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Abstract

This paper investigates how dual trading mechanisms and incomplete information affect price
formation and search. We pose a dynamic search model in which agents can trade by auction
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of the dynamic search model. Adding auctions as a second trading mechanism dampens the
response of prices and values to mobility, but not to flow utility, shocks as agents optimally
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assumptions influence estimated search costs, with estimated seller search costs at negotiation
significantly lower under full information Nash bargaining than under incomplete information.
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1. Introduction

Buyers and sellers searching for a trading partner frequently face options over how to trans-
act. A government agency can search for and negotiate with a supplier or organize a procure-
ment auction to complete a project. A pedestrian searching for a driver may hail a passing taxi,
or they can choose to be matched via a ride-hailing app. Suppliers face a similar choice to
buyers in both of these cases, as well as in the many other settings in which multiple mecha-
nisms operate.1 Agents in such settings must consider how mechanisms differ when comparing
expected surplus across them: How quickly will a counterparty arrive? If a counterparty ar-
rives, what is their trade value, and how should any surplus be divided if trade occurs? And if
trade does not occur, what is the continuation value of searching again? Characterizing agents’
search behavior requires analyzing these questions for all available mechanisms.

We study how two key features of this environment – the co-existence of mechanisms and
imperfect knowledge about the counterparty’s trade value – affect search markets. Despite the
prevalence of these features across many markets, their consequences on search behavior, price
dynamics, and other market outcomes are poorly understood. We pose a dynamic equilibrium
search model with two mechanisms – negotiation and auction – in which agents are free to
choose the mechanism through which they meet and transact and rationally choose the mecha-
nism with the highest expected payoff. In contrast to the previous equilibrium search literature,
we do not assume that agents learn their counterparty’s value before trade occurs. Thus, both
mechanisms feature two-sided incomplete information. Our empirical application is housing
search in Sydney, Australia, a large real estate market where auction and negotiation mecha-
nisms co-exist. We use the estimated model to quantify how dual mechanisms affect pricing
responses to shocks, show how incomplete information is informative of the empirical infer-
ence of search parameters, and evaluate the effects of information disclosure policies on search
outcomes.

We provide three main contributions. First, we demonstrate that the co-existence of mech-
anisms is theoretically and quantitatively important for assessing price dynamics. In single-
mechanism search models, increases in market tightness affect price by increasing sellers’ out-
side option and reducing buyers’. The presence of a second mechanism breaks the identity
between market tightness and mechanism tightness, or the buyer-to-seller ratio at each mech-
anism, thus severing these links between the overall ratio of buyers to sellers in a market and
price. Shocks with straightforward effects on market tightness in a single-mechanism setting
will be theoretically ambiguous with dual-mechanisms due to the re-sorting behavior of both

1The settings in which multiple trading mechanisms operate simultaneously extend beyond government pro-
curement (Bajari et al. (2009)) and ride-hailing (Buchholz (2022), Buchholz et al. (2020)) and include housing
(Genesove and Hansen (2023)), mineral rights leases (Covert and Sweeney (2022)), online consumer goods (Einav
et al. (2018)), and financial assets (Hendershott and Madhavan (2015)), among others.
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buyers and sellers. Our analytical results demonstrate that mechanism tightnesses can either co-
move or diverge depending on the change in market conditions, and we characterize settings
under which each will occur.

Our empirical results show that these re-sorting effects are quantitatively significant, as we
find that mechanism co-existence generates strong dampening effects on price volatility. Com-
pared to a negotiation-only model, allowing buyers and sellers to choose a second mechanism
reduces volatility by 34%. This volatility reduction is a natural consequence of agents’ move-
ment across mechanisms in response to shocks; for example, when studying a shock to overall
market tightness, we find that agents re-sort across mechanisms to reduce the shock’s effect
substantially. This re-sorting is impossible in a single-mechanism environment, and the market
tightness shock has lasting consequences for prices and search values. Incomplete information
also dampens price volatility, even without a second mechanism, as incomplete information
bargaining exhibits 17% lower volatility than Nash bargaining when both are the sole mecha-
nism.

Second, we show that modeling assumptions on information completeness have quanti-
tatively significant effects on the measurement of key search parameters. Search costs and
buyer-seller meeting rates are often estimated or parameterized in models where a single com-
plete information trading mechanism is assumed, usually a Nash bargain. The meeting rate
of buyers and sellers required to rationalize observed time-on-market is relatively low in this
framework, as trade occurs whenever a positive trade surplus is possible. Incomplete infor-
mation, in contrast, has trade occurring less often conditional on a buyer-seller meeting, as
information frictions prevent some positive-surplus trades. This implies that more buyer-seller
interactions are required, given the observed time-on-market. Replacing the incomplete in-
formation negotiation mechanism in our benchmark model with complete information Nash
bargaining causes a 43% decline in inferred negotiation tightness.

Furthermore, the change in surplus conditional on trade in the presence of incomplete in-
formation shifts the search costs required to explain agents’ participation. The payoff to a
mechanism is the probability of trade times the payoff conditional on trade. The seller’s trade
probability at negotiations is fixed empirically by the observed time-on-market there; the ne-
gotiation payoff conditional on trade is greater under incomplete information than Nash since
the trades lost to inefficiency in the former are the lowest surplus trades that occur under the
latter. Thus, to explain observed seller participation at each mechanism, we find that the seller
negotiation search cost under Nash must be lower by 21% than under incomplete information.
Together, these results indicate that correct inference about search behavior and the measure-
ment of search frictions, and so the evaluation of market distortions and welfare, relies on
accurately modeling the information environment in which agents trade.

Our third result emphasizes how mechanism co-existence matters for policy. We consider
a commonly proposed policy where one side of the market must disclose information that re-
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duces uncertainty about their value from the counterparty’s perspective. The goal of these
policies is to generate an information advantage for one side of the market to aid them in the
price determination process. In housing, disclosure policy commonly requires sellers to pro-
vide such information to buyers, such as by disclosing information about the property (Myers
et al. (2022)) or by placing constraints on the range of values they can communicate to buyers
(Gargano and Giacoletti (2020)).2 The goal of these policies is to benefit buyers. By forcing
a seller to disclose information to the buyer, the buyer can extract a greater share of the in-
formation rent available when information is incomplete. This policy works as intended in a
single-mechanism setting: prices fall, and buyer search values improve.

When mechanisms co-exist, the results are not so straightforward. In response to the greater
buyer information rent, both parties can switch mechanisms. Suppose the returns to buyers
from switching to negotiation are sufficiently strong to cause many buyers to choose negotia-
tion, as auctions are not similarly affected by the disclosure requirements. In that case, sellers
too may switch to negotiation as there are many buyers, and the probability of trade is high.
This re-allocation of buyers and sellers across the two mechanisms in response to the policy
causes tightness to increase at both mechanisms if relatively more buyers switch in this way
than sellers. The outcome is that buyer search values fall while seller values increase. Hence, a
policy intended to benefit buyers at sellers’ expense can have the opposite effect. These results
show that conventional wisdom about information disclosure policies can depend crucially on
whether alternative trade mechanisms exist.

We begin by laying out negotiation and auction mechanisms (Section 2.1).3 Motivated by
growing empirical evidence that complete information fails to explain much real-world bargain-
ing (Backus et al. (2020), Larsen (2021), Larsen and Freyberger (2021), Byrne et al. (2022))
and mechanism design theory that rules out ex-post efficient trade under incomplete informa-
tion, we model incomplete information bargaining outcomes as generated by the second-best
mechanism of Myerson and Satterthwaite (1983). This mechanism accounts for each side of the
market’s incentive to use their private information about their own value to extract rents from
the other side, and designs the best direct mechanism that has no need to subsidize agents’
participation from outside. The auction mechanism is a second-price sealed-bid auction with
optimal seller reserve (Krishna (2009)).

These mechanisms are embedded in a Diamond-Mortensen-Pissarides (DMP) equilibrium
search model of durable good transactions (Section 2.2). The model features buyers and sellers
of a durable asset who each period choose either an incomplete information negotiation mech-
anism or an auction mechanism and search for a trade partner within that mechanism. The

2Information disclosure policies are common in many markets, including those for health care, education, and
finance. See Loewenstein et al. (2014) for a review of this literature.

3While we focus on these mechanisms due to their prevalence in housing, the model is easily extendable to
others, such as a posted price and auction combination popular in online markets (Einav et al. (2018)).
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allocation of agents across mechanisms is determined by the market’s ratio of buyers to sellers,
mechanism-specific costs of search, flow utilities from asset ownership, and trade probabilities
and payoffs from each mechanism. The frequency of transactions in each mechanism is en-
dogenously determined by the evolution of these factors over time, thus shifting the proportion
of agents in each mechanism as underlying economic conditions evolve.

Our application to the Greater Sydney metropolitan area residential housing market is de-
scribed in Section 3. Housing is a large and important market, and its purchase is many house-
holds’ most important financial decision. Australian real estate markets are particularly attrac-
tive for our application as they feature trade via formal, legally defined auctions and negoti-
ations (Genesove and Hansen (2023)), and sellers must publicly choose a mechanism before
receiving buyers’ offers. While auctions are an institutional feature of Australian markets, auc-
tions may appropriately model trade in other housing markets when multiple buyers arrive at
a seller, coexisting alongside bilaterally negotiated sales (Han and Strange (2014)).4 Finally,
this market boasts detailed microdata on auction results, time-on-market, and other transaction
details, allowing us to estimate each model component flexibly.

We estimate and solve the model in stages (Section 4). The first stage uses structural esti-
mation techniques from the auction literature to identify and estimate the distributions of buyer
and seller values and data on the number of bidders at each auction to estimate the arrival
process for buyers to a seller.

The second stage solves the model with a perturbation-based approach. We embed polynomial-
based approximations of simulations from the structural micro estimates into the dynamic equi-
librium model: Expected price conditional on trade, probability of trade, and surplus condi-
tional on trade, for buyers and sellers, are jointly approximated as functions of the moments
characterizing the distributions of buyer and seller values and the arrival (matching) process
of buyers to sellers. These moments are then linked using a standard DMP model of housing
search, and we solve for the corresponding rational expectations equilibrium.

There are several advantages to this approach. Because the structural estimates are obtained
from data on our population of interest, we directly estimate the decision-making process of
individual buyers and sellers within the model and embed these model primitives in an equilib-
rium framework. This “ground up” approach synthesizes mechanism design theory and struc-
tural estimates of individual decisions with a macroeconomic-style equilibrium model, where
each part of the model is fit to data from the same population. Also, fitting the simulations
to polynomial approximations lets the data govern functional form choices for key distribu-
tions governing the transaction process, eschewing distributions chosen solely for analytical

4Nevertheless, a crucial aspect of the Australian market that is central to our analysis but missing elsewhere is
that at listing time sellers choose whether or not to list their property as an auction, and if so, set an auction date
several weeks in the future.
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tractability.
The results are presented in Section 5. We first use comparative static simulations using the

estimated mechanism models to illustrate the differences between the auction and negotiation
mechanisms as values and mechanism tightness change. For example, the extra surplus cre-
ated by increased buyer values is nearly entirely captured by sellers in the auction mechanism
but slightly favors buyers at negotiation. We then give our benchmark steady state parameter-
ization, describing the source of identification for steady state values and parameters, with an
accompanying proof of steady state uniqueness in Appendix C. Using estimated parameters
governing dynamic shocks, we compute impulse response functions for shocks to the overall
buyer-to-seller ratio and the flow utility of homeownership separately for our benchmark dual-
mechanism specification and a negotiation-only specification to evaluate the effect of a second
mechanism on pricing and mechanism tightness dynamics.

Finally, Section 6 details our counterfactual investigation of information disclosure policies.
Policy has increasingly turned to information disclosure in which, for example, sellers must re-
veal information that reduces buyers’ uncertainty about the sellers’ values. This policy requires
sellers to indicate a “reasonable” price range in the housing market we study. For example,
Australian residential real estate listings commonly require the seller to nominate an indicative
price range supported by a minimum of three comparable, recently sold properties to justify
the range. Information disclosure laws have been applied in other settings, most notably in
labor markets, such as a 2022 New York City law requiring firms to provide “good faith” salary
ranges for prospective employees.5 Having incomplete information in our framework allows
one to explore such policies in a dynamic search environment. Our findings indicate that such
policies should be carefully scrutinized in settings where alternative trade mechanisms operate.

1.1. Related literature

This paper contributes to the study of price determination in search models, empirical stud-
ies of markets with multiple mechanisms, and housing search models. It is related, firstly,
to empirical studies of multiple trading mechanisms. This literature is partial equilibrium in
nature, as it concerns one side of the market’s choice between two simultaneously operating
mechanisms (Salz (2022), Einav et al. (2018), Gentry and Stroup (2019)).6 Our model con-
siders dynamic responses within an equilibrium two-sided search framework in which mech-
anisms are tied to each other through search value, and agents move across mechanisms in
response to changing market conditions or economic policy. We demonstrate that considering
the cross-mechanism movement of both sides of the market is important for measuring market
responses to shocks or policy changes. In our auctions-and-negotiations setting, we consider
a policy change that improves negotiations for buyers while leaving auctions unaffected. If

5https://www.reuters.com/legal/government/nyc-pay-disclosure-law-aimed-closing-wage-gaps-takes-effect-2022-11-01/
6Larsen (2021) is essentially a single mechanism study, as auctions and bargaining are used sequentially.
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only buyers can move across mechanisms in response, increasing tightness at negotiation must
decrease tightness at auction. However, if both buyers and sellers can respond, the effects are
ambiguous, as the resulting mechanism tightnesses could each increase, each decrease, or move
in opposite directions, depending on buyers’ and sellers’ relative responses. Our results show
that the movement of both sides of the market can flip the sign of the policy’s effects on buyers
and sellers relative to the case when only one side of the market can respond.

We also add to work on housing search, such as Albrecht et al. (2007), Carrillo (2012),
Guren (2018), Genesove and Han (2012), Guren and McQuade (2020), Head et al. (2014),
Wheaton (1990), Head and Lloyd-Ellis (2012), Piazzesi et al. (2020), Ngai and Tenreyro (2014),
and Ngai and Sheedy (2020). Such papers primarily adopt some version of Nash bargaining
within the DMP framework, whereas we model private information on buyer home match qual-
ity and seller search cost and add auctions as a second mechanism.7 Unlike these papers, we
observe unaccepted offers.8

In contrast to the competing mechanism literature (Eeckhout and Kircher (2010)), the mech-
anisms we consider lack an instrument such as entry fees or posted prices that sellers can ma-
nipulate to direct buyers their way. Directed search is crucial to obtaining a single mechanism,
or only equally efficient mechanisms, equilibrium outcome for ex-ante homogeneous agents in
those models.9 Not only are such outcomes at odds with observing two fundamentally different
mechanisms, but the mechanisms used in this market lack the ability to fully direct buyers.
There are no entry fees, and although list prices are used in negotiations, they are not always
used, are not used for auctions, and even when used for negotiations, are a noisy ‘directing’
device given variations in quality (Wang (2011)), and are constrained by regulation of the real
estate brokerage industry from deviating too much from expected prices.

Finally, we relate to empirical studies of incomplete information in bargaining environ-
ments. This literature primarily uses take-it-or-leave-it offers as the bargaining mechanism, as
in Allen et al. (2019) and Silveira (2017). An exception is Larsen and Zhang (2021), which
adopts a mechanism design approach to estimating bargaining outcomes. Our contribution
to this literature is to include two-sided incomplete information within an equilibrium search
model, which allows search costs and continuation (or ‘search’) values to determine the payoffs
to agents when transactions do not occur.

7Anenberg (2016) studies sellers learning about the sale value of their homes. Arefeva (2023) studies an
equilibrium model of housing search with prices determined by second-price auctions and micro-structure noise.

8We are aware of only two other housing research lines with unaccepted offers: Merlo and Ortalo-Magne
(2004) and Merlo et al. (2015), who take advantage of the UK rule requiring all negotiation offers be made in
writing, and Anundsen et al. (2023), which studies digital platform auctions in Norway.

9More than one equilibrium mechanism is possible with ex-ante heterogenous agents, although at least in those
papers the mechanisms differ in a listed price, not in form.
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2. Theory – A Quantitative Dynamic Model of Search and Price Formation

We now describe a theoretical dual-mechanism search model. Each mechanism is char-
acterized by buyers, who receive value draws for asset ownership, attempting to trade with
sellers, who receive cost draws for asset sale. The value of an agent in search is the one-period
expected surplus for whatever mechanism the agent chooses plus the value of continued search,
where the mechanism-specific surplus is relative to the continuation search value. In Section
2.1 we lay out these mechanism-specific expected surpluses, eschewing time subscripts for now
to concentrate on the payoffs that are realized when transactions occur.

Once we incorporate these mechanisms into our dynamic search model in Section 2.2,
draws of buyer values and seller costs will be interpreted as time-dependent transformations of
more basic draws. For sellers, the cost will represent the continuation value of search given a
current period realization for the seller’s search cost. Buyer values will be determined by the
value of owning the good net of the value of continuing as a buyer in the next period. Contin-
uation values for all agents vary with aggregate, time-varying states of nature and mechanism-
specific shocks. The endogenous determination of these continuation values within the dynamic
search model is, along with considering both sides of the market, our point of departure from
previous studies of dual-mechanism trade (Salz (2022), Gentry and Stroup (2019)).

2.1. Mechanisms of Trade

Trading mechanisms determine the allocation and payments when buyers and sellers in-
teract. We consider three. Complete information bargaining with efficient trade serves as a
comparison mechanism. The Myerson-Satterthewaite (MS) mechanism, which implements the
second-best allocation under two-sided incomplete information, allows for inefficient trade. A
second-price auction mechanism adds seller market power to incomplete information.

We impose several assumptions across all mechanisms we consider. n ∈ Z+ buyers attempt
to trade with a seller. Buyers draw i.i.d. value v according to distribution F . Sellers receive
i.i.d. cost c, with distribution G. We assume that the densities f ≡ F ′ and g ≡ G′ have positive
support only over the closed intervals [v, v], [c, c], that c > v, and that v − 1−F (v)

f(v) and c + G(c)
g(c)

are strictly increasing in v and c, respectively.

Negotiation with complete information

In the negotiation models, nature randomly chooses one of the n buyers attempting to meet
the seller, before values are realized. When information is complete, we assume Nash bargain-
ing with buyer bargaining weight ϕ ∈ [0, 1], so that if trade occurs, the buyer pays the seller
PE(v, c) = ϕv + (1 − ϕ)c, and trade is determined by the ex-post efficient allocation rule:

QE(v, c) =

1 if v ≥ c,

0 otherwise.
(1)
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The expected payoff for buyers, WEB
n , is thus

WEB
n = 1

n
Pr(QE(v, c) = 1)︸ ︷︷ ︸

Pr(buyer selected) × Trade prob.

× E[V − PE(v, c) | QE(v, c) = 1]︸ ︷︷ ︸
Buyer’s trade-conditional payoff

(2)

is the product of the probability that an individual buyer is selected by nature from the set of
n potential buyers to bargain with the seller, the probability of trade, and the buyer’s trade-
conditional payoff. The expected payoff for sellers, WES

n , is expressed similarly as

WES = Pr(QE(v, c) = 1)︸ ︷︷ ︸
Trade prob.

× E[PE(v, c) − c | QE(v, c) = 1]︸ ︷︷ ︸
Seller’s trade-conditional payoff

(3)

Negotiation with incomplete information

When both buyer and seller have private information and the distributions of their values
overlap, no bargaining mechanism exists that implements the first-best outcome of ex-post

efficient trade, as both sides of the market have an incentive to use their private information
to extract rents from the other party. Specifically, Myerson and Satterthwaite (1983) show that
any mechanism with ex-post efficient outcomes requires agents’ participation to be externally
subsidized, implying that the mechanism will operate at a deficit.

Given the infeasibility of the first-best under information frictions, we assume that bar-
gaining outcomes are determined by the second-best mechanism of Myerson and Satterthwaite
(1983). This mechanism maximizes ex-ante total surplus subject to not running a deficit and
satisfying individual rationality (IR) and incentive compatibility (IC) constraints. However, it
may result in inefficient ex-post allocations. We describe this second-best mechanism below,
with additional details of its derivation in Appendix A.

Define the a-weighted virtual type function for each agent type, a ∈ [0, 1]:

Φa(v) = v − (1 − a)1 − F (v)
f(v) , Γa(c) = c+ (1 − a)G(c)

g(c)

and the a-weighted allocation rule:

Q(v, c; a) =

1 if Φa(v) ≥ Γa(c)

0 otherwise.
(4)

1−a captures the degree of distortion from the first best allocation rule (e.g., the Nash bargain-
ing allocation), corresponding to a = 1. An a less than one introduces a wedge equal to 1 − a

times the sum of the information rents each side would earn under a monopoly or monopsony
of the other side; the surplus must exceed that wedge for trade to occur under such a rule.

The MS mechanism proscribes allocation rule QN(v, c) ≡ Q(v, c; a∗) where a∗ is the high-
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est value of a for which the a-weighted allocation rule does not run a deficit under IR and IC.
Indeed, a∗ is the inverse of the Lagrange multiplier on the no-deficit constraint in the MS maxi-
mizing problem. The chosen buyer pays the seller the buyer’s virtual utility, in expectation and
conditional on trade. Recalling that nature chooses at random one of the n ≥ 2 buyers to meet
with the seller before value realization, a buyer’s expected payoff, WNB

n , is

WBN
n = 1

n
Pr(QN(v, c) = 1)︸ ︷︷ ︸

Pr(buyer selected) × Trade prob.

× E[v − Φ0(v) | QN(v, c) = 1]︸ ︷︷ ︸
Buyer’s trade-conditional payoff

(5)

and the expected seller payoff, WNS , is

WSN = Pr(QN(v, c) = 1)︸ ︷︷ ︸
Trade prob.

× E[Γ0(c) − c | QN(v, c) = 1]︸ ︷︷ ︸
Seller’s trade-conditional payoff

, (6)

where the expectation in both expressions is taken over buyer and seller types v, c.
Figure 1 shows how the surplus generated by the MS mechanism compares to Nash bargain-

ing. In panel (a), buyers and sellers have the same distribution. The Nash surplus, represented
by the dashed line in the lower half of the panel, can be divided between buyers and sellers
based on the Nash bargaining parameter ϕ without changing the total surplus. The impossibil-
ity result of Myerson and Satterthwaite (1983) implies that this surplus level is unobtainable by
an IC and IR mechanism not running a budget deficit, under two-sided incomplete information.

The set of outcomes that maximize the weighted sum of buyer and seller expected surplus
subject to, IC, IR and not running a budget deficit is the private information Pareto frontier
(Williams (1987)). This frontier extends from the buyer to seller take-it-or-leave-it offers,
i.e., from maximum to zero buyer weight. Points above this frontier are inaccessible to any
bargaining mechanism when agents have private information, while points below it are Pareto-
dominated. In contrast to Nash bargaining, which admits a continuum of first-best outcomes by
varying the bargaining parameter, the MS mechanism that equalizes buyer and seller weights
is the unique second-best outcome that maximizes expected total surplus.

Panels (b) and (c) show how surplus moves with the distributions. Panel (b) shifts the
buyer value distribution to the right. This increases surplus, but does not affect the MS Pareto
frontier’s symmetry around the 45-degree line, and the MS mechanism continues to generates
equal surplus for buyers and sellers. Panel (c) decreases the variance of the seller distribution.
This generates a relative information advantage for buyers, who now face less uncertainty about
sellers’ values than sellers about buyers’, tilting the Pareto frontier in their favor. This last case
captures the qualitative features of the buyer and seller distributions that we estimate.
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Figure 1: Buyer and seller surplus in the MS mechanism
(a) Equal distributions
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Auction

At each auction, n buyers bid in a second-price sealed-bid auction with an optimal reserve
price R : [c, c] → [v, v], set by the seller and given by the solution to

R = c+ 1 − F (R)
f(R) . (7)

Buyers’ unique dominant strategy is to bid their value. Denote the m-th order statistic of
buyer values at the auction by v(m). Trade occurs if the highest buyer value exceeds the seller
reserve, or v(n) ≥ R(c). This gives the allocation rule for an n buyers auction:

QA
n (v(n), c) =

1 if v(n) ≥ R(c),

0 otherwise.
(8)

Buyer i wins the auction and is allocated the sale if vi > max{v(n−1), R(c)}. The winning
buyer pays the seller PA(v, c) = max{v(n−1),R(c)}, where v is the vector of n buyer values,
receiving its surplus from the auction plus the outside option value. The expected buyer payoff
in an auction with n buyers is

WAB
n = 1

n
Pr(QA(v(n), c) = 1)︸ ︷︷ ︸

Pr(V = v(n)) × Trade prob.

× E
[
v − PA(v,R(c)) | QA

n (v(n), c) = 1
]

︸ ︷︷ ︸
Buyer’s trade-conditional payoff

(9)
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Similarly, the expected seller payoff from an auction with n buyers is

WAS
n = Pr(QA(v(n), c) = 1)︸ ︷︷ ︸

Trade prob.

× E
[
PA(v,R(c)) − c | QA

n (v(n), c) = 1
]

︸ ︷︷ ︸
Seller’s trade-conditional payoff

(10)

2.2. Search and Competing Mechanisms with Dynamics

We embed these mechanisms in a DMP model, allowing for competing mechanisms. This
entails interpreting buyer and seller values as reflecting dynamic opportunities, so that v :=
VH

t (z) − VB
t and c := VjS

t (cjS), where VH
t (z) is the value of a home with quality z to a buyer,

VB
t is the forgone value of continuing as a buyer when a home is purchased, and VjS

t (cjS) is
the seller value with realized (mechanism-specific) search cost cjS . The subscript t indexes the
realization of a mechanism-specific or aggregate market state at time t.

We assume that time is continuous but partitioned into discrete intervals of unit length,
the period over which buyers and sellers commit to a search mechanism. During any interval
[t, t+ 1], the seller first chooses a mechanism j in which to search at the beginning of the
interval, then draws a mechanism-specific search cost, cjS . The probability that n buyers visit
a seller at mechanism j is γj

t,n(θj
t ) – a function of mechanism tightness10 and the interval’s

duration. Stacking these probabilities in vector γγγj
t , the value of a seller who chooses mechanism

j at t and draws search cost cjS is:

VjS
t (cjS) = βtEt

[
γj

t · WjS
t+1 + max

j

{
VjS

t+1

(
CjS

)}]
− cjS (11)

where βt is the discount factor (which may be subject to shocks), and maxj

{
VjS

t+1

(
CjS

)}
is

the maximal value of search at the beginning of the next interval, when a seller is free to re-
optimise their mechanism choice, and CjS is the random variable corresponding to the cost of
search drawn in the next interval. WjS

t+1 is the vector of expected payoffs from trade realised at
t + 1 with nth element, WjS

t+1,n, the mechanism-specific payoffs when n buyers visit the seller
at mechanism j, as defined in Equations (6) and (10). Et[.] denotes the rational expectation
formed conditional on the aggregate state at the beginning of t, and is taken over the distribution
of aggregate and idiosyncratic states realized at t+ 1.

At t, a buyer chooses to search homes offered through mechanism j. Let λj
t,n(θj

t ) denote
the probability of visiting a seller with n−1 other buyers. Stacking these probabilities in vector

10This is sometimes called ‘queue length’ in the competing markets literature (Eeckhout and Kircher (2010)).
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λj
t , the value from searching as a buyer through mechanism j is:11

VjB
t = βtEt

[
λj

t · WjB
t+1 + max

j

{
VjB

t+1

}]
− cjB (12)

where maxj

{
VjB

t+1

}
is the maximum value from search when continuing as a buyer into the

next interval and choosing a mechanism, WjB
t+1 is the vector of payoffs for the buyer with nth

element, WjB
t+1,n, the expected payoff to the buyer given that n − 1 other buyers also visit that

seller from Equations (5) and (9). cjB is the cost of buyer search through mechanism j.
We complete the description of values by identifying the payoffs from home-ownership

that accrue to a successfully matched buyer (a homeowner). Homeowners can receive a match-
quality shock, with probability φm

t , that dissolves the value of the match with their current
home. On receiving this shock, with probability pm the homeowner becomes a seller only and
receives a fixed exogenous payoff (e.g., from exiting the market altogether), and searches to
sell their existing home; with probability 1 − pm, the homeowner becomes both a seller and
a buyer, with zero demand for their current home, and unit demand for another home in the
market (e.g., moving homes within the same market). The flow utility from homeownership is
an affine function of match quality z, that is idiosyncratic and drawn at the start of the match
and constant for its duration, and thus the value for a matched homeowner is:

VH
t (z) = rH

t + z︸ ︷︷ ︸
Ownership flow utility

+βtEt

[
φm

t (1 − pm) (VS
t+1 + VB

t+1)︸ ︷︷ ︸
Pr(Within-city move) × (Buyer + seller value)

+ φm
t p

m(VS
t+1 + Υ)︸ ︷︷ ︸

Pr(Leave city) × Leaving seller value

+ (1 − φm
t ) VH

t+1 (z)︸ ︷︷ ︸
Pr(Remain matched) × Homeowner value

]
(13)

where rH
t denotes the common component of flow utility (potentially subject to aggregate

shocks). Υ is the exogenous payoff when exiting the market, and VS
t+1 := maxj

{
VjS

t+1

}
and

VB
t+1 := maxj

{
VjB

t+1

}
are the maximum values from selling and buying when choosing the

mechanism with the highest expected payoff (before drawing search costs).

2.2.1. Closing the Model

We close the model assuming that tightness – the ratio of buyers to sellers – by mechanism
adjusts to ensure equal expected payoffs across mechanisms, for both buyers and sellers. Thus,

11We place the usual restrictions on the mechanism-specific arrival probabilities with λj
t,n : R+ → [0, 1],

γj
t,n : R+ → [0, 1] and λj

t,n(θj
t ) = γj

t,n(θj
t )

θj
t /n

for n ∈ Z+ and where 1Z+ · λj
t = 1, 1Z+ · γγγj

t = 1. With n indexing

the number of buyer arrivals , λj
t,n and γj

t,n correspond to the nth elements of the vector-valued functions λj
t and

γγγj
t .
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we have equilibrium indifference conditions for each side of the market:

E
[
VNB

t

]
= E

[
VAB

t

]
(14)

E
[
VNS

t

]
= E

[
VAS

t

]
(15)

that hold ∀t. We next account for how the measures of homeowners, buyers and sellers (and
thus overall tightness) evolve over time. The measure of homeowners (Ht) evolves as:

Ht+1 = (1 − φm
t )Ht +

∑
j∈A,N

(
λj

t · Qj
t+1

)
Bj

t (16)

where Qj
t+1 is the vector of ex-ante probabilities that the buyer acquires the home when visiting

the seller at mechanism j.12 The measure of total buyers on the market Bt evolves as:

Bt+1 = φm
t (1 − pm) Ht + It +

∑
j∈A,N

(
1 − λj

t · Qj
t+1

)
Bj

t (17)

Bt := BA
t + BN

t (18)

where It denotes inflow of new buyers from outside the market and BN
t and BA

t the measures of
buyers using negotiation and auction. With SN

t and SA
t the measures of sellers using negotiation

and auction, the total measure of sellers is:

St+1 = φm
t Ht +

∑
j∈A,N

(
1 − γγγj

t · Qj
t+1

)
Sj

t (19)

St := SA
t + SN

t (20)

This completes the model description.

2.3. Rational Expectations Equilibrium

We focus on a rational expectations equilibrium, defined as sequences of:

i. Probabilities Ψjk
t with which sellers and buyers choose a given trading mechanism j at

time t such that they are indifferent to trading through either mechanism in equilibrium
(14) and (15);

ii. Allocation rules Qj
t := Qj(VH

t (z) − VjB
t ,VjS

t (cjS)), given the distributions Ft of net
homeowner values (VH

t (z) − VjB
t ) and Gt of seller values, that satisfy (4) and (8) given

12Define xt+1 := {vt+1, ct+1}, with joint distribution Jt+1 (xt+1) := Ft+1 (vt+1) Gt+1 (ct+1) defined over
Xt+1 := [vt+1, vt+1] × [ct+1, ct+1]. The nth element of Qj

t+1 is the probability that a buyer successfully trades
given n − 1 other buyers also visited the seller, and is given by Qj

t+1,n := 1
n

∫
Xt+1

Qj (xt+1) dJj
n,t+1 (xt+1),

noting that Qj (xt+1) is the mechanism j trading rule, and that it is integrated over the joint distribution of values
for negotiation, JN

n,t+1 = Jt+1. For auctions, the integration is over the CDF of the nth-order statistic (given n

buyers arrive) and seller values JA
n,t+1 = F n

t+1Gt+1.
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the optimal seller reserve at auction (7);

iii. Distributions of values for homeowners, sellers and buyers, VH
t (z),VjB

t ,VjS
t (cjS), that sat-

isfy (11) to (13) given the vector-valued payoff functions WjS
t ,WjB

t and the probabilities
of trade , γγγj

t ,λ
j
t ; and

iv. Measures of homeowners, sellers and buyers, Ht,Sj
t ,Bj

t that satisfy the laws of motion
(16) to (20);

for each j ∈ {Auction (A),Negotiation (N )}, k ∈ {Buyer (B),Seller (S)}, for all z and cjS ,
and for all t.

2.4. Some Intuition on the Model (PRELIMINARY)

We have written n-conditional payoffs and offer arrival rates as arbitrary functions of time
in order to emphasize the flexibility of our polynomial smoothing approach. The underlying
model at the mechanism level, however, restricts n-conditional payoffs to depend on time solely
through the net value V ≡ VH(0)−VB −VS , so that, so long as ‘within mechanism’ parameters
remain unchanged, we can write, e.g., WAS

t = WAS(Vt). Similarly, a mechanism’s offer-
arrival rates depends on time solely through mechanism tightness, so that γj

t,n = γj
n(θj

t ) and
λj

t,n = λj
n(θj

t ) = γj
n(θj

t )/(θj
t/n). The cross-mechanism arbitrage conditions (14) and (15) then

imply that the equilibrium tightness values (θA
t , θ

N
t ) depend on Vt+1 only.13

Totally differentiating the buyer and seller arbitrage conditions provides intuition on how
the market responds to shocks in the model. For negligible differences in search costs across
mechanisms, and considering shocks other than to the buyer arrival rate function, we get

dlnθA

dlnθN

 = DET−1

−ENB ENS

−EAB EAS

∆W S(N−A)

∆WB(N−A)


where Ejk is the elasticity of the payoff from mechanism j for the k side of the market with
respect to θj , ∆W k(N−A) the excess of the percentage change in side k’s payoffs at negotiation
over the auction, and DET = −EASENB +ENSEAB. Since only one buyer bargains with the
seller in negotiation, ENS and ENB are functions of θN only (and not the value functions).14

Constant returns in the matching function implies that ENS ∈ (0, 1); the relationship between
γ and λ (see footnote 7) implies that ENB = ENS − 1, so that EBS ∈ (−1, 0). That in turn
implies that auction tightness will be more (less) responsive to buyer betterment at negotiation
relative to auction if ENS is greater (less) than one-half.

13In the special case of intracity-only mobility shocks, we can subtract equations 11 and 12 for auction (although
for negotiation would be just as well) from equation 13 to get a non-linear relationship between Vt and Vt+1

Vt = rH
t + z + cNS + cNB + βtEt

[
(1 − φm

t ) Vt+1 (z) − γA
t · WAS(Vt+1) − λA

t · WAB(Vt+1)
]

(21)

14ENS = dln(1 − γ0(θN ))/dlnθ.
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So long as sellers benefit from a higher buyer arrival rate at auction and buyers harmed,
EAS > 0 and EAB < 0, so that the 2 by 2 matrix is positive. That in turn implies, for example,
that a shock that improves payoffs from the same mechanism relative to the other for both sides
of the market will lead to both tightness rates moving in the same direction; which direction
depends on DET and so on the exact values of the elasticities. For θA > θN and ENS(θ) a
decreasing function of θ (the case for the mixed Poisson distribution that fits our data best), and
were sellers at auction, like at negotiation, to earn the same with multiple buyers attending as
with one only, then EAS < ENS . However, since the elasticity of the probability of N buyers
arriving increases in N , and sellers at auction do earn more with more buyers, the ranking of
EAS and ENS is an empirical matter, even given θA > θN and a declining elasticity. As for
EAB, the relationship between the buyer arrival rate for sellers and buyers suggests that its
value is likely to be about 1 less than EAS , although how the highest valuing buyer’s auction
surplus varies with the number of bidders will also have an effect.

3. Institutional Background and Data

We apply the model to data from the New South Wales (NSW) housing market, which
accounts for one-third of Australian real estate transactions. Recent estimates place the total
value of NSW residential real estate at about $4 trillion Australian dollars with roughly 6%
of the stock sold in any given year.15 Housing is the single largest asset held on household
balance sheets, making up just over one-half (54%) of all household assets. As well as being a
large market of macroeconomic significance, this market is ideal for studying price formation
and search through alternative trading mechanisms, given the substantial use of formal auctions
alongside the usual negotiations seen elsewhere.

Negotiations function as in many property markets throughout the world and take place
between a single buyer and seller. Negotiation can commence any time after listing. It typ-
ically begins after a buyer has visited the home, with the buyer invited to make an offer and
negotiations ensuing.

Residential property auctions are regulated under NSW law, which requires that sellers use
an open-outcry, ascending price auction. The seller retains the services of a third-party auction-
eer, which is a separate service from a listing agent that is retained by nearly all sellers. Bidders
are required to register before the auction commences. During the auction, the auctioneer so-
licits increasing bids from bidders until no bidder is willing to make a higher bid.

During the auction, the seller has the opportunity to make a single bid. Called a vendor bid,
this must be announced by the auctioneer as such, so that all bidders are aware that it is placed
on the seller’s behalf. It cannot be reduced or altered once placed. No other bidding on behalf
of the seller, including shill bidding, is allowed. If all bids placed by bidders are lower than the

15See ABS release “Total Value of Dwellings: Mar 22.
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vendor bid, no sale occurs.
At the conclusion of bidding, the seller decides whether to sell to the highest bidder. The

seller is essentially committed to sell if the winning bid exceeds a minimum price (which we
term the commitment price) agreed to with the auctioneer, but not announced to the bidders,
prior to the auction.16 If the seller decides to sell to the highest bidder, that bidder wins the
auction and pays the winning bid. If the seller decides not to sell, the auction is termed to be
passed in. The home may then be listed for sale again through negotiation or auction.17

This institutional setting is ideal for studying the dynamic equilibrium effects of incomplete
information and multiple mechanisms for several reasons. Negotiation and auction mechanisms
operate simultaneously in the market, with each seller selecting a sales mechanism. There is
also strong evidence for two-sided incomplete information. Buyers in the market have private
information about their preferences for housing and their borrowing capacity, among other
factors. Sellers also have private information about their willingness to sell at a particular
price.18 The very use of ascending, open outcry auctions indicates incomplete information, as
such English auctions are specifically designed to force bidders to reveal their private values
via the drop-out prices. Each sales mechanism has separate procedures, suggesting mechanism-
specific costs of search for buyers and sellers.19 Finally, the market is inherently dynamic, with
prices and sales rates responding to economic changes over time.

Several institutional features of the auction market are especially useful: i) before the auc-
tion, sellers are required to privately commit to a price at which they are willing to sell the
home;20 ii) buyers’ offers are publicly disclosed to the seller and other buyers; iii) both the
winning bid and the number of bidders are recorded; and iv) the requirement to publicize infor-
mation about failed auctions implies that we observe data on both successful and unsuccessful
auctions. These features, together with standard results from the structural auctions literature,
imply that we can identify and directly estimate the distributions of both buyer and seller values
for homes, and arrival rates by mechanism.21

16Institutionally the commitment price is called the reserve price. We relabel it for clarity, because it differs
from the reserve price of auction theory, in that sellers have the discretion to sell below it. Sellers have the right to
refuse to sell at a bid above it, but as they are then obliged to pay the sales fees to the listing agent and auctioneer,
exercising this option is extremely uncommon in practice.

17A subsequent successful negotiation may occur on the same day or days or weeks after the auction is held.
Our data do not separately record post-auction sales via negotiation. Successful sales, whether via negotiation or
auction, require that the buyer provide a deposit, typically 10 percent of the purchase price.

18For example, a seller moving to a new home may need to sell before buying a new home. Such a seller will
have a higher search cost than a similar seller who has no such sales requirement for moving.

19For example, sellers at auction must typically pay an additional fee for the services of the auctioneer.
20This must be communicated to the seller’s agent or the auctioneer before the auction. As elaborated on below,

a seller may lower the price at which they are willing to sell before or during the auction, but may not raise it.
21Relatively little is known about the shapes of distributions in buyer and seller values in general. The most

common approach is to assume tractable functional forms for these distributions (e.g. uniform or exponential),
and then calibrate them to match implied aggregate moments from data.
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3.1. Data

We use unique data sets on housing transactions covering auctions and negotiation. The
auction data come from a specialist auctioneer agency in NSW,22 and contain records for ap-
proximately 47,000 scheduled auctions for Sydney and the broader NSW region between Jan-
uary 2009 and October 2019.23 We focus on a subset of 14,482 completed auctions for the
Sydney area, both successful and unsuccessful, with complete information on the seller com-
mitment price, the highest bid placed, the number of bidders, and the auction result.24

Panel A of Table 1 reports summary statistics on the auction estimation sample; see Ap-
pendix B for a full description of its construction. The mean sale price is $1.31 million AUD
and the average sales rate is 73 percent, conditional on at least one bid placed. The mean com-
mitment price is $1.32 million AUD. On average, auctions with at least one bidder participating
have an average 4.41 bidders. Including scheduled auctions in which no bidders participated
lowers the average number of bidders to 3.99 and the sale rate to about 65 percent. The data
also indicate that sellers’ use of the vendor bid frequently results in no sale being made.

Table 1: Summary statistics

Panel A: Auction summary statistics Mean Std Min Max

Highest bid (AUD in millions) 1.31 0.70 0.50 4.96
Commitment price (AUD in millions) 1.32 0.72 0.42 4.70
Sale 0.73 0.44 0.00 1.00
Number of bidders 3.99 3.64 0.00 25.00

Panel B: Housing transaction summary statistics Mean Std. Dev. P10 P90

∆log auction price 0.001 0.026 -0.030 0.033
∆log negotiation price 0.001 0.012 -0.013 0.016
Auction sales rate 0.593 0.113 0.456 0.740
Auction sales share 0.186 0.083 0.076 0.296
Neg. seller TOM (weeks) 5.827 1.491 3.893 7.696

Notes: Panel A: This table displays summary statistics for the auction data. There are 14,482 auctions with
at least one bid placed and 18,203 observations in the full sample; see Appendix B for details on sample
construction. Panel B: ∆ log auction (negotiation) price denotes the weekly change in the estimated log
auction (negotiation) price. Auction sales rate is the probability with which a home put to auction is suc-
cessfully sold (the probability of trade for the seller), Auction sales share is the share of auction sales in all
home sales (auctions plus negotiations), and Neg. Seller TOM (weeks) is time on market from first listing
to sale for a seller using negotiation measured in weeks.

We combine the auction data with transaction-level data for the universe of sales in the

22The data are sourced from Cooley Auctions. See the copyright and disclaimer notices in the Online Appendix.
23These data are highly representative of the wider Sydney and NSW housing markets. Summary statistics for

the greater Sydney metropolitan area, including average sales rates, price growth and the distributions of price and
location, are very similar to those of a census of all auction sales in that region (Genesove and Hansen (2023)).

24Appendix B discusses sample construction. We exclude (i) withdrawn and postponed auctions and (ii) auc-
tions missing variables used in the estimation, principally the seller’s commitment price and the number of bidders.
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greater Sydney metro area. Summary statistics for this data are given in Panel B of Table 1.
These data are sourced from state administrative data merged to listings information that record
the sale mechanism, the listing date and the sale date.25 From this data we compute a weekly
distribution of time-on-market for negotiated sales.

Figure 2 shows the empirical bidder density and the sales rate by bidder numbers. The
mean number of bidders is just under four but there is significant mass in the right tail, with 8%
of auctions having 10 or more bidders. Low levels of competition at auction are also common,
with slightly under 10% of auctions drawing no bidders and over 14% drawing only one. As
expected, the sales rate increases with bidder numbers. Less than 40% of single bid auctions
end in a sale while auctions with seven or more bidders have a sales rate exceeding 95%.

Figure 3 reports the CDF of the high bid divided by the commitment price for all auctions
and the sale price divided by the commitment price for successful auctions. Panel (a) shows
that the distribution of the high bid over the commitment price in all auctions is close to sym-
metrically distributed around one, with approximately 7% of the mass at exactly one. A similar
jump in the distribution can be seen in panel (b), suggesting that the commitment price serves
as an upper bound in some auctions. However, panel (b) also shows that the commitment price
is not a binding lower bound, with sales occurring below it in 35% of successful auctions. As
noted earlier, if the highest bid meets or exceeds the commitment price, the home always sells.

Figure 2: Bidder frequency and sale probability by number of bidders

(a): Bidder frequency
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(b): Sales rate by N
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4. Parameterizing and Solving the Model

4.1. Methodology

There are two challenges to parameterizing and solving the model. The first is that buyers,
sellers and homeowners values comove in response to aggregate shocks. Without unit record

25The last is the date that contracts are signed (exchanged) as opposed to the settlement date.
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Figure 3: CDF of highest bid over commitment price

(a): All auctions
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(b): Successful auctions
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data on either values or offers (or a subset of these data), in general the shape of these distri-
butions and how they might shift over time is unknown.26 The second is that the functions that
characterise expected prices, trade probabilities and payoffs conditional on trade are functions
of the distributions of types and, in many cases, require approximation even if the distribution
of types were known and there were no aggregate shocks present in the model.

We proceed with a ‘ground-up’ approach that estimates the model in stages. Step 1 uses
standard structural auctions identification methods to directly estimate the distributions of buyer
and seller values, yielding steady state search values and measures of match quality and seller
search cost dispersion. Direct estimation is novel for dynamic two-sided search equilibrium
models, as data on failed trades is rarely available, and frees us from conventional simplifying
assumptions of tractable parametric distribution shapes (e.g. uniform or exponential). We also
estimate the meeting function and steady state tightness at auction. Combining seller time on
the market for negotiation then yields steady state negotiation tightness. Finally, mobility rate
estimates and setting a discount rate and a flow utility allows us to break apart the mean buyer
value VH(0) − VB into the mean homeowner value VH(0) and the buyer search value VB, all
at steady state.

Step 2 uses the models of Section 2.1 to solve for expected (i) price, (ii) trade probabilities
and (iii) surpluses conditional on trade, by mechanism, over a grid of values for (a) mechanism
tightness rates, (b) mean buyer value, and (c) mean seller value, centred around their steady
state values.27 The grid is chosen to cover empirically plausible ranges of prices, trade proba-
bilities, and surplus, as shown below. Solving the four Bellman equations with these estimates

26Athey and Haile (2002) provide an in-depth discussion of data requirements for auctions.
27For Auctions and Nash bargaining under negotiation we use (pseudo-) Monte Carlo integration. For MS

negotiation, we use numerical (Gauss-Hermite) integration. See Appendix E, for further detail.
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at steady state values yields the buyer and mean seller search cost parameters.
Step 3 uses polynomials to approximate the computed outcomes (i)-(iii) as smooth functions

of the grid values of (a)-(c), for each mechanism. We find a simple low-order polynomial
regression to be highly accurate.

Step 4 combines these polynomials with the indifference conditions governing tightness
(and so the arrival rate of buyers) by mechanism, the Bellman equations for the value of search,
and the laws of motion for the measures of buyers, sellers and homeowners to perturb the
full solution of the dynamic model. The final step (Step 5) parameterises the aggregate shock
distributions. We use Simulated Method of Moments (SMM), estimating the standard deviation
and persistence of aggregate shocks implied by the approximating solution of Step 4. We
elaborate on each step below.

Step 1: Estimating Buyer and Seller Value Distributions and Buyer Arrival Rates by Mechanism

To estimate the distributions of buyer and seller values v := V H(z) − VB and c := V S(cS)
we specify a structural auction model, and estimate it using the auction data and institutional
features described in Section 3. The distribution of buyer values is identified using standard
auction approaches (Athey and Haile (2002)). The distribution of seller values is identified from
vendor bids placed by the seller and the final auction outcome of whether or not sale occurred.
Our estimation allows for unobserved home quality using the Roberts (2013) method.

The auction model used in estimation closely corresponds to the auction mechanism of
Section 2.1. Trade occurs if the highest buyer value exceeds the seller’s reserve price, and
price is determined by the maximum of the second highest bidder value and the reserve.28 Our
estimation accounts for the institutional details of Section 3, such as the commitment price,
and allows for both observable and unobservable heterogeneity. We tried several specifications
for buyer and seller values, including Weibull, log-normal, and logistic, with the normal dis-
tribution fitting the data best. We describe the components of the likelihood function used in
estimation below, where, for clarity, we omit the conditioning on observable characteristics and
unobserved home quality; full details of the estimation implementation appear in Appendix D.

Recall that vendor bids are recorded in the data only when it is bid first or last.29 We observe
four types of auction outcomes in the data associated with the combinations of whether a sale
occurred and whether the vendor bid was observed. Where there is no sale, we have separate
likelihood terms for whether the vendor bid was observed (case 1) or not (case 2). Where
there is a sale, we distinguish between a sale below the commitment price (case 3) or above

28An English auction, followed in some cases by a take-it-or-leave-it vendor bid offer to the high bidder, is used
in practice. This variant of the English auction is analogous to the optimal mechanism in Bulow and Klemperer
(1996). As with conditionally independent private values, this is observationally equivalent to a second-price
sealed-bid auction with a public reserve price, we can estimate the sealed bid model without loss of generality.

29Vendor bids are the first recorded bid mostly in single-bidder auctions, consistent with their being used as a
take-it-or-leave-it offer to the last remaining bidder.
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the commitment price (case 4).30 Let b be the highest submitted bid in the auction. The log-
likelihood for an observation from each of the four cases is represented as

l1 = log
(
F (b)n

)
+ log

[
g

(
b− 1 − F (b)

f(b)

)]
l2 = log

(
nF (b)n−1(1 − F (b))

)
+ log(1 −G(b))

l3 = log
(
n(1 − F (b))F (b)n−1

)
+ log

[
g

(
b− 1 − F (b)

f(b)

)]
l4 = log

(
n(n− 1)F (b)n−2(1 − F (b))f(b)

)
+ log(G(b))

The overall log-likelihood sums up the four component log-likelihoods: L = l1+l2+l3+l4.

Buyer arrivals

Data on the number of buyers at each auction allows us to estimate the arrival process
for auction buyers directly.31 A Poisson mixture accurately approximates the probability of
observing n buyers:

γn

(
θA
)

=
I∑

i=1
wi

(δiθ
A)ne−δiθ

A

n! (22)

where
∑

i wi = ∑
i wiδi = 1, wi ≥ 0, δi ≥ 0 ∀i and n ≥ 0. We assume that auction and

negotiation buyer arrivals have the same functional form and omit the mechanism superscript
in the definition of γ. This specification generalizes the standard urn-drawing process by adding
heterogeneous (e.g., weather) shocks δi to the effective buyer-seller ratio in any interval while
maintaining the condition that the average number of arrivals equals the buyer-to-seller ratio in
the mechanism. Requiring an assumption on the interval length on which buyers and sellers are
committed to a mechanism, we assume it to be one week. Appendix D shows how we estimate
{wi, δi}i using an Expectation-Maximization algorithm (Aitkin and Rubin (1985)) with I = 4.

We assume that the buyer arrival process in negotiation γγγ(θN) has the same mixed Poisson
functional form and parameters {ŵi, δ̂i} as the auction buyer arrival process. To estimate ne-
gotiation market tightness θN , we minimize the squared distance between the model-implied
per-week sale probability γ(θN) · Q and the per-period sale probability estimated from time-
on-market data γ̂γγ · Q. In generating the former, we impose the equilibrium condition that buyer
and seller values distributions are the same across mechanisms, i.e., we take F̂ and Ĝ estimated
from the auctions as given. The nonlinear least squares estimator for negotiation tightness is

θ̂N = arg min
θ

∥ γγγ(θ) · Q̃ − γ̂γγ · Q∥

30When a sale occurs below the commitment price (case 3), we assume that the highest bid was a take-it-or-
leave-it offer made by the seller through a vendor bid which was accepted by the buyer.

31We assume that arrival depends only on tightness and not on the buyer or seller values.
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We again set the period used in estimation to be one week.

Step 2: Computing price, conditional payoffs and trade probabilities

With estimates for buyer and seller value distributions, and mechanism arrival rates, the
next step is to compute price, conditional payoffs, and trade probabilities, by simulation for
auctions and numerical quadrature for negotiations, over a grid of values for the mean buyer
value, mean seller value, and the mean arrival rates of buyers to a seller.

Steps 3 & 4: Function approximation and perturbing the model solution

For each function F computed in Step 2, and y the vector of endogenous variables of which
it is a function, the approximating polynomial of F of order l is F̂l (vl; y) := ∑l

|αy|=0 vαyyαy ,
with νννl ∈ arg minv

∥∥∥F − F̂l (v; y)
∥∥∥, where (i) multi-index αy = (α1, . . . , αY ) denotes a Y

tuple of non-negative integers with |αy| = α1 + ... + αY , αs the sth element of αy, (ii) multi-
index power yαy := ∏Y

s=1 y
αs
s , ys the sth element of y, (iii) vαy is the parameter coefficient on

polynomial term yαy of polynomial approximation i, (iv) νννl is the stacked vector of polynomial
coefficients vαy , and (v) the sum

∑l
|αy|=0 is taken across all multi-indices from |αy| = 0 to

|αy| = l. We restrict the arrival rate approximations to be a function of tightness only and not
buyer and seller values. We experimented with different orders of approximation l, and found
l = 2 to be a parsimonious but accurate approximation as shown below and in Appendix E.

Replacing the true functions with their polynomial approximations,32 and then integrating
over the distributions of home match quality and seller search costs, we can then solve the
approximate aggregate representation of the model using standard methods. Using a SMM
estimator in the next step, we solve the model using a second-order perturbation of the model’s
solution around the steady state with idiosyncratic but not aggregate shocks.

Step 5: Parameterizing the Dynamic Model

Let ζ be the vector of persistence and standard deviation parameters governing the dynamics
of aggregate shocks, and X a data matrix. The SMM estimator ζ̂ minimizes ∥m(ζ|X)∥Ω,
where m(ζ|X) := 1

sT −b

∑sT
t=1+b mt(ζ) − 1

T

∑T
t=1 mt(X) is the vector difference of the model-

implied simulated moments mt(ζ) and their sample counterparts mt(X), Ω is a symmetric
positive definite weighting matrix, s a multiple of the data length used in the simulations used
to compute each model-implied moment, and b the ‘burn-in’ number of simulated data points
dropped to mitigate the effects of initial conditions when simulations are drawn.

For model-simulated moments, we set s = 20 and b = 1000, with simulations that assume
independent AR1 dynamic shocks perturbed by Gaussian white noise, and Gaussian white
noise measurement errors in auction and negotiation log-prices.33 For the weighting martix Ω,

32This is a required step in general. Unless specific functional forms are assumed for the buyer and seller value
distributions (e.g., uniform or exponential), in general these functions have no known analytical representation.

33This implies 20 times the sample length simulations, less the first 1000, are used to compute the moments.
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we use an iterative Newey-West estimator, with a diagonal sample moment weighting matrix
in the first step, a diagonal estimate of the model-implied weighting matrix in the second, and
an estimate of the optimal model-implied weighting matrix in subsequent steps.34

5. Results

This section describes the results of the model, beginning with the fit of the estimated
structural auction model component, with the full table of parameter estimates in Appendix D.

5.1. Mechanism Models Results

5.1.1. Model fit

Figure 4 shows the model’s fit on two dimensions. Panel (a) shows the distribution of price
conditional on sale. The estimated model matches the empirical distribution closely. Panel
(b) shows the sales rate as a function of the number of bidders. Again, the model matches
the empirical distribution well, even for single-bidder auctions. This suggests that our struc-
tural auction model and parametric assumptions on buyer and seller values are a reasonable
approximation to the greater Sydney housing auction market.

Figure 4: Auction model fit – prices and sale probability
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(b): Sale probability by number of bidders
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The estimated distribution of the number of bidders at auction is shown in Figure 5. Our
finite mixture estimates closely approximate the empirical distribution, capturing the large por-
tion of probability mass associated with low (either zero or one) and high (eight or more) bidder
numbers. In contrast, the Poisson distribution fits the data poorly, with too much probability
mass near the mean and too little near the tails.

34Following Ruge-Murcia (2012) and Newey and West (1994), we use a Bartlett Kernel with optimal lag selec-
tion parameter [4(T/100)2/9]. We experimented with different numbers of iterative steps, and found 8 sufficient
for convergence and consistency when assessing model identification.
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Using the finite mixture rather than the Poisson has quantitatively meaningful impacts on
implied auction outcomes and illustrates a key advantage of flexibly estimating the micro-level
distributions. The finite mixture estimates, in combination with our estimates of buyer and
seller values, predict a 61% sales rate, very near the observed 60%. In contrast, the exact same
estimation and simulation procedure but with Poisson distribution estimates implies a 69%
sales rate. This carries over to the surplus accruing to sellers under the Poisson by 13% higher
than under the finite mixture. Seller surplus under each of the mechanisms described in Section
2.1 is a key feature determining tightness in each mechanism and agents’ responses to dynamic
shocks. Over-predicting seller surplus at auctions would imply seller auction search costs of
search that are too high or too low an auction tightness; it will also influence how agents move
across mechanisms in response to shocks.

Figure 5: Distribution estimates for number of auction bidders
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5.1.2. Comparative Static Simulations

Before demonstrating the empirical results of integrating the two mechanisms into the dy-
namic equilibrium search model of Section 2.2, we first use the estimated results from the
auction estimation, combined with the implied time-on-market in negotiation estimated from
the transaction data, to illustrate how the two mechanisms differ in surplus allocation and trade
probabilities and values and mechanism tightness change. How buyers and sellers sort across
mechanisms in equilibrium is governed by the relative surplus obtained through each mecha-
nism, which responds to the difference between seller values and buyers’ net ownership values,
which governs the amount of total surplus available, and the mechanism tightness, which de-
termines the rate at which a seller is matched to buyers. In our setting, the mechanisms differ
in how the total surplus is divided between buyers and sellers and the rate at which increasing
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mechanism tightness affects trade probabilities for buyers and sellers. This section demon-
strates these differences empirically, and the results of the dynamic search model in Section
5.2 reveal how these differences are balanced across mechanisms and sides of the market in
equilibrium to remove any mechanism-specific arbitrage.

Panels (a) and (b) of Figure 6 shows how surplus division and trade probabilities change as
the net ownership value for buyers, or VH(0) − VB, increases from the benchmark estimates.
Panel (a) shows trade-conditional surplus for MS bargaining and auctions. At auction, use
of reserve prices and competition among buyers allows sellers to receive most of the surplus
gains that result from increasing buyer net ownership values. MS negotiations, in contrast have
a more even division of the extra surplus generated by increasing buyer values, with buyers
benefiting slightly more due to the dispersion in their values being higher than that of sellers,
giving them an information advantage similar to that shown in Panel (c) of Figure 1.

Panel (b) of Figure 6 shows how trade probabilities, conditional on at least one buyer ar-
rival, change as buyer net ownership values increase. Unsurprisingly, trade probabilities at
auction are high for sellers at the benchmark estimates and increase further with higher buyer
values. Buyer trade probabilities at auction are reported per-buyer, and so rising buyer val-
ues only marginally increase per-buyer trade probabilities at auction holding market tightness
fixed. At negotiation, trade probabilities for sellers are slightly higher than that for buyers due
to buyer congestion: when multiple buyers arrive at a negotiation seller, the seller choses one
at random with whom to negotiate, and the other buyers search again next period. For fixed
market tightness, this generates a proportional gap between seller and buyer trade probabilities
as buyers’ net owernship values rise.

Panels (c) and (d) of Figure 6 investigate how the impact of changing mechanism tightness
affects trade-conditional surplus and trade probability at each mechanism. Panel (c) shows
trade-conditional surplus as mechanism tightness increases by up to 50% from the estimated
steady state levels. Surplus is not affected at negotiation, as the MS allocation rule and pay-
ments are determined only by the distribution of buyer and seller values. At auction, sellers
benefit from additional competition among buyers induced by greater auction tightness, while
buyers surplus goes down as winning buyers pay higher prices. Finally, Panel (d) shows how
trade probability at each mechanism changes with increases to market tightness.

5.2. Dynamic Search Model Steady State

Table 2 reports steady state values for the benchmark MS-Auction model. After calibrat-
ing mobility rates and the weekly auction holding probability to match housing transaction or
population census data and the weekly buyer search probability to match buyer time on market
reported in Gargano et al. (2020), the remaining parameters and values of the model are iden-
tified up to a choice for the discount factor and the homeownership flow utility. Appendix C
proves this result.
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Figure 6: Effects of mean buyer value increase
(a) Buyer values and surplus
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(b) Buyer values and trade probability

0 0.1 0.2 0.3 0.4 0.5
Percent increase in mean buyer value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

de
 p

ro
b.

 w
ith

 a
t l

ea
st

 o
ne

 b
uy

er

Buyer
Seller

MS
Buyer
Seller

Auction

(c) Market tightness and surplus
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(d) Market tightness and trade probability
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Parameters (denoted in the table by P) and steady state values (denoted by S) are reported
in Table 2 in the order in which they are estimated or calibrated. Step (i) gives the results for
the steady state net ownership value for buyers, the seller search value, and dispersion in match
quality and seller search costs, respectively. Step (ii) estimates meeting function parameters and
auction tightness. These values are estimated from the auction data following the model of 2.1
and the auction data. Step (iii) combines the meeting function parameters with the transaction
data on homes sold by negotiation, along with the MS negotiation model of 2.1, to estimate
negotiation tightness.35 With the seller auction share and the mechanism tightness rates (θA

and θN ), we obtain a steady-state market tightness of θ = ΨNS
θ

N + (1 − ΨNS) × θ
A = 1.315;

that it exceeds one will be important for the dynamics.
Step (iv) lists parameters estimated from transaction or census data or assigned. Mobility

rates for intracity moves and intercity moves are calibrated to match population census data
for NSW. The weekly probability that an auction is held is set to match the time-on-market for

35Given the estimated mixed Poisson, the buyer arrival rate for MS-negotiation of 0.432 implies an elasticity
of the seller meeting rate with respect to negotiation-tightness of 0.80 not far from the value of 0.83 found in
Genesove and Han (2012).
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auction sales in the transaction data. Weekly buyer search probabilities are set to match the
buyer time-on-market reported in Gargano et al. (2020) for the Australian real estate market.
We set a weekly discount factor of 0.9988, which corresponds to an annual housing interest
rate of 6% from 2011 to 2019.36 Flow utility for homeownership is set to 0.0016.37 Finally, the
intercity buyer payoff is set to the buyer search value, and the inflow of new entrants is set to
match the intercity mobility rate, as required by the steady state conditions of the model.

Steps (v-vi) report the steady state homeownership value, buyer search value, and the
mechanism-specific search costs for buyers and sellers. These are determined from the pre-
vious steps and the Bellman equations of 2.2.

Alongside our main results for the baseline MS-auction model, for comparison, we also
present results for an equal bargaining weight Nash-auction model. The results highlight the
importance of assumptions on the efficiency of transaction mechanisms for empirical infer-
ence about search processes. Search frictions are a crucial determinant of the value from trade,
net surplus for participants, and the deviation from competitive outcomes (Satterthwaite and
Shneyerov (2007)). The mismeasurement of these search frictions may lead to incorrect as-
sessments of market performance, implying that accurately characterizing the information en-
vironment and mechanism efficiency is vital to empirical studies of frictional search markets.

Replacing the two-sided incomplete information MS mechanism with Nash bargaining in
our benchmark specification has two main implications. First, implied negotiation tightness is
substantially lower, by 43%, under Nash bargaining. Lower negotiation tightness is a natural
implication of reducing mechanism inefficiency. Because negotiation tightness is estimated us-
ing the transaction data to match the time-on-market for negotiated sales and the fully efficient
bargaining mechanism results in trade more often than inefficient bargaining conditional on a
buyer-seller meeting, fewer such meetings are required to match the observed time-on-market,
and the implied buyer to seller ratio is correspondingly lower.

Second, implied seller search costs at negotiation are lower under the Nash bargaining
assumption. This is driven by low-surplus trades that occur with Nash bargaining but would
not occur due to information frictions in the MS mechanism. The loss of these trades raises
the trade-conditional surplus for MS compared to Nash. The auction remains unchanged, and
this, combined with the mechanism indifference condition, implies that all seller value terms
in equation (11) remain equal to the steady state seller value implied by the auction estimates.
Hence, the trade-conditional surplus contained within WNS falls under Nash, while all value

36This is the average nominal variable rate housing loan for owner occupiers, Table F5, Indicator Lending Rates,
Reserve Bank of Australia.

37Flow utility is not separately identified from the costs of buyer search. We set flow utility consistent with an
imputed rent of 3.8% per annum plus an occupier premium of 2.5% per annum measured relative to price. Results
are robust to alternative calibrations. For example, estimates of the user cost of housing for Australia (that exclude
any local match-specific benefit of owning a home), imply an annual user cost of about 5% per annum (Fox and
Tulip, 2014).
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terms and probabilities remain unchanged, requiring seller search costs cNS to decline as well
to maintain equality. Our estimates imply 21% lower seller search costs at negotiation under
complete information Nash bargaining than under two-sided incomplete information.

5.3. SMM Estimation

We estimate 8 structural parameters governing the dynamics of aggregate shocks: six for
the persistence and standard deviation of shocks to flow utility rH

t , the discount factor βt, and
match dissolution (becoming both a buyer and seller) probability αb

t := φm
t (1 − p), where

we assume all shocks independent AR1 processes with Gaussian innovations, and two for the
standard deviations of Gaussian white noise measurement errors in the the construction of log
hedonic auction (log auction) and the log hedonic negotiation (log negotiation) price. The
measurement errors allow for weekly compositional change in sold homes not accounted for
by the log hedonic pricing model used to construct price by mechanism.38

The SMM estimation sample is 505 weekly observations from 2010W8:2019W44 on 5 ob-
servables: the log auction price less the log negotiation price, the change in the log negotiation
price, the auction sales rate, time on market for homes sold through negotiation, and the auction
sales share.39 All observables are detrended using a constant and linear time trend prior to esti-
mation, with the exception of negotiation price growth which is simply demeaned. Descriptive
statistics for the data underlying these variables (prior to detrending) are reported in Table 1
and graphed in Appendix Figure B.1. Simulated and empirical moments are calculated for all
variances, covariances, and autocovariances up to a four-week lag (75 moments in total). The
results using the SMM estimator are reported in Table 3.

5.4. Results from Dynamic Simulations

We use the dynamic model to examine the importance of dual mechanisms in determining
dynamic responses to shocks. Comparing dynamic responses under the benchmark model and
a negotiation-only model, which is solved for the same parameters but with auctions removed,
shows how a second mechanism opens up an additional margin of response to shocks by allow-
ing participants to move across mechanisms. We find that the presence of a second mechanism
dampens price and value responses for mobility shocks, which directly affects the overall ratio
of buyers to sellers in the market, but not for shocks for home ownership flow utility.

38The controls used in the hedonic regressions (that are fit separately for the auction and negotiation samples)
include dummies for week of sale, home type (detached home, cottage, semi-detached, terrace, villa townhouse,
apartment, flat, duplex or studio), postcode, and the number of bedrooms and bathrooms both interacted with
home type. Weekly fixed effects provide the mechanism-specific prices used in the model estimation.

39Time on market via negotiation is measured as time in weeks between the sale date, using the contract of
exchange, and the first listing date. The auction sales share is defined as weekly auction sales divided by the
sum of weekly auction and negotiation sales. For all observables outliers are removed. Missing observations are
imputed using the R package “tsclean” before estimation. Weekly seasonal dummies are included for the public
holiday period spanning the last two and first six weeks of the year, with very similar results if not included.
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Table 2: Steady State Parameterization

Step Name Symbol Value Type Source

i Net Ownership Value VH(0) − VB 1.1956 S Auction Data
i Seller Search Value VS 1.1019 S Auction Data
i Match Quality Dispersion σB 0.1962 P Auction Data
i Seller Search Cost Dispersion σS 0.1264 P Auction Data
ii Meeting Function Parameters (w; δ) Appendix D P Auction Data
ii Auction Tightness θ

A 3.9924 S Auction Data
iii Negotiation Tightness θ

N 0.4324 S i, Transaction Data
iv Discount Factor β 0.9988 P Yearly interest of 6%
iv Flow Utility rH 0.0016 P 7.2% annual R/P
iv Intracity Mobility Rate αb 0.0011 P Population Census
iv Intercity Mobility Rate αs 0.0003 P Population Census
iv Holding Auction Probability ρA 0.1556 P Transaction Data
iv Buyer Search Probability ρB 0.1053 P Gargano et al. (2020)
iv New Entrants I 0.0003 P Steady State Condition
iv Intercity Buyer Payoff Υ 0.0729 P Steady State Condition
v Homeownership Value VH(0) 1.2685 S i-iv, Eqn (13)
v Buyer Search Value VB 0.0729 S i-iv, Eqn (13)
vi Mean Seller Auc. Search Cost cAS 0.0188 P i-iv, Eqn (11)
vi Mean Seller Neg. Search Cost cNS 0.0142 P i-iv, Eqn (11)
vi Buyer Auc. Search Cost cAB 0.0015 P i-v, Eqn (12)
vi Buyer Neg. Search Cost cNB 0.0045 P i-v, Eqn (12)

Nash-Auction Model Estimates
iii Negotiation tightness θN 0.2483 S i, Transaction Data
v Mean Seller Auc. Search Cost cAS 0.0187 P i-iv, Eqn (11)
v Mean Seller Neg. Search Cost cNS 0.0113 P i-iv, Eqn (11)
vi Buyer Auc. Search Cost cAB 0.0014 P i-v, Eqn (12)
vi Buyer Neg. Search Cost cNB 0.0048 P i-v, Eqn (12)

Notes: All parameters are estimated at a weekly search frequency. Type denotes whether the value is a steady state value (S)
or a parameter (P). Search costs are reported as a percentage of the overall mean price. The intracity (intercity) mobility rate
is defined as αb := φm(1 − pm) (αs := φmpm). Identification of buyer search costs relies on all parameters in step (iv),
while that of seller search costs does not rely on the choice of rH . See Appendix C for details on identification.
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Table 3: Estimated Dynamic Shocks

Parameter Value t-stat Parameter Value t-stat

Persistence Standard Deviation
Flow utility shock 0.017 46.525 Flow utility shock 0.021 34.062
ρrH (0.000) σrH (6.241e-04)
Intracity moving shock 0.898 16.859 Intracity moving shock 2.418e-05 2.817
ραb (0.053) σαb (8.584e-06)
Discount factor shock 0.998 965.277 Discount factor shock 8.388e-06 2.032
ρβ (0.001) σβ (4.128e-06)

NP meas. error 0.007 18.563
σN (3.558e-04)
AP meas. error 0.021 40.180
σA (5.135e-04)

J-test statistic of over-identifying restrictions: 64.486
p-value of J-test statistic: 0.564

Notes: Estimates from the SMM estimator ζ̂ = arg minζ ∥m(ζ|X)∥Ω assuming Gaussian mean zero shocks and
using an iterative New West optimal model-implied weighting matrix with 8 steps. Standard errors are reported in
parentheses. The J-test statistic is from a Chi-square test of the overidentifying restrictions.

Figure 7: Effects of moving shock with and without auction mechanism
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5.4.1. Dynamic effects of multiple mechanisms

Figure 7 shows the effects of a shock that increases the probability of a within-market home-
owner move, αb, plotting the percentage deviation from steady-state against the weeks since the
shock’s onset. The shock increases the measures of buyers and sellers by the same amount, thus
decreasing overall market tightness, as it exceeds one. In the negotiation-only model (indicated
by red), this lower tightness improves buyers’ search value and worsen sellers’, a deterioration
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Figure 8: Effects of flow utility shock with and without auction mechanism
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in seller’s relative bargaining position that lowers price, as is standard.
In contrast, in the dual-mechanism case, the fall in market tightness is accommodated

mostly by a shift of both buyers and sellers from auctions to negotiations while keeping the
mechanism tightness rates nearly unchanged. (Note the order-of-magnitude greater scale of the
seller auction share deviation than for the auction tightness deviation in the ’Auction tightness’
figure.) The result is that prices in both mechanisms are nearly completely unaffected by the
moving rate shock. Only the extensive persistence in the shock, whose higher future values
portend a shorter stay in homeowner status and so reduces its value, prevents the price effect
from being fully eliminated by the mechanism shifts of market participants.

The price response to an ownership flow utility rH shock is, by contrast, common to the
two models (Figure 8). This shock increases the value of homeownership, but has limited ef-
fects on buyer and seller search values, given the shock’s small persistence and the forward
looking nature of these latter two values. With the increased value to homeownership domi-
nating the change to search values (by two ordrs of magnitude), negotiated price increases in
both models, and to a similar degree; unsurprisingly, the auction price, which is relatively more
sensitive to buyer values, increases more. Under dual mechanisms, the increase in net value
leads to increases in both mechanism tightness rates (see Section 2.4), while sellers shift to the
less tight mechanism to ensure a constant market tightness, which only responds, through the
laws of motion, in the subsequent period.

The subsequent dynamics in response to an increase in rH vary between the models and
follow from the higher transactions engendered by the increased value of home ownership
during the shock. Higher transactions deplete buyer and seller stocks equally, implying higher
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Table 4: Volatility with Incomplete Information and Auctions
Weekly standard deviation in levels

Endogenous Incomplete information Incomplete Full-information
variable & auctions information bargaining

Net surplus from buying 0.061 0.088 0.105
Buyer search value 0.006 0.008 0.004
Seller search value 0.056 0.086 0.105
Homeownership value 0.066 0.096 0.102
Negotiation price 0.057 0.087 0.105
Average price 0.057 0.087 0.105
Negotiation tightness 0.011 0.016 0.016
Seller trade probability 0.009 0.009 0.010
Buyer trade probability 0.021 0.021 0.025
Auction price 0.059
Auction tightness 0.101

than steady state market tightness after the initial shock, given that steady state market tightness
exceeds one. For the dual mechanism model, the quick dissipation of the shock quickly returns
homeownership and search values back to near steady state values, and, with them, mechanism

tightness rates, but market tightness above steady state means that use of the high tightness
mechanism - auctions - must exceed its steady state share. Thus the seller auction share is
abnormally low in the period of the initial shock to accommodate higher mechanism tightness
rates and an unchanged market tightness, then abnormally high to accommodate near-steady
state mechanism tightness rates but unusual high market tightness, and then converges back to
steady state along with market tightness.

When negotiation is the only available mechanism, mechanism tightness is market tight-
ness, and so can only evolve back to steady state relatively slowly with the gradual inflow and
outflow of market participants, depressing buyers’ search values and elevates sellers’. This
explains why these values respond more under the negotiation-only than the dual-mechanism
model, and converge more slowly back to steady state.

How do incomplete information and auctions affect overall volatility? Table 5 shows simu-
lated standard deviations of key model variables, assuming trade using (i) only full-information
bargaining; (ii) only incomplete-information bargaining (the MS mechanism) and (iii) either
MS bargaining or an auction (the benchmark model). For nearly all variables, the standard de-
viations from the steady state in levels are lower under incomplete- than full-information bar-
gaining. Introducing the auction as a second trading mechanism then further dampens volatility
in response to shocks.
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6. Information disclosure

We use the estimated parameters of the model to investigate the effects of information dis-
closure on prices and other search outcomes. Information disclosure policies typically require
one side of the market to partially divulge private information. For example, the NYC law on
wage disclosure requires employers to reveal a good faith range of wages an employee could
expect to receive, and some housing markets require sellers to reveal an expected price range.40

These policies’ stated purpose is often to help the other side of the market: job searchers in the
case of the NYC wage disclosure law and home buyers in that of housing price range require-
ments.

Sellers providing a more precise signal of their value will certainly benefit negotiating buy-
ers in a static, single-mechanism environment. However, its effect on buyer and seller welfare
in a dynamic dual-mechanism search environment is theoretically ambiguous. Information dis-
closure in one mechanism, say negotiation, may induce buyers to switch from auctions, raising
tightness at negotiation. If the increased tightness compensates for the loss in trade-conditional
surplus for sellers, auction sellers may also find switching to negotiation worthwhile. These
switches across mechanisms may increase or decrease tightness at either mechanism.

To study the effects of information disclosure policies, we assume that negotiating sell-
ers must reveal additional information about their private value; we leave auctions unchanged.
Specifically, each time a negotiation seller draws a private value, the value distribution used
in the MS mechanism is a trimmed version of the original distribution. A ∆% information
disclosure policy trims the supports of the distribution until the remaining support has a total
probability of 1 − ∆ and truncates the original distribution to these trimmed supports.41 We
assume that the resulting supports depend linearly on the quantile of the seller’s value draw.
For example, in a 10% information disclosure policy, a seller with a value equal to the median
will trim equally from the top and bottom supports, while a seller with a 25th percentile value
draw will trim at the 0.025 and 0.925 quantiles of the original distribution; examples of the im-
plementation of the disclosure policy on the seller value distribution used in the MS mechanism
are shown below in Figure 9

This information disclosure implementation mimics the stated goals of many such policies,
such as providing salary ranges in the case of job search or home price ranges in the case of
housing, while allowing us to abstract from the theoretical design of information disclosure
mechanisms that are outside the scope of this paper. Importantly, in our model, buyers need
not be aware of the specific seller value distribution used by the MS mechanism, provided

40In a related setup regarding worker pay transparency, Cullen and Pakzad-Hurson (2021) study a theoretical
model of information disclosure and pay transparency using k-double auctions as the transaction mechanism.

41Specifically, we define a ∆% information disclosure policy as an interval [c∆(c), c∆(c)] ⊂ [c, c] and distribu-
tion G̃∆ such that for all seller values c we have c ∈ [c∆(c), c∆(c)], G(c∆(c)) − G(c∆(c)) = ∆, and G̃∆ is the
distribution resulting from the truncation of G to the interval [c∆(c), c∆(c)].
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Figure 9: Implementation of 5% Information Disclosure on Seller Value Distribution
(a) 25th percentile seller value
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(c) 75th percentile seller value
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Table 5: Information disclosure before and after mechanism re-sorting

5% Information Disclosure
Benchmark Steady State Fixed Market Tightness After Re-sorting

Neg. tightness 0.43 0.43 0.46
Auc. tightness 3.99 3.99 4.08
Neg. buyer value 0.07 0.26 0.04
Auc. buyer value 0.07 0.07 0.04
Neg. seller value 1.10 0.87 1.14
Auc. seller value 1.10 1.06 1.14
Homeowner value 1.27 1.23 1.28

Notes: Results of a 5% information disclosure policy for negotiations only. The first column reports the bench-
mark steady state using the MS-Auction parameterization of Table 2. The second column imposes information
disclosure at negotiation but fixes tightness at each mechanism to the original steady state levels; this shows the
effects of information disclosure absent cross-mechanism movement. The last column shows the steady state
equilibrium with information disclosure, allowing adjustment to tightness at mechanisms to equilibrate search
values across mechanisms.

they know that the mechanism satisfies individual rationality and incentive compatibility. Our
framework assumes that sellers communicate their value draw to the mechanism, which trun-
cates the seller distribution according to the rule above and combines this with the buyer’s
reported value draw to determine allocation and payment.

We implement the policy by solving for the steady state with re-simulated functional ap-
proximations of the endogenous variables but unchanged parameters.42 The steady state solu-
tion assigns values for {Ṽ H , Ṽ S, Ṽ B, θ̃A, θ̃N , B̃, S̃, H̃, Ψ̃BN , Ψ̃SN}, the endogenous variables
that solve the model equations using the simulated payoffs at negotiation W̃Nk after incorporat-
ing the information disclosure. To close the model in the counterfactual, we assume a constant
total housing supply, or that H̃ + S̃ = H + S, and an unchanged inflow of new buyers I/H .

The results of a 5% information disclosure policy on negotiation sellers are displayed in

42The parameters from the benchmark solution used in the counterfactual policy analysis are the mechanism-
specific search costs cjk, buyer search probability ρ, probability that an auction is held γA, discount factor β,
ownership flow utility rH , intracity mobility rate αb, intercity mobility rate αs, and inflow of new buyers X/H .
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Table 5. The first column presents benchmark steady state values for the endogenous variables.
The second and third columns show how the policy changes these variables before and after
equilibrium movement across mechanisms. The second column fixes tightness in each mech-
anism at the benchmark steady state levels and does not allow buyers and sellers to change
mechanisms.43 Negotiation buyers benefit from the information disclosure at the initial tight-
ness values, as the additional expected surplus conditional on trade raises their expected value
from search. Correspondingly, on the other side of the market, negotiation sellers are worse off
under the policy, as they suffer surplus losses conditional on trade.

These effects are reversed after allowing for buyers and sellers to move across mechanisms,
as shown in the third column of Table 5. Agent movement causes tightness at both mechanisms
to increase relative to the benchmark levels, benefiting sellers, and harming buyers.

Figure 10: Equilibrium mechanism indifference with information disclosure
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Information Disclosure

Figure 10 provides intuition by plotting the locuses of the mechanism tightness pairs (θN , θA)
that make each side of the market indifferent between the two mechanisms. These indifference
curves for the benchmark model show, for each value of θN , the θA that ensures mechanism

43Specifically, we assume that buyers and sellers must remain in a given mechanism until they transact, and
are replaced by new buyers and sellers in that mechanism when they leave the market. This gives unknowns,
V NB , V AB , V NS , V NS , and V H , that correspond to the five equations characterized by equations (13 - 12).
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indifference for buyers and that which ensures it for sellers, which we generate by first jointly
solving for V NB and V NS using the negotiation value equations (11 - 12), fixing V H to its
steady state level. Both curves are upward sloping, as buyer and seller values are strictly mono-
tonic in mechanism tightness. The intersection of these two curves is a steady state equilibrium.

The information disclosure policy counterfactual shifts the indifference curves for both buy-
ers and sellers down. For buyers, information disclosure at negotiation increases surplus for
any given level of tightness. Because higher auction tightness decreases the attractiveness of
auctions for them, buyers require a lower auction tightness relative to the benchmark to be
indifferent between the two mechanisms. For sellers, the policy reduces negotiation surplus;
however, as higher tightness benefits sellers, lower auction tightness is needed to match the
reduction in negotiation value, which also shifts the seller mechanism indifference curve down.

The relative magnitudes of these shifts determine the overall change in tightness at each
mechanism. Because the downward shift of the buyer curve exceeds that of the seller curve and
both curves slope upward, the resulting equilibrium necessarily has higher tightness at each
mechanism. For intuition, suppose buyers respond first and sellers adjust after. The large gap
between the mechanism indifference curves means many buyers will shift to negotiations to re-
equilibrate the buyer value functions. As that will raise negotiation tightness, seller mechanism
indifference will also require sellers to move to negotiations. However, the smaller vertical
gap between the two seller mechanism indifference curves in Figure 10 implies that relatively
fewer sellers move to negotiations than will buyers. This causes tightness at both mechanisms
to increase.44 Table 6 shows that these effects increase steadily with the extent of the policy,
as we consider disclosure rates of 5% and 10%, and that mechanism intensity changes with the
extent of information disclosure, with auctions accounting for just under 19% of sales in the
benchmark case but nearly one third of sales with 10% information disclosure at negotiation.

The findings suggest that implementing information disclosure policies in markets with fric-
tional search requires one to take into account agents’ response by moving across mechanisms.
Although the stated goal of these policies is often increased buyer welfare (employee welfare in
the case of labor markets), cross mechanism movements may have the unintended consequence
of benefiting the information-divulging side at the expense of the intended beneficiaries.

7. Conclusion (INCOMPLETE)

This paper formulated a dynamic equilibrium model of two-sided search and trade across
multiple mechanisms with incomplete information. As such, it combines the search and com-
peting mechanism literatures. We estimate structural model primitives from auction and other
housing transaction data and use them to solve for the steady state and dynamics of a housing

44To further fix ideas, suppose that overall buyer-to-seller ratio B/S is held constant in the policy. Let ∆B

denote the measure of buyers that move from auction to negotiation, and ∆S that of sellers that move from auction
to negotiation. For any ∆B , ∆S > 0 such that θN < ∆B

∆S < θA, market tightness increases at both mechanisms.
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Table 6: Information disclosure and mechanism intensity

Benchmark 5% Info. disclosure 10% Info. disclosure

Buyer value V B 0.073 0.044 0.018
Seller value V S 1.102 1.143 1.181
Homeowner value V H 1.269 1.278 1.288
Buyer negotiation share ΨBN 0.678 0.546 0.495
Seller negotiation share ΨSN 0.752 0.624 0.573
Fraction of sales via auction 0.188 0.287 0.329

Notes: Results of a 5% and 10% information disclosure policy on mechanism intensity. The first column re-
ports the benchmark steady state using the MS-Auction parameterization of Table 2. The second and third
columns impose information disclosure at negotiation at 5% and 10% levels, respectively.

search model with auction and negotiation mechanisms.
Our empirical findings have important implications for understanding markets when search

is costly. First, they suggest that models featuring Nash bargaining can understate the im-
portance of search costs if there is two-sided incomplete information, as the higher expected
trade-conditional surplus in incomplete information bargaining requires higher search costs to
rationalize seller participation in our model.

Second, single trade mechanism models may overstate the responsiveness of prices to
shocks, as agents’ movements between mechanisms act as a price dampening device for cer-
tain shocks. In single mechanism search models, increases in market tightness affects price by
reducing sellers’ outside option, and increasing buyers’, as well as directly increasing compe-
tition for auctions. The presence of a second mechanism breaks the identity between market
tightness and mechanism tightness, thus severing these links between the overall ratio of buy-
ers to sellers in a market and price. With a second mechanism, mechanism tightness rates
equilibriate to ensure buyer and seller indifference between the two mechanisms, and so are
impervious to shocks to the overall market tightness. This leaves price unchanged and leaves
sellers’ share of auctions to accommodate the change in the buyer to seller ratio. (Indeed, one
might have thought that adding auctions, and so the direct competitive effect, might lead to a
greater price response, but with auction tightness impervious to such shocks, that is not so.)
Demand changes that work through the flow utility of housing do not have this characteristic,
and price reacts to such shocks in the manner we would expect from simple demand-supply
logic. Overall we find mobility shocks, which directly affect market tightness, of sufficient
importance that a second mechanism substantially reduces price volatility.

Third, our findings show the importance of considering mechanism choice when evaluating
policy changes that deferentially affect surplus across mechanisms. We show that an infor-
mation disclosure policy that benefits negotiating buyers at sellers’ expense given mechanism
choices actually harm buyers and benefits sellers when agents are free to choose mechanisms
and tightness equilibriates to ensure indifference across the mechanisms.
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Online Supplementary Appendix
Appendix A. Mechanism description

In this appendix we provide additional description of the mechanisms used in the model,
with a focus on the second-best mechanism of Myerson and Satterthwaite (1983). Much of our
discussion is adopted from Appendix A of Loertscher and Marx (2022), and we refer readers
to their treatment or to Section 5 of Krishna (2009) for a more complete discussion of the
mechanism design principles underlying these results.

A direct mechanism takes as inputs each agent’s type and outputs an allocation that de-
termines whether trade occurs and payments that determine the amount paid by buyers and
received by sellers. The problem is to find the optimal expected outcome within the set
of direct mechanisms that do not run a budget deficit. We denote the allocation rule by
Q : [v, v] × [c, c] → {0, 1} and payment functions by M j : [v, v] × [c, c] → R for each
agent j ∈ {B, S}. Before continuing, it is useful to define the a-weighted virtual type function
for each agent type:

Φa(v) = v − (1 − a)1 − F (v)
f(v) , Γa(c) = c+ (1 − a)G(c)

g(c)

for some a ∈ [0, 1].
The payments can be represented by the 0-weighted virtual type functions (Krishna (2009),

Section 5.1), so that

MB(v) = v − 1 − F (v)
f(v) , MS(c) = c+ G(c)

g(c) .

The allocation rule that maximizes surplus without requiring external subsidies to the agents
remains to be determined. Intuitively, the solution procedure searches over all rules that do not
run a deficit and selects the one that generates the highest expected surplus. The problem is to
maximize the equally-weighted expected surplus from buyers and sellers,

∫ v

v

∫ c

c

[(
v −MB(v)

)
+
(
MS(c) − c

)]
Q(v, c)dFdG,

subject to the no-deficit constraint,

∫ v

v

∫ c

c
(MB(v) −MS(c))Q(v, c)dFdG ≥ 0.

The impossibility of obtaining the first-best solution means that the budget constraint al-
ways binds – i.e., the Lagrange multiplier ρ on the no-deficit constraint must exceed one.45 For

45Intuitively, if ρ < 1, the shadow price of running a deficit is lower than the benefit of transferring money
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any given ρ > 1, the allocation rule that maximizes expected surplus is given by

Qρ(v, c) =

1 if Γ1/ρ(c) ≤ Φ1/ρ(v)

0 otherwise.

The degree of distortion away from the first best mechanism is captured by ρ. If ρ is equal
to one, then the 1/ρ-weighted virtual type functions are equal to the types themselves, and we
have the first-best outcome of trade whenever v ≥ c. As ρ increases above one, the probability
that trade does not occur when v ≥ c increases. Hence, ρ determines how many positive-surplus
transactions do not occur due to information frictions. The optimal allocation rule selects the
smallest possible ρ such that the no-deficit constraint is satisfied.46 Let ρ∗ denote this optimal
multiplier. Then the allocation rule for the second-best mechanism is defined as

QN(v, c) =

1 if Γ1/ρ∗(c) ≤ Φ1/ρ∗(v)

0 otherwise.
(A.1)

Payoff equivalence implies that the expected payoff for an agent is determined by the allo-
cation rule and IC up to a constant term that is the interim expected payoff of the worst-off type
for that agent; this is c for sellers and v for buyers. Let ûB(v) be the interim expected payoff for
the worst-off buyer and ûS(c) the payoff for sellers. The second-best mechanism maximizes
the equally-weighted surplus for buyers and sellers given by

Ev,c [(v − Φ(v) + Γ(c) − c)Q(v, c)] + ûB(v) + ûS(c)

subject to the no-deficit constraint

Ev,c [(Φ(v) − Γ(c))Q(v, c)] − ûB(v) − ûS(c) ≥ 0

and IR constraints ûB(v) ≥ 0, ûS(c) ≥ 0. The Lagrangian can be expressed as

ρEv,c

[
Φ1/ρ(v) − Γ1/ρ(c)Q(v, c)

]
+ (1 − ρ+ µB)ûB(v) + (1 − ρ+ µs)ûS(c)

where µB and µS are the Lagrange multipliers on the IR constraints and as before ρ is the
multiplier on the no-deficit condition.

Maximizing with respect to the constant payoffs ûB(v) and ûS(c) implies that (1 − ρ+µB)
and (1 − ρ + µS) are equal to zero. Because all Lagrange multipliers must be non-negative,

directly to the market participants via fixed payments, so that surplus is maximized by running an infinite deficit
and paying this out directly to buyers and sellers.

46I.e., the optimal mechanism selects the smallest ρ such that
∫ v

v

∫ c

c
(MB(v) − MS(c))Qρ(v, c)dFV dFC ≥ 0.
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we require that ρ ≥ 1 as discussed in Section 2.1. As our focus is on settings in which the
impossibility result holds, ρ > 1, and, so that the IR constraints bind, µB, µS > 0, we can set
fixed payoff terms equal to zero. Intuitively, ρ = 1 would imply slack in the budget condition,
and so the mechanism generated profit, which could be distributed back to agents via fixed
payments. When ρ > 1 there is no such slack, and guaranteeing positive expected payments to
either agent type makes the no-deficit condition even harder to satisfy, lowering efficiency.

Appendix A.1. Payoffs are functions of V

We show below that the buyer and seller payoffs for each mechanism are functions only
of V ≡ V H(0) − V B − V S and not of its component parts. We use E+[X|Y ] to signify
E[X|X ≥ Y ].

Appendix A.1.1. Auctions

As a preliminary step, we show that the deviation of the optimal reserve price at an auction,
equivalently, the seller-take-it-or-leave-it offer, from V S is a function of V only. First note that
the reserve price for a seller with search value V S + cS is characterized by

R = V S + cs + h(R − (V H(0) − V B))

where
h ≡ 1 − F

f

is the inverse hazard of F , the mean zero buyer quality match distribution. Defining

r = R − V S

we get
r = cS + h(r − V )

The assumption that buyers’ virtual utility is increasing implies h′ < 1, which in turn
implies that r is uniquely defined by this equation, so we can write r(c;V ) as the reserve price
deviation. To simplify the notation, further define

r+(c, V ) = r(c;V ) − V

Let v(n) is the maximum value and v(n−1) is the second highest. We now show that the
probabilities of sale above the reserve (l1) and at the reserve (l2) are functions of V . The first
case obtains when the second highest buyer’s net value (i.e., net of the value of search) exceeds
the reserve price, which occurs with the following probability

Pr{V H(0) − V B + v(n−1) ≥ V S + r(c;V )} = Pr{v(n−1) ≥ r(c;V ) − V } ≡ ln1 (V )
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The second occurs when the second highest value falls below the reserve price but the highest
value falls above

Pr{V H(0) − V B + v(n) ≥ V S + r(c;V ) ≥ V H(0) − V B + v(n−1)}

= Pr{v(n) ≥ r+(c, V ) ≥ v(n−1)} ≡ ln2 (V )

so that in expectation the seller facing n bidders is paid (unconditional on sale)

ln1 (V ) × (V H(0) − V B + E+[v(n−1)|r+(c, V )]) + ln2 (V ) × (V S + E[r(c;V )|v(n) ≥ r+(c, V ) ≥ v(n−1)])

The seller does not transact with probability (1−∑ γn(θA)(ln1 (V ))+ ln2 (V ))), in which case
the seller obtains their search value V S . Combining the event of sale and the event of no-sale,
the seller’s expected value from going to the auction is

∑
γn(θA){ln1 (V )) × (V H(0) − V B + E[v(n−1)|r+(c, V )]

+ln2 (V )) × (V S + E[r(c;V )|v(n) ≥ r+(c, V ) ≥ v(n−1)])}

+(1 −
∑

γn(θA)(ln1 (V )) + ln2 (V ))) × V S

=∑
γn(θA){ln1 (V )) × (V + E+[v(n−1)|r+(c, V )]

+ln2 (V )) × (V + E[r(c;V )|v(n) ≥ r+(c, V ) ≥ v(n−1)]} + V S ≡ WAS(V ) + V S

We now turn to buyers. The chosen buyer’s walk-away utility, gross of price and conditional
on a sale, at auction is

E[V H(0) + v(n)|V H(0) − V B + v(n) ≥ V S + r(εS;V )] = V H(0) + E+[v(n)|r+(c;V )]

so that the buyer gets, net of price and conditional on a sale,
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∑
n

λn(θA) 1
n

×

{(V H(0) + E[v(n)|v(n) ≥ r+(c, V )]) × (ln1 (V ) + ln2 (V ))

−ln1 (V )×(V H(0)−V B+E+[v(n−1)|r+(c, V )]−ln2 (V )×E[V S+r(c;V )|v(n) ≥ r+(c, V ) ≥ v(n−1)]}

+ (1 −
∑

n

λn(θA) 1
n

(ln1 (V ) + ln2 (V )) × V B

=
∑

n

λn(θA) 1
n

{(E+[v(n)|r+(c, V )]) × (ln1 (V ) + ln2 (V ))

− ln1 (V ) × E+[v(n−1)|r+(c, V )] − ln2 (V ) × E[r+(c, V )|v(n) ≥ r+(c, V ) ≥ v(n−1)]} + V B

Appendix A.2. Negotiation (Myerson-Satterthewaite)

The transaction condition is

V H(0) − V B + v − (1 − a)hB (v) − V S − c− (1 − a)hS(c) ≥ 0

for some a. This can be written as

V + v − (1 − a)hB (v) − c− (1 − a)hS(c) ≥ 0

We can write the condition as
v ≥ v(c, V, a)

To see that a is itself a function only of V , note that it is determined by

∫ ∫
v(c,V,a)

(V H(0) −V B + v−hB (v) −V S − c−hS(c))dG = V S + c−
∫

(V S + c+hS(c))dG

that is,

∫ ∫
v(c,V,a)

(V + v − hB (v) − c− hS(εS))dF (v)dG(c) = c− Ec−
∫
G(c))dc

Thus the interim trade probabilities are functions only of V and not its constituent parts.
Then from the ’envelope theorem’-like equations (4) and (5) of Myerson and Satterthewaite,
we have that the payoffs are likewise functions of V only.
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Appendix B. Data and Sample Construction

Appendix B.1. Auctions microdata

The auction microdata consists of 50,378 entries in total, sourced from a large real estate
auction company headquartered in Sydney, Australia. The data consist of auctions run by
this company starting in 2008 until September 2019. After removing properties classified as
commercial listings, we are left with a sample of 46,939 total listings.

We apply several criteria to generate the final sample. First, we require that the auction
be held, as the listings data contain many entries for auctions that were canceled, postponed,
or otherwise withdrawn from the market. Second, for the full auction sample, we require
complete information on the highest bid, number of bidders, seller’s commitment price, auction
outcome, date, and region. For the number of bidders sample, we require all of this except
the commitment price and highest bid. We also remove the approximately 0.1% of observed
auctions with more than 25 bidders. Third, we remove listings with low (<$500,000) or very
high (>$5 million) highest bids, which correspond to a small percentage of the overall sample.
Fourth, we remove any auctions outside of New South Wales. Finally, we trim outliers by
removing observations for which the highest bid-to-commitment price ratio falls below 0.75
or exceeds 1.25 – these typically correspond to typos in the price or commitment price entry
in the raw data. We are left with 14,482 observations for the full auction sample and 18,203
observations for the number of bidders sample.

We supplement the auction data with a census of all property transactions in the greater
Sydney area between 2011 and 2016. The data contains price, location, date first listed, the
date a sale was agreed, and sales mechanism type (auction or negotiation). From this data we
obtain seller time-on-market by mechanism type.

Steady state weekly moving rates are calibrated to match Sydney and NSW 3-year mobility
data published in ABS Catelogue: 3240.0 - Residential and Workplace Mobility, and Impli-
cations for Travel: NSW and Vic., October 2008. We fit split (mutually independent) Poisson
processes for the arrival of intracity shocks (defined as the sum of Moved within suburb, Moved
to different suburb: less than 5km, Moved to different suburb: 5km to less than 20km, Moved
to different suburb: 20km to less than 50km) and intercity shocks, (defined as all other moves
to the state, i.e. from interstate or from overseas). The latter pins down not only the inflow of
new buyers, but the exit rate of sellers as well, as these must be the same in steady state.

Appendix B.2. Auctions and Negotiations Sales Data

We also use an overlapping census of sales transactions for Sydney covering 2010:W8 to
2019:W44 inclusive. These data are sourced from Australian Property Monitors (APM) (see
the Copyright and Disclaimer Notics at the end of this Appendix) and cover the same Sydney
metropolitan area (i.e., the same postal codes) as the auctions microdata. The transactions data
include the sale price, listing date, sales (contract) date, the mechanism of sale, and if an auction
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was the selected mechanism whether it was successful or not. We use these data to construct
log hedonic prices by mechanism, the auction sales rate, the auction sales share and negotiated
seller time on market. Details of their construction follow.

For log hedonic prices we estimate a log price regression using the transactions data:

lnP j
hzt = κj

z + ϑj
t +

∑
r

Hhrtχ
j
r +

∑
s

Xhstδ
j
s +

∑
r

∑
s

HhrtXhstω
j
rs + νj

hzt (B.1)

where home h is sold in postal code z in week t via mechanism j ∈ {Negotiation,Auction}.
The weekly log hedonic price by mechanism is constructed using the estimates of the (ϑj

t )
coefficients. In addition to them, we control for postal (Zip) code (κj

z) fixed effects, the type
of home (Hhrt) (e.g., detached house, townhouse, semi-detached home, apartment or villa),
and other home attributes including the number of bedrooms, number of bathrooms, the log
lot/building size (Xhst) and the interactions of these attributes with home type (HhrtXhst).

The auction sales rate is computed using all homes sold at auction divided by the sum of all
homes sold via auction plus homes that are passed in at auction (either on a public (buyer) bid,
vendor (seller) bid, or where no bids were offered). The auction sales share is computed using
the number of homes sold at auction divided by the sum of all homes sold through auction and
negotiation. Negotiation seller time on market is computed as the number of weeks from when
a home is first listed to it when it is sold (i.e., when a contract of sale is signed). We measure
all variables, including prices, on a contract date basis as opposed to settlement dates.

Figure B.1 reports the original source data after outliers are removed using the R-package
”tsclean”.47 All data are measured a weekly frequency. There are clear seasonal patterns in
the data with the auctions sale share dropping sharply in the last weeks of December and the
early weeks of January where few, if any auctions, are held. This increases the volatility of log
prices (where available) in those periods as well. Negotiations, however, take place throughout
the year including in late December and early January holiday period. Prior to estimation, we
compute the demeaned log change in price by mechanism, and detrend the auction sales share,
sales rate and negotiation seller time on market using a constant and linear time trend.

Appendix C. Identification

This appendix discusses the identification of the steady-state model parameters. Our main
result, Theorem 1, shows that the model is identified up to a choice for the time discount factor
β and the flow utility from ownership rH .48 This result is similar to identification results of
other dynamic models, such as Arcidiacono and Miller (2020), that show that identification

47This package uses an automated robust STL decomposition for seasonal series and linear interpolation to
replace missing values and outliers.

48While we assume that other parameters are known in the proof of Theorem 1, we later generalize this result
to allow for other data sources to identify these parameters without impacting the main result.
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Figure B.1: Observables used in SMM Estimation (before detrending)

Note: Original data are sourced from housing transactions data provided by APM. Outliers are removed using
the R-package ”tsclean”. Data reported in the figure are before detrending. Data are detrended prior to the SMM
estimation.

depends upon a choice for the time discount factor and a fixed value of one of the flow payoffs.
We first recap the main assumptions of the mechanism models that are necessary to gen-

erate the mapping from the data on auction and negotiation outcomes into mechanism-specific
payoffs, trade probabilities, and market tightness.

Assumption 1 (Auction mechanism). The auction mechanism is an independent private val-
ues second-price sealed bid with an optimal seller reserve. Values for buyers V H(z)−V AB are
i.i.d draws from a distribution F . Values for sellers V AS are i.i.d. draws from a distribution G.

Assumption 2 (Exogenous N ). Buyers in the auction market are matched to auction sellers
such that the distribution of the number of buyers nt at any given auction t is determined by

a mixed-Poisson probability mass function γA
n (θA) = ∑I

i=1 wi
(δiθ

A)ne−δiθA

n! that is independent
of value realizations for buyers and sellers, where θA is auction market tightness, and the
probability that a given auction buyer is at an auction with n total buyers is λA

n (θA). The
probability that n buyers arrive at a given negotiation seller is the same as the auction arrival
probabilities up to a change in market tightness:γN

n = γA
n , λ

N
n = λA

n .

Assumption 3. The distribution of buyer and seller values at negotiations is the same as the
distribution of buyer and seller values at auctions: V H(z) − V NB ∼ F , V NS ∼ G.

Assumption 4. The negotiation mechanism is the second-best mechanism of Myerson and Sat-
terthwaite (1983) with buyer value distribution F and seller value distribution G.
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Assumption 5. The time discount factor β, owner match dissolution probability αm, proba-
bility of leaving the market pm, ownership flow utility rH , seller auction arrival rate ρA, and
buyer search probability ρB are known.

Theorem 1. The steady-state equilibrium model primitivesB, S, and {Wjk, γj(θj), λj(θj), cjk,ΨNk}
for j ∈ {A,N}, k ∈ {B, S} are identified up to a choice of ownership flow utility rH by the
joint set of bidders at each auction, highest auction bid, and auction result {nt, bt, rt}T

t=1, the
distribution of negotiation seller time-on-market TOMN

S , and the auction sales share SA.

The proof of Theorem 1 proceeds in three steps. First, we show that the buyer and seller
trade probabilities, auction market tightness, and the distributions of values for buyers and
sellers at auction are identified from the data on auction outcomes, the auction model, and buyer
arrivals. Second, we show that negotiation trade probabilities and tightness are identified by
negotiation seller time-on-market, assuming that the distributions of buyers’ and seller values
at negotiation are the same as at auction and that the MS mechanism determines negotiation
outcomes. Together, these results imply the identification of steady-state mechanism-specific
payoffs Wjk. Finally, we show that the remaining model steady-state equilibrium parameters,
which are the measures of buyers and sellers, the probability that buyers and sellers choose to
search in the negotiation mechanism, and the mechanism-specific costs of search for buyers
and sellers, are identified from the steady-state equilibrium conditions of the dynamic model,
the auction sales share SA, and Assumption 5.

Lemma 1 (Auction identification). λA
n (·), γA

n (·), θA, F (·), and G(·) are identified from the
data on auction outcomes {nt, bt, Rt}T

t=1, the auction model of Assumption 1, and the buyer
arrival process of Assumption 2.

Proof. The auction data consists of the number of bidders at each auction t, nt, the highest
bid submitted bt (which may be the seller’s vendor bid), and the result of the auction Rt which
takes values of {Sale, No Sale, No Sale (Vendor bid)}. Recall that “No Sale” results do not
specify who placed the final bid (sellers or buyers) while “No Sale (Vendor bid)” means that
the final bid placed was a binding bid on behalf of the seller. Our model assumes that bidders
in the auction participate in an ascending English auction until a single bidder remains and
that the seller makes a binding take-it-or-leave-it offer equal to the optimal reserve price to the
remaining bidder. For simplicity, our identification argument focuses on cases in which a sale
occurred or the auction failed on a vendor bid, as these cases suffice to establish the identifi-
cation of buyers’ and seller values. In “No Sale” cases we treat the vendor bid as unobserved,
generating bounds on seller values, and adding this data improves the precision of the estimates
but does not affect the primary identification argument.

Identification of the distribution of buyer values F follows standard arguments in the auc-
tions literature (Athey and Haile (2002)). The simplest argument for identification focuses on
the case in which n = 1. When n = 1, the highest bid always corresponds to the seller’s op-
timal reserve. Because the buyer and seller have independent value draws, the optimal reserve
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price is independent of the buyer’s value v, so F (b) is identified by the proportion of auctions
that result in a sale when the reserve price is b. With F identified, there is a one-to-one map-
ping from the observed reserve prices rt to seller values given by ct = rt − 1−F (rt)

f(rt) ; applying
this mapping to all auctions yields identification of G. Finally, because nt is assumed to be
exogenous, the n = 1 case suffices for identification.

Data on the number of bidders at each auction nt non-parametrically identifies the prob-
ability mass function for bidder numbers at auction. Separately identifying θA and the buyer
arrival function λA

n (·), a necessary first step to determining θA in counterfactuals and outside of
steady state, and inferring θN , requires a parameterization, however. We use a flexible paramet-
ric representation, a finite Poisson mixture distribution. Auction market tightness is identified
from the average number of buyers at each auction. Identification of the remaining parameters
of the auction buyer arrival distribution function follows from the non-parametric identification
of this distribution. Finally, γA is the pmf associated with λA conditional on nt ≥ 1.

Lemma 2 (Negotiation identification). θN is identified by negotiation seller time-on-market
TOMNS and Assumptions 4, 3 and 2.

Proof. In steady-state there is a constant, per-period probability of sale for negotiation sellers.
This depends on (i) the distribution of buyer and seller values, (ii) the negotiation mechanism,
and (iii) the arrival rate of buyers to sellers. Both (i) and (ii) are known. The arrival rate of
buyers to sellers is determined by the multiplier δneg in the negotiation buyer arrival distribution
γN

n (θN) ≡ γA
n (δnegθA). Per-week sale probability is known from the seller time-on-market

data, and per-period sale probability is a strictly increasing function of δneg, holding all other
model parameters fixed. This implies identification of δneg whenever the per-period seller sale
probability implied by the data lies in the interval [0, pneg], where pneg is the probability of
trade at negotiation conditional on a buyer-seller meeting (i.e., when γN

0 = 0). The parameter
δneg determines both negotiation market tightness, θN = δnegθA, and the matching of a given
buyer to a seller λN

n (θN), which is the pmf associated with γN conditional on buyer at the set
of sellers where n ≥ 1.

Lemma 3 (Steady-state identification). Suppose Assumption 5 holds and that the auction
sales share SA and θj,Wjk, λj(·), γj(·) for j ∈ {A,N} and k ∈ {B, S} are known. Then
B, S, ΨNk, and cjk for j ∈ {A,N}, k ∈ {B, S} are identified from the steady-state equilib-
rium of equations (13-20).

Proof. For simplicity, we assume that ρA = ρB = 1 and that the probability of leaving the
market pm = 0. We denote V k ≡ maxj{Vjk} as the steady state search value for side of the
market k. Equation (11) implies that for mechanism j we have

cjS = βγj(θj)WjS + (β − 1)V S
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Because all terms on the right-hand side are identified or known, cAS and cNS are identified.
For buyers, from equation (12) we have

V B = βλj(θj)WjB + βV B − cjB

⇒ (1 − β)V B = βλj(θj)WjB − cjB,

and from the ownership value equation (13) we have

V H = rH + φmβ(V S + V B) + (1 − φm)βV H

⇒ (1 − β)V H = rH + φmβV S − φmβ(V H − V B).

Taking the difference of the buyer and owner value equations yields

rH + cjB = φmβV S − [1 − β + φmβ](V H − V B) − βλj(θj)WjB

All terms on the right-hand side are identified or known for each mechanism j, so the mechanism-
specific buyer search costs cjB are identified up to the ownership flow utility rH .

The seller negotiation choice probability ΨNS , buyer negotiation choice probability ΨNB,
buyer mass B and seller mass S remain to be identified. The first of these can be inferred from
the observed auction sales share SA (the fraction of all trades that occur via auction):

SA = pAS(1 − ΨSN)
pNSΨNS + pAS(1 − ΨNS) ⇒ ΨNS = pAS − SApAS

SApNS + pAS − SApAS

where, for simplicity, we have defined pjS = ∑N
n=1 λ

j
nE[Qj|N = n] and pjB = ∑N

n=1 γ
j
nE[Qj|N =

n] as the ex-ante probability of seller trade at mechanism j and the ex-ante probability of buyer
trade at mechanism j, respectively. This identifies ΨNS .

By definition, the market tightnesses at each mechanism are

θN = ΨNBB

ΨNSS
, θA = (1 − ΨNB)B

(1 − ΨNS)S

which, given that we now know ΨNS , can be solved for ΨNB and the overall market tightness
B/S. To complete the proof, the steady-state mass of buyers and sellers are then identified
from the laws of motion (17) and (19), respectively:

B = αm

pNBΨNB + pAB(1 − ΨNB) , S = αm

pNSΨNS + pAS(1 − ΨNS)
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Appendix D. Structural Auction Model Estimation

This appendix describes the estimation of the structural auction model and presents full
parameter estimates for buyer and seller values and the distribution of buyer numbers at auction.

From Section 4.1, we parameterize buyer and seller values as Normal distributions with
mean and variance determined by auction k covariates and the quality term ηk:

V i
k ∼ N

(
ζ i

µX
µ
k + αi

µηk, ζ
i
σX

σ
k + αi

σηk

)
We assume that home quality ηk is observed by all buyers and seller but unobserved by the
econometrician. The set of variables determining the mean is Xµ

k = [ℓk, τk, Dk] where ℓk

indicates whether the auction took place at the property or in a separate auction room, and
τk and Dk are a set of year and region dummy variables, respectively. To economize on the
number of estimated parameters, we assume that the variance is time- and space-invariant, so
that Xσ

k = [1, ℓk], with unobserved quality ηk entering into both the mean and the variance.
Estimation of the model takes place in two stages. First, we estimate the distribution of

the unobserved quality term following Roberts (2013). Instead of using the seller’s reserve,
we use the commitment price as the variable determining the house quality. Specifically, we
assume that R = m(ηk;Xk) for some known function m(·) that is strictly increasing in η. In
estimation, we assume thatm is a linear function with the set of variables areXµ

k defined above.
In making this assumption, we assume that the commitment price is completely described by
the observed characteristics and the home quality, and that the idiosyncratic component of the
seller’s value after controlling for observed covariates and home quality does not determine
the commitment price.49 Our estimates for the distribution of home quality are not sensitive
to this assumption, as we discuss below in Appendix D.1.4. We prefer the method of Roberts
(2013) as it has the advantage of generating a point-estimate for the unobserved quality term
for each auction. Deconvolution approaches, which are the main alternative to accounting for
unobserved heterogeneity, require numerical integration over the distribution of unobserved
quality, greatly increasing the computational burden in estimation.

After obtaining estimates η̂k, we estimate the parameters {ζ i
µ, ζ

i
σ, α

i
µ, α

i
σ} for i ∈ {B, S}

using maximum likelihood according to the four likelihood components detailed in Section
4.1. The estimation procedure first establishes an initial guess for all parameters except time
dummies τ and region dummies Dk and the uses the output as the initial guess in estimating
all parameters. We find the initial guess and estimate the parameters using the Nelder-Mead

49We believe this assumption to be reasonable, as there is no reason for sellers to reveal information about
their private value when the commitment price is set – the commitment price is jointly determined by the seller
and listing agent/auctioneer prior to auction as a commitment device for the listing agent to “force” a sale with a
sufficiently high bid, thus obtaining their commission. Because the commitment price is never revealed to buyers,
the seller’s incentive is to set the commitment price as high as possible regardless of their private value.
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algorithm and verify that we have found a maximum by using the resulting estimates as the
initial guess in an optimizer using the BFGS algorithm.

Appendix D.1. Results and model fit

Appendix D.1.1. Parameter estimates

The estimated parameters are listed in Table D.1.

Table D.1: Results: buyer and seller values

Buyers Sellers

Coeff. 95 pct. CI Coeff 95 pct. CI

Mean
Const. -0.63606 [-0.64898, -0.62103] -0.60713 [-0.62324, -0.58872]
Quality 0.88262 [0.87632, 0.88753] 0.86503 [0.85831, 0.87277]
In-room -0.03239 [-0.03895, -0.02732] -0.05712 [-0.06451, -0.04827]
Year
2012 0.08593 [0.07501, 0.09944] 0.07321 [0.06149, 0.08397]
2013 0.09226 [0.08098, 0.10318] 0.04417 [0.03271, 0.05630]
2014 0.17409 [0.16213, 0.18583] 0.11583 [0.10278, 0.12681]
2015 0.33638 [0.32502, 0.34938] 0.26604 [0.25456, 0.27876]
2016 0.41469 [0.40152, 0.42651] 0.35006 [0.33696, 0.36335]
2017 0.50478 [0.49250, 0.51635] 0.44842 [0.43407, 0.46075]
2018 0.51558 [0.50262, 0.52753] 0.49139 [0.47776, 0.50515]
2019 0.44841 [0.43661, 0.45883] 0.41682 [0.40064, 0.43047]
Region
City and East 0.58741 [0.57762, 0.59573] 0.53470 [0.52268, 0.54686]
Inner West 0.48716 [0.47569, 0.49635] 0.44790 [0.43415, 0.46066]
Lower North Shore 0.68679 [0.67357, 0.69900] 0.64063 [0.62431, 0.65824]
NSW Country 0.03480 [0.00385, 0.06724] 0.06060 [0.03891, 0.08185]
Newcastle -0.03070 [-0.04501, -0.01626] -0.06170 [-0.07832, -0.04669]
Northern Beaches 0.46586 [0.45269, 0.47970] 0.41884 [0.40089, 0.43764]
South 0.24065 [0.23108, 0.24925] 0.19254 [0.17957, 0.20490]
Upper North Shore 0.56097 [0.54831, 0.57318] 0.52338 [0.51090, 0.53692]
West -0.14240 [-0.15812, -0.12931] -0.10892 [-0.12509, -0.09147]
Wollongong -0.01504 [-0.02608, -0.00510] -0.02256 [-0.03426, -0.00920]
Variance
Const. 0.03554 [0.02697, 0.04172] 0.02402 [0.01744, 0.03012]
Quality 0.12675 [0.12189, 0.13315] 0.08073 [0.07577, 0.08545]
In-room -0.01055 [-0.01725, -0.00382] -0.00658 [-0.01242, -0.00026]

Notes: Maximum likelihood estimates and 95 percent confidence intervals for buyer and seller value distribution
parameters. “Quality” refers to unobserved housing quality, estimated following Roberts (2013). “Region” and
“Year” are a set of geographic and time dummy variables; the left out categories are “Canterbury Bankstown”
for regions and 2011 for years.
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Appendix D.1.2. Buyer arrival parameters

We estimate the distribution over the number of buyersN at auction n using a finite Poisson
mixture with four groups. Our estimation procedure follows the standard EM algorithm applied
to finite mixture models (e.g., Aitkin and Rubin (1985)). For a given set of parameters δ, w,
where δ is the vector of Poisson parameters and w is a vector of mixture weights, we compute
the type expectation Zti for each observation t = 1, ..., T and type i = 1, .., 4 as

E[Zti|N, δ, w) = wif(Nt|δi)∑4
k=1 wkf(Nt|δk)

We then maximize the expected log likelihood with respect to parameters δ, w, i.e., maximize

T∑
t=1

4∑
i=1

ln(f(Nti|δi)E[Zti|N, δ, w] +
T∑

t=1

4∑
i=1

ln(wi)E[Zti|N, δ, w].

We then re-compute the expectation using the updated values for the δ, w parameters. We iterate
until the difference in the likelihood between steps is smaller than 10−5.

Table D.2: Results: auction bidder arrival

Coeff. 95 pct. CI

w1 0.23535 [0.23488, 0.23582]
w2 0.57869 [0.57835, 0.57902]
w3 0.15579 [0.15562, 0.15597]
δ1θ

A 1.15385 [1.15229, 1.15540]
δ2θ

A 3.38894 [3.38695, 3.39094]
δ3θ

A 8.17109 [8.16685, 8.17533]
δ4θ

A 16.13255 [16.12682, 16.13828]

Notes: Estimates and 95 percent confidence intervals for the distribution of the number of buyers at auction. The
weight for the Poisson distribution with parameter δiθ

A is wi, where w4 = 1 −
∑3

i=1 wi,
∑4

i=1 wiδi = 1, and
θA = 3.992 is the mean number of buyers per auction.

The results are presented in Table D.2, with confidence intervals generated by the asymp-
totic distribution for the maximum likelihood estimator.

Appendix D.1.3. Alternative parametric specifications

Figure D.1 shows the same fit measures of Figure 4 applied to estimated results using the
Lognormal distribution (Panels (a) and (b)) and the Weibull distribution (Panels (c) and (d))
for buyer and seller value distributions. The Lognormal specification incorrectly generates the
predicted distribution of prices and under-predicts the sales rate for all numbers of bidders,
while the Weibull distribution performs better in predicting prices but over-predicts the sales
rate for small numbers of bidders. In the Weibull case, the estimated shape parameters for both
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buyers and sellers fall in the 4.5 to 5.5 range, suggesting the data favor distributions with high
symmetry, as is the case in our benchmark parameterization using the Normal distribution.

Figure D.1: Auction Model Fit with Alternative Specifications

(a): Lognormal Predicted Prices
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(b): Lognormal Predicted Sales Rates
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(c): Weibull Predicted Prices
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(d): Weibull Predicted Sales Rates
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Appendix D.1.4. Estimating unobserved housing quality

Our estimation procedure uses the approach of Roberts (2013) to account for unobserved
housing quality. For a robustness check, we also estimate the distribution of unobserved hous-
ing quality using deconvolution methods following Freyberger and Larsen (2020) and Decarolis
(2018). We use the subset of auction observations containing data on the opening bid placed
during the auction and the seller’s commitment price to measure the distribution of unobserved
housing quality. Specifically, we assume that the opening bid is OB = W + Y and the com-
mitment price is CP = W +U , where W , U , and Y are i.i.d across auctions and W represents
the unobserved house quality. For example, we might view Y as a function of the idiosyncratic
component of a bidder’s value and U as a function of the idiosyncratic component of the seller’s
value.

Results for the two methods are displayed in Figure D.2. Both methods generate a similar
distribution of unobserved housing quality. In estimation we use the Roberts (2013) method
as it generates point estimates of the unobserved quality component for each auction, greatly
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reducing the computation burden of estimation. This compares to the distributional estimates
for deconvolution, which one would need to integrate over for each observation.

Figure D.2: Comparing unobserved housing quality distributions
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Appendix E. Simulations and Polynomial Approximation

This appendix describes the output from the polynomial approximations using simulated
outcomes for auctions and negotiations, with the latter described for both complete information
Nash bargaining and incomplete information via the MS 2nd best mechanism.

Appendix E.1. Estimating offer arrival rate for negotiation

First, we estimate the offer arrival rate for homes listed for sale by the negotiation mech-
anism using the output from data on Sydney time-on-market for negotiated sales to infer the
meeting rate, which gives a per-week sale probability of 0.1361. Specifically, we use the simu-
lated sale probability to perform a method of simulated moments estimation which chooses the
multiplier ξneg affecting all Poisson arrival rate parameters λ from equation (22) to minimize
the squared distance between the monthly sales rate implied by the model and the weekly sales
rate. This generates an estimate of θ̂E = 0.25 for the Nash bargaining case and θ̂N = 0.43 for
the MS case, which we use in the simulations for the negotiated model.

Appendix E.2. Parameters and function arguments

Both mechanisms use parameters for the buyer’s mean value, the seller’s mean value, and a
shock to the arrival rate.

For the buyer’s and seller’s values, the grid space takes the mean (for any given reserve)
and adds between -0.15 (minus AUD$150,000) and 0.15 (plus AUD$150,000).
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For the arrival rate, the grid consists of a multiplier to the base arrival rate that ranges from
75% of the original value to 125% of the original value. In all cases the multiplier applies to
each of the Poisson parameters but not to the associated probabilities. That is, if we have a
finite Poisson mixture with mixture probabilities wk for k = 1, 2, 3, 4 and Poisson parameters
δk for k = 1, 2, 3, 4, then the multiplier term ξ ∈ [0.75, 1.25] generates a new finite mixture
with the same mixture probabilities wk but distinct Poisson parameters ξδk for k = 1, 2, 3, 4.

Finally, the negotiation mechanism also uses the bargaining power term ψ as a parameter.
While we estimate polynomials over a grid for ψ, in using the simulation output we assume
ψ = 0.5 to mirror the equal weights for buyer and seller surplus in the MS mechanism.

Auction polynomials

I. Link to the dynamic model

The equations approximated by the polynomials are the expected price conditional on sale,
sale probability, buyer match probability, buyer surplus, buyer value conditional on trade, seller
value conditional on no trade, and the probability that zero buyers arrive at the auction.

Price conditional on sale: Letµµµ := [µB, µS] and σσσ := [σB, σS] denote the vectors of means and
standard deviations of buyer and seller values, andH(rA(µµµ,σσσ)) denote the distribution over the
optimal reserve price rA(µµµ,σσσ). The expected price conditional on n buyers at auction is

PA (n) =
∫ ∞

0

[∫ v
rA vn (n− 1) [1 − F (v)]F n−2 (v) dF (v) + rAn

[
1 − F

(
rA

t

)]
F n−1

(
rA
)]

1 − F n(rA) dH(rA)
(E.1)

where H(rA) is the distribution over the seller’s reserve rA and depends on the seller’s value
realization c and the distribution of buyer values FµB

; for simplicity of notation we suppress
the dependence of rA on the distribution parameters.

Recall that the distribution of bidder numbers is estimated as a finite Poisson mixture deter-
mined by parameters {wi, δi}4

i=1, where wi ≡ Pr(δ = δi) and the δi are the Poisson parameters.

E[PA] =
N∑

n=1

4∑
i=1

wiPr(N = n|N ≥ 1, δ = δiθ
A)PA(n) (E.2)

This object depends on three features of the auction model: the distribution of buyer values
(which determines F ), the distribution of seller values, which determines rA

t , and the arrival
rate of buyers, which determines n. The micro simulations treat the price as a function of (i)
the mean of the buyer value distribution µB, (ii) the mean of the seller cost distribution µS ,
and (iii) market tightness θA as described above. It treats the standard deviations of buyer
and seller distributions (governing idiosyncratic heterogeneity) as fixed and does not alter the
distributions over the Poisson parameters in the mixture distribution.

Probability of sale: The probability of sale for a given seller, T PA, is given by
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T PA =
N∑

n=0

4∑
i=1

wi
(δiξθ

A)ne−δiξθA

n!

∫ ∞

0

(
1 − F n

µb

(
rA
))
dH(rA(µs;µb)) (E.3)

Again, this object depends on the distribution of buyer values (which determines F ), the
distribution of seller values, which determines rA

t , and the arrival rate of buyers. We simulate
values for the sale probability T̃ P

A
by varying the distribution means and arrival rate multiplier

T̃ P
A(µµµ, ξ; c,w,θ,σσσ) :=

N∑
n=0

4∑
i=1

wi
(δiξθ

A)ne−δiξθA

n!

∫ ∞

0

(
1 − F n

µb

(
rA
))
dH(rA(µs;µb))

(E.4)

Buyer match probability: The probability that a negotiated buyer trades with a seller 1
n

Pr(N =
n|N ≥ 1) × Pr(v(n) ≥ rA

t ), that is, the probability that a given buyer has the highest value out
of n buyers conditional on N ≥ 1, which with independent values is 1/n, times the probability
that the highest value exceeds the seller’s reserve.

N∑
n=1

4∑
i=1

wiPr
(
N = n|N ≥ 1, θ = δiξθ

A
) 1
n

∫ ∞

0

∫ v

v
1{v(n) ≥ rA}dF n

µb
(v)dHµs(rA)

Buyer value conditional on trade: For a given number of bidders n, the expected auction buyer
value conditional on trade in the auction is given by

E[v | N = n, v ≥ max{v(n), rA}]

where the expectation is taken over the seller’s reserve price and the joint distribution of the
n buyer value order statistics. Integrating over the number of bidders gives the unconditional
expected auction buyer value conditional on trade B̃V

A
as

B̃V
A(µb, µs, ξ) =

N∑
n=1

4∑
i=1

wiPr
(
N = n|N ≥ 1, θ = δiξθ

A
) ∫∞

0
∫ v

v v
(n)1{v(n) ≥ rA}dF n

µb
(v)dH(rA)∫∞

0
∫ v

v 1{v(n) ≥ rA}dF n
µb

(v)dH(rA)

Seller value conditional on no trade: The expected auction seller value conditional on no trade,
S̃V

A
is given by

S̃V
A(µb, µs, ξ) =

N∑
n=1

4∑
i=1

wiPr
(
N = n|N ≥ 1, θ = δiξθ

A
) ∫ c

c

∫ v
v c1{v(n) < rA(c)}dF n

µb
(v)dGµs(c)∫ c

c

∫ v
v 1{v(n) < rA(c)}dF n

µb
(v)dGµs(c)

Probability of zero buyers: Finally, the probability that zero buyers, Z̃B
A

arrive at a seller is

Z̃B
A(ξ) = 1 −

I∑
i=1

wi
(δiξθ

Aϵ)0e−δiξθN ϵ

0!
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Myerson-Satterthwaite mechanism polynomials

As in the case of the auction mechanism, we generate functional approximations for price
conditional on trade, sale probability conditional on a buyer and seller meeting, probability of
a seller meeting a buyer, buyer value conditional on trade, seller value conditional on no trade,
and the probability that a buyer matches and trades with a seller.
Probability of sale conditional on meeting: Recall that the probability of sale conditional on
matching with a buyer is the probability that the a∗-weighted virtual type for the buyer exceeds
that of the seller, or

E[QN(v, c)] = Pr(Φa∗(v) ≥ Γa∗(c))

This depends on the distribution of buyer and seller values but not on the arrival distribu-
tion. We assume fixed values for the variances of the distributions σv, σc and simulate the sale
probability T̃ P(µb, µs;σb, σs) for a grid of values for the mean buyer and seller values.

T̃ P(µb, µs;σb, σs) =
∫ v

v

∫ c

c
1{Φã(µb,µs)(c) ≥ Γã(µb,µs)(c)fµb

(v)gµs(c)dvdc

where fµb
and gµs are the pdfs of the buyer and seller distributions with means shifted to µb

and µs, respectively. The mechanism allocation rule changes as the means of the distributions
change; therefore, for each pair µb, µs we resolve for the weight ã(µb, µs) that characterizes the
optimal mechanism. In the remainder of this section we suppress the dependence on the value
means and refer to this parameter as ã.
Price conditional on trade: The expected price received by sellers, not conditional on trade, is

MS
µs

(c) = c+ Gµs(c)
gµs(c)

After conditioning on trade, the expected price is

P̃N(µb, µs;σb, σs | QN(v, c) = 1) =
∫ v

v

∫ c
c M

S
µs

(c)1{Φã(c) ≥ Γã(c)fµb
(v)gµs(c)dvdc∫ v

v

∫ c
c 1{Φã(c) ≥ Γã(c)fµb

(v)gµs(c)dvdc

Probability of a seller meeting a buyer: The probability that a seller meets a buyer M̃B is

M̃B(ξ; w.c, θN) = 1 −
I∑

i=1
wi

(δiξθ
Nϵ)0e−δiξθN ϵ

0!

Probability of a buyer trading with a seller: The ex-ante probability that a buyer trades with a
seller is

B̃M(ξ, µb, µs; w, c, θN , σb, σs) =
N∑

n=1

4∑
i=1

wiPr(N = n|N ≥ 1, θ = δiξθ
N) 1
n

T̃ P(µb, µs;σb, σs)

61



Seller value conditional on meeting a buyer and no trade:

S̃V(µb, µs;σb, σs) =
∫ v

v

∫ c
c v1{Φã(c) < Γã(c)fµb

(v)gµs(c)dvdc∫ v
v

∫ c
c 1{Φã(c) < Γã(c)fµb

(v)gµs(c)dvdc

Buyer value conditional on trade: The expected buyer value conditional on trade B̃V is

B̃V(µb, µs;σb, σs) =
∫ v

v

∫ c
c v1{Φã(c) ≥ Γã(c)fµb

(v)gµs(c)dvdc∫ v
v

∫ c
c 1{Φã(c) ≥ Γã(c)fµb

(v)gµs(c)dvdc

Appendix E.3. Approximation accuracy

Table E.1 compares: i) the micro-simulation means computed in steps 1 and 2 (column 2);
ii) the means of the polynomial approximations for expected price, probabilities of trade and
expected payoffs by mechanism in steps 3 and 4 (column 3); and the steady state of the full
dynamic model featuring idiosyncratic but not aggregate uncertainty (column 4).50 All three
sets of means are very close to each other. For example, in the MS-Auction model, the micro-
simulation mean of the probability of trade through auctions for buyers and sellers differ from
that of the dynamic model’s steady state by no more than 0.001 and 0.005 respectively, with
similarly small differences for negotiation. Differences in tightness and price are also small.

Table E.1: Comparing Simulation & Approximation Moments

Simulation Mean Approximation Mean Steady State Mean

Model-implied Moments:
Auction Price 1.331 1.331 1.327
Negotiation Price 1.174 1.174 1.174
Buyer Trade Prob. Auc. 0.150 0.150 0.154
Seller Trade Prob. Auc. 0.591 0.591 0.614
Buyer Trade Prob. Neg. 0.318 0.318 0.314
Seller Trade Prob. Neg. 0.137 0.137 0.136
Buyer Value Cond. Trade Auc. 1.447 1.447 1.444
Buyer Value Cond. Trade Neg. 1.343 1.343 1.339

Targeted Moments:
Auction Tightness 3.992 3.992 3.992
Negotiation Tightness 0.432 0.432 0.432
Mean Uncond. Buyer Value 1.196 1.196 1.196
Mean Uncond. Seller Value 1.102 1.102 1.102

Notes: Moments not listed under Target moment are non-targeted. Simulation mean is the micro-simulation
computed mean. Approximation mean is the mean approximated using 2nd-order polynomials (see Appendix E).
Steady state mean is the steady state mean from the dynamic MS-auction model with idiosyncratic shocks only.

50Experiments with different polynomial orders found second-order polynomials to be highly accurate, yet
parsimonious. We use a second-order approximation (with pruning) when solving the full dynamic model.
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Figures E.1 to E.2 show the micro-simulation values and the predicted values derived from
the polynomial approximations used to parameterize expected price, trade probabilities for
buyers and sellers, and conditional payoffs by mechanism, and where simulations are ordered
in ascending value. The accuracy of the approximations is high: the maximum absolute error
(MAE) for expected price and buyer value (conditional on trade) are less than 0.2% of the mean
micro-simulation value with the root mean squared error (RMSE) about one third to one quarter
of the MAE. The trade probabilities for buyers and sellers are also accurate with a RMSE no
greater than 0.01 across all approximating polynomials.

Figure E.1: Auctions Polynomial Approximations

Note: Each point on the x-axis denotes a different grid point over the buyer value mean, seller value mean, and
the arrival rate by mechanism. The x-axis is ordered so that y-values are ascending. Buyer value denotes the
expected buyer value conditional on trade, Price denotes expected price, Seller TP. and Buyer TP. denote seller
and buyer probabilities of trade. MAE is the maximum absolute error and RMSE the root mean squared error of the
polynomial approximation used for each function, and are reported as a percentage of the mean micro-simulation
value for Price and Buyer value.
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Figure E.2: Negotiations (MS) Polynomial Approximations

Note: Each point on the x-axis denotes a different grid point over the buyer value mean, seller value mean, and
the arrival rate by mechanism. The x-axis is ordered so that y-values are ascending. Buyer value denotes the
expected buyer value conditional on trade, Price denotes expected price, Seller TP. and Buyer TP. denote seller
and buyer probabilities of trade. MAE is the maximum absolute error and RMSE the root mean squared error of the
polynomial approximation used for each function, and are reported as a percentage of the mean micro-simulation
value for Price and Buyer value.
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Appendix F. Selection

In the benchmark model, buyers and sellers choose the mechanism with the highest ex-
pected payoff. Here we consider whether certain types of selection are important. We first
consider selection on home attributes, and then randomness in the choice of mechanism by a
seller or buyer.

Appendix F.1. Selection on Home Attributes

The concern here is that certain homes, based on their location, size and type (house or
apartment), may be more likely to be auctioned than they are negotiated. While controlling
for the attributes of home sold through log-hedonic price regressions can help to control for
changes in the composition of homes sold each week, unobserved differences in home attributes
could remain and drive differences in mechanism propensities. One approach to addressing
this is to use matching. By matching the auction and negotiation samples prior to the model’s
solution and estimation, the two samples – auctions and negotiations – should exhibit greater
covariate balance and thus be more comparable.

Following Genesove and Hansen (2023), we use a Nearest Neighbor (NN) matching algo-
rithm that first identifies the sample of auctions with overlap, and for each auction within this
sample we identify the closest NN match of a home sold through negotiation. By quarter, q,
we:

1. Estimate a logit-based propensity score of the transaction being an auction.51

2. Remove observations with estimated propensity score êiq outside interval [0.05, 0.95]
(i.e., remove sales very likely or unlikely to have been auctioned).

3. Remove any auction (negotiation) lacking a corresponding negotiation (auction) with
estimated propensity score within 0.1 caliper.

4. Denote the remaining set of auctions (negotiations) in quarter q as Aq (Pq). Identify the
single closest negotiated sale within the set Pq for auction sale i ∈ Aq, matching on all
home attributes including the type of home sold, bedroom number, bathroom number,
log lot size and longitude and latitude. Call this j (i). Denoting the covariate vector for
observation k as xk, j(i) satisfies:

xj(i) ∈ arg min
k∈Pq

(xk − xi)′ W−1
q (xk − xi)

where Wq is the inverse of the sample variance-covariance matrix. Matching is under-

51The covariates are: home type (house or apartment), bedroom number, bathroom number, log lot size inter-
acted with property type, longitude, latitude, and distance to the Central Business District General Post Office
(city core). Distances are calculated using Robert Picard, 2010. ”GEODIST: Stata module to compute geodetic
distances,” Statistical Software Components S457147, Boston College Department of Economics, revised 22 Feb
2012.
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taken with replacement and ties are broken randomly.

5. Construct a matched negotiations sample for quarter q collating the set of pairwise matches
(one for each auction in quarter q) identified in Step (4). Denote it PM

q .

6. Append the quarterly samples of matched negotiated sales to form a single matched ne-
gotiated sales sample PM = ⋃

q∈1996:I–2019:IV PM
q . Do the same for the quarterly samples

of auction sales used in matching: AM = ⋃
q∈1996:I–2016:IV Aq.

After constructing the matched samples, we estimate weekly log-hedonic price regressions
on each matched sample (PM and AM ), and the restrict attention the 2010–2019 sub-sample
that matches that used in the structural auction estimation. Figure F.1 shows the estimated
price indices with and without matching (differences in covariate balance after matching are
small and full results are available on request). The comovement and volatility in price is more
similar after matching, consistent with improved balance and that the auctions and negotiations
matched samples now have identical size.

Table F.1 reports results after re-estimating the model using the NN matched prices (Model
II). Compared with the benchmark model (Model I), we see estimates of the persistence and
standard deviation shocks that are close to those of the benchmark model, with the exception
being the persistence of the discount factor shock, which is now estimated at zero. Interestingly,
the lack of the estimated persistence in the discount factor shock after matching, is also found
when introducing random mechanism preference shocks in the model.

Figure F.1: Prices: Unmatched & NN Matched

Appendix F.2. Random Shocks to Mechanism Choices

A second concern is that buyers or sellers may simply prefer to haggle rather than hammer.
Moreover, the preference to choose a given mechanism may change over time. A seller may
initially choose to sell via negotiation for example, but then decide to hold an auction. Or
a seller might schedule an auction, but then decide they are willing to consider offers and
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negotiate before the auction is held.52 To allow for selection due to changing preferences, we
introduce a random preference shock to buyers’ and sellers’ mechanism choices.

Consider a preference shock received by the agent of type k ∈ {Buyer, Seller} at the begin-
ning of the interval when the agent chooses their mechanism. Agents now choose mechanism

jk∗
t ∈ arg maxj

{(
εjk

t

)σk

V jk
t

}
for j ∈ {Auction,Negotiation}53. εjk

t is the random mechanism

and buyer (or seller) specific shock received when choosing a mechanism at time t, and σk is a
scale parameter that governs the dispersion of the shock received. Requiring a shock distribu-
tion that admits the same steady state as that of the benchmark model, we assume log εNk

t

εAk
t

is i.i.d
Gaussian with mean µk and unit variance for all j and k.54 An advantage of this assumption
is that by restricting the mean difference in the log-preference shocks, µk, to be a function of
the dispersion parameters σk, the latter are uniquely identified from the steady state mechanism
propensity shares

(
Ψjk

)
.

We use this specification to test whether the time series data – mechanism-specific prices,
time on market, the auction clearance and and auction sales share – prefer the model with i.i.d
preference shocks or the benchmark model. Specifically, we replace the equilibrium indiffer-
ence conditions of the benchmark model with a convex combination of themselves and the
equilibrium mechanism selection condition with i.i.d preference shocks as modelled above:

0 =
(
1 − ϵk

) (
1 − VNk

t

VAk
t

)
︸ ︷︷ ︸

Indifference equilibrium

+ ϵk

exp

σkΦ−1
(
ΨNk

t

)
−

(
σk
)2

2

− VNk
t

VAk
t


︸ ︷︷ ︸

Equilibrium with mechanism preference shocks

where Φ−1 is the inverse of the standard normal CDF. This allows us to estimate the parameters
ϵk ∈ [0, 1] , one for buyers and one for sellers, noting that as ϵk ↘ 0 the data support the model
with the indifference equilibrium, and ϵk ↗ 1 they support the alternative model with selection.
Beyond the boundary cases, however, there is no structural interpretation to the value of ϵk.55

Table F.1 shows the results again using SMM. Model I is the benchmark model, imposing
the equilibrium indifference condition for both buyers and sellers (ϵs = ϵb = 0). Model III

52We emphasis these are random changes in mechanism choice. Choices that are made due to changes in
expected payoffs, for example due to changes in expected buyer demand, are already covered in the benchmark
model.

53Note we do not place any restrictions on preference shocks for agents who are on both sides of the market.
An agent who is buying and selling may receive a preference shock inducing them to buy via negotiation while at
the same time selling their home on through auction.

54Note only the ratio of shocks identified. With this formulation preference shocks are interpeted as percentage
deviations in values obtained from selling through auction or through negotiation.

55Note with i.i.d preference shocks, the time varying probabilities that a buyer or seller will choose auction or
negotiation:

Pr
(

log V Ak
t

V Nk
t

≤ σk log εNk
t

εAk
t

)
= ΨNk

t for k ∈ {Buyer, Seller}
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relaxes this allowing for a non-zero weight on the equilibrium condition with preference shocks,
but imposes that the weighting on the preference shock equilibrium condition is the same for
buyers as it is for sellers (ϵs = ϵb ̸= 0). Model IV allows for differential weights on the
equilibrium conditions preference shocks for buyers and sellers (ϵs ̸= ϵb).

The results in Table F.1 show that the estimated weights on the equilibrium conditions with
random preference shocks are small. Rejecting the null that estimated weights on the equi-
librium condition with i.i.d preference shocks are the same for buyers and sellers (comparing
Models III and IV), Model IV implies an estimated weight on the random shocks equilibrium
condition of 0.0003 only, implying little evidence that preference shocks of this nature mat-
ter for their mechanism choice. For buyers, the estimated weight still favours the benchmark
model at 0.0463, but there is statistically significant evidence that preference shocks play a role
in their mechanism choices.

As noted earlier, the most significant effect of allowing for random shocks to mechanism
choices is on the estimated persistence of the discount factor shock. As with the NN-matching,
this shocks is now estimated to have zero persistence. For other shocks, however, the estimated
parameters are similar.

As a final robustness check, we estimate a third model with random mechanism preference
shocks (Model V). Rather than assume preference shocks are multiplicative and log-normally
distributed, Model V assumes they are additive and drawn from a Type I Extreme Value Dis-
tribution. This model is commonly used in the empirical literature estimating dynamic discrete
choice models. Here, we replace the equilibrium indifference condition with a logit-model
σk

logit log ΨAk
t

1−ΨAk
t

= V Ak
t − V Nk

t , where σk
logit governs the dispersion parameter associated with

the additive Type I EVD shocks. We estimate the dispersion parameters σk
logit via SMM.

Table F.1 Model V shows the results where the final rows now report the point estiamates
and standard deviations of the dispersion parameters σb

logit and σs
logit, and the standard deviation

of the Type I EVD shocks are πσb
logit/

√
6 for buyers and πσs

logit/
√

6 for sellers. The estimates
imply a weekly standard deviation equivalent to 0.0038 per week for buyers, that is statisti-
cally significant, and 0.0002 per week for sellers, which is not statistically different from zero.
Thus, similar to the findings for Model IV, we see evidence of random shocks to the mecha-
nism choices made by buyers, but not for sellers. Finally, in terms of the models parameters
estimates, they again quite similar to Models II to IV, with only exception being that in the

Inverting the selection conditions imposing µk = − (σk)2

2 we have

log
(

V Nk
t

V AS
t

)
+ (σk)2

2

σk
= Φ−1 (ΨNk

t

)
and so we see σk is uniquely identified from the steady state ΨNk

, since V
Nk = V

Ak
. Note the restrictions on

the means are important, they allows us to uniquely identify σk without reparameterizing the model.
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Table F.1: Estimates with NN-matching and Mechanism-preference Shocks
Model I: Model II: Model III: Model IV: Model V

Benchmark Nearest Mech. pref Mech. pref Mec. pref
Parameter indifference neighbor symmetric asymmetric logit
estimates model matching ϵs = ϵb ϵs ̸= ϵb σb

logit ̸= σs
logit

Persistence
ρrH 0.017 0.013 0.00 0.00 0.283

(0.000) (0.001) (.) (.) (0.81)
ραb 0.898 0.994 0.756 0.790 0.772

(0.053) (0.004) (0.032) (0.0267) (0.020)
ρβ 0.998 0.00 0.00 0.00 0.00

(0.001) (.) (.) (.) (.)
Std. Dev.
σrH 0.021 0.034 0.003 0.004 0.003

(6.24e-04) (0.0009) (0.0018) (0.0014) (0.003)
σαb 2.42e-05 1.88e-06 0.0005 0.0004 0.0006

(6.13e-06) (8.58e-06) (4.97e-05) (4.52e-5) (4.15e-05)
σβ 8.39e-06 0.0009 0.0041 0.0044 0.0056

(4.13e-06) (0.0004) (0.0011) (0.0010) (0.0008)
σN 0.007 0.018 0.006 0.006 0.004

(3.56e-04) (0.0009) (0.0008) (0.0008) (0.0012)
σA 0.021 0.023 0.023 0.023 0.026

(5.14e-04) (0.0009) (0.0005) (0.0005) (0.0005)
ϵs(σs

logit) 0.0764 0.0003 0.003
(0.0083) (0.0008) (0.0001)

ϵb(σb
logit) 0.0764 0.0463 0.0002

(0.0083) (0.0030) (0.0008)

logit model of preference shocks, flow utility shocks are now estimated to be more persistent,
though less precisely. All other parameter estimates remain similar.
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