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Abstract

We investigate how potential collusion, interpreted as a positive prior prob-

ability that collusion may occur, influences equilibrium prices in states of the

world in which collusion, in fact, does not occur. We explore the mechanism

in a theoretical model of consumer search, based on the Stahl (1989) frame-

work, and show that with potential collusion, equilibrium prices are, in fact,

higher even in the absence of collusion. We explore the mechanism in a series

of laboratory experiments. The results are qualitatively consistent with our

theoretical predictions.

∗The research is financed by BI Norwegian Business School.
†BI Norwegian Business School & CESAR, : tom-reiel.heggedal@bi.no
‡BI Norwegian Business School & CESAR & CEPR: espen.r.moen@bi.no
§BI Norwegian Business School & CESAR: magnus.v.knutsen@bi.no

1



1 Introduction

Collusion, by definition, leads to higher prices. The focus in this paper is on how

potential collusion, interpreted as a positive prior probability that collusion occurs,

may influence equilibrium prices in states of the world in which collusion in fact does

not occur. Fear of collusion may influence the search behaviour of consumers. In

particular, potential collusion may reduce consumers’ incentives to continue search

after being offered a high price. Non-colluding sellers may take advantage of this, and

set higher prices than when there is no potential for collusion.

We first explore this mechanism in a theoretical model of consumer search based

on the Stahl (1989) framework. The model contains two crucial features for our

mechanism to work. First, buyers believe that collusion may take place with a strictly

positive probability. Second, buyers are not fully informed about the prices offered

by all sellers and may search to obtain more price quotes.

In the simplest version of our model, there is an exogenous probability that sellers

may collide on a price pM . This price is higher than any price offered in equilibrium in

the absence of potential collusion and would not have been accepted by any consumers.

In the presence of potential collusion, the situation is different. When a consumer

visits a seller that posts pM , she updates the probability that firms collude and buys

the good with a strictly positive probability. This in turn induces some sellers to set

pM even in the absence of collusion, and the entire price distribution shifts upwards.

As a result, equilibrium prices are higher even when collusion, in fact, does not occur.

In the second part of this paper, we explore the mechanism in a laboratory experi-

ment. In our experiment, participants have roles as sellers or buyers. The probability

that sellers collude varies between the treatments. When collusion occurs, prices are

set exogenously at pM for all sellers. We run a total of four treatments. In our con-

trol treatment, the exogenous probability of collusion is zero. In the three remaining

treatments, the exogenous probability of collusion is 10%, 20% and 30%, respectively.

We find that potential collusion changes the behaviour of both sellers and buyers
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in a way that is qualitatively consistent with the predictions of the model. Regarding

posted prices, we find that potential collusion leads to a mass point in the price

distribution on the collusive price pM and an upward shift in the remaining price

distribution below pM . Both of these findings are in line with theory. As a result,

there is an increase in the average price compared to our control that ranges between

17 percent and 101 percent. Regarding search behavior, we find that search rates are

low across all treatments, which is in accordance with our theoretical predictions.

Although there are deviations from equilibrium predictions in the data, both buy-

ers and sellers best-respond remarkably well. Across our four treatments, the share of

buyer decisions that are consistent with a best response, given the empirical reserva-

tion price, ranges between 91 and 97 percent. Furthermore, we find that the majority

of posted prices are within the ranges that yield the highest profits. Thus, the pricing

behaviour of sellers is to a large extent profit-maximismizing.

The major discrepancy from theory is that there are differences between treat-

ments that are not in line with theory. In particular, there are numerous instances of

price postings below the theoretical minimum in the low-probability treatment, and

there is excessive mass on the collusive price in the high-probability treatment. We

explore deviations from equilibrium predictions employing a model of reinforcement

learning. We find that subjects are sensitive to the experience gained throughout the

experiment and that this can account for differences from equilibrium predictions as

well as differences between treatments.

1.1 Related Literature

Our paper contributes both to theoretical and experimental literatures on markets

with search and markets with collusion. First, we contribute to the theoretical lit-

erature on consumer search with learning (of market state). In this literature firms

typically observe costs privately and costs are positively correlated. In Benabou and

Gertner (1993) identical consumers observe the price of one firm and make inference
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about the other firm’s costs before making their search decision. In a similar envi-

ronment Dana Jr (1994) includes informed and uninformed buyers, where the latter

first observes one price for free and can then pay a cost to get fully informed about

all prices.1 Janssen et al. (2011) take this type of production cost uncertainty to a se-

quential search environment, similar to ours. They develop a Stahl (1989) type model

with stochastic, perfectly correlated costs observed only by the firms, and show that

both informed and uninformed consumers pay higher expected prices under cost un-

certainty. Further properties of the model using different equilibrium refinements are

analyzed in Janssen et al. (2017). In contrast, our paper focuses directly on collusion

in prices and examines how the fear of such collusion may lead to increased prices in

the absence of actual collusion. Furthermore, since our paper involves buyers mak-

ing direct inferences on prices, there is no need for refinements on out-of-equilibrium

beliefs to solve the model.

There is also a string of related search papers that includes consumers’ inference

about downstream firms’ costs in vertical market contexts (see e.g., Janssen and

Shelegia (2015), Lubensky (2017), Janssen (2020) and Janssen and Shelegia (2020)).2

Second, our papers contributes to the theoretical literature on consumer search

and tacit collusion in repeated games. Nilsson et al. (1999) considers a repeated game

version of Burdett and Judd (1983) and shows that lower search costs facilitate col-

lusion as profits on the punishment path is lower. Campbell et al. (2005) corroborate

this result in a Stahl (1989) framework, and show that the scope for collusion is larger

if firms can monitor each other’s prices. Petrikaitė (2016) study search costs and car-

tel stability in repeated game versions of Wolinsky (1986) and Stahl (1989). The main

1There are also some paper that takes this framework to a dynamic setting, analyzing how costs
correlated over time affects pricing dynamics (see e.g., Yang and Ye (2008) and Tappata (2009)).

2There also are several papers on search where consumers learn about other states of the market
than production costs. In Lauermann et al. (2012) traders gradually learn about market demand
and supply through a sequence of multilateral bargaining rounds. Atayev (2022) studies uncertainty
about product availability. Mauring (2017) and Mauring (2020) analyze how consumers learn about
the price offer distribution from past searchers’ trade decisions in an environment with non strategic
sellers.
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insight is that search costs may have two countervailing effects on stability. While

higher search costs softens the punishment from deviating from the cartel, higher costs

may also decrease (short term) deviation incentives pending on the details of the com-

petitive environment. Shadarevian (2022) extends this framework to include private

information in the firm side about positively correlated costs in the spirit of Benabou

and Gertner (1993). Montag and Winter (2020) nests the models of Petrikaitė (2016)

and Schultz (2017) to study how price transparency affects the stability of collusive

behaviour. Obradovits and Plaickner (2020) considers a price-directed search model

in which consumers observes prices but search for match quality.3

A common characteristic for these repeated games is that buyers are aware of

whether prices are determined through play on the cooperative path or the punish-

ment path. In contrast, in our paper buyers form beliefs about collusion, and these

beliefs may diminish consumers’ incentives to search. Exploiting this, non-colluding

sellers set higher prices, even in the absence of actual collusion.

Third, our paper contributes to the experimental literature on posted-offers mod-

els with price dispersion. Cason et al. (2003) and Cason et al. (2021) examine the

noisy sequential-search model of Burdett and Judd (1983); Cason and Datta (2006)

and Cason and Mago (2010) examine the sequential search model of Robert and

Stahl (1993) with advertising; Helland et al. (2017) examine the capacity constraints

model of Lester (2011); Morgan et al. (2006) examine the simultaneous pricing model

of Varian (1980) while and Heggedal et al. (2023) study sequential pricing in this

framework.4

The zest of this literature is that the comparative statics is often in line with

equilibrium predictions. However, point predictions can deviate substantially from

equilibrium, in particular in experiments with human buyers (see Cason and Mago

(2010)). Moreover, on the individual level, subjects typically do not mix over prices,

3Schultz (2005) and Schultz (2017) study tacit collusion in a Hotelling framework without search
in which only a fraction of consumers observes both firms’ prices akin to Varian (1980).

4There also exists a literature that investigates different aspects of the Diamond (1971) paradox
in the lab. See for instance Grether et al. (1988), Davis and Holt (1996) and Abrams et al. (2000).
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rather prices are correlated over time (see Cason et al. (2003) and Cason et al. (2021)).

In our paper, we produce qualitative predictions, as well as several point predictions,

in the lab using human subjects both as sellers and buyers in complex search markets.

Last, our paper contributes to the literature on collusion in the lab. To the best

of our knowledge there are only two experimental studies of collusion in posted-

offers models with price dispersion. Moellers et al. (2016) studies collusion in a

repeated game variant of the Stahl (1989) model. They show that lower search costs

do not lower average prices although buyers search more often, and that (cheap talk)

communication between sellers increases prices and reduces search. Orzen (2008)

studies tacit collusion a repeated game variant of the Varian (1980) model. He finds

that with repeated interaction, duopolists post substantially higher prices than in the

one-shot game, whereas prices in quadropolies remain very similar.

In contrast to these two papers on repeated games, we find that the potential for

collusion in a one-shot-game leads to higher prices in the lab even in the absence of

collusion.

There is a large experimental literature on collusion in repeated price-setting

games without price-information frictions. This literature shows that the specifics

of the market structure are crucial for whether collusion is successful in generating

profits. See Potters and Suetens (2013) and Harrington Jr et al. (2016) for excellent

surveys.5

The remainder of the paper is organized as follows: Section 2 outlines the the-

oretical framework, and section 3 presents our experimental design and procedures.

In section 4 we report the results from our experiment, while section 5 discusses

deviations from equilibrium predictions. Section 6 offers a brief conclusion.

5There is also a small literature on search and collusion in the field. In the study conducted by
Moraga-González et al. (2023), an exploration of the car dealership market was undertaken using
random search models. Although conclusive evidence of collusion was not discovered in the analyzed
markets, the findings revealed that reducing consumers’ search costs could result in elevated prices.
Similarly, Nishida and Remer (2018) identified adverse effects associated with diminished search
costs when investigating the retail gasoline market.
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2 Mechanism and Model

Before we dive into the model, we will discuss the underlying economic mechanism,

which we believe applies more broadly than in our rather narrow model environment

as long as prices are influenced by consumer search.

Our mechanism is related to the beliefs and incentives of searching consumers.

A core element is that (a subset of) consumers have limited information about the

prices set by the different sellers, and that they can gather information about prices

through costly search. If a consumer visits a seller and finds that it sets a high price,

she will continue searching and visit another store if the expected gain from doing so

is higher than the search cost. The consumers’ search behaviour disciplines the sellers

when setting prices and leads to lower equilibrium prices.

The risk of collusion may partly corrupt this mechanism. Suppose first that the

consumers know that there is a probability that the sellers collude and set higher

prices. A buyer who visits a store that charges a high price will not know if this high

price reflects a high-price strategy of the seller, i.e., a seller-specific high price, or if

it is due to collusion. If it is a seller-specific high-price strategy, the consumer may

want to search again. However, if it reflects collusion, the gain from search is lower

or non-existence, as the other sellers will charge a high price as well. Therefore, an a

priori positive probability of collusion will reduce the incentives of buyers to continue

searching after observing a high price.

This induced change in consumer search will in turn influence seller behaviour.

If the sellers know that buyers search less due to the fear of collusion, they may be

tempted to set a high price even in the absence of collusion, as the probability of

being rejected by the consumers is lower. They may use the possibility of collusion

as a ”disguise” for a seller-specific high price. Hence, the possibility of collusion will

induce some sellers to set a high price without collusion.

A common feature of price models with search frictions is that they generate price

dispersion, and this gives rise to a source of amplification. As some sellers set a
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higher price to mimic price collusion, the competition among sellers setting lower

prices soften. Hence, the entire price distribution shifts up, leading to even higher

average prices.

In the rest of this section, we will explore these mechanisms in the so-called Stahl

model, a work-horse model within consumer search.

Model set-up

We consider the Stahl model, with consumers’ willingness to pay equal to 1, and with

parameters such that the supremum of the price support in the Stahl equilibrium,

denoted ps, is strictly below 1. With exogenous probability x firms collude on a price

pM > ps. Let ρ denote the probability that firms set pM when there is no exogenous

collusion. Let q denote the probability that a consumer searches if observing pM . We

focus on symmetric equilibria. Let [p0, p1] denote the support of the continuous part

of the distribution. Let c denote search costs of consumers if searching to obtain a

second price quote. Let u denote the number (measure) of uninformed customers per

seller and I the number (measure) of informed customers. The number of sellers is

2. The costs to the sellers are normalized to zero. We will derive the equilibrium of

the model when collusion does not occur (when collusion occurs, sellers trivially set

p = pM).

We will distinguish between two equilibrium candidates. In the equilibrium candi-

date without consumer search, uninformed consumers never search after observing the

monopoly price pM . In the equilibrium candidate with consumer search, uninformed

consumers search after observing pM with an endogenous probability q ∈ (0, 1]. As

will be clear below, which of the equilibrium candidates that constitute an equilib-

rium (ie, whether or not uninformed consumers will search or not after observing pM),

depends on the prior probability x of collusion.
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Equilibrium candidate without consumer search

Suppose first that x is high so that consumers never search if they observe p = pM

(below we show formally that consumers do not search for high values of x) . Let

F (p) be the probability distribution of p on [p0, p1] contingent on p ≤ p1. Then the

profit of a firm that sets a price at or below p1 is

π(ρ) = p [u+ ρI + (1− ρ)I(1− F (p))] = p
[
ũ+ Ĩ(1− F (p))

]
(1)

where ũ = u+ ρI and Ĩ = (1− ρ)I. Hence F (p) is identical to the distribution with

u = ũ and I = Ĩ.

Equilibrium candidate without consumer search is a value ρ ∈ [0, 1] and a distri-

bution F (p) with support [p0, p1] satisfying the following conditions:

1. Equal profit when setting pM and p1:

pM(u+ ρ
I

2
) = p1(u+ ρI) (2)

2. Equal profits for all p ∈ [p0, p1] implying that F (p) given by

1− F (p) =
ũ(p1 − p)

pĨ
(3)

where p0 is defined by F (p0) = 0.

3. Consumers are indifferent between searching or not searching at p1:

(1− ρ)

∫ p1

p0

F (p)dp = c (4)

If a consumer observes p1, she knows with certainty that collusion does not take place.

Still, there is a probability ρ that the other firm sets pM . Hence, for the buyer to be

indifferent between searching and not searching, (13) must be satisfied.
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Let us first make some observations. First, the lower part of the equilibrium is

identical to the equilibrium of the Stahl model with ū uninformed consumers per

seller, Ī informed consumers, and search costs c̃/(1− ρ). In particular, it follows that

if ρ > 0, then p1 > ps.

Second, if (in contrast to our assumption) ps > pM , there cannot be a mass point

at pM . In this case, the standard argument against mass points applies; a firm setting

pM will be strictly better off by undercutting pM slightly and attract all the informed

customers if the opponent sets pM (which happens with strictly positive probability).

Second, if pM > ps, then pM > p1 in equilibrium. To see this, note that if ρ > 0

and pM ≤ p1, i.e., in an interval in which workers do not search, the undercutting

argument from Varian (1980) again applies, and we cannot be in equilibrium. If ρ = 0,

consumers will always know whether collusion takes place or not, and we must have

p1 = ps.

Finally, we want to know how p1 depends on ρ. For a given p1, an increase in ρ

decreases
∫ p1
p0

F (p)dp, so p1 defined by (13) increases in ρ. Hence, there is a unique ρ̄

such that (13) has a solution p1 ≤ pM if and only if ρ ≤ ρ̄.

Result 1. Suppose ps < pM . Then the equilibrium candidate without consumer search

exists and is unique.

For any given ρ̄, equation (12) and (13) uniquely define F (p) and its support

[p0, p1] with p1 < pM . Define π1(ρ) as the profit at p1(ρ) and πM the profit at the

collusion price. The latter is independent of ρ. It is enough to show that π1(ρ)

is strictly increasing in ρ, that π1(0) < πM , and that π1(ρ̄) > πM . If ρ = 0, the

distribution defined by (12) and (13) is as in the Stahl model, with a lower profit

than at pM . If ρ goes to ρ̄, π1 goes to pM(u + I) > pM(u + I/2) = πM . That π1

increases in ρ follows easily.

It should be noted that the equilibrium price distribution is independent of x,

the probability that collusion takes place. When firms set prices, they know that

collusion does not take place. When consumers observe a price different from pM ,
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they also know that collusion does not occur. Only if consumers observe pM , they are

uncertain whether collusion has taken place or not. In this section x is assumed to

be so high that consumers do not search when observing pM , and hence their beliefs

do not influence equilibrium. In the next subsection, we relax this assumption.

Consumer search

A consumer observing p1 is indifferent between searching and not. A consumer who

observes pM does not know if there is collusion or not, and this reduces the incentives

to search. Given that a consumer observes a price pM , the conditional probability that

collusion takes place is given by xM = x
x+(1−x)ρ

(by Bayes law), and the complementary

probability (that collusion does not take place) is 1 − xM = (1−x)ρ
x+(1−x)ρ

. If there is no

collusion, the gain from search is pM − p1 plus the gain from search at p1, which is c.

Hence we must have that

(1− xM)
(
c+ pM − p1

)
≤ c (5)

or that

(1− x)ρ

x+ (1− x)ρ
≤ c

c+ pM − p1
(6)

The left-hand side is strictly decreasing in x for a given ρ, and is 1 for x = 0 and 0

for x = 1. It is also strictly increasing in ρ, going from 0 to 1− x as ρ goes from 0 to

1. Recall that the equilibrium values of ρ and p1 are independent of x when there is

no consumer search. Hence, for any equilibrium values (ρ∗, p∗1) there exists a value x̄

such that (6) is satisfied whenever x ≥ x̄

Result 2. Consider an equilibrium candidate without consumer search, and let ρ∗ and

p∗1 denote the corresponding values of ρ and p1. Then there exists a value x̄ ∈ (0, 1)

such that consumers will not search at pM whenever x ≥ x̄, where x̄ is given by (6)

with ρ = ρ∗ and p1 = p∗1.
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Equilibrium candidate with consumer search

Suppose then that (6) is not satisfied and that consumers observing pM choose to

search with probability q. We then have one new equation that must be satisfied,

(6), and one more variable to be determined, q. Furthermore, q will influence the

profitability of setting a low price, and hence the other equilibrium equations. Specif-

ically, there will be more uniformed consumers searching. However, the structure of

the equilibrium is the same as before. The price distribution has a mass point at

pM . Conditional on not setting pM , the sellers set prices according to a continuous

distribution function F (p) with support [p0, p1].

Consider a seller who sets a price p ∈ [p0, p1]. She will get u uninformed buyers

directly. In addition, there is a probability ρ that the other seller sets pM , attracting

u uninformed buyers, and q of these (ρuq in expectation) will search again and end

up with our seller. Finally, she will get all informed customers if and only if the other

seller sets a price above p. Hence, the profit of this seller is

π(p) = p [(1 + qρ)u+ ρI + (1− ρ)I(1− F (p))] = p(ũ+ Ĩ) (7)

with ũ = (1 + qρ)u+ ρI and Ĩ = (1− ρ)I (as before), analogous with (1).

The equilibrium candidate with consumer search is defined as two values ρ ∈ [0, 1]

and q ∈ (0, 1], and a continuous distribution function F (p) on [p0, p1], satisfying

1. Equal profit when setting pM and p1:

pM(u(1− q) + Iρ/2) = p1(u(1 + qρ) + ρI) (8)

2. Equal profits for all p ∈ [p0, p1] implying that F (p) given by

1− F (p) =
ũ(p1 − p)

pĨ
(9)

with ũ = (1 + qρ)u + ρI and Ĩ = (1− ρ)I. p0 is defined by F (p0) = 0. This is

12



the same equations as (12) above, but note that the definition of ũ is different.

3. Consumers are indifferent between searching at not searching at p1:

(1− ρ)

∫ p1

p0

F (p)dp = c (10)

Again the equation is the same as the equilibrium equation (13), but the dis-

tribution function F is different.

4. Consumers at pM are indifferent between searching and not searching: (6) is

satisfied with equality.

A remark on the nature of the equilibrium is here in place. The equilibrium is

sequential, in that sellers first set prices and then buyers respond, and both buyers

and sellers play with mixed strategies at pM . When visiting a seller that sets pM ,

the strategy of the other seller makes the buyer indifferent between searching or not.

The mixing of the competitor and the buyers makes a seller indifferent between the

different prices. One may wonder why a seller does not slightly undercut pM to ensure

that buyers buy with certainty. The problem is that this strategy does not work, since

the consumer then learns that there is no collusion and will continue to search with

probability 1.

Result 3. Suppose x ≤ x̄. Then the candidate equilibrium with consumer search

exists and is unique and constitutes an equilibrium of the game.

Sketch of proof: For a given ρ and q, it follows easily that F (p) exists and is

unique. Therefore, we can construct a mapping Γ : [0, 1] × [0, 1] 7→ [0, 1] × [0, 1] as

follows: For a given pair (ρ, q) in the domain, calculate p1(ρ, q), which is continuous in

both arguments. Given p1, set ρ
′ by (6), if it exceeds 1−x set ρ′ = 1−x. Then use (8)

to calculate q′, with 0 and 1 as bounds. This defines (ρ′, q′) = Γ(ρ, q). The mapping is

defined on the closed and compact set and is continuous; hence Brower’s fixed-point
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theorem ensures that it has a fixed point. This fixed point, and the corresponding

distribution F (p) on [p0, p1] is an equilibrium by construction.

Extensions

In the appendix we skectch an extension of the model, in which sellers, if collusion,

set a common price according to a continuous price distribution G on an interval IM

above the maximum Stahl price. We show that without collusion, the sellers will

randomise and set prices in IM . The equilibrium price distribution contains no mass

points. Furthermore, if consumers draw a price on the lower part of I , they randomise

between searching and not searching. The equilibrium analysis is not yet complete.

3 Experimental design and procedures

The objective of our design is to empirically examine the core mechanism of our model.

To achieve this goal, we compare pricing and searching decisions in two environments:

one where consumers anticipate that the price may be set exogenously at the collusive

level, and another where pricing is always endogenous.

We have four main treatments. In our baseline treatment, T0, the price is never

set exogenously. In treatments T10, T20 and T30 the probability that the price is

set exogenously is 0.10, 020 and 0.30, respectively. We implement parameterized

versions of the model presented in section 2 in which there is no search in equilibrium

to accentuate the difference in price setting between when x = 0 and x > 0. The

random variable is independently and identically distributed across games.

3.1 Implementation

Subjects play 40 identical and independent games within a treatment. In each game,

four subjects are matched into a market. Two of the subjects play the role as sellers,

and two play the roles as the uninformed buyer. Sellers have zero marginal cost, while
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buyers have unit demand with a valuation of 100 experimental currency units (ECU).

Roles remain fixed throughout the experiment.

The only treatment variation is the probability the price is set exogenously. At the

beginning of each game, a probability draw determines whether sellers simultaneously

and independently choose a price in the interval [0,100] ECU or the price is set

exogenously at 70 ECU for all sellers.6 Both sellers know the realization of the draw

while buyers do not know this.

A buyer observes the price of one of the sellers in his/her market, while the other

buyer observes the price of the other seller. Buyers can choose to purchase at the

observed price or to pay a cost of 20 ECU to also observe the price of the other

seller in the market.7 This search decision is the only decision of buyers, purchasing

is automated.8 If a buyer pays to observe the price of the other seller, the buyer

purchases from the other seller if and only if that seller has a lower price.

The concept of informed buyers is operationalized by automated additional sales.

The seller with the lowest price in a market will make two such additional sales at

her/his posted price. In case of price-ties, the sellers make one additional sale each.

The additional sales do not depend on the decisions of buyers nor do they affect

buyers’ payoffs.

After each game, sellers and buyers receive feedback on prices set in their market

and ECUs earned. Buyers are not informed about whether the price is set exogenously

or by the sellers. After a game is completed, subjects are randomly re-matched into

a new market. Matching is done within matching blocks of 8. Subjects are never

exposed to more than one treatment (between-subject design). In our analysis we

6We picked 70 as the collusive price to both create sufficient distance from the upper bound p1
and to be as far away from 1 to minimize impact from any fairness preferences on decisions.

7The search cost is set to give flexibility for the other parameters, in particular the probability
of exogenous pricing. Note that the valuation (and price range) of 100 is not binding for our
chosen parameters, and we could increase this number arbitrarily without changing any equilibrium
predictions. See e.g. Hong and Shum (2006) for estimation of search cost using field data.

8We automate purchases to zoom in on the key decision of buyers and to avoid ordering effects
in the sampling of prices.
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regard average behavior within blocks as independent observations.

3.2 Hypotheses

Our main treatment measures are sellers’ posted prices and buyers’ purchase prices

in games where the price is not set exogenously. We also measure buyers’ search

decisions. We use the model of section 3 to derive predictions for our four treatments.

Given our chosen parameters, the no-search condition in equation 6 holds in all our

treatments. Consequently, the model predicts no search in all treatments. As a

result, theoretical price distributions, and therefore expected prices, are the same

across treatments T10, T20 and T30, see figure 1 and table 1.

Figure 1: Theoretical price distributions by treatment
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Table 1: Theoretical predictions

T0
T10, T20
and T30

E(p) 24.4 42.6
p0 14.8 26.5
p1 44.4 62.6
ρ 0 0.13

Based on theoretical predictions, our primary hypothesis is that endogenous prices

will be higher in treatments where prices may happen to be exogenous than in the

baseline treatment, where this possibility is excluded. Our secondary hypothesis is

that buyers will not search (or search little) across all treatments.

As the theoretical predictions are the same for treatments T10, T20 and T30,

one may wonder why introducing different positive probabilities for the exogenous

collusive price? There is a large literature showing that subjects in probabilistic envi-

ronments often make different choices than predicted by standard Bayesian updating

and expected utility maximization. In particular, updating is found to depend on pri-

ors in ways not consistent with by Baye’s law.9 Thus, there are reasons to believe that

search decisions–and consequently rational price posting–may depend on the exoge-

nous probability differently than what follows from bayesian updating in equilibrium

of the model. After presenting the main results, we will explore deviations from the

theoretical predictions in section ??.

A pre-study plan, including a pilot study, for the experiment was posted at the

AEA RCT registry on May 17th 2023.10 The pre-study plan specifies treatments T0,

T10 and T20, and we follow the plan in the set up of hypotheses and significance

testing. T30 was added on to the study at a later stage.

The pilot study was carried out with two matching blocks for T0 and three match-

ing blocks for T20. The average posted price of sellers was 25 ECU in T0 and 45

9See for instance Tversky and Kahneman (1971), Kahneman and Tversky (1972), Ouwersloot
et al. (1998), Charness and Levin (2005), and Alós-Ferrer and Garagnani (2023)

10See https://www.socialscienceregistry. org/trials/11401.
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ECU in T20 whereas the variances (between blocks) was 80 and 50, respectively. Only

observations from the last 20 games was used.

Based on the average posted prices and the variance, we calculate the sample

size needed to reach a power of 95 percent or better, given a 5 percent significance

level and a Wilcoxon rank sum test. This estimate was obtained using the method

described in Bellemare et al. (2016). The power-threshold required is reached with 6

independent matching blocks per treatment. Data from the pilot is included in the

analysis of this paper.

3.3 Data collection

Data were collected in the Research Lab at BI Norwegian Business School in Oslo

in the period April 2023 to June 2023. Subjects were recruited from the general

student population of the BI Norwegian Business School.11 Recruitment and subject

management were administered through ORSEE (Greiner, 2015). On arrival, subjects

were randomly allocated to cubicles (to break up social ties). Written instructions

were handed out and read aloud by the administrator (to achieve public knowledge of

the rules). A full set of instructions is provided in the supplementary online materials.

All decisions were taken anonymously in a network of computers.

At the conclusion of a session, subjects were privately payed based on total ECU

earned in two randomly drawn games. The exchange rate was 1 ECU = 2 NOK in

all treatments. The protocol was implemented in zTree (Fischbacher, 2007). In total

192 participants participated in experiment sessions lasting on average one hour and

earning on average 347 NOK.

11We argue that behavior in our sample is representative for decision makers in market contexts.
Mounting evidence shows that behaviors in convenience samples (CSs) are generally representative
of the general population; of students who do not self-select into lab experiments; and of workers
in online labor markets, such as, Mechanical Turk (see Snowberg and Yariv (2021)). Moreover,
behaviors in CSs often compare well to that of professionals, such as traders and managers (see
Fréchette (2016) and Ball and Cech (1996)). Taking this research into account, we believe our
results are informative of a mechanism that may also be important in real posted price markets.
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4 Results

All results that are presented here exclude data from the 20 first games of the exper-

iment. Also, we exclude prices from games in which the price was set exogenously.12

Table 2 provides a preview of our main result. In the treatments where the price is

set exogenously with a strictly positive probability (x > 0), prices posted by subjects

are significantly higher. In particular, posted prices in treatments T10, T20 and T30

are on average more than 50 percent higher than posted prices in treatment T0.

Table 2: Regression

Posted Price
constant 27.62∗∗∗ (2.85)
I{x > 0} 14.85∗∗∗ (4.19)

N 1960
Note: First 20 games and games were the price was set exogenously are excluded. Standard errors

(in parentheses) are clustered at the matching group level.

We divide the rest of our results in to four subsections: Section 4.1 presents the

empirical price distributions, average prices and a comparison with equilibrium prices.

Section 4.2 present results on search behavior and a comparison with equilibrium

search behavior. In section 4.3 we determine the optimal search behavior given the

empirical price distribution. In section D we calculate the optimal pricing strategy.

4.1 Prices

Figure 2 presents the empirical distribution of posted prices.13 Consistent with equi-

librium predictions, the price distributions in treatments where there is a positive

probability of an exogenously determined collusive price at 70 ECU first-order domi-

nate the distribution observed in the baseline treatment, where such occurrences are

precluded.14 Note that the shift in distribution in not only driven by posted prices

12This data selection procedure is in accordance with our pre-study plan
13The distribution of purchase prices is almost identical, see appendix B.
14Kolmogorov-Smirnov tests for differences in distribution between T0 and the other treatments

confirms that the price distributions in treatments T10, T20 and T30 are statistically different from
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at 70 ECU. That is, if we condition the empirical price distributions on posted prices

being less than 70 ECU, we still find that the price distributions from treatments

T10, T20 and T30 first order dominates the price distribution from the treatment

T0.15

We also find that, consistent with the theoretical predictions, the price distri-

butions in treatments T10, T20 and T30 all have mass point at 70. The shares of

posted price exactly at 70 ECU in T10, T20 and T30 respectively are 0.06, 0.1 and

0.39. The shares of posted price exactly at 70 ECU in T0, by comparison, is only

0.002. The differences in shares of posted prices at 70 ECU between T0 and the

remaining treatments are all statistically significant.16

Figure 2: Price distribution by treatment
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Note: First 20 games and games were the price was set exogenously are excluded.

Figure 3 shows the average posted prices by treatment. The average posted price

the price distribution in T0. All tests produce p-values below 0.001.
15Kolmogorov-Smirnov tests for differences in distribution between T0 and the other treatments,

when these distribution condition on posted prices being less than 70 ECU, confirms that the price
distributions in treatments T10, T20 and T30 are statistically different from the price distribution
in T0. All tests produce p-values below 0.001.

16Wilcoxon rank-sum tests result in the following p-values: T0 vs. T10: p = 0.003; T0 vs. T20:
p = 0.004; T0 vs. T30: p = 0.004
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in treatment T0 is 27.6 ECU, which is close to the theoretical prediction of 24.4

ECU. The average prices in treatments T10, T20 and T30 are 32.3, 41.8 and 55.5

ECU respectively. The average prices in treatment T20 is close to the theoretical

prediction of 42.6 ECU. Comparing posted prices across treatment we note that the

differences between T0 and T20 and between T0 and T30 are statistically significant,

while the difference between T0 and T10 is not.17 We also note that average prices

are significantly different across treatments T10, T20 and T30, with exeption of T20

vs. T30.18

We interpret these results as broadly supportive of our main theoretical prediction:

sellers set higher prices when sellers are uncertain about whether collusion is going

on compared to when collusion cannot happen. However, the extent of these higher

prices seems to depend on the size of the probability of collusion. In particular, while

prices in treatments T0 and T20 seem remarkably close to equilibrium, prices in T10

are lower than predicted and prices in T30 are higher than predicted.

17Wilcoxon rank-sum tests result in the following p-values: T0 vs. T10: p = 0.394; T0 vs. T20:
p = 0.009; T0 vs. T30: p = 0.004

18See table 15 in appendix B for a table over all treatment by treatment comparisons tests
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Figure 3: Average price by treatment
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Note: First 20 games and games were the price was set exogenously are excluded. We exclude
purchase price for informed buyers.

Focusing on equilibrium play, tables 3 and 4 present the share of price proposals

within different ranges. Considering first treatment T0, we note that 86% of price

proposals fall within the support of the equilibrium price distribution ([14.8, 44.4]).

For the remaining treatments, the majority of price proposals also fall within the

equilibrium range ([26.5, 62.6] ∪ 70). The respective shares of price proposals within

the equilibrium range in treatments T10, T20 and T30 are 55%, 85% and 70%.

That prices are set outside the equilibrium range, in particular in treatments T10

and T30, may of course be connected to out of equilibrium search. We will come back

to this in section D, after we have analysed search behavior.

Table 3: Share of price proposals in different ranges in treatment T0

Treatment p ∈ [0, 14.8) p ∈ [14.8, 44.4] p ∈ (44.4, 100]
T0 0.07 0.86 0.07

Note: First 20 games and games were the price was set exogenously are excluded.
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Table 4: Share of price proposals in different ranges in treatments T10, T20 and T30

Treatment p ∈ [0, 26.5) p ∈ [26.5, 62.6] p ∈ (62.6, 70) p = 70 p ∈ (70, 100]
T10 0.43 0.49 0.00 0.06 0.01
T20 0.11 0.75 0.02 0.10 0.03
T30 0.14 0.31 0.12 0.39 0.04
Note: First 20 games and games were the price was set exogenously are excluded.

4.2 Search

Figure 4 presents average search rates by treatment. Search rates are low in all

treatments, with rates of 0.06, 0.1, 0.05 and 0.12 in treatments T0, T10, T20 and

T30, respectively. Although buyers search little on average, this represents a deviation

from the theoretical no-search prediction. The differences in search behavior across

treatments are not statistically significant.19.

Figure 4: Share of buyers who search across treatments
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Note: First 20 games are excluded.

Tables 5 and 6 present the empirical search frequencies for different price ranges.

We first note that search never takes place for price proposals below the support

19See table 17 in appendix B.
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of the equilibrium price proposals. For the reaming price ranges, search decisions

deviate from equilibrium predictions in some cases. Considering treatment T0, we

note that buyers search to little for off path price proposals: Only a share of 0.65 decide

to search when observing a price in excess of the upper bound of the equilibrium

price distribution. In treatment T10 we may note that that a high share (0.28)

decide to search following a price proposal of 70 ECU. Moreover, a higher share

than in the other treatments search when observing a price in the equilibrium range

p ∈ [26.5, 62.6]. This behavior is complemented by a large number of price proposals

below the equilibrium range.

In treatment T20, search mainly takes place after having observed a price proposal

of 70 ECU, though arguably with a low share. In treatment T30, however, this share is

larger, and is, in combination with the large number of price proposals at 70 ECU, the

main driver for the relatively large search rate observed in figure 4 for this treatment.

Table 5: Search by price range in treatment T0

Treatment p ∈ [0, 14.8) p ∈ [14.8, 44.4] p ∈ (44.4, 100]
T0 0.0 (33) 0.02 (413) 0.65 (34)

Note: First 20 games are excluded. Number of price proposals in price range in parentheses.

Table 6: Search by price range in treatments T10, T20 and T30

Treatment p ∈ [0, 26.5) p ∈ [26.5, 62.6] p ∈ (62.6, 70) p = 70 p ∈ (70, 100]
T10 0 (185) 0.1 (214) 1 (1) 0.28 (27) 1 (5)
T20 0 (44) 0.01 (308) 0.33 (6) 0.08 (39) 1 (11)
T30 0 (49) 0.03 (112) 0.12 (43) 0.14 (140) 0.94 (16)

Note: First 20 games are excluded. Number of price proposals in price range in parentheses.

4.3 Implied reservation prices and optimal search behavior

Given the empirical price distribution we calculate the implied reservation price which

we then use to determine the optimal search behavior in each treatment. We then

compare the optimal search behavior to the actual search behavior to determine the

degree to which buyers in our experiment best respond.
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For treatment T0 the implied reservation price is simply the average posted price

plus the search cost. For treatments T10, T20 and T30 we need to take into account

that the observed price affects posterior beliefs about the price distribution. We do so

by computing posterior beliefs that price has been set exogenously using the observed

frequencies of price proposals at 70 ECU. The implied reservation prices are presented

in table 7.

Table 7: Reservation prices implied by the empirical price distributions

Treatment Implied reservation price
T0 47.6
T10 52.3/76.4
T20 61.8/79.8
T30 75.4/84.7

Note: First 20 games are excluded. For treatments T10, T20 and T30 the first number is the
implied reservation price after observing a price different from 70 ECU and the second number is

the implied reservation price when observing a price of 70 ECU.

If buyers in our experiment are best responding, given the empirical distribution

of prices, they would always search whenever the price was in excess of the implied

reservation prices in table 7, and never search when the price was below implied

reservation prices in table 7. Comparing this optimal search behavior to the actual

search behavior in table 8 we note that the overall pattern is remarkably consistent

with buyers best responding. In particular, across all treatments more 90 percent of

the decisions made by buyers are consistent with a best response. However, subjects

search too much when observing prices below the implied reservation price and too

little when the price is above the implied reservation price.

Table 8: Shares who search for prices at or below and above reservation price

Treatment
Observed price at or below
implied reservation price

Observed price above
implied reservation price

Overall share who
best respond

T0 0.02 0.9 0.97
T10 0.08 1 0.92
T20 0.02 0.76 0.97
T30 0.09 0.94 0.91

Note: First 20 games are excluded.
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4.4 Profits and optimal pricing strategy

The analysis in the previous section reveals that buyers to large degree best-respond

given the empirical distribution of prices. In this section we consider whether sellers

best respond given the search behavior of buyers, as well as the behavior of other

sellers. To do so we estimate expected profits as function of posted price using the

empirical price distribution and estimates of search propensities.20 Estimated profits

for all four treatments are presented in figure 5.

Consider first treatment T0. Note that profits are generally highest in equilibrium

price range, [14.8, 44.4]. Comparing the profits for this price range with the frequency

of posted prices within said ranges in table 3, we note that the large majority of posted

prices (86 percent) are within the range that offers the highest profit. Thus, it appears

that sellers in treatment T0 to large degree best respond in their pricing.

Consider next treatments T10, T20 and T30. First, note that profits for prices

between 20 and 50 ECU and a price of 70 ECU in T10 are relatively high and almost

identical. This price range accounts for 84 percent of posted prices in T10. In treat-

ment T20, the price range between 25 and 70 ECU offers relatively high profits, and

this range accounts for 89 percent of posted price. Finally, in treatment T30, the price

range between 50 and 70 ECU offers relatively high profits. This range account for

58 percent of posted prices. Thus, in treatments T10, T20 and T30, seller behavior

is also to a large degree consistent with with playing a best response.

20For treatment T0 search propensities for the entire range are estimated using a Gaussian kernel
smoother with a bin with of 5. For treatments T10, T20 and T30, search propensities for prices
in the range [0, 70) are estimated using a Gaussian kernel smoother with a bin with of 5; for price
proposals at 70 ECU, the search propensity is set to equal to the rates in table 6; for price proposals
above 70 ECU, the search propensity is set to 1.
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Figure 5: Price distribution by treatment
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Note: Profit is calculated using the empirical price distribution from the last 20 rounds, excluding
rounds were price is set exogenously, along with estimated search propensities.

5 A model of payoff-based learning

In payoff based learning models subjects are more prone to make choices associated

with successful past outcomes than choices associated with less successful outcomes.

We employ the much used reinforcement learning model developed by Roth and Erev

(1995) and Erev and Roth (1998), which is much used to explain learning dynamics

in experiments.21 The model of reinforcement learning assumes that each action in

a round of the game is associated with an attraction. The attraction of an action

then determines the probability at which the action is played. The attraction of a

given action depends on historical payoffs associated with that action along with an

initial attraction. The initial attraction is estimated along with subjects sensitivity to

21See Masiliūnas (2023) for an recent overview of payoff learning models. Feltovich (2000) and
Charness and Levin (2005) contrast bayesian updating with (reinforcement) learning. See also and
Alós-Ferrer and Garagnani (2023) for an overview of this literature on Bayes vs learning.
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attraction with respects to actions and tendency to forget. Estimates together with

actual play can then be used to predict choices.22

The predicted shares of price proposals for the different ranges are presented in

table 9. The predicted shares match some important features of the data, which

are also consistent with the equilibrium predictions, specifically that a low shares

of price proposals fall within the ranges (62.6, 70) and (70, 100]. More important,

the predicted shares match some important features of the data which the theory

fails to explain. In particular, in our experiment a substantially higher share of

price proposals fall within the range [0, 26.5) in T10 than in T20 and T30. The

predicted shares from our estimated learning model are quantitatively consistent with

this pattern. Furthermore, in our experiment there seems to be a relationship between

the probability at which the price is set exogenously and share of price proposals at

70 ECU. The learning model is also able to capture this feature of the data.

Table 9: Predicted share of price proposals in different ranges in treatments T10, T20
and T30

Treatment p ∈ [0, 26.5) p ∈ [26.5, 62.6] p ∈ (62.6, 70) p = 70 p ∈ (70, 100]
T10 0.17 0.54 0.05 0.19 0.05
T20 0.04 0.70 0.03 0.20 0.03
T30 0.04 0.28 0.07 0.58 0.03

Note: First 20 games are excluded. Estimated on pooled data.

The predicted search propensities for price proposals within the different ranges

are presented in table 10. The predicted search behaviour matches some important

features of the data, which are also qualitatively consistent with the equilibrium

predictions. In particular, the learning model predicts no search for prices in the

lowest range and a high search propensity for prices in the highest range. Furthermore,

the learning model predicts low search propensities for price proposals in the range

[26.5, 62.6) and higher search propensities for prices in the rage (62.6, 70) than for

prices at 70 ECU. Note finally that the search behaviour matches some important

22In appendix C we describe the details of the the model of reinforcement learning as well as the
estimation procedure.
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features of the data which the theory fails to explain. Specifically, the learning model

predicts a higher search propensity for price proposals at 70 ECU in treatment T10

than in T20 and T30.

Table 10: Predicted search propensity for price proposals in different ranges in treat-
ments T10, T20 and T30

Treatment p ∈ [0, 26.5) p ∈ [26.5, 62.6] p ∈ (62.6, 70) p = 70 p ∈ (70, 100]
T10 0.00 0.02 0.34 0.27 0.82
T20 0.00 0.01 0.33 0.19 0.82
T30 0.00 0.06 0.30 0.13 0.82

Note: First 20 games are excluded. Estimated on pooled data.

6 Conclusion

In this paper, we explore the impact of potential collusion on equilibrium prices, both

theoretically and experimentally. The theoretical model suggests that fear of collu-

sion affects consumer search behavior, reducing the incentive to search further after

encountering a high price. This behavior allows non-colluding sellers to set higher

prices. In the laboratory experiment, we vary the probability of collusion within

treatments. Qualitatively, our results align reasonably well with the theoretical pre-

dictions, showing an increase in average prices with potential collusion. Despite some

deviations from theoretical expectations, both buyers and sellers demonstrate strong

best-response behavior. The discrepancies are to some extent attributed to subjects’

sensitivity to experience, as explored through a reinforcement learning model.
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Masiliūnas, A. (2023): “Learning in rent-seeking contests with payoff risk and

foregone payoff information,” Games and Economic Behavior, 140, 50–72.

Mauring, E. (2017): “Learning from trades,” The Economic Journal, 127, 827–872.

——— (2020): “Informational cycles in search markets,” American Economic Jour-

nal: Microeconomics, 12, 170–192.

Moellers, C., T. Stühmeier, and T. Wenzel (2016): “Search costs in concen-

trated markets: An experimental analysis,” Tech. rep., DICE Discussion Paper.

Montag, F. and C. Winter (2020): “Price transparency against market power,”

Available at SSRN 3256476.
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A Model extension

A.1 Collusion price less than the Stahl price

Suppose first that the collusion price is less than the Stahl price ps.Then the following

holds

Result 4. Suppose pM ≤ ps. Then the Stahl equilibrium, with no mass point at pM ,

and no consumer search at the support [p0, p1], p1 = ps is an equilibrium.

Suppose the other seller (and the buyers) play according to Stahl. Then the seller

in question is indifferent between setting any price in [p0, p1], including setting pM .

Hence playing Stahl is a best response. Consider then the consumer. Since all prices

are at or below ps, the consumer has no incentives to search if when observing a price

at or below p1. In particular, the consumer has no incentives to search when p = pm.

Note also that (in the absence of collusion) there cannot be an equilibrium in

which there is a mass point at pM , as the usual undercutting argument applies: If

there is a mass point at pM , the best response of a seller is to undercut and set the

price just below pM . Hence the strategy is not a best response and we cannot be in

equilibrium.

A.2 Support of pM above ps

We retain the assumption that firms collude with probability x. However, we assume

that the colluding price is stochastic with distribution G(p). For the moment, we

assume that the distribution is continuous with support (pmin, pmax), pmin ≥ 0, pmax ≤

1.

We first consider an equilibrium candidate in which 1) sellers randomise on two

intervals IN = [p0, p1] and IM = [pmin, pmax]. We first assume that pmin is sufficiently

high so that the two distributions do not overlap (we will come back to this later).

We denote the distribution given that the seller is setting a price in IN by FN , and

36



the distribution given that it sets a price in IM by FM . Let ρ denote the probability

that a seller sets a price in IM . For all p ∈ IM , let q(p) ∈ [0, 1] denote the probability

that the buyer searches, and let Q(p) =
∫ pmax

p
q(τ)dFM(τ). Let Q̄ = Q(pmin). The

profit of a firm setting p ∈ FN is given by

π(p) = p
(
u+ ρQ̄+ ρI + (1− ρ)(1− FN(p))

)
= p(ũ+ Ĩ) (11)

where ũ = (1 + ρQ)u+ ρI and Ĩ = (1− ρ)I

Equilibrium is a value ρ ∈ [0, 1], two distribution functions FN(p) and FM(p) with

support IN and IM , respectively, and a function q(p) on IM satisfying the following

conditions:

1. Equal profit when setting pM and p1:

2. Equal profits for all p ∈ [p0, p1] implying that F (p) given by

1− F (p) =
ũ(p1 − p)

pĨ
(12)

where p0 is defined by F (p0) = 0.

3. All prices in the support of FM give the same profits to seller, and this profit

is equal to the profit if setting a price in IN .

4. Uninformed consumers are indifferent between searching or not searching at p1:

(1− ρ)

∫ p1

p0

F (p)dp = c (13)

5. When observing a price p ∈ IM , uninformed consumers are 1) either indifferent

between searching and not searching (if q(p) < 1) or prefer not to search (if

q = 1).
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Let us first make some observation. The first thing to note is that FM has no mass

points. Suppose it had a mass point at p′. Then since G is without mass points, the

posterior probability that there is collusion is 0, and the consumers will search with

probability 1. But this implies that the profit if setting p′ is very low, a contradiction

(to be sharpen).

the consumers know with probathere exists no equilibrium in which the consumers

do not randomise for any price in IM . Suppose it did, i.e., suppose that the consumers

randomise for all prices in IM , and particularly for pmin. But then sellers would be

strictly better off setting pmin than setting p1, a contradiction.
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B Results

B.1 Inference: Last 20 games

Table 11: Wilcoxon rank-sum test (p-values): Posted price

T0 T10 T20 T30
T0
T10 0.394
T20 0.009 0.026
T30 0.004 0.009 0.132

Note: First 20 games and games were the price was set exogenously are excluded.

Table 12: Wilcoxon rank-sum test (p-values): Share of posted prices at 70 ECU

T0 T10 T20 T30
T0
T10 0.003
T20 0.004 0.090
T30 0.004 0.012 0.009

Note: First 20 games and games were the price was set exogenously are excluded.

Table 13: Wilcoxon rank-sum test (p-values): Share who search.

T0 T10 T20 T30
T0
T10 0.406
T20 0.256 0.091
T30 0.101 0.809 0.075
Note: First 20 games are excluded.
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B.2 Results and inference: All games

Table 14: Treatment measures by treatment

Average price
Share of posted
prices at 70 ECU

Share who search

T0 32.6 0.01 0.091
T10 37.3 0.8 0.135
T20 45.7 0.10 0.097
T30 53.7 0.31 0.135

Note: Games were the price was set exogenously are excluded from average price and share of
posted prices at 70 ECU.

Table 15: Wilcoxon rank-sum test (p-values): Posted price

T0 T10 T20 T30
T0
T10 0.310
T20 0.004 0.064
T30 0.002 0.041 0.485

Note: Games were the price was set exogenously are excluded.

Table 16: Wilcoxon rank-sum test (p-values): Share of posted prices at 70 ECU

T0 T10 T20 T30
T0
T10 0.012
T20 0.005 0.172
T30 0.005 0.013 0.012

Note: First 20 games and games were the price was set exogenously are excluded.

Table 17: Wilcoxon rank-sum test (p-values): Share who search.

T0 T10 T20 T30
T0
T10 0.065
T20 0.520 0.228
T30 0.077 0.699 0.149
Note: First 20 games are excluded.
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B.3 Results by round

Figure 6: Average price by game and treatment
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Note: Games were the price was set exogenously are excluded.
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Figure 7: Search behavior by game and treatment
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B.4 Other results

C Learning model

The model of reinforcement learning assumes that each action in a round of the game

is associated with an attraction. The attraction of an action then determines the

probability at which the action is played. For sellers, we let ASeller
i (t) denote the

attraction of posting a price in the range Pi in round t. The attraction for sellers
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associated with a price range Pi is updated according to the following rule

ASeller
i (t) =

ϕSellerA
Seller
i (t− 1) + π(t) if p(t) ∈ Pi

ϕSellerA
Seller
i (t− 1) otherwise

(14)

where π(t) is the realised payoff in round t and ϕSeller is the recency parameter. The

probability of posting a price in range Pj is then

Pri(t) =
exp(λSellerA

Seller
j (t− 1))∑

exp(λSellerASeller
i (t− 1))

(15)

where λSeller represents sensitivity to attraction.

For buyers, let si(t) ∈ {Buy, Search} denote the action of a buyer when observing

a price in range Pi in round t. We let ABuyer
i,s (t) denote the attraction of s when

observing a price in the range Pi in round t. The attraction for buyers is then

updating as follows

ABuyer
i,s (t) =

ϕBuyerA
Buyer
i,s (t− 1) + π(t) if p(t) ∈ Pi and si(t) = s

ϕBuyerA
Buyer
i,s (t− 1) otherwise

(16)

The probability of s when observing a price in range Pi is then

Pri,s(t) =
exp(λBuyerA

Buyer
i,s (t− 1))

exp(λBuyerA
Buyer
i,Search(t− 1)) + exp(λBuyerA

Buyer
i,Buy (t− 1))

(17)

When fitting the model we consider five different price ranges: [0, 26.5), [26.5, 62.6],

(62.6, 70), 70 and (70, 100].23 We estimate initial attraction, ASeller
i (0) and ABuyer

i,s (0),

ϕSeller, ϕBuyer, λSeller and λBuyer, but ASeller
i (0) is normalised to zero for the lowest

price range ([0, 26.5)), and ABuyer
i,Buy (0) is normalised to zero for all price ranges.

The model estimates are presented in tables 18a and 18b. The estimation pools

23The model becomes difficult to estimate with more more granular ranges.
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data from all treatments.24 The recency parameter is close to 1 for both buyers and

sellers which indicates that learning is persistent and that past and recent payoffs

carry an almost equal weight in current decisions.

Table 18: Model estimates

Parameter Estimate (Std. err.)

ϕSeller 0.943 (0.005)

λSeller 0.003 (<0.001)

ASeller
1 (0) 0 (normalised)

ASeller
2 (0) 842.2 (103.3)

ASeller
3 (0) 141.4 (109.3)

ASeller
4 (0) -180.0 (105.8)

ASeller
5 (0) -88.3 (127.7)

(a) Seller

Parameter Estimate (Std. err.)

ϕBuyer 0.985 (0.006)

λBuyer 0.005 (0.001)

ABuyer
1,Search(0) -42066.2 (2.08e+08)

ABuyer
2,Search(0) -371.9 (76.8)

ABuyer
3,Search(0) -226.2 (67.2)

ABuyer
4,Search(0) -220.2 (46.0)

ABuyer
5,Search(0) 478.2 (122.5)

(b) Buyer

D Optimal pricing strategy

In this section we consider whether sellers best respond given the search behavior

of buyers, as well as the behavior of other sellers. To do so we estimate expected

profits for posted prices in different ranges for all treatments and then compare to

the frequency of posted prices within these ranges.

Consider first treatment T0. In figure 5 we present expected profits for three

different price ranges. Note that the equilibrium price range stands out compared to

the two others by offering a significantly higher expected profit: The average profit for

posted prices in the range [14.8, 44.4] is 52.5 ECU while it is 33 ECU for prices posted

in the lower range ([0, 14.8)) and 22.6 ECU for prices posted in the higher range

24Given that play in initial rounds is very similar across treatments this seems well justified, see
figures 6 and 7 in appendix B.
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((44.4, 100]). Comparing the profits for the the three price ranges with the frequency

of posted prices within said ranges in table 3, we note that the large majority of posted

prices (86 percent) are within the the range that offers the highest profit. Thus, it

appears that sellers in treatment T0 to large degree best respond in their pricing.

Figure 8: Expected profit by price range in treatment T0
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Note: First 20 games and games were the price was set exogenously are excluded. Expected profit
(points) is inferred directly from å dummy regression. Lines indicate 95% confidence intervals.

Consider next treatments T10, T20 and T30. Note first that profits are generally

higher in treatments T10, T20 and T30 than in treatment T0, and that among the

treatments with potential collusion, the profits vary positively with the exogenous

probability of collusion. Second, note that profits for the two lowest price ranges in

T10 are almost identical. This may account for the large share of price proposals for

the lowest range ([0, 26.5)) in T10.
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Figure 9: Expected profit by price range in treatments T10, T20 and T30
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Note: First 20 games and games were the price was set exogenously are excluded.
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