacity from conventional resources.

Our main regression controls for these effects.

The impact of electricity from renewable resources on load shedding is still likely underesti-

mated because we can only observe the equilibrium quantity of electricity in the market (load),

while electricity demand remains unobserved. If now, over the course of a day, the supply of

renewable electricity increases while demand also rises, the probability of a load shedding event

and the extent of load shedding may increase, even despite the greater electricity supply. Under

such circumstances, the effect of renewable electricity on load shedding would be underesti-

mated, unless one tackles the simultaneity problem caused by the omitted variable demand.

Moreover, demand is endogenous because electricity users may shift their consumption patterns

in response to their expectations about electricity supply and load shedding.

There is, indeed, a correlation between demand and electricity from renewables. Daytime

demand exceeds nighttime demand, which coincides with solar electricity, which is only available

during daytime and zero at night. Electricity demand typically peaks in the evening, coinciding

with higher wind electricity production as wind speeds tend to be highest during that time.

To identify the true effect of renewable electricity on load shedding, we utilize an ex-post

econometric model within an instrumental-variables framework. We employ wind speed and

solar radiation measured at the locations of the renewable power stations as instruments for

wind and solar electricity infeed. This allows us to separate exogenous changes in renewable

electricity production and accurately assess the impact of additional renewable capacity on load

shedding.

Our findings indicate that one additional MWh of wind electricity reduces load shedding by

0.29 MWh, while an additional MWh of solar electricity reduces load shedding by 0.66 MWh.

Neglecting the simultaneity of changes in renewable electricity generation and demand would

have led to an incorrect conclusion, according to which one additional MWh of wind electricity

would have reduced load shedding by only 0.25 MWh, and merely 0.47 MWh for solar electricity.

A naive OLS regression without control variables even suggests a positive impact of wind and

solar electricity on load shedding.

We further examine the effect of electricity from renewable resources on both the probability

of load shedding (the extensive margin) and the extent of load shedding (the intensive margin)

for every hour of the day. Analyzing these intra-day patterns is insightful because wind power
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exhibits a relatively flat infeed profile throughout the day, with a moderate peak coinciding with

the evening electricity demand peak. Solar power, on the other hand, is limited to daylight hours

and also experiences significant intermittency, further reducing resource availability. While wind

and solar power can help mitigate load shedding, their contribution is constrained by resource

availability and its alignment with demand.

We find that wind power acts mainly as a baseload technology, generating a smaller effect on

the probability of load shedding compared to solar power. However, when load shedding does

occur, up to 74% of every additional MWh of wind power can be used to reduce its extent. Solar

power has an even stronger effect on the extent of load shedding than wind power, particularly

in the afternoon when solar electricity is still available while demand begins to rise. However,

there is virtually no effect of solar power on load shedding around noon, when solar production

is high but demand is only moderate.

Our findings demonstrate that investing in solar power is generally more effective in reducing

load shedding. However, wind and solar power complement each other due to their disparate

resource availability profiles. Additionally, the excess electricity generated by wind and solar

power displaces coal-fired electricity from the merit order, leading to substantial CO2 emissions

abatement. Therefore, in addition to the economic value of mitigating load shedding, wind and

solar power also offer significant environmental benefits.

These patterns have already had a significant qualitative impact on the ongoing policy dis-

cussion. It is our contribution to the field to quantify these effects based on a theory model

of the South African electricity market, while adequately addressing the issue of endogeneity.

That way, our results serve as inputs both for the policy discussion and for future research.

The paper is organized as follows: Section 2 provides a review of related literature and

discusses the contributions of our analysis. Section 3 presents descriptive statistics on South

Africa’s electricity sector and explains the causes and consequences of load shedding. Section 4

presents our theoretical model, outlining how load shedding occurs in a market with regulated

prices. We derive our regression equations from this model, as explained in Section 5. Our

results are presented in Section 6. Policy implications are derived in Section 7. Section 9

concludes.
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2 Literature Review and Contributions

This article contributes to the existing body of literature pertaining to the domain of electricity

reliability. By quantifying the impact of renewable resource-derived electricity on load shedding,

our findings enable us to draw policy conclusions regarding grid investments. Moreover, we

gain insights into the environmental ramifications of transitioning towards sustainable energy

sources. Our study is also relevant given the wider implications of electricity reliability on

macroeconomic dynamics.

Electricity reliability – In their recent review, Borenstein et al. (2023, p. 183) identify electric-

ity reliability as an important, yet underresearched topic, pointing out that electricity markets

“are facing new challenges as they use less ‘dispatchable’ generation, like natural gas, coal, or

nuclear, and more ‘intermittent’ sources that fluctuate exogenously, like wind and solar.” Our

study adds to this emerging literature by analyzing the contribution of intermittent renewables

to electricity reliability in a transition economy. While this topic has received much attention

in practice, our paper is one of the first academic studies in economics to analyze the effect of

variable renewable energies on load shedding.

Our empirical study also builds on and contributes to earlier theoretical literature. For

example, based on their model of retail competition (Joskow and Tirole, 2006), Joskow and

Tirole (2007) provided a model of electricity reliability in oligopolistic markets. They derived

optimal prices and investment decisions when oligopolistic power companies face one group of

customers, whom they charge real-time prices depending on supply and demand conditions,

and another group of customers, who pay a fixed price but may be rationed if demand exceeds

supply. Different from those studies, prices are fixed in South Africa – and in our study.

Investment policy – Our results have implications for regulatory and industrial policy ad-

dressing investments in renewable electricity generation capacity, especially because “there is

less agreement on the role of markets versus regulation. [. . . Investment decisions in this mar-

ket are particularly challenging] due to the physics of grid stability, the high cost of storage,

the shared network of transmission, the mix of for-profit companies with nonprofit or heav-

ily regulated firms, and the critical role this product plays in the functioning of an economy”

(Borenstein et al., 2023, p. 182).

Our results are important ingredients in calculating how much load shedding can be avoided
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when investing in renewable generation capacity. Those calculations indicate that the costs of

avoiding demand rationing are considerably lower than the value of lost load, that is, the costs

that would be incurred otherwise.

Environmental effects – In addition to these economic effects, there is a growing literature on

the environmental benefits of renewable energies (e.g., Cullen, 2013; Fell et al., 2021; Fell and

Kaffine, 2018; Gowrisankaran et al., 2016; Novan, 2015, to name some prominent examples).

We contribute to this literature by determining the impact of wind and solar power on the

reduction of greenhouse gases in South Africa, finding that investments into solar power, on

average, help reduce greenhouse gases more efficiently than investments into wind power.

Macroeconomic effects – Our microeconomic analysis of the electricity market also con-

tributes to the macroeconomic analysis of electricity reliability in developing countries. Macroe-

conomic data suggest a strong positive correlation between GDP per capita and electrification

(Burke et al., 2018; Lee et al., 2020), so that a reduction in load shedding may have a posi-

tive effect on economic development. This is because, otherwise, power outages may cause idle

resources, a depressed scale of incumbent firms, and reduced entry of new firms.

The long-run general-equilibrium effects of power outages may even be between three and

five times larger than those short-run partial-equilibrium effects (Fried and Lagakos, 2023).

Cole et al. (2018) find, using an instrumental-variables framework, that power outages in Sub-

Saharan Africa deter economic activity by, on average, 2.1% of GDP. Andersen and Dalgaard

(2013) estimate the effect of unplanned outages on GDP growth in a panel of countries in

Sub-Saharan Africa over the period 1995–2007. Using lighting density as an instrument to

account for endogeneity, they find that “an increase in outages by one standard deviation ([. . . ]

approximately 2.3 outages) instigates a reduction in growth of about 1.5 percentage points”

(Andersen and Dalgaard, 2013, p. 21).

Regarding South Africa, an industry report by Hartley and Mills (2023) estimates that the

economy is 8–10% smaller than it would be without rolling blackouts. Dinkelman (2011) finds

that electrification significantly raises employment, especially for females, in rural South Africa.

We contribute to this strand of literature by showing that renewable energies help avoid load

shedding, so that they have economic benefits beyond emission abatement.

Load shedding is also relevant outside Sub-Saharan Africa. Allcott et al. (2016), using an

instrumental-variables framework, estimate that electricity shortages reduce the average Indian
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manufacturing plant’s revenues and producer surplus by 5–10%. They also find that the short-

ages distort the plant size distribution because there are economies of scale in generator costs.

Chakravorty et al. (2014) find that grid connection and higher-quality electricity supply (hours

of daily supply) significantly increase rural household incomes in India.

Timilsina and Steinbuks (2021) infer that the economic costs of load shedding in Nepal during

2007–2017 were enormous: Power outages of 14 hours per day in 2016 resulted in a severe welfare

loss (6% of its GDP annually), posed a major barrier to economic development, impeded poverty

reduction progress and hindered investments and, thus, industrial output. Planned outages also

occur in China. Fisher-Vanden et al. (2015) analyze data for 23,000 energy-intensive, Chinese

firms from 1999 to 2004, finding that companies respond to electricity scarcity by substituting

materials for energy. They also outsource production to regions with more reliable electricity

instead of investing into self generation of electricity.

3 Data on the Electricity Sector in South Africa

The South African electricity market is dominated by the vertically integrated, state owned

power utility Eskom that owns and operates the country’s entire conventional electricity supply

capacity. Eskom generates approximately 95 percent of electricity used in South Africa and,

thus, holds a near-monopoly position in electricity generation. In the retail market, Eskom

has a market share of about 45%, while the remaining consumers are mostly supplied by their

municipalities that, again, receive the electricity from Eskom.2 Electricity prices are regulated

by the National Energy Regulator of South Africa (NERSA). Considering social aspects, many

municipalities use inclining block tariffs, where the price per kWh rises with a household’s

monthly electricity consumption.3

In recent years, the South African government has been striving for the deployment of renew-

able energy via the Renewable Independent Power Producer Programme (REIPPP; South African

Government, 2024), which facilitates contracts (so-called “power purchase agreements”) between

Eskom and decentralized independent power producers. Eskom is also pursuing the replacement

of decommissioned coal-fired power plants with renewable energy sources, supported in part by

2International Trade Administration (26 January 2024). “South Africa – Country Commercial Guide –
Energy.” https://www.trade.gov/country-commercial-guides/south-africa-energy (accessed on 16 August
2023)

3nersa.org.za. “Approved municipal electricity tariffs 2022/23.” https://www.nersa.org.za/wp-content/

uploads/bsk-pdf-manager/2022/10/Approved-Municipal-Electricity-Tariffs-2022-23.pdf (accessed on 8
February 2024).
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the World Bank.4

Our study uses data on electricity supply and load shedding provided by Eskom. The data

are country aggregates in hourly resolution, covering the time period from April 1, 2018, to

January 31, 2023. Summary statistics are provided in Table 1. This data indicates that the

South African electricity sector exhibits three distinctive trends, as depicted in Figure 1. Firstly,

there has been a steady rise in load shedding (interruption of supply, IOS), which experienced

a notable surge in 2022. Secondly, this trend can be attributed, in part, to a decrease in the

supply of electricity as aging conventional power plants are decommissioned. Lastly, there is a

noticeable increase in electricity generation from renewable sources. These trends align with the

historical account of the sector’s development as outlined, for example, in Walsh et al. (2020).

Table 1: Sample statistics

Variable Obs. Mean S.D. Min. Max.

Dependent variables: load shedding
Interruption of supply, IOS (MWh) 42,408 364.82 888.21 0.00 8736.94

Variables of interest
Wind electricity infeed (MWh) 42,408 875.10 473.28 15.66 3,028.06
Solar electricity infeed (MWh) 42,408 478.43 606.42 0.00 2,099.49

Control variables
Coal electricity (MWh) 42,408 21,400.42 2,256.09 13,774.00 30,136.00
Hydropower electricity (MWh) 42,408 174.62 228.81 0.00 610.00
Nuclear electricity (MWh) 42,408 1,311.57 444.29 90.00 1,854.00
Pumped-storage electricity (MWh) 42,408 549.88 630.31 0.00 2,746.00

Instrumental variables
Solar radiation (W/m2) 42,408 731.60 955.93 0.00 3,380.28
Wind speed (m/s) 42,408 5.83 1.83 1.42 15.27

Notes: Sample period: April 1, 2018, h1 – January 31, 2023, h24.

Figure 1 illustrates that both the prevalence of IOS and its magnitude have increased over the

sample period (solid black line). To provide additional information, load shedding accounts for

the predominant share of IOS, which includes all contracted and mandatory demand reductions

utilized by Eskom, as well as interruption of supply due to transmission network faults (4.4%

of IOS). The contracted demand reductions (interruptible load shed, ILS) account for 1.6% of

IOS. Those reductions are based on agreements of Eskom with large industrial customers whose

demand can be contractually interrupted without notice or reduced by remote control or on

instruction from Eskom. The predominant share of IOS (94%) falls on manual load reduction

(MLR), which is the demand reduced due to load shedding and/or curtailment.5

4worldbank.org (5 June 2023). “Factsheet: Eskom Just Energy Transition Project in South Africa.” https:

//bit.ly/3Ssganl (accessed on 24 January 2024).
5Walsh et al. (2020, p. 16) validate Eskom’s approach for measuring load shedding. They contrast it with

own bottom-up calculations using data on curtailment by Eskom’s top customers and data on monthly electricity
sales and the incidence and duration of load shedding. Their own estimates and the load shedding calculations
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Figure 1: Developments of key variables

Notes: The figure shows developments of interruption of supply (IOS), wind and solar
electricity (left y-axis), and dispatchable generation and load (right y-axis). Monthly frequency.

The supply of electricity from wind and solar have also risen over the study period (see

the dashed blue and orange lines in Figure 1). While, in 2013, renewable energy contributed

merely 0.5% of total electricity production in South Africa, its share rose to 6.1% in 2021. One,

thus, observes a positive relationship between load shedding and electricity from renewables.

These observations motivate our first research question: To what extent does electricity from

decentralized and intermittent renewable resources reduce load shedding in South Africa?

The quantitative effect of wind and solar electricity on load shedding can hardly be derived

from theory alone because the generation of electricity from wind hinges upon wind conditions,

while the generation of solar electricity relies on solar radiation. Both wind speed and solar

radiation are exogenous factors that do not always align with demand patterns. Consequently,

these characteristics may impose difficulties on grid stability, as renewable energy may not

be available during peak demand periods. Moreover, there are instances where the surplus

electricity generated from renewables exceeds demand, further exacerbating the challenge.

These considerations, however, are paralleled by a further factor contributing to the increase

in load shedding. This factor is the reduction in the supply of dispatchable electricity (dashed

provided by Eskom resemble each other closely.
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brown line in Figure 1). It sums up electricity from all sources other than wind and solar, and

consists of 89% coal-fired electricity. The decline in dispatchable energy is mostly due to old

coal plants reaching the end of their lifetime without being replaced.

One prominent factor contributing to this issue is the financial predicament of Eskom, which

has struggled to generate sufficient revenue to cover costs and service its debt obligations, thus

relying on state bailouts for its sustenance.6 This predicament is not uncommon among elec-

tricity providers in developing countries (Fried and Lagakos, 2023). To address this challenge,

the South African government introduced a debt relief plan for Eskom in 2023.7 Additionally,

Eskom’s aging fleet of conventional power plants has resulted in lower electricity generation in

2021 compared to 2004.8

Our second research question asks: Is wind or solar power more effective in reducing load

shedding? This question has several elements. Wind and solar power may have an effect on

the extent of load shedding. That is, one MWh of electricity may reduce load shedding by this

amount. But this supply may not suffice to avoid load shedding altogether. Therefore, we also

study how wind and solar electricity affect the probability of load shedding events. We study

the differences between wind and solar power on the extent and probability of load shedding,

performing this analysis for the different hours of a day.

The relevance of this endeavor can be seen particularly well from Figure 2 that presents

the average of electricity load for every hour of a day. By averaging out differences between

weekdays and different seasons this graph is informative about overall patterns. One sees that

demand peaks in the morning around 8 am and, even more so, in the evening at about 7 or

8 pm. A similar pattern has been reported for other countries, with Australia being just one

example (Elliott, 2024, Figure 2).

The generation of dispatchable electricity does not always suffice to supply demand, so that

load shedding (IOS, black solid line) is especially pronounced during the evening peak. Elec-

tricity from wind (blue dashed line) is particularly suited to mitigate load shedding during

this time because wind speed also peaks in the evening. However, electricity from wind is also

generated at night, when demand is low. Solar electricity (orange dashed line) reflects this

6businesstech.co.za (29 June 2023). “Silver lining in Eskom debt relief plan: Moody’s.” https://bit.ly/

3OgpwQr (accessed on 24 January 2024).
7reuters.com (1 November 2023). “South Africa amends Eskom debt relief, making loans interest-bearing.”

https://bit.ly/3vG4WCE (accessed on 24 January 2024).
8statssa.gov.za (3 November 2022). “The state of the electricity, gas & water supply industry (2021).”

https://bit.ly/48K5DcV (accessed on 24 January 2024).
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Figure 2: Infeed profiles and load by hour of day

Notes: The figure shows sample averages of interruption of supply (IOS), wind and solar
electricity (left y-axis), and load (right y-axis).

day/night pattern better. Yet, only a medium amount of solar electricity is available when

demand peaks in the morning, and it is unavailable when demand peaks in the evening. Solar

electricity production is particularly high at noon, coinciding with only modest demand.

4 Theory

This section presents a theoretical model of electricity production (Subsection 4.1) that is used

to derive our regression equations (Subsection 4.2).

4.1 Optimization problem

In most markets, the price rises if demand exceeds supply, and it falls if supply exceeds demand,

until an equilibrium is attained. Yet, as the retail electricity price p in South Africa is regulated

by Nersa, it cannot be used for equilibrating the market.9 At every point in time t, Eskom rather

chooses the quantities of electricity from wind Wt, solar St, nuclear Nt, coal Kt, hydropower Ht,

and pumped storage Rt ( = reservoir), to balance demand Dt and supply. If electricity gener-

9A similar setting also applies in other countries. Elliott (2024), for example, assumes that the Australian
retail electricity price is constant in the short-run and determined by average prices in the electricity wholesale
market.
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ation from these sources cannot be extended to meet demand, demand rationing, that is, load

shedding IOSt (interruption of supply), is required.

We model the optimization problem of electricity production subject to the constraints of

balancing supply and demand, and operating efficiently. To make this problem more manageable

and consistent with the available data, we have made certain simplifications. These include

considering aggregate quantities of electricity by source and overlooking the specific supply from

individual plants. We have also not taken into account that wind and solar power often come

from independent power producers with different profit objectives compared to Eskom. Rather

than attempting to capture every detail of the South African electricity market, our model

serves as a theoretical foundation for deriving the regression equations that form the basis of

our analysis. By making these simplifications, we are able to focus on the key mechanisms that

underpin our study.

Therefore, consider the following optimization problem with (in)equality constraints. The

quantities of Wt, St, Nt,Kt, Ht, Rt, and load shedding IOSt are chosen such as to maximize the

profit πt, subject to the constraints (2) and (3), where CW , CS , CN , CK , CH , and CR denote

the total costs of the different sources of energy, and Wmax, . . . , Rmax the installed generation

capacities, which are assumed to be exogenous.

πt = p(Wt + St +Nt +Kt +Ht +Rt)− (CW + CS + CN + CK + CH + CR) (1)

Wt ≤ Wmax, . . . , Rt ≤ Rmax (2)

Dt = Wt + St +Nt +Kt +Ht +Rt + IOSt (3)

The inequality constraints stated in (2) ensure that the amount of electricity produced from any

source does not surpass its maximum generation capacity. The equality constraint presented in

equation (3) enforces a balance between the electricity supply and demand at all times.

Let Et ∈ {Wt, St, Nt,Kt, Ht, Rt} be a variable indicating the different sources of electricity,

so that the Lagrangian of the optimization problem can be written as follows:

L = πt +
∑
E

λE(Emax − Et) + λIOS(Dt − IOSt −
∑
E

Et) (4)

The first order conditions of the Kuhn-Tucker Lagrangian with complementary slackness are
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given by (5) to (11), where we drop the index t for notational convenience.

∂L

∂E
= p− ∂CE

∂E
− λE − λIOS ≤ 0 (5)

E · ∂L
∂E

= 0 (6)

∂L

∂λE
= Emax − E ≥ 0 (7)

λE · ∂L

∂λE
= 0 (8)

∂L

∂IOS
= −λIOS ≤ 0 (9)

IOS · ∂L

∂IOS
= 0 (10)

∂L

∂λIOS
= D − IOS −

∑
E

E = 0 (11)

If the marginal costs are rising in E (∂2CE/∂E
2 > 0), the first order conditions (5) and (6)

imply that electricity supply from a certain source is zero if its marginal costs are too high at

E = 0, that is, ∂CE(E = 0)/∂E ≥ p−λE−λIOS . If the marginal costs are below this threshold,

the optimal supply of electricity from this source is positive and chosen such that (5) holds in

equality. If the optimal electricity production is below the maximum capacity Emax, ∂L/∂λE

from (7) is positive, and the shadow price of capacity is zero (λE = 0), as follows from (8). If

the marginal costs ∂CE/∂E are so small that optimal electricity production is at full capacity

(E = Emax), condition (7) holds in equality. The shadow price of capacity is positive (λE > 0)

such that (5) holds in equality, too.

Due to their (almost) zero marginal costs, solar, wind, and nuclear power should be generated

at full capacity according to the first-order conditions. Conversely, electricity production from

coal and pumped storage is expected to be demand-driven due to their higher marginal costs. In

the case of South Africa, hydropower functions as a run-off river technology, operating at maxi-

mum capacity, but also incorporates aspects of a dam technology to generate electricity during

peak demand periods. These patterns are supported by our data (see Appendix Figure ??).

Condition (11) implies IOS = D −
∑

E E, so that load shedding occurs if demand exceeds

supply. If IOS > 0, the shadow price λIOS of an increase in demand D is zero, as follows

from (9) and (10). In this model, the cost of load shedding is merely the revenue foregone. A

social planner would also consider additional economic effects such as the disruption of business
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activity, interruptions of the cold chain, or negative effects on medical treatment (Schmalensee,

2022). We will discuss aspects related to this value of lost load in Section 7. For the moment,

we focus on using these relationships to derive our regression equations, as is shown next.

4.2 Regression equations

Equilibrium condition (3) can be re-written as in (12), where the indicator function It takes

a value of one if demand exceeds supply, which implies IOSt > 0, and zero otherwise. Also

consider that the production of electricity from wind and solar is a function of wind speed wst

and solar radiation srt.

IOSt = It · [Dt − βW,tW (wst)− βS,tS(srt)− βN,tNt − βK,tKt − βH,tHt − βR,tRt] (12)

It =

1 if Dt >
∑

E Et

0 otherwise
(13)

Theory predicts that the β-coefficients take a value of 1 if load shedding occurs (It = 1), and

if one additional MWh of electricity reduces the extent of load shedding by exactly one MWh.

In reality, however, one MWh of electricity in one part of the country may not necessarily help

reduce load shedding in other parts of the country. There may also be lags, grid bottlenecks,

or technical constraints that prevent sudden changes in supply when load shedding occurs. It

may also be difficult calling off load shedding when supply goes up. Hence, the value of the

β-coefficients cannot be determined from theory alone.

We estimate those coefficients for every hour h of the day using variation across the different

days in our sample, so that equation (12) can be written as in (14).

IOSt = Ih · [Dt − βW,hW (wst)− βS,hS(srt)− βN,hNt − βK,hKt − βH,hHt − βR,hRt] + ut (14)

Because load shedding occurs only at some days, the variable Ih measures the average frequency

of load shedding events at this hour. The variable ut stands for the error that one makes by

averaging load shedding responses for a certain hour.

Quite importantly, demand Dt is unobserved in our sample. Let Dt = α + zt, where α

measures average demand and zt the deviation from this average at any particular point in
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time. Equation (14) can, therefore, be written as in (15), with ϵt = ut + Ih · zt.

IOSt = Ih · [α− βW,hW (wst)− βS,hS(srt)− βN,hNt − βK,hKt − βH,hHt − βR,hRt] + ϵt (15)

A reduced-form regression equation, therefore, follows as is shown by (16), where δW = Ih ·βW,h

and δS = Ih · βS,h.

IOSt = δWWt + δSSt +X ′
tδ + ϵt, (16)

The variable X denotes a vector of control variables (different types of electricity supply) and

fixed effects for the sample years, months of year, days of week, hours of day, and holidays. The

coefficients δW and δS measure the aggregate effect of one additional MWh of wind or solar

electricity on load shedding.

We, then, disaggregate this effect by decomposing equation (15) in two parts: We estimate

the coefficients of a linear probability model (17) for all observations t ∈ [1, T ], which is the

probability of load shedding (the extensive margin).

It = γW,hW (wst) + γS,hS(srt) +X ′
tγh + ιt (17)

We also estimate the coefficients of load shedding equation (18) conditional on IOSt > 0. This

equation measures the extent of load shedding (the intensive margin).

IOSt = βW,hW (wst) + βS,hS(srt) +X ′
tβh + σt (18)

This distinction is important because while adding one additional MWh of renewable elec-

tricity can help reduce the extent of load shedding by one MWh, it might not have a significant

impact on the probability of a load shedding event occurring. This is especially true if the

overall capacity is too low, meaning that adding more capacity may not entirely prevent a load

shedding event, even if it mitigates the extent of load shedding. Due to demand being an omit-

ted variable, identifying the β-, γ-, and δ-coefficients is not straightforward. Our approach to

tackling this problem is presented in Section 5.
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5 Instrumental Variables

Subsection 5.1 describes why an endogeneity problem may bias our results, and how we address

this problem using an instrumental variables approach. The construction of the instruments is

described in Subsection 5.2, with the identifying assumptions being evaluated in Subsection 5.3.

Subsection 5.4 presents the results of the first-stage regressions.

5.1 Endogeneity

Our goal is to estimate the causal effect of variable renewable electricity infeed on load-shedding

events in South Africa. Therefore, we estimate the coefficients of regression equations (16), (17),

and (18), using heteroskedasticity and autocorrelation consistent (HAC) error terms. Theory

indicates that demand should be included in these regressions as a control variable. However,

since demand is unobserved, it causes an endogeneity problem.

More specifically, greater demand increases the need for load shedding and, thus, raises both

the probability and the extent of load shedding. Greater demand will, however, also typically

be matched by higher supply, which reduces load shedding. This results in a “bad control”

problem (Angrist and Pischke, 2009). Given the negative correlation between electricity supply

and load shedding, the positive correlation between load shedding and demand, and the positive

correlation between demand and equilibrium supply, the β-, γ-, and δ-coefficients will be biased

towards zero if one does not appropriately account for endogeneity.

To take care of this problem, we estimate a two-stage least squares (2SLS) model, using

wind speed and solar radiation to instrument for wind and solar electricity production. Wind

speed and solar radiation are measured for the exact locations of the renewable power stations,

as described in more detail in Subsection 5.2. This allows for estimating unbiased and causal

effects of wind and solar electricity on load shedding. The two first-stage regressions are:

Wt = δ1awswst + δ1asr srt +X ′
tδ

1a + ϵ1at (19a)

St = δ1bwswst + δ1bsrsrt +X ′
tδ

1b + ϵ1bt (19b)

Then, the second stage for our reduced form model (16) includes the predicted values of wind

and solar electricity infeed, Ŵt and ŝt, respectively:

IOSt = δ2ndW Ŵt + δ2ndS Ŝt +X ′
tδ

2nd + ϵ2ndt . (20)
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The regression equation for the probability of load shedding (the extensive margin) is:

It = γ2ndW Ŵt + γ2ndS Ŝt +X ′
tγ

2nd + ϵ2ndt . (21)

The regression equation for the extent of load shedding (the intensive margin) is:

IOSt = β2nd
W Ŵt + β2nd

S Ŝt +X ′
tβ

2nd + ϵ2ndt if IOSt > 0. (22)

5.2 Instruments

Our dataset comprises 37 operational onshore wind parks and 42 PV or solar thermal instal-

lations in South Africa, which were identified using the Global Wind and Solar Power tracker

from Global Energy Monitor.org. This tracker provided us with details such as capacities, com-

mencement year of operations, and geographical coordinates for each facility. This information

allowed us to precisely locate each installation and incorporate it into our analysis.10

Given that South Africa is divided into three distinct weather zones, we recognized the im-

portance of accounting for the regional variations in weather conditions. To address this, we

obtained simulated weather data specific to the exact locations of the wind and solar PV instal-

lations in our sample. To achieve this, we accessed wind and solar radiation data from ERA5,

the European Centre for Medium-Range Weather Forecasts’ fifth-generation atmospheric re-

analysis of the global climate. ERA5 provides data with a resolution of 0.25◦ x 0.25◦ which

ensures high accuracy and reliability in our analysis (Hersbach et al., 2020).

To calculate the average wind speed, we squared both the 100m u-component of wind and the

100m v-component of wind, summed these squared values, and then extracted the square root

of this sum.11 Additionally, we used the surface net solar radiation to determine solar radiation

levels.

We aligned every wind or solar facility with the nearest grid point in the ERA5 dataset. This

alignment was based on the installations’ longitude and latitude. By doing so, we were able to

accurately associate the weather data from ERA5 with each specific installation. Subsequently,

we computed capacity-weighted hourly averages for both wind speed and solar radiation. Wind

10globalenergymonitor.org/projects/global-solar-power-tracker/tracker-map/ and
globalenergymonitor.org/projects/global-wind-power-tracker/tracker-map/ (accessed on August
16, 2023)

11A detailed description of the variables can be found here: cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview (accessed on August 16, 2023)
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speed metrics are presented in meters per second, while solar radiation is expressed in Watts

per square meter.

5.3 Identifying assumptions

The instrumental variables method produces unbiased estimates, assuming that two assump-

tions are satisfied: (i) instrument relevance and (ii) the exclusion restriction, as are explored

next.

Instrument relevance – This assumption requires wind speed and solar radiation to be

sufficiently correlated with the endogenous variables (that is, wind and solar electricity infeed) to

serve as valid instruments. This can be tested on empirical grounds. The first-stage regressions

show indeed statistically significant partial coefficient estimates. Moreover, the Kleibergen-

Paap first-stage F statistic is sufficiently high (i.e., 3,837), rejecting the null hypothesis of weak

instruments.

Exclusion restriction – This assumption requires the instruments (wind speed and solar

radiation) to impact the outcome variable (load shedding) only through the endogenous variables

(wind and solar electricity infeed). Otherwise, the error term would be correlated with the

endogenous variables, leading to estimation bias. The exclusion restriction cannot be tested

empirically, but must be assessed by means of economic rationale. It is highly plausible that

wind and solar electricity infeed are determined by wind speed and solar radiation, whereas the

amount of load shedding is likely to be independent of wind speed and solar radiation.

There may be some concern regarding a potential relationship between solar radiation and

electricity demand. For instance, some might posit that days characterized by intense solar radi-

ation may coincide with heightened electricity demand, particularly for space cooling. However,

several factors challenge this assumed correlation. Firstly, solar radiation is measured at the

locations of solar power installations, which are usually situated in remote areas far away from

demand centers. Secondly, these installations are often located in different climate zones com-

pared to the large cities where electricity demand is high. Thirdly, there is no stable relationship

between solar radiation and demand across the year. Even if high solar radiation led to higher

electricity demand in summer, one would expect lower electricity demand for space heating in

winter.

Figure 3 shows a scatter plot of solar radiation and load shedding, indicating no clear rela-
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Figure 3: Scatter plot of solar radiation and load shedding

tionship between those two variables. This suggests that the exclusion restriction is satisfied, so

that solar radiation can be treated as a suitable instrument for solar electricity infeed. Overall,

the data and analysis provide evidence that there is no direct relationship between solar radia-

tion and electricity demand. This supports the assumption that solar radiation can serve as a

valid instrument in studying the effects of solar electricity infeed.

5.4 First-stage regression

The results of the first-stage regression are provided in Table 2. The instruments are strongly

correlated with the endogenous variables.
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Table 2: First-stage estimates

(1) (2)
Wind electr. Solar electr.

Wind speed 197.2*** -1.287**
(250.96) (-2.82)

Solar radiation -0.180*** 0.293***
(-45.70) (89.64)

Coal electr. -0.0198*** -0.0128***
(-25.12) (-22.44)

Hydro electr. -0.0648*** 0.0727***
(-8.35) (13.18)

Pumped-storage electr. -0.0516*** -0.0699***
(-19.36) (-33.59)

Nuclear electr. 0.0473*** 0.00231
(16.20) (1.10)

FE hours of day yes yes
FE days of week yes yes
FE months of year yes yes
FE years yes yes

Observations 42,408 42,408

Notes: First stage estimates. Standard errors in paren-
theses are robust to heteroskedasticity and allow for first-
order autocorrelation (HAC-robust Newey-West SE). ***
p < 1%, ** p < 5%, * p < 10%.

6 Results

This section discusses how load shedding responds to wind and solar electricity infeed. Sub-

section 6.1 presents our main results and discusses special cases (e.g., daytime vs. nighttime),

before we distinguish between the extensive margin (Subsection 6.2) and the intensive margin

(Subsection 6.3).

6.1 Main results

Table 3 presents the main findings of our study. As hypothesized in Subsection 5.1, a naive

OLS regression without any control variables, as presented in column (1), results in positive and

statistically significant coefficient estimates on wind and solar electricity. This merely reflects

the increasing trends of both load shedding and electricity from renewables. After controlling

for the supply of other forms of electricity and, thus, for the decline in electricity from coal,

the coefficients on wind and solar electricity turn out to be negative; see the OLS specification

in column (2). However, those coefficients are still biased biased towards zero if one does not

appropriately address endogeneity. This aspect is solved by our IV regression, as is presented

in column (3). The absolute values of the coefficients on wind and solar electricity rise after

controlling for endogeneity, and one finds that the bias had been particularly pronounced for
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Table 3: Main regression estimates

(1) (2) (3) (4) (5)
OLS OLS 2SLS 2SLS 2SLS

h7–h17 h21–h4

Wind electr. 0.30736*** -0.25224*** -0.28920*** -0.31116*** -0.20391***
(0.01498) (0.01244) (0.01280) (0.01852) (0.01616)

Solar electr. 0.09737*** -0.47126*** -0.66038*** -0.64449***
(0.01112) (0.02695) (0.05478) (0.06748)

Coal electr. -0.18600*** -0.19137*** -0.20628*** -0.17492***
(0.00438) (0.00462) (0.00673) (0.00748)

Hydro electr. -0.49988*** -0.49063*** -0.64151*** -0.39262***
(0.03230) (0.03256) (0.05268) (0.04844)

Pumped-storage electr. -0.30375*** -0.32444*** -0.38421*** -0.55515***
(0.01237) (0.01348) (0.01724) (0.05843)

Nuclear electr. -0.20064*** -0.20099*** -0.24018*** -0.18858***
(0.01292) (0.01294) (0.01914) (0.01886)

FE holidays no yes yes yes yes
FE hours of day no yes yes yes yes
FE days of week no yes yes yes yes
FE months of year no yes yes yes yes
FE years no yes yes yes yes

Observations 42,408 42,408 42,408 19,437 14,136
R-squared 0.031 0.4443 0.4427 0.4455 0.3868
K.P. first-stage F stat. 2,162 1,285 11,000
D.W.H. endog. test, p-val. 0.000 0.000 0.000

Elasticity of wind electr. +0.74% -0.61% -0.69% -0.75% -0.49%
+2.69 MWh -2.21 MWh -2.53 MWh -2.72 MWh -2.00 MWh

Elasticity of solar electr. +0.13% -0.62% -0.87% -0.85%
+0.47 MWh -2.25 MWh -3.16 MWh -3.08 MWh

Notes: Dependent variable: interruption of supply (IOS) in MWh. Standard errors in parentheses are
robust to heteroskedasticity and allow for first-order autocorrelation (HAC-robust Newey-West SE). ***
p < 1%, ** p < 5%, * p < 10%. Column 3–5: instrumented for wind and solar electricity by wind
speed and solar radiation. Sample period: 01apr2018,01h–07mar2023,24h. At the bottom of the table,
we present the effects of a 1% partial change in wind or solar electricity infeed on IOS (in % and in
MWh), ceteris paribus, evaluated at sample means. ”K.P.” ... Kleibergen-Paap, ”D.W.H.” ... Durbin-
Wu-Hausman.

the solar coefficient.

The reported statistics suggest that the IV approach is relevant and well executed. The

Durbin-Wu-Hausman test for endogeneity (Davidson and MacKinnon, 1993) rejects the null

hypothesis that the variables wind and solar electricity infeed are exogenous at a p-value of

0.000. Hence, wind and solar electricity infeed should be treated as endogenous. Moreover, the

instruments are strongly correlated with the endogenous variable and are rejected to be weak,

indicated by the high value of the Kleibergen-Paap first-stage F statistic.

To interpret our main results, the IV estimates (column (3) of Table 3) suggest that wind

and solar electricity infeed decrease IOS. The coefficient on wind electricity is -0.29, so that

an increase in wind electricity by one MWh reduces IOS by 0.29 MWh. The coefficient on
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(a) Wind speed (b) Solar radiation

Figure 4: Resource availability

Notes: Figures 4a & 4b display daily aggregates for the year 2022.

solar electricity is -0.66 – more than twice as large. This indicates that a 1% increase in wind

power (8.75 MWh) reduces load shedding by 0.69% (2.53 MWh). A 1% increase in solar power

(4.78 MWh) reduces load shedding even by 0.87% (3.16 MWh).

As a likely explanation for these diverse effects, wind electricity is, on average, rather constant

across the day. Hence, wind also feeds in electricity at night, when there is no need for load

shedding. Solar electricity, however, tends to be load-following (see Figure 2) and, thus, better

aligns with load-shedding events. Additionally, solar electricity infeed can be more accurately

predicted compared to wind electricity, allowing it to effectively bridge the gap between dis-

patchable electricity generation and load. This combination of factors likely contributes to the

diverse effects observed.

Overall, the two technologies have quite heterogeneous infeed profiles and, therefore, tend

to complement each other. Wind power has features of a baseload technology (see Figure 2).

However, there are severe intraday, day-to-day, and seasonal fluctuations, which, again, limit

the baseload-characteristic of wind power (see Figure 4a). Solar radiation, however, is limited

to daylight hours, again with significant intermittency across hours, days, and seasons (see

Figure 4b), which limit the resource availability considerably.

Table 3 provides a breakdown between estimates for daytime (column (3)) and nighttime

(column (4)). Wind power reduces load shedding by 0.20 to 0.31 MWh, depending on the time

of day. Evidently, the effectiveness of wind power tends to be more pronounced during daytime

(h7–h17), when load shedding is more prevalent, and weaker at night, when load shedding

happens only infrequently. Solar power reduces load shedding by up to 0.64 MWh during the
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(a) Effect on probability of load shedding (b) Elasticities

Notes: Figure 5a displays the estimated effects of an additional MWh of wind (blue) and solar (orange) power
on the probability of load shedding per hour of the day. Each coefficient estimate multiplied by 100 represents
the percentage-point change in the probability of load shedding. Figure 5b illustrates the percentage response in
the probability of load shedding for a one percent increase in wind (blue) or solar (orange) electricity generation.

Statistically insignificant estimates were omitted from the elasticities.

day, but has obviously no contribution during the night. The absence of solar electricity during

the evening is especially problematic, because it cannot alleviating the peak in load shedding.

6.2 Extensive margin: probability of load-shedding events

We now focus on the extensive margin, examining whether wind and solar power decrease the

probability of load-shedding events. To this end, we estimate the linear probability model

defined in Equation (17), where the dependent variable It is a binary indicator if load shedding

occurs (IOSt > 0) or not (IOSt = 0); see equation (13). For daylight hours, the regression is

estimated for wind and solar, whereas solar is dropped for the hours after sundown.

Figure 5a provides a visual representation of the estimates.12 It demonstrates that wind

power has a steady potential to reduce the probability of load shedding, although this potential

is somewhat constrained. In contrast, the effect of solar on the probability of load shedding is

about 2 to almost 5 times stronger. This effect is particularly pronounced during the afternoon,

when demand begins to rise. However, it is important to note that solar radiation dimin-

ishes considerably during the period when load shedding is most prevalent, typically occurring

between 6 and 8 pm.

To improve the interpretability of the results, the estimated coefficients were converted into

elasticities. Figure 5b illustrates that during daylight hours, solar is more effective than wind

in reducing the load-shedding probability. A one percent change in solar electricity infeed can

reduce the likelihood of a load-shedding event by up to 0.7% at 10–11 am. This coincides with

12Each coefficient estimate multiplied by 100 gives the percentage-point change in the load-shedding probability
per additional Mwh of wind or solar electricity infeed.
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moderate load-shedding activity (see Figure 2).

On the other hand, wind electricity is most effective in reducing the load-shedding probability

during the night, with an elasticity of -0.55% at 2–3 am. This happens, however, when the load-

shedding happens only rarely (see Figure 2). Nevertheless, during the hours 17–20, when load

shedding is at its peak, wind has a low and solar no contribution to reducing the load-shedding

probability.

6.3 Intensive margin: extent of load shedding

Turning to the intensive margin, we are interested in the extent of load shedding that can be

avoided by an additional MWh of wind and solar electricity infeed during times of load-shedding

(IOSt > 0). Figure 6 visualizes the coefficient estimates of equation (18) by hour of day.

One additional MWh of wind power reduces load shedding by up to 0.74 MWh at 11 am.

The effect of solar power is typically smaller. It is only more pronounced in the late afternoon,

when a rising electricity demand (a necessity of load shedding) coincides with sunlight hours.

However, the effect of solar is volatile across the day, and it almost vanishes around noon, when

there is much solar power but only moderate demand.

These patterns underscore the complementary relationship between wind and solar power in

mitigating load shedding. While wind power exhibits baseload characteristics and significantly

impacts load shedding, it often operates at an infra-marginal level, meaning it alone may not

entirely prevent load shedding. Solar power can help avoid load shedding. Yet, this effect is

strongest in the afternoon when the generation of solar electricity is already on the decline.
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Figure 6: Effect on extent of load shedding

Notes: The figure shows the estimated coefficient of one MWh of wind (blue) or solar (orange)
power on the extent of load shedding, during load-shedding events (IOS > 0) across the hours

of day. Coefficient estimates lower than -1 are implausible; yet these estimates are quite
imprecisely measured (as indicated by the large confidence intervals), given the low number of

observations during these hours, and include the value of -1.

7 Policy implications

Our results show how much load shedding can be avoided per MWh of electricity generated from

wind or solar. Subsection 7.1 demonstrates to what extent electricity from renewable resources

helps avoid externalities from carbon emissions, as it replaces electricity from conventional

resources. The costs and macroeconomic benefits of extending renewable electricity capacity

are explored in Subsection 7.2. Subsection 7.3 elaborates on demand shifting.

7.1 Environmental effects

Whenever wind and solar power generate electricity, this extra supply can be used to either

reduce load shedding by filling latent demand or, if there is no load shedding, to replace other

forms of electricity production at the margin, where supply meets demand (Gugler et al., 2021).

The largest share of South Africa’s electricity is produced from coal. Throughout the year,

coal represents the marginal electricity generation technology to meet demand. Coal has a

particularly high emission factor of about 340 tCO2 per MWh (DEA, 2019, Table 3.8, ref.

“bituminous coal”). Therefore, the environmental value of wind and solar is high whenever it

is not used for load-shedding mitigation, because each MWh can offset 340 tCO2 of a MWh of
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coal-based electricity.

Our main results show that, on average, one MWh of wind or solar electricity reduces load

shedding by 0.29 or 0.66 MWh, respectively. This, in turn, implies that, on average, every MWh

replaces 0.71 (= 1− 0.29) or 0.34 (= 1− 0.66) MWh of coal-based electricity, which equals 241

tCO2 avoided per MWh of wind power or 116 tCO2 avoided per MWh of solar power.

This back-of-the-envelope calculation illustrates not only the economic value of mitigating

load shedding through wind and solar power, but also underscores the considerable environ-

mental value they offer. Importantly, in opportunity, one MWh of load shedding, which is

offset by one MWh of wind or solar power, has also environmental value evaluated against the

counterfactual of filling this gap by means of thermal energy.

7.2 Cost-benefit analysis

From a policy perspective, it is also informative to assess the extent to which investment in one

MW of wind or solar PV electricity generation capacity can reduce load shedding. Our data

enables the calculation of capacity factors for wind and solar PV stations in South Africa, which

stand at 34% for wind and 25% for solar.13 This implies that for every additional MW of wind

or solar capacity, on average, 0.34 MWh of wind electricity and 0.25 MWh of solar electricity

are generated per hour. Consequently, the addition of one MW of wind or solar power capacity

would contribute to reducing load shedding by 0.0986 MWh (= 0.28924 · 0.34) or 0.165 MWh

(= 0.66040 · 0.25), respectively. Thus, solar PV demonstrates greater effectiveness in reducing

load shedding overall.

Latest available data indicate that capital investment costs for a typical wind power station

and a utility-scale solar PV station in South Africa in 2019 were reported as 1,877 USD/kW

(IEA, 2020b) and 1,321 USD/kW (IEA, 2020a), respectively. This implies that for an investment

of USD 1 million in wind or solar power, 0.0178 MWh or 0.0312 MWh of load-shedding reduction

can be bought, respectively. Reichenberg et al. (2018, Table 1) report an expected lifetime of

25 years for both wind and solar installations.14 Therefore, over a 25-year period, load shedding

could be reduced by 3,898 MWh (= 0.0178 · 8, 760 · 25) or 6,833 MWh (= 0.0312 · 8, 760 · 25).

Investment decisions require a comparison of costs and benefits. With increasing marginal

investment costs and decreasing marginal benefits, optimal capacity investment occurs when

13In 2022, this was 1,106 MWh per hour of wind electricity output relative to 3,277 MW installed wind
capacity and 553 MWh per hour of solar PV electricity output relative to 2,228 MW installed solar PV capacity.

14GWEC (2023, p. 27) also report a 25-year lifetime of a utility-scale wind asset in Africa.
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marginal benefits equate to marginal costs. In principle, the benefits of avoiding load shedding

can be assessed through the value of lost load (VoLL), which quantifies the loss in consumer and

producer surplus in the electricity market resulting from a temporary shutdown. Measuring the

VoLL is, however, difficult for a variety of reasons:

A shutdown has a different impact on a company (idle capacity) compared to a private house-

hold. A long shutdown, which, for example, impairs the cold chain, may have an exponentially

greater effect than a short shutdown. A shutdown in an entire city may be more severe than

a shutdown in just one street, when the residents of this street may continue their activities

(work, shopping etc.) elsewhere. Also, macroeconomic multiplier effects are hard to measure.

Hence, estimates of VoLL can differ by several orders of magnitude (Gorman, 2022).

A recent estimate for South Africa has been provided by Walsh et al. (2020) in a study

commissioned by Eskom. Using the variation in GDP growth and load shedding, they estimate

the VoLL at R 9.53/kWh in the period 2018-19. About 40% of those costs were shouldered

by the manufacturing sector. Transport & Communication, Wholesale & Retail Trade, and

Agriculture, Hunting, Forestry & Fishing bore another 40% of those costs.

Earlier, we calculated that investing USD 1m in wind power reduces 3,898 MWh over the

average lifetime of a plant, which is USD 0.26 or R 3.9 per kWh.15 Investing USD 1m in solar

power reduces 6,833 MWh over the average lifetime of a plant, which is USD 0.15 or R 2.25 per

kWh, indicating that the investment costs are about 2.5 to 4 times smaller than the gains as

measured by the VoLL.

7.3 Demand shifting

To increase wind and solar power’s effectiveness in mitigating load shedding, it would be helpful

to shift demand so that it coincides with the resource profiles of wind or solar radiation more

closely. Energy storage would, thus, be an ideal complementary strategy to extending the

capacity of renewable electricity. Eskom is already investing in such storage solutions. In

November 2023, it brought online a 1,440MWh battery energy storage system, which is just the

first out of eight utility-scale storage projects.16 Yet, “if prices are capped below reasonable

15The USD-R exchange rate was about 15:1 in 2018-19, which is the exchange rate used for this calculation.
Since then, the Rand has further depreciated with an exchange rate of about 19:1 in early 2024.

16engineeringnews.co.za (9 November 2023). “Eskom’s Hex battery the first of eight utility-
scale projects being deployed across four provinces.” https://www.engineeringnews.co.za/article/

eskoms-hex-battery-the-first-of-eight-utility-scale-projects-being-deployed-across-four-provinces-2023-11-09

(accessed on 2 February 2024).
eskom.co.za (10 November 2023). “Eskom unveils a first of its kind largest
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estimates of the value of lost load [. . . ] revenues from sales in energy markets will provide

inadequate incentives for investment in generation” and also in electricity storage (Schmalensee,

2022, p. 15).

Dynamic electricity tariffs, which incentivize end-users to shift demand from peak to off-peak

times, would also be beneficial. Electricity prices are currently regulated by Nersa. In such

a heavily regulated system, dynamic pricing, where different prices are charged in peak and

off-peak times, might even be easier to introduce than in other economies, where private, profit-

maximizing retailers set their tariff rates. While dynamic electricity tariffs are uncommon in

South Africa, to date,17 Eskom is currently investing in smart meters that will allow for dynamic

pricing.18

The increasing use of electric vehicles may shift demand patterns, too. In California, for

example, the users of electric vehicles charge them most frequently between 10pm and 6am

(Burlig et al., 2021). In South Africa, such a demand pattern might correspond well to the

nighttime supply of wind energy. Yet, sales of electric vehicles are low in South Africa. In 2019,

conventional motorcars represented about two thirds of the 11.5m road vehicles in the country.

But only 560 were battery electric vehicles, and 680 plug-in hybrid vehicles (Tongwane and

Moeletsi, 2021).

8 Planned extensions

To be done:

• We will use estimates of the fixed costs or Levelized Costs of Energy (LCOE) of wind

and solar power from external sources to evaluate how much load shedding reduction one

could by for one Rand of investment in wind or solar power.

• We will also say more about the CO2 abatement effect of wind and solar power in South

battery storage project in the African continent.” https://www.eskom.co.za/

eskom-unveils-a-first-of-its-kind-largest-battery-storage-project-in-the-african-continent/

(accessed on 2 February 2024).
sanews.gov.za (10 November 2023). “Eskom’s Hex Battery Energy Storage Sys-
tem is a step in the right direction.” https://www.sanews.gov.za/south-africa/

eskoms-hex-battery-energy-storage-system-step-right-direction (accessed on 2 February 2024).
17nersa.org.za. “Approved municipal electricity tariffs 2022/23.” https://www.nersa.org.za/wp-content/

uploads/bsk-pdf-manager/2022/10/Approved-Municipal-Electricity-Tariffs-2022-23.pdf (accessed on 8
February 2024).

18timeslive.co.za (26 April 2023). “A smart meter in every house: Inside Eskom’s
R16bn plan to help end load-shedding.” https://www.timeslive.co.za/news/south-africa/

2023-04-26-a-smart-meter-in-every-house-inside-eskoms-r16bn-plan-to-help-end-load-shedding/

(accessed on 12 February 2024).
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Africa. It is most likely that one additional unit of wind and solar power would abate

one MWh of coal-electricity whenever this MWh of wind or solar power is not used to

reduce load shedding. Hence, there may be a tradeoff between load-shedding reduction

and carbon offset: an additional MWh of renewable energy can either be used to meet

demand or, if demand is already met, to offset coal-electricity supply.

• We will also analyze the differences between workdays and weekends.

Table 4: 2SLS estimates: work days vs weekend

(1) (2)
Mon–Fri Sat, Sun

2SLS: 2nd stage 2SLS: 2nd stage
IOS IOS

Wind electr. -0.30211*** -0.26372***
(0.01127) (0.01550)

Solar electr. -0.77786*** -0.46030***
(0.04933) (0.06827)

Coal electr. -0.20666*** -0.16990***
(0.00413) (0.00580)

Hydro electr. -0.54994*** -0.35936***
(0.02970) (0.04123)

Pumped-storage electr. -0.37192*** -0.32098***
(0.01290) (0.01966)

Nuclear electr. -0.21467*** -0.18215***
(0.01142) (0.01497)

FE holidays yes yes
FE hours of day yes yes
FE days of week yes yes
FE months of year yes yes
FE years yes yes

Observations 30,288 12,125
K.P. first-stage F stat. 2,632 1,188

Notes: Dependent variable: interruption of supply (IOS) in MWh.
Standard errors in parentheses are robust to heteroskedasticity and
allow for first-order autocorrelation (HAC-robust Newey-West SE).
*** p < 1%, ** p < 5%, * p < 10%. Column 2: instrumented for
wind and solar electricity by wind speed and solar radiation. Sam-
ple period: 01apr2018,01h–07mar2023,24h. ”K.P.” ... Kleibergen-
Paap.
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Figure 7: IOS & wind and solar infeed profiles: work days vs. weekends

(a) Work days (b) Weekends

9 Conclusion

In this study, we investigated two research questions: To what extent does electricity from

decentralized and intermittent renewable resources reduce load shedding in South Africa? And

if so, is wind or solar power more effective in reducing load shedding?

This inquiry bears significance due to the growing prevalence of load shedding in South

Africa, which has had detrimental effects on both economic development and the quality of

life. In recent years, the frequency of rolling blackouts has intensified markedly. This escalation

can be attributed to the decline in electricity generation from conventional resources, as aging

plants approach the end of their useful life – a trend that is projected to persist in the future.

Concurrently, South Africa has set incentives, particularly for independent power producers, to

bridge this gap by harnessing electricity from intermittent renewable resources.

While wind and solar power contribute to addressing the supply-demand gap, it remains

uncertain to what extent they alleviate load shedding, as their generation does not necessarily

align with times of peak demand. Drawing upon data provided by South African electricity

provider and grid operator Eskom, our analysis reveals that both wind and solar power reduce

load shedding. Furthermore, these effects have significant economic implications. Even modest

investments can yield substantial results, although substantial investments would be required

to achieve nearly zero load shedding.

Nonetheless, the intraday patterns of wind and solar power differ markedly. Wind power

exhibits a relatively stable supply throughout the day, with a moderate peak in the evening
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– when demand is highest. Consequently, wind power serves as a baseload technology, with

approximately three-quarters of each MWh of electricity generated contributing to load shedding

reduction.

However, wind power is rarely pivotal for avoiding load shedding altogether. Even at full

capacity, demand may still outstrip supply. On occasion, this shortfall is supplemented by solar

power, which exerts a more pronounced impact on the load shedding probability, particularly

during the afternoon when demand begins to rise towards its evening peak.

The baseload characteristics of wind power underscore the importance of continued invest-

ment in this technology. However, constructing wind power plants necessitates substantial in-

vestments from corporate entities, whereas solar power can be developed in smaller installments.

Nevertheless, the impact of solar power on load shedding is more volatile. Consequently, it is

vital to complement investments in solar power with the development of storage technologies

or demand shifting.
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Appendix

(a) Dispatchable electricity (b) Gap betw. demand and disp. electr.

(c) Interruption of supply (d) Variable renewable electricity

Figure A1: Dispatchable electricity, load shedding, and renewables
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