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Abstract

The discrete choice to adopt a financial innovation affects a household’s exposure to

inflation and transactions costs. We model this adoption decision as subject to an un-

observed cost. Estimating the cost requires a dynamic, structural model, to which we

apply a conditional choice simulation estimator. A novel feature is that preference pa-

rameters are estimated separately, from the Euler equations of a shopping-time model,

to aid statistical efficiency. We apply this method to study ATM card adoption in the

Bank of Italy’s Survey of Household Income and Wealth. There, the implicit adoption

cost is large, but varies significantly by age cohort, education, or region.
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1 Introduction

We study how households adopt a new financial product.1 Specifically, we provide a measure

of households’ perceived adoption costs and benefits and whether these perceptions explain

observed adoption patterns. Our application is to the adoption of ATM cards in Italy, as

tracked in the Bank of Italy’s Survey of Household Income and Wealth, a rich survey data

on household financial decisions.

Adopting a card provides ongoing benefits to consumers, for example by helping them

use cash efficiently. Yet adoption appears slow and incomplete historically. Measuring an

implicit (unobserved) adoption cost is important to predicting the speed with which financial

innovations can spread. By measuring this cost we also provide a framework in which

counterfactual scenarios can be simulated. For example, we consider the scenario where all

households adopt the financial innovation and estimate what compensation would have to

provided to achieve this universal adoption.

Households’ adoption patterns have two features that we strive to incorporate into the

modelling and estimation strategy. First, adoption is a dynamic, discrete choice where the

household weighs the future benefits of the new technology against a one-time adoption

cost. Second, households are heterogeneous in how they use the new technology and hence

benefit from it. The study contributes to the literature on adoption of financial innovation by

proposing a conditional choice probability estimator for the parameters of these benefits and

costs. The estimator builds on the insights by Hotz et al. [1994] and is based the methods

of Hotz and Miller [1993], Aguirregabiria and Magesan [2013] and Arcidiacono and Miller

[2011].

There are three key features of the estimator. First, we combine the simulation estimator

with the estimation of preference parameters via Euler equations for households with or

without ATM cards. The Euler equations come from a shopping-time model that describes

both the intensive margin of money-holding and the additional gains from holding an ATM

card. Time effects in the implied money-demand function also allow for the diffusion of

ATM machines and bank branches over the historical sample. It is important to control for

this diffusion in banking services in estimating the adoption cost. Second, we allow for both

observed and unobserved heterogeneity among households, in their cash-holding behavior.

Tracking their decisions over time allows us to control for this heterogeneity, which we find

to be substantial. Third, we assume that adoption is irreversible in that a household cannot

‘un-adopt’ the new technology. This assumption implies a finite-dependence property of the

decision problem (outlined by Aguirregabiria and Magesan [2013], Arcidiacono and Miller

[2011] and Arcidiacono and Ellickson [2011]) which facilitates computation.

1KPH: motivate via EU financial inclusion initiative http://ec.europa.eu/finance/

finservices-retail/inclusion/index_en.htm.
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FINDINGS

Section 2 describes the data sources. Section 3 outlines the household decision problem.

Section 4 describes the econometric building blocks while Section 5 contains the results. An

appendix contains extensive sensitivity analysis.

2 Related Research

This project is related to behavioral perspectives on financial decisions, to econometric work

on the participation decision, and to numerical portfolio models. This section briefly sets

our work in these contexts.

First, financial decisions, including the decision to adopt a new type of account, may

be made infrequently and may be subject to deferred benefits that are hard to measure.

Households thus may well make mistakes in these decisions, as a wealth of research in

behavioral economics has emphasized. We explore the possibility that some households may

rationally not adopt an ATM card, because of the cost involved in doing so. Non-adoption

may be a wise choice if fees are high or ATM locations are inconvenient. Vissing-Jørgensen

[2003] suggests that to show non-participation to be rational requires investigators to find

the participation cost not be implausibly large. We explore whether this conclusion holds

for those without ATM cards.

Second, the extensive margin or participation choice is a key issue in empirical work

on household portfolios. Most work on participation or account adoption uses limited-

dependent-variable econometrics to statistically explain the dichotomous variable Iit. Miniaci

and Weber [2002] provide an excellent discussion of the econometric issues in estimating these

models with data from household surveys. Most empirical work concerns the decision to hold

risky assets. Guiso et al. [2003], Perraudin and Sørensen [2000], and Vissing-Jørgensen [2002]

study participation in stock markets. The same methods also have been applied to the deci-

sion to open a bank account. Attanasio et al. [2002] study the demand for currency allowing

for the adoption decision.

A number of studies use panel data that allow researchers to track adoptions and poten-

tially allow for unobserved heterogeneity across households. Alessie et al. [2004], for example,

track the ownership of stocks and mutual funds in a panel of Dutch households. These stud-

ies typically find that previous participation is significant in statistically modelling current

participation. A key issue is whether this pattern reflects true state-dependence or persistent

unobserved exogenous variables. This pattern of persistence may be evidence of a fixed cost

to adoption and so may help identify that cost.

Third, a number of researchers have studied the extensive margin of stock-holding us-

ing numerical portfolio models solved by dynamic programming. For example, Haliassos
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and Michaelides [2003] introduce a fixed cost into an infinite-horizon consumption-portfolio

model. Gomes and Michaelides [2005] also solve and simulate a life-cycle model with a fixed

cost of holding stocks. These studies calibrate planning problems and carefully study the

outcomes.

Alan [2006] takes the important step from simulation to estimation, by indirect inference.

She estimates preference parameters and a fixed cost of entry to a stock market using the

solved consumption-portfolio model so that statistics from a participation equation in the

simulated data match those from the same equation in historical, panel data. Sanroman

[2007] adopts a similar method. She outlines a planning problem that involves both a partic-

ipation decision and an asset-allocation or portfolio problem. She then solves the dynamic

programme by discretization. Finally, she estimates parameters by indirect inference using

the Italian SHIW with a logit model as the auxiliary estimating equation. She estimates

that the participation cost for holding stocks varies from 0.175 to 6 percent of income, or

from 10 to 1126 euros, with households with higher education implicitly facing lower costs.

One model of asset allocation in the case of cash management is the Baumol-Tobin model

or a related inventory model. In this framework, Alvarez and Lippi [2009]’s work constitutes

the state of the art in theory and empirical evidence on household cash management. They

model the household’s cash withdrawal conditional on the adoption of an ATM card. Their

framework also measures changes over time in withdrawal costs. They find a relatively small

benefit to adopting an ATM card, though they note that it is based only on a reduction in

withdrawal costs and not on the card’s use as a debit card. Yang and Ching [2014] model

both the extensive and intensive margins, again using the Baumol-Tobin model to describe

the latter. They estimate a significantly larger cost of ATM adoption. We adopt an alter-

nate, shopping-time model of money holding that also is widely used in macroeconomics. A

key feature of this model that constrasts with the Baumol-Tobin model is that we do not

assume that the cost of a cash withdrawal is proportional to consumption or income. Section

7 discusses the impact of this distinction on the results.

This study differs from the work on dynamic consumption-portfolio models in that we

estimate the parameters of the mixed discrete (adoption) continuous (money demand) with-

out solving the dynamic programming problem. We can therefore incorporate heterogeneity

in time horizons and adoption costs with very little computational costs. Separately esti-

mating the a subset of parameters of the utility function conditional on the discrete action

using Euler equation methods was suggested by Pakes [1994], albeit in a different context.

To estimate the cost of adoption we employ a conditional choice simulation estimator in the

spirit of Hotz et al. [1994] and Hotz and Miller [1993]. The finite dependence nature of the

adoption problem allows us to estimate the dynamic model by simulating only one-period

ahead as shown by Arcidiacono and Miller [2011] and illustrated in Arcidiacono and Ellick-
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son [2011]. A particular feature of our setting with finite dependence is that we can identify

the household discount factor as shown in Abbring and Daljord [2020].

In sum, we combine some of the economic structure from numerical portfolio models—

planning horizons and parameters of discounting and intertemporal substitution—with the

ability to accommodate all the household heterogeneity and econometric tractability of the

discrete-choice econometric models.

3 Data Sources

3.1 Survey of Household Income and Wealth

Our study relies on household-level data from the Bank of Italy’s Survey of Household Income

and Wealth ( SHIW), which is the gold standard for panel surveys involving wealth and

savings. It has detailed information on account status, wealth, and consumption, and the

largest and longest coverage of any such panel. The SHIW is the main data source for

studies on money demand and financial innovation by Attanasio et al. [2002], Alvarez and

Lippi [2009], and Lippi and Secchi [2009], among others.

The SHIW is a biennial survey run by the Banca d’Italia. We use the 1991, 1993, 1995,

1998, and 2000, 2002, and 2004 waves. We stop at 2004 as one of our main variables—

average currency holdings—is discontinued from 2006 onwards with the exception of 2008.

The three year spacing from 1995 to 1998 was a result of the Banca d’Italia switching survey

providers. The Banca d’Italia spends considerable resources to ensure that the data is

nationally representative, as outlined by Brandolini and Cannari [1994]. The SHIW survey

is a rotating panel with about 8,000 households per wave. The rotating panel design is

incorporated because there is an attrition rate of roughly 50%. Jappelli and Pistaferri [2000]

provide an extensive discussion of the quality of the SHIW data and also provide a comparison

with Italian National Accounts data to address issues of sample representativeness, attrition,

and measurement. Details about the variables we used are available in a separate technical

appendix.

ATM cards involve a small annual fee, but no additional charges for withdrawals at

machines owned by the issuing bank. Their first benefit is that they allow card-holders

to withdraw cash rapidly and when banks are closed. Checking accounts bear interest, so

the ability to make withdrawals at lower cost can reduce foregone interest earnings from

holding cash. A second benefit is that they can be used as point-of-sale debit cards for retail

transactions. Despite these benefits, though, the use of cash remained very widespread in

Italy throughout this period.

Table 1 reveals that the fraction of households with an ATM card in 1991 was 29% and
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that it steadily increased to 58% in 2004. Although the survey has a high attrition rate,

many actual ATM card adoptions can be observed. On average, the share of households who

did not have an ATM card in the previous wave of the survey, were in both the current and

previous waves, and had a card in a given, current wave was 16.7%.

Next, we focus on average currency holdings, consumption, and wealth. All the nominal

variables are expressed in 2004 equivalent euros. During this period the average currency

holdings fell for both the households with and without an ATM card. However, with the ex-

ception of 1991 the average cash holdings of ATM holders were lower than those of non-ATM

holders. Not surprisingly, those with ATM cards tended to have higher consumption and

financial wealth than those without ATM cards. Notice that the difference in consumption

and wealth increased over time as was detailed by Jappelli and Pistaferri [2000].

3.2 Regional Inflation and Interest Rates

We also use data on inflation and interest rates from a variety of sources. The inflation

rate, measured as the per-annum change in consumer prices, is taken from the International

Financial Statistics of the International Monetary Fund. The data are on an annual basis

from 1989 to 2010. The Banca d’Italia Base Informativa Pubblica online historical database is

the source for for regional nominal deposit interest rates. These interest rates are constructed

from a variety of historical tables at a quarterly frequency. The quarterly data are then

aggregated to an annual frequency using simple sum averaging to derive annual data from

1989 to 2010. We refer to Alvarez and Lippi [2009] for more details on the data sources and

institutional details.

4 Household Choice Problem

We propose to model households decision to adopt a financial innovation, specifically an

ATM card, as an optimal stopping process. A household will adopt the innovation when

they expect the benefits of adoption to outweigh the opportunity costs of not adopting. The

model is dynamic since expectations about adoption benefits are computed from summing

up (discounted) future per-period utilities. A household in period t is described by

1. ATM card adoption status from the previous period It−1 ∈ {0, 1}.

2. Choice specific adoption shocks ϵt = (ϵ0t , ϵ
1
t ) ∈ R2 where ϵIt is incurred for choosing

I ∈ 0, 1 in period t. These shocks are known to the household before they make

their decision, but they are not observed by the econometrician. We assume that εt

are independently and identically distributed across adoption choices, households, and

over time.
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3. a vector of state variables zt that are exogenous, ie do not depend on It−1. These state

variables are for example the size of the household, its wealth, education and age of its

members.

A household’s utility function depends on the adoption status of financial innovation It,

its real consumption expenditures ct as well as its real money holdings mt, and is given by

u(It, ct,mt). It is increasing in consumption (uc > 0). We consider a shopping-time model of

money-holding, as outlined by McCallum [1989] (pp 35–41) and Walsh [2003] (pp 96–100).

Holding money also adds to utility because it reduces the time spent shopping and so adds to

leisure (um > 0). We also impose the usual concavity assumption (ucc < 0, umm < 0). Using

a financial innovation, or more specifically access to cash through an ATM card increases

the utility of consumption for a given real cash balance mt because the household can shop

more efficiently. In the shopping-time utility function, this benefit shows up as u(1, c,m) >

u(0, c,m).. We specify the functional form of u in 5.2.

Adoption of an ATM card of financial innovation is costly. It involves a deterministic

cost κ̄ and the choice specific cost shock εℓt:

κt(It, It−1, ϵt) = 1{It−1 = 0}(It − It−1)κ̄+ σκ

∑
ℓ=0,1

ϵℓt1{It = ℓ} (1)

The household’s per-period pay-off is thus given by

u(It, ct,mt|zt))− κt(It, It−1, ϵt). (2)

With the specification of the cost shock, the period utility can written in terms of an

observed and an unobserved component:

u(It, ct,mt|zt)− 1{It−1 = 0}(It − It−1)κ̄︸ ︷︷ ︸
observed

−σκ

∑
ℓ=0,1

ϵℓt1{It = ℓ}︸ ︷︷ ︸
unobserved

. (3)

In each period t the household decides on real consumption, ct, and real cash holdings,

mt. These two choice variables are continuous and observed by the econometrician. If the

household does not yet have an ATM card (It−1 = 0), it decides whether to adopt or not,

that is, chooses It ∈ {0, 1}.
Let A denote the household’s life span. The household discounts future payoffs with

discount factor β ∈ [0, 1). A household’s state is fully described by (It−1, zt, ϵt). The house-

hold chooses the sequence of ATM adoption decision, consumption, and money holding

{Iτ , cτ ,mτ}, τ = t, . . . , A to maximize the discounted sum of future pay-offs or the value
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function:

Wt(It−1, zt, ϵt, ) = max
{Iτ ,cτ ,mτ}

Et

(
A∑

τ=t

βτ−t [u(Iτ , cτ ,mτ |zτ )− κτ (Iτ , Iτ−1, ϵt)] .

)
(4)

The data support the assumption that ATM card adoption is irreversible. Of the observed

households who appear in the data more than once, only 920 or 11.6% appear to adopt the

card in one period and then report not having it in a later period. For 662 of these 920

households, at least one of the following variables is not reported consistently across time

periods: the age, gender or education level of the household head, the region where the

household resides or the number of adults living in the household. The inconsistent adoption

pattern of these households may therefore be explained by their inconsistent overall reporting

or a change in the reporting household member from one period to the next.

4.1 Intratemporal Euler equations

We exploit the fact, that conditional adoption choice It, consumption choices ct, and real

cash holdings mt have to satisfy the standard Euler equations. In particular, the opportunity

cost of holding real cash balances is the interest that could be earned when holding the

deposits on an interest bearing checking account. Let rt denote the nominal interest rate.The

intratemporal Euler condition is given by:

um(It, ct,mt) = rtuc(It, ct,mt). (5)

In this equation, uc and um are the first derivatives of u with respect to consumption c and

cash holdings m and r denotes the nominal net interest rate. Equation (5) can be derived

following Carlstrom and Fuerst [2001]. Let the nominal cash balance available for transaction

purposes in period t be given Mt, and the price level be Pt. Real cash balances available

for consumption purposes are thus given by Mt = Mt/Pt). The household begins the

period with Mt nominal balances and Dt−1 holdings of deposits on which it earned nominal

interest rate rt−1. It receives nominal income Yt (including income from wealth). Before

making consumption choices, the household decides how much cash to keep for consumption

purposes, such that Mt = Mt+(1+rt−1)Dt−1−Dt+Yt. The household ends the period with

balances given by the intertemporal budget constraint Mt+1 = Mt + (1 + rt−1)Dt−1 −Dt +

Yt − Ptct. By substituting Mt into (4) and maximizing subject to the intertemporal budget

constraint with respect to ct, Dt, and Mt+1 we obtain (5). Through this intratemporal Euler

condition, the dimension of the per-period decision problem condition on ATM adoption

status has been reduced to one from two. Given c and I, we can solve for the optimal m
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using equation 5.

4.2 The adoption decision

To study the optimal dynamic decision of adopting an ATM card, it useful to define the

conditional choice value function (see for example Hotz and Miller [1993] as the value of

choosing It net of the choice specific shock εℓt

v(It, zt) = u(It, ct,mt|zt)− 1{It−1 = 0}(It − It−1)κ̄+ β (E(W (It, ϵt+1, zt+1|zt)) . (6)

where the expectation is taken by integrating out the stochastic components of the state

variable zt+1 and the future adoption shocks, conditional on the state variable zt and the

choice It..

Recall that after households adopt the technology, they keep it forever or until the end

of the decision problem’s time horizon. Let p(It|It−1, zt) denote probability of adopting

conditional and adoption status It−1 and state zt.

By irreversibility, the probability of ”unadopting” is zero (p(It = 0|It = 1, zt) = 0)

and the probability of keeping the ATM card is one (p(1|zt, 1) = 1). For this reason, the

probability of interest is p(It = 1|It = 0, zt), which corresponds to 1 − p(It = 0|It = 0, zt).

To economize on notation we will from now abbreviate pt = p(It = 1|It = 0, zt). Assume

that the household has not adopted the ATM card prior to time t, thus It−1 = 0. At time t,

the household makes the adoption decision based on maximizing W (0, ϵ0, zt) for the revealed

choice specific error terms ϵ0t and ϵ1t , that is by comparing:

V 1(ϵt, zt) := v(1, zt)− κ̄− σκϵ
1
t (7)

V 0(ϵt, zt) := v(0, zt)− σκϵ
0
t (8)

The adoption rule V 1(ϵt, zt) > V 0(ϵt, zt) can be re-written in terms of the adoption cost

and the conditional value functions:

V 1(ϵt, zt) > V 0(ϵt, zt)

⇔ v(zt, 1)− κ̄− v(zt, 0) > σκ

(
ϵ1t − ϵ0t

)
. (9)

Keeping in mind that the right hand side of (9) is a random variable whose distribution is

known up to its scale σκ, the probability of adoption is given by:

pt = prob

[
v(1, zt)− κ̄− v(0, zt)

σκ

≥ ϵ1t − ϵ0t

]
. (10)
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After setting up the household’s decision problem, we will now work through the econo-

metric building blocks and the estimation procedure.

5 Econometric Building Blocks

Our simulation estimator is constructed from five building blocks. We first show how a static

optimality condition of the household problem in 4 yields the demand for real cash balances

which allows us to recover the parameters of the period utility function. Second, we describe

how we estimate the transitions for exogenous variables such as the regional interest rate

and the inflation rate as well as the consumption process. We then state key assumptions

on the dynamic choice problem for the household’s ATM adoption and the distribution how

we estimate the adoption costs. Last, we estimate transitions for endogenous variables—

consumption, wealth, and ATM-card adoption—denoting these transitions f . The next four

sub-sections describe these steps in turn. The last and fifth section describes the simulator

and its implementation.

To motivate the per-period utility function presented in the next sections, we provide

evidence that adoption is directly associated with changes in money holding. Figure 1 plots

the money-consumption (mr/c) and wealth-consumption (w/c) ratios over sequences of three

waves of the SHIW for the adopters, denoted by (0,1,1), the always adopters, denoted by

(1,1,1), and the never-adopters, denoted by (0,0,0). The plots apply to three time windows:

1991–1993–1995 (denoted W1), 1998–2000–2002 (denoted W2), and 2000–2002–2004 (de-

noted W3). The top panel shows the ratio mr/c. It illustrates that the never-adopters have

the highest ratios, followed by adopters, and then the always-adopters. In each window, the

ratio mr/c is decreasing, consistent with earlier analysis that the overall mr/c ratio is falling

over time. The bottom panel shows the w/c ratio for the same households. Comparing

the three groups in the top panel suggests that adoption per se is associated with a fall in

money holding relative to consumption (in time periods W1 and W2), and economizing on

money balances, which will raise utility. In addition, future adopters already hold less money

compared to consumption than those who will not adopt in the next period, as can be seen

by comparing (0, 1,1) to (0,0,0).

In our shopping time model, we specifiy the per-period utility function u(c,m, I) of each

household i in period t as follows:

u(ci,t,mi,t, Ii,t) = (1 + γIit)
ω
c1−α
i,t − 1

1− α
+ eω·(ηi+τt)

m1−ω
it − 1

1− ω
(11)

One verifies immediately that for α ≥ 1 and ω ≥ 1, it is true that uc > 0, um > 0 and

ucc < 0, umm < 0 which are the usual montonicity and concavity conditions. With the
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specification in (11), u is additively separable in consumption c and cash holdings m since

it consists of one summand that varies in c and one summand that varies in m. Each of

those summands has the constant relative risk aversion (CRRA) shape with risk aversion

parameters α for the consumption part and ω for the cash holdings part. The utility function

also depends on household and period specific parameters ηi and τt. The variable Iit equals

1 if the household has adopted an ATM card and 0, if not. ATM card adoption leads

to increased utility from consumption due to the “technology parameter” γ > 0. In the

specification (11), we allow for individual and time varying heterogeneity in the parameters.

The inclusion of individual level fixed-effects ηi is motivated by the observation that future

adoption is correlated with lower cash balances relative to consumption, as documented in

Figure 1.

The estimation of the parameters of the utility function begins with the intra-temporal

Euler conditions:

ruc = um

rit ·
(
(1 + γiIit)

ω · c−α
it

)
= eω(ηi+τt)m−ω

it

Recall that the adoption costs do not interact with c and m in the per-period utility and

hence would disappear in the partial derivatives uc and um.

Taking logarithms on both sides then gives

ln(rit) + ω · ln(1 + γi)Iit − α ln(cit) = ω · (ηi + τt)− ω ln(mit). (12)

For general α, ω ∈ (1,∞], isolating ln(m) on the right hand side yields

ln(mit) = − ln(rit)

ω
+

α ln(cit)

ω
+ ηi + τt − ln(1 + γi)Iit (13)

In the limiting case α = ω = 1, the utility function is still well-defined since limα→1
x1−α−1
1−α

=

ln(x) for all positive values of x.The intratemporal Euler equation (12) simplifies to

ln

(
mitrit
cit

)
= ηi + τt − ln(1 + γi)Iit (14)

As discussed in Section 4, the Euler equations reduce the dimension of per-period decision

problem. Given consumption c and ATM card adoption I, equations (14) and (13) implicitly

define the optimal level of cash holdings m.
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5.1 State variables and transition functions

The model three types of observable state variables that make up the vector (It−1, zt). The

first group are time-invariant or static state variables which describe the household composi-

tion, education level, and place of residence and which do not change from period to period.

The second group is deterministic and time-varying and includes the age of the household

head and their employment status. Age advances by the length of the time period between

t and t+ 1, in the case of the SHIW by 2 years. Employment status is maintained until age

65 when the household head retires. The third group includes time-varying stochastic state

variables, namely interest rates and inflation, wealth wt and adoption status It.

For all transitions, time is measured in two-year steps and is indexed by t, since the

survey is sampled every two years (three years between 1995 and 1998). We need to specify

transition functions for the third group, the time-varying stochastic state variables.

5.1.1 Interest-Rate and Inflation Process

The inflation rate πt is the year-to-year growth rate of the consumer price index, from 1989 to

2010. Interest rates rt are regional nominal deposit rates for each of the twenty administrative

regions of Italy.

To parametrize the transition function for {πt, rt} we use ordered VARs and test the

lag length with standard information criteria. It makes sense to penalize models with large

numbers of parameters given the short time-series sample. Since we have 2-year household

survey data, it makes sense to estimate to estimate transitions in two year steps. We work

with natural logarithms to guarantee positive, simulated interest rates and inflation rates.

We find that inflation can be described autonomously:

lnπt = a0 + a1 ln πt−2 + ϵπt, (15)

with ϵπt ∼ IID(0, σ2
π). In each region the deposit rate is well-described by:

ln rt = b0 + b1 ln rt−2 + b2 lnπt + ϵrt, (16)

with ϵrt ∼ IID(0, σ2
r). This setup ensures that cov(ϵπt, ϵrt) = 0 (which simplifies simula-

tions). We use this specific ordering because it fits with the difference in the time periods to

which the inflation rate and interest rate in a given year apply.

We estimate the r-equation for each of the twenty regions and report the average estimates

over this set (rather than averaging the interest rates, which would lead to an understatement

of uncertainty in a typical region). In practice, though, the variation in estimates across

regions is quite small.
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Table 2 contains the estimates for the parameters, their standard errors, and the two

residual variances. Later, we will assume that {ϵπt, ϵrt} jointly normal and, with this ordering,

the two shocks are uncorrelated.

5.1.2 Wealth and the consumption decision

We estimate reduced form equations for the wealth transition (wt+1) = fw(wt, zt) and the

consumption decision ct = f c(zt, It). In our model, wealth will depend on previous period

wealth, but the consumption decision does not depend on lagged variables. Graphically,

the bottom panel of 1 the same three groups in the bottom panel suggests that adoption

is associated with a rise in financial wealth relative to consumption in W1 and W3 but not

W2. We do observe less variation over time in financial wealth relative to consumption for

non-adopters. We account for these observations in two ways: first, we include the fixed

effects from equations 13 and 14 in the consumptions and wealth transitiuon, and second,

we assess whether the transitions for adopters and non-adopters are statistically different.

We use ordinary least squares (OLS) regression of the logarithm of current period wealth

on the observable state variables zt and previous period wealth. We show that the estimated

transitions for adopters and non-adopters are not statistically different. We thus pool the

sample to estimate the transition function fw which this does not depend on the ATM

adoption status.2

Using the same wealth transition for adopters and non-adopter ensures that the discrete

choice process has the “renewal property” (see Rust [1987]). If the state variables evolve

independently of the ATM card decision, then E(u(It, ct,mt)) depends on It, but not on the

adoption history I1, . . . , It−1. The “renewal property” could potentially be used to generalize

to a setting where adoption is not a terminal state.

Given their state zt, households decide how much to consume per period. For flexibility,

we estimate separate decision functions for adopters on non adopters. The decision function

f c,I is computed using OLS regression of the logarithm of consumption ct on observable state

variables zt, including wealth wt. Furthermore, the fixed effects ηi from Section 5.2 also enter

the consumption equation as independent variables. These reduced form equations allow to

re-parametrize the utility function as u(It, zt) and also compute u(0, zt)− u(1, zt) in (18).

5.2 The dynamic discrete choice process

The dynamic discrete choice (DDC) process optimal stopping problem is tractable under

certain assumptions. This section states these assumptions and then specifies the functional

2Fractional polynomials did not yield a large improvement in fit relative to the added complexity. The
results are available upon request.
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form of the model components and the parameters to be estimated.

The first assumption is additive separability of the per-period utility in the observables

and unobservables, see (2). The second assumption is that the random variables κ(It|It−1)

are independently and identically distributed over time with probability density function

g. The third assumption is condition independence which means that the state variables zt

follow a Markov process that is not affected by the unobservable adoption cost κt.To fulfill

this assumption, it suffices that the probability density function of the state variable zt has

the property f(zt+1|It, ϵt+1, zt) = f(zt+1|zt).
Typically, κ is assumed to follow a parametric distribution and the structural param-

eters to be estimated are the parameters characterizing this distribution. Since adoption

probabilities depend on the difference ϵ1t − ϵ0t , but not on the individual error terms, there is

no loss of generality in normalizing ϵ0t = 0. These normalization mean that only one choice

specific error term, namely ϵ1t , is left. We will therefore denote this error by σκϵ where σκ is

the variance of κ relative to a chosen distribution for ϵ.

In this paper, ϵ is a normal random variable. We conducted robustness checks for a stan-

dard logistic random variable and found that the results were quantitatively and qualitatively

very similar.

If v(1, zt) − v(0, zt) is known and adoption choice at t are observed then the structural

parameters can be estimated from the condition (10). Note that κτ , τ > t enters v(zt, 0) since

the household may adopt later and then pay the adoption cost. In the following section, we

show that the terminal choice assumption addresses this recursivity problem.

We now describe how the conditional value functions v(I, z) are estimated from the data.

The key points are first, to exploit the assumption that ATM card adoption is a terminal

choice and second, to show that the structural parameters are identified.

We use the Euler equations in Aguirregabiria and Magesan [2013] for the ATM card

adoption decision problem. From these Euler equations we retrieve moment conditions and

the Likelihood. Detailed proofs are available as an appendix. For the remainder of this

section, we will re-parametrize the utility function in terms of the exogeneous state vector

u(I, c,m) = u(I, c(z, I),m(c(z), I)) = u(I, z). The functional forms of c(z) and m(c, I) will

be derived further below.

As before ϵ follows a normal distribution with mean 0 and variance 1, corresponding to

a dynamic probit model. We noe that the Euler equation for a terminal choice in the logit

case also follows from Arcidiacono and Miller [2011]

0 =
(
u(1, zt)− (1− β2)κ̄− u(0, zt)

)
− σκΦ

−1(pt)

− β2σκ

∫ (
ϕ(Φ−1(pt+1))− (1− pt+1)Φ

−1(pt+1)
)
f(zt+1|zt)dzt+1

(17)
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From this Euler equation, Φ−1(pt) can be expressed as:

Φ−1(pt) =
u(1, zt+1)− u(0, zt+1)− (1− β2)κ̄

σκ

+ β2E
(
(1− pt+1)Φ

−1(pt+1)− ϕ
(
Φ−1(pt+1)

))
,

(18)

and if we apply the injective function Φ(·) to both sides:

pt = Φ

(
u(1, zt)− u(0, zt)− (1− β2)κ̄

σκ

+ β2E
(
(1− pt+1)Φ

−1(pt+1)− ϕ
(
Φ−1(pt+1)

)))
.

(19)

In what follows, we will refer to the equation (18) as “Linear specification” and the equation

(19) as “MLE specification.”

Now, if we are able to compute u(1, z)−u(0, z), p, and E((1−pt+1)Φ
−1(pt)−ϕ(Φ−1(pt+1)))

we can fit a linear model or a fractional probit model to obtain estimates of the structure

parameters κ, σκ and also the discount factor β2. Specifically, our estimation strategy will

be as follows: First, we attach an error term to the equations for “Lin” namely (18).3 We

then use a least squares estimator. Second, we maximize the pseudolikelihood corresponding

to equation (19), the “MLE specification.” This is the same maximization problem as for a

fractional logit or probit regression.

The next section will provide the building blocks for for u(1, z)− u(0, z), p, and E((1−
pt+1)Φ

−1(pt)− ϕ(Φ−1(pt+1))).
4

The parameters of interest are thus α, ω, ηi, τt and γi. In the data, c,m, r and I are

observed. To estimate the parameters of interest, we attach an error term to the money

demand equations (13) and (14). Since the money demand equation contains a household

level fixed effect on the right hand side, an linear model with within-household fixed effects

is appropriate. Since the same household is observed multiple times and some households

are observed before and after adoption, the coefficient of Iit is identified. The results of the

regressions for the intratemporal Euler equations (14) and (13) are summarized in Table 3.

We find that allowing γ to vary with observable household characteristics does not im-

prove model fit as measured by R2. In what follows, we will always use the specification with

3We use the linear specification with the log odds ratio (resp. the inverse cumulative normal of the
adoption probability) on the left hand side which becomes the dependent variable in the linear model.
As discussed in Aguirregabiria and Magesan [2013], it is also possible to re-arrange this equation so that
U appears on the left hand side. We conducted a detailed simulation study based in which the former
specification converges faster. Details are available upon request.

4To highlight the computational gains, u(z,1)−u(z,0)−(1−β2)κ̄
σκ

+ β2E (·) is equal to EV(κ̄,σκ). Thus, with
the notation in Rust [2000], we can compute, up to simulating p′, EV(κ̄,σκ). Indeed, the algorithm has been
reduced to estimating the structural parameters only using the “outer” steps of the fixed point algorithm
which maximizes the partial maximum likelihood for MLE in Table 5 (ie solving a fractional probit or logit
model).
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constant γ as reported in the first row of Table 3.

5.3 ATM card adoption

Finally, the probability to adopt an ATM card in period t comes from a static binary probit

model of the dichotomous variable It on the deterministic state variables and real regional

interest rates. Thus we can compute pt. Since the right hand side of the reduced form

for pt contains stochastic state variables (inflation and regional interest rates), we need to

integrate them out to obtain the offset term E((1− pt+1)Φ
−1(pt+1)− ϕ(Φ−1(pt+1))). We use

the following Monte Carlo algorithm:

First, S denotes number of Monte Carlo draws, Second, N is the number of households

in the sample for which I = 0 and I ′ is observed, and L is the number of distinct regions

that these households live in. Third, as before z and zt+1 are the state variables. To be clear

on the timing, the households are observed at two time intervals t− 1 and t.

For the algorithm, the vector z of state variables is split into three vectors z = (z1, π, r, w)

where z1 consists of all deterministic and static state variables, and the remaining state

variables are Markovian, in particular, π is the inflation rate, r the regional deposit rate and

w is household wealth.

Algorithm The expected value E((1− pt+1)Φ
−1(pt+1)−ϕ(Φ−1(pt+1))) is approximated in

three steps:

1. Obtain S draws of the state variable zt+1:

(a) Update the deterministic components of (z1)t+1 according to the rules for age and

employment.

(b) Draw S shocks ϵsπ for the inflation process. Simulate S paths for inflation πt+1 as

(ln πt+1)
s = a0 + a1π + σπϵ

s
π.

(c) Draw S shocks ϵsr,l for each of the L regional deposit rates. and simulate ln(rl,t+1)
s =

b0 + b1 ln rl,t + b2 lnπ
s
t+1 + σrϵ

s
r,l

(d) Draw S shocks ϵsw,i for each for the wealth processes of the N households. Simulate

S ×N paths of the wealth process wi,t+1 = fw(zi) + σwϵ
s
i,w.

(e) Define (zt+1)
s =

(
(zt+1)1, π

s
t+1, r

s
t+1, w

s
t+1

)
2. Compute pst+1 = p(zst+1) using the coefficients of the static binary probit model.
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3. Output:

E((1− pt+1)Φ
−1(pt)− ϕ(Φ−1(pt+1))) ∼=

1

S

∑
((1− pst+1)Φ

−1(pst+1)− ϕ(Φ−1(pst+1))).

(20)

6 Results

In this section, we present the estimation result for the structural parameters and the dis-

count factor β2. We also provide an estimate of the monetary compensation that a household

would require to adopt. We use the estimation strategy outlined at the end of Section 5.3

and obtain four sets of results, corresponding to two different functional forms of the utility

(CARA and CRRA) as well as two distinct estimators (LIN and MLE).

6.1 Parameter estimates

Table 5 summarizes results for Lin and MLE, and CARA and CRRA utilities, for a total

of 4 different specifications. We first obtain the coefficient vector (1/σκ, (1 − β2)κ/σκ, β
2),

subject to σκ > 0 and β2 ∈ [0, 1). We transform these estimates into κ, σκ, β
2, provided

β2 ̸= 1. Confidence intervals are obtained from a parametric bootstrap. Note that, in order

to present confidence intervals, we include estimates of the discounted adoption cost κ̄(1−β2)

instead of κ̄ in the table. The reason is that the upper bound of the confidence interval for

1 − β2 is close to 0 while the estimate κ̄(1 − β2) is bounded away from 0.5. In addition to

estimating κ̄, σκ and β2,, we also estimate κ̄ and σκ for fixed β2 ∈ [0, 1). We find that the

estimates in Table 5 differ somewhat across the specification choices for teh estimators (Lin

or MLE), but that different specifications of the per-period utility functions lead to even

larger differences in estimated parameters.

For each parameter, we discuss CARA utilities, then the more general CRRA utilities,

followed by a comparison between the two.

Starting with the point estimates for (1 − β2)κ̄, CARA utility estimates are around 2.9

for Lin and MLE, and the 95% bootstrap confidence intervals have approximately the same

width (around 1.35) and shape. In the CRRA case, Lin and MLE estimates are very close

(7.65) and differ only after the second decimal. The width of the confidence interval orders

of magnitude larger than point estimate (over 200 units). The confidence intervals are also

not symmetric, with the right end point being much further away from the point estimate

than the left end point. Comparing the CARA and CARRA specifications, CARA gives

5It is possible that ˆ̄κ does not have well-defined second order moment, similar to a Cauchy distribution
or the certain ratios of two normally distributed random variables
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lower estimates that also appear to be more precise. We observe that (1 − β2)κ̄ and κ̄ are

senstive to assumptions about β2.

The parameter σκ is estimated at 0.82 (0.86) for Lin and MLE . For the CRRA utility,

they are very close,and only differ in the third decimal. The bootstrap confidence intervals

for the estimate σκ are large compared to estimate itself. While they are bounded away from

zero at the lower end, the width of the 95% bootstrap confidence interval is around 3.5 the

size of parameter estimate for CARA utilities and 500 times the size of parameter estimate for

CRRA utilities. A likely explanation is that our estimators involve transforming an estimate

by inversion (1/σκ). Thus, small ranges of the untransformed estimate can translate into

large ranges when the untransformed estimates are close to zero.

With regards to β2, it appears that the households are less myopic (larger β2) under

constant absolute risk aversion (CARA) than under constant relative risk aversion (CRRA).

Specifically, the squared annual discount factor β2 is around 0.97 − 0.98 for CARA and

around 0.78 − 0.79 in the CRRA case. We note however that our estimator only use one

period ahead and thus cannot separate discounting from present-bias.

Since most previous literature has relied on calibrated values of β2 or investigated a range

of values for β2 (as in Yang and Ching [2014]) it is instructive to estimate the structural

parameters for fixed β2. These estimates are shown in Figure 2.

We note that the estimates for κ̄ are large compared to the utility from consumption.

For example, with CARA utility and a typical consumption of e20,000, the utility of a

non-adopter is around 10 units while the estimate for κ̄ is close to 100 units.

That κ̄ increases with β2 could be driven by the observation that κ̄ enters as (1− β2)κ̄.

To illustrate this dependency, we plot (1 − β2)κ̄ in Figure 3. We see that this discounted

value of κ̄ decreases in β2 for all eight model specifications. Furthermore, the rate of decrease

is constant in β2 for the CARA utility, but accelerates in β2 for the CRRA utility.

Myopic consumers might perceive adoption as more costly. Adopting earlier would allow

the household to reap greater benefits in the future which become more important the larger

the discount factor β is. This is supported by the observation that the CRRA specifications

show a stronger increase of the discounted adoption cost with respect to β2.

6.2 Compensating variation

In this section, we use the structural estimates from previous period to estimate the required

on-time per-household subsidy to encourage adoption in the current period. This exercise

can be viewed as a counterfactual were the government provides We follow the approach

of Cooley and Hansen [1989] and Goolsbee and Klenow [2006] in obtaining a measure in

monetary units (here: Euros) to answer the following question
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How much do we have to compensate Italian households in consumption so that

they are indifferent between adoption and not adopting an ATM card in the

current period?

The compensating consumption CV is defined implicitly as

u(1, c1 + CV,m1(c))− κ̄+ βEW (zt+1|It = 1) = u(0, c0,m0(c)) + βEW (zt+1|It = 0)

Here the left hand side represents the expected future value of adopting if the household’s

consumption were increased by CV in the initial period and the right hand side represents

the future value of not adopting. Note that right hand side is v(0, zt)

From the definition of v(z, 1) and v(z, 0), the equation can be re-written as

u(1, c1 + CV,m1(c1))− κ̄+ βEW (zt+1|It = 1) = v(0, zt)

u(1, c1,m1(c1))− κ̄+ βEW (zt+1|It = 1)− (1, u(c1,m1)− u(1, c1 + CV,m1)) = v(0, zt)

v(1, zt)− κ̄− u(1, c1,m1)− u(1, c1,m1)) = v(0, zt)

v(1, zt)− κ̄− v(0, zt) = u(1, c1,m1) − u(1, c1 + CV,m1)

Here, cI = f c(I, zt) and mI = m(I, cI) Recall that It = 1 is the optimal choice if and only if

v(1, zt)− κ− σκϵ
1 > v(0, zt)− σκϵ

0; thus there exists a unique ϵ̄κ such that

v(1, zt)− κ̄− σκϵ̄κ = v(0, zt)

⇐⇒ v(1, zt)− κ̄− v(0, zt) = σκϵ̄κ

⇐⇒ v(1, zt)− κ̄− v(0, zt) = σκF
−1(pt)

where F−1 is the mapping from probabilities to differences in expected future values, induced

by (10) Thus CV is implicitly defined by

u(1, c1 + CV,m1)− u(1, c1,m1) = −σκF
−1(pt) (21)

(22)

To be able to derive meaningful results for variety of functional forms of u, we linearize u

and compute the compensating variation as

LCV =
−σκF

−1(pt)

u(1, c1, 0)
c1. (23)
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For CRRA utilties, we thus obtain

LCV =
(1− α)σκF

−1(p)

(1 + γ)ω(c1−α − 1)
c (24)

Our choice of linearizing u in this fashion is motivated by Goolsbee and Klenow [2006]

who show that logarithmic demand functions can lead to large estimates for the consumer

surplus of technological adoption when compared to e.g. linear demand functions. The

reason is that logarithmic demand functions, CARA and CRRA utility functions are steep

at small values and flat at large values. 6 Note that in the special case of a linear utility

function, u = αc, CV = LCV = ασκF
−1(p). Figure 4 illustrates the compensating variation

measure in both cases for a convex utility function.

We now provide numerical estimates of the compensating variation. First, the two bot-

tom panels of Table 5 show the average value of LCV for different age groups, educational

attainment and regions. We also provide confidence intervals from a bootstrap procedure.

For CARA utility, point estimates for LCV range from e786 (highly educated) to e1810

(basic education), when taken across all specifications. For CARA utility, they range from

e52 (highly educated) to e157 (basic education). In general, LCV increases with age, de-

creases with educational attainment and is lowest in the North of Italy and highest in the

South. We also observe that confidence intervals are narrower for CARA than for CRRA.

In addition to these point estimates and their confidence intervals, we also illustrate how

LCV varies within the population. Violin plots, which are an extension of boxplot, are a

useful tool to visualize the distribution of LCV. The violinplots in Figure 5, 6 and 7 are

computed from the point estimates in Table 5. They show that the distribution of LCV is

qualitative similar for all specifications. In particular, we observe that oldest age group has

a bimodal distribution of LCV, hinting at heterogeneity within this group.

We use the estimates of LCV from the MLE specification to compute the counterfactual

adoption rates in the case of subsidies of 10, 50, 100 and 200 Euros for the CRRA preferences.

We assume that the household will adopt when the subsidy exceeds LCV. As shown in

Table 6, most of the older, less educated and those living in the South require subsidies

exceeding e100 to adopt immediately. On the other hand, those with high education require

lower incentives. Overall, incentives of around e100 would be required to get about half of

6This linearization strategy also overcomes the following challenge: Because u is monotonically increasing
in c, there exists at most one solution for CV 21. However, since u is not surjective, the real solution set could
be empty. For the CARA utility, we can obtain exact real solutions of (21), that is a number in R. For CRRA
utilities, this inversion may lead to complex solutions. We thus rely on the first order approximation.To find
CV for a variety of functional forms of u, we could use a first order Taylor approximation at c1 to solve for CV.
That is we approximate u(1, c1+CV,m1) ≡ u(1, c1,m1)+(∂u/∂c)|c=c1CV. Since the derivative of the utility
function with respect to c is ∂u/∂c = (1+γ)ωc−α, approximately u(1, c+CV,m)−u(c,m, 1) ≡ (1+γ)ωc−αCV,

and thus CV ∼= −σκF
−1(p)cα

(1+γ)ω .
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the non-ATM card adopters to adopt the cards immediately.

7 Conclusion

This paper provides an application of discrete dynamic choice (DDC) models to the adoption

of financial innovation, contributing insights both to the literature on the identification of

DDC models and the technology adoption in the banking sector. Our method is applicable

to a range of additional financial adoption decisions.

Our paper uses several recent advances to modify the conditional choice simulation es-

timator of Hotz et al. [1994]. In addition of exploiting the finite dependence property of

the technology adoption problem(Arcidiacono and Ellickson [2011]), we also implement the

Euler equations in Arcidiacono and Miller [2011] and estimation of the discount parameter

from Abbring and Daljord [2020]. In doing so, we reduce the computational complexity of

the DDC model. As a byproduct, we provide a closed form for dynamic probit model similar

to the often-cited formula for the dynamic logit model.

A key feature of the economic environment is the return or utility function. That is

based on a shopping-time model of money demand, with two distinctive features. First,

it allows for a gradual diffusion of bank branches and ATM machines between 1989 and

2004, which enhanced the efficiency of money holding (and so reduced the ratio of money to

consumption) for both card-holders and non-card-holders. Second, it includes a parameter

(γ) that isolates the additional degree to which card-holders economized on money holding.

We estimate these features of money demand via the Euler equations in a first step, using

data from more than 52,000 household-year observations. We also estimate transitions for

consumption and wealth for both groups. We can therefore compute per-period utilities up

to adoption cost. The adoption cost is then estimated from the dynamic choice model.

While we find that the discounted adoption cost is larger for myopic households, we

provide empirical evidence that households have discount factors between 0.88 and 0.99,

hence are not myopic when deciding whether to adopt financial innovation. Furthermore,

if household are have constant relative risk aversion, the data suggest that they are also

somewhat more myopic when compared to the case of constant absolute risk aversion. This

finding is important since many dynamic decision problem take the discount factor, a measure

of myopia, as given. It is also consistent with the experimental finding of Andersen et al.

[2008].

We compute the compensating variation, that is the amount of consumption units that

corresponds to the disutility of adopting, after that adoption costs are balanced against the

enhanced efficiency of money holding. In this context, the compensating variation could

be interpreted as the size of financial incentive or subsidy to encourage adoption of the
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financial innovation. The average compensating variation is e90 (CRRA) respectively e1400

(CARA). Older, less educated household in less prosperous regions would need to receive

larger financial incentives. These non-trivial costs could explain some of the slow uptake of

financial innovations, especially among the elderly, rural or less educated.
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Tables

Table 1: Descriptive Statistics

Average 1989 1991 1993 1995 1998 2000 2002 2004

Percent with ATM
card

15% 29% 34% 40% 49% 52% 56% 58%

Currency holdings(m)
with ATM card 741 527 398 421 374 349 341 352
without ATM card 696 607 457 498 438 443 458 468
Non-durable
consumption(c)
with ATM card 28395 26517 26430 27242 24463 25796 24941 25343
without ATM card 20585 17757 17237 17299 15341 15405 15138 15899
Financial wealth (w)
with ATM card 161293 190016 210880 203246 190581 194804 201501 208796
without ATM card 115507 119261 126080 120216 111700 112830 110951 129692
Interest rate (r)
with ATM card 8.3% 8.7% 9.0% 7.1% 3.2% 2.2% 1.6% 0.4%
without ATM card 8.2% 8.5% 8.9% 7.0% 3.2% 2.2% 1.6% 0.4%
mr/c
with ATM card 0.23 0.19 0.15 0.12 0.06 0.03 0.03 0.006
without ATM card 0.32 0.33 0.26 0.22 0.10 0.07 0.05 0.013
Observations 8038 7951 7799 7844 6801 7641 7660 7639

Note: Currency holdings, consumption, and wealth are expressed in terms of 2004 Euros.
The source is the Bank of Italy’s Survey of Household Income and Wealth.
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Table 2: Interest-Rate and Inflation Process

lnπt = a0 + a1 lnπt−2 + ϵπt

ln rt = b0 + b1 ln rt−2 + b2 lnπt + ϵrt

ϵπt ∼ IIN(0, σ2
π)

ϵrt ∼ IIN(0, σ2
r)

Parameter Estimate Standard Error
a0 0.182 0.256
a1 0.694 0.208
σ2
π 0.162 0.054

b0 -1.185 0.288
b1 0.826 0.127
b2 0.947 0.312
σ2
r 0.314 [0.261, 0.372 ]

Notes: Estimation uses annual observations from 1989–2010 on CPI inflation and regional
deposit rates. The interval in the Standard Error column for σr shows the second lowest
and second highest value among the twenty per-region regressions.

Table 3: Intratemporal Euler equation for CARA and CRRA preferences

CARA CRRA
γ̄ R2 α ω γ̄ R2

γ constant 0.27 (0.04) 0.78 1.52(0.87) 6.68 (3.8) 0.23 (0.03) 0.35
γ varies 0.27 (0.03) 0.78 1.76(1.17) 7.70 (5.1) 0.23 (0.06) 0.35
across demographics p = 0.3 p = 0.3

Note: This table is derived from the fixed effects regression for the money demand
equations (14) and (13). The p-value reports the test that the interaction effects of
demographic variables and the ATM adoption status are significant. Standard errors in
parentheses. The Stata module -fese- gives standard errors for the fixed effects. The
reported standard errors are obtained from Delta method,
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Table 4: Marginal effects of the ATM static adoption regression

Marginal effects se
Log real rate 6.6685** 2.3983
Age 0.0067* 0.0037
Age Squared -0.0001** 3.20E-05
Male 0.0174 0.0159
Employed 0.0105 0.0201
Self-employed -0.0473** 0.0228
No Schooling -0.2671*** 0.0394
Elementary School -0.1999*** 0.0256
Middle School -0.1306*** 0.0248
High School -0.0207 0.0253
Number of Adults 0.0333*** 0.0066
Number of Children -0.0057 0.0087
Countryside -0.0680** 0.0289
Town outskirts 0.0038 0.0157
Suburbs 0.0172 0.0153
North-West 0.0555** 0.019
North-East 0.0501** 0.0187
South -0.0516** 0.018
Islands -0.0563* 0.0251
Year 1991 -0.3719*** 0.0994
Year 1993 -0.5515*** 0.1456
Year 1995 -0.3573*** 0.0861
Year 2000 -0.1731*** 0.044
Year 2002 -0.0823* 0.0327
N 6402

Note: The outcome variable is ATM card adoption. Based on the sample of households
who had not adopted the card in the previous period. The year category for 2004 is the
baseline while the year 1998 is dropped since data for 1996 were not collected.
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Table 5: Estimators and results

Linear specification MLE specification

Φ−1(p)=U−(1−β)κ̄
σκ

+ βE (S) p=Φ
(

U−(1−β)κ̄
σκ

+ βE (S)
)

est. 95% bootstrap con-
fidence interval

est. 95% bootstrap con-
fidence interval

CARA
κ(1− β2) 2.93 [2.01, 3.38] 2.89 [1.96, 3.30]
σ 0.82 [0.61 , 2.17] 0.86 [0.65, 2.04 ]
β2 0.97 [0.57, 1.00) 0.98 [0.51 , 1.00]
CRRA
κ(1− β2) 7.65 [4.28 , 215.95] 7.65 [4.05 , 231.71]
σ 0.03 [0.03 , 14.57] 0.03 [0.03 , 17.00 ]
β2 0.78 [0.37, 1.00 ) 0.79 [0.34 , 1.00)
LCV CARA
Age cohort
young 952 [594, 2980] 1001 [634, 2702 ]
middle 1239 [800, 4039 ] 1303 [843 , 3428 ]
old 1735 [1180, 5343 ] 1824 [1222 , 4766 ]
Education level
basic 1810 [1241, 5588 ] 1903 [1288 , 4829]
intermediate 1312 [823 , 4366] 1380 [ 845 , 3860]
high 786 [360, 2524 ] 827 [383 , 2388]
Region
North 1252 [828 , 3884] 1317 [873, 3533]
Centre 1463 [892 , 4753] 1539 [1003, 4296]
South 1601 [1088 , 4792 ] 1684 [1113, 4400]
LCV CRRA
Age cohort
young 62 [36, 2496] 63 [26, 1558]
middle 80 [46, 3005] 82 [37, 2263]
old 110 [61, 3701] 112 [56, 3262 ]
Education level
basic 115 [64, 4115] 117 [57, 3143]
intermediate 85 [48 , 2878] 86 [34 , 2320]
high 52 [26 , 1888] 52 [23, 1757]
Region
North 81 [40, 2713] 82 [39, 2147]
Centre 95 [55, 3897] 97 [40, 2992]
South 101 [58, 3431] 103 [48, 2898]

Note: U := u(z, 1)− u(z, 0). S = (1− pt+1)Φ
−1(pt+1)− ϕ (Φ−1(pt+1)). Confidence intervals

are obtained from a parametric bootstrap procedure, using the covariance matrices of the
coefficient estimates for money demand function, the interest rate and inflation process and
the transition functions. Cite Kasahara and Shimotsu?
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Table 6: Counterfactual adoption by cohort and subsidy amount

e10 e20 e50 e100 e200
Age cohort
young 0.14 0.19 0.39 0.82 1.00
middle 0.08 0.11 0.25 0.70 0.99
old 0.01 0.02 0.06 0.36 0.99
Education level
basic 0.01 0.01 0.03 0.33 0.98
intermediate 0.03 0.05 0.19 0.67 1.00
high 0.19 0.26 0.48 0.87 1.00
Region
North 0.10 0.13 0.24 0.64 1.00
Centre 0.06 0.09 0.19 0.51 0.99
South 0.02 0.03 0.11 0.48 0.99

Note: Proportion of sample where LCV is lower than the subsidy amount in the respective
column. LCV computed from CRRA and MLE specification.
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Figures

Figure 1: ATM Card Adoption, Money-Consumption and Wealth-Consumption Ratio
0

.0
0
2

.0
0
4

m
r/

c

1991 1992 1993 1994 1995
year

0
.0

0
2

.0
0
4

m
r/

c

1998 1999 2000 2001 2002
year

0
.0

0
2

.0
0
4

m
r/

c

2000 2001 2002 2003 2004
year

5
6

7
8

9
1
0

w
/c

1991 1992 1993 1994 1995
year

5
6

7
8

9
1
0

w
/c

1998 1999 2000 2001 2002
year

5
6

7
8

9
1
0

w
/c

2000 2001 2002 2003 2004
year

[0,1,1] [0,0,1]

[1,1,1] [0,0,0]

Note: The Figure plots the money-consumption (mr/c) and wealth-consumption (w/c)
ratios over sequences of three waves of the SHIW for the adopters, denoted by (0,1,1), the
always adopters, denoted by (1,1,1), and the never-adopters, denoted by (0,0,0). The plots
apply to three time windows: 1991–1993–1995 (denoted W1), 1998–2000–2002 (denoted
W2), and 2000–2002–2004 (denoted W3). The top panel shows the ratio mr/c. The
bottom panel shows the w/c ratio for the same households.
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Figure 2: Estimates of structural parameters
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Note: The charts show the estimates of the parameters σκ and κ obtained from minimizing
the linear least squares conditions corresponding (18) or the maximizing the likelihood
functions corresponding to (19) when β2 is fixed. CARA and CARRA indicate the
functional form of the per-period utility function.
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Figure 3: Estimates of discounted adoption cost
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Note: The charts show the estimates of κ(1− β2) obtained from minimizing the linear least
squares conditions corresponding to (18) or the maximizing the likelihood functions
corresponding to (19) when β2 is fixed. CARA and CARRA indicate the functional form of
the per-period utility function.
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Figure 4: Consumption, utility and compensating variation
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Note: The chart shows how to graphically obtain CV and LCV for a utility shock at a level
of consumption c1, see Goolsbee and Klenow [2006] for further details. Consumption is
plotted on the x-axis and the y-axis shows the level of utility corresponding to a certain
level of consumption. If utility changes by the amount x represented by the short vertical
line, CV represents the solution to u(c1 + CV ) = u(c1) + x and LCV = x

u(c1)
c1 is the

proportional, or linear, compensation.
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Figure 5: Estimates of LCV by age cohort

Note: The charts show the distribution of LCV by age cohort, using the parameters
obtained from minimizing the linear least squares conditions corresponding to (18) or the
maximizing the likelihood functions corresponding to (19). CARA and CARRA indicate
the functional form of the per-period utility function.

Figure 6: Estimates of LCV by education

Note: The charts show the distribution of LCV by education level, using the parameters
obtained from minimizing the linear least squares conditions corresponding to (18) or the
maximizing the likelihood functions corresponding to (19). CARA and CARRA indicate
the functional form of the per-period utility function.
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Figure 7: Estimates of LCV by region

Note: The charts show the distribution of LCV by region, using the parameters obtained
from minimizing the linear least squares conditions corresponding to (18) or the
maximizing the likelihood functions corresponding to (19). CARA and CARRA indicate
the functional form of the per-period utility function.
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