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Abstract

A growing number of applications involve settings where, in order to infer heteroge-

neous effects, a researcher compares various units. Examples of research designs include

children moving between different neighborhoods, workers moving between firms, patients

migrating from one city to another, and banks offering loans to different firms. We present

a unified framework for these settings, based on a linear model with normal random co-

efficients and normal errors. Using the model, we discuss how to recover the mean and

dispersion of effects, other features of their distribution, and to construct predictors of the

effects. We provide moment conditions on the model’s parameters, and outline various

estimation strategies. A main objective of the paper is to clarify some of the underlying

assumptions by highlighting their economic content, and to discuss and inform some of

the key practical choices.
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1 Introduction

Documenting heterogeneity across individuals, firms, or space, has become a central theme

in applied economics. In earlier research, heterogeneous parameters used to be treated as a

nuisance, and “differenced out” by means of fixed-effects regressions. Increasingly, however,

estimating and studying heterogeneous effects has become the main goal of the analysis.

This focus on heterogeneity is enabled by the availability of richer data sets. A leading

example is given by administrative data sets that feature many units (such as firms, workers,

or neighborhoods), and at the same time provide information about each unit (such as multiple

workers in a firm, multiple time periods on a worker, or multiple individuals in a neighborhood).

Settings with heterogeneous parameters are often studied using panel data techniques. How-

ever, traditional panel data methods treat units, such as firms or neighborhoods, independently

of each other. A growing number of applications instead involve settings where, in order to in-

fer heterogeneous effects, the researcher specifies a research design that compares various units.

For example, to estimate firm or neighborhood effects, researchers exploit workers who move

between firms or children who move to a new neighborhood, respectively.

We will refer to three leading examples as illustrations. In the first one, Kline, Rose, and

Walters (2022) send multiple job applications to several large firms, and estimate firm-specific

call-back rates as a function of applicants’ characteristics. Documenting differences across firms

in call-back rates allows the researchers to study hiring discrimination at the firm level, hence

complementing the literature using résumé correspondence experiments (e.g., Bertrand and

Duflo, 2017) by providing firm-level estimates. In this application, discrimination parameters

can be estimated independently, firm by firm. Hence, this setting is akin to a traditional panel

data or grouped data setting.

In the second example that we analyze, Chetty and Hendren (2018b) study how the income

at adulthood of children depends on the place where they grew up. To estimate the effects

of neighborhoods on income, the researchers exploit mobility of families across neighborhoods.

Hence, the effect of neighborhood j on income at adulthood is constructed by comparing the

incomes of individuals who grew up in various neighborhoods j1. This setting has been studied

by a large subsequent literature, including Chetty and Hendren (2018a), Laliberté (2021),

Bergman, Chetty, DeLuca, Hendren, Katz, and Palmer (2019), and Aloni and Avivi (2023).

Our third leading example is the so-called AKM regression framework for matched employer-

employee data introduced by Abowd, Kramarz, and Margolis (1999). The researchers’ goal is

to estimate how worker and firm effects contribute to wage dispersion. This setting similarly
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features comparisons between multiple units, since the differences in wage premia offered by two

firms j and j1 is informed by workers moving between j and j1. The AKM approach has become

central to the study of workers and firms, see among others Card, Heining, and Kline (2013),

Card, Cardoso, Heining, and Kline (2018), and Song, Price, Guvenen, Bloom, and Von Wachter

(2019). Moreover, the methodology in this example has been used to study other questions,

such as differences in health care utilization across space inferred from patients moving between

cities (Finkelstein, Gentzkow, and Williams, 2016), or the impacts of banks and firms on credit

growth inferred from banks’ loans to multiple firms (Amiti and Weinstein, 2018).

In these applications, the data sets are complex and the models are high-dimensional. Prac-

titioners need to make a large number of choices for modeling, practical specification, and

estimation. Since we have not seen any survey on the econometric analysis of these settings as

of yet,1 we have decided to write a paper on the topic. Our main goal is to lay out a framework

to analyze these settings, and to clarify some of the underlying assumptions and key practical

choices. While doing so, we will highlight the economic content behind the main assumptions.

The model that underlies most applications to these settings is a linear normal random

coefficients (RC) model. The “random coefficients” refer to the heterogeneous effects that are

the focus of the analysis, such as the effects of neighborhoods, or the worker and firm effects.

Those coefficients are associated with specific covariates: in Chetty and Hendren (2018b) the

effect of a neighborhood is simply the coefficient of the exposure to that neighborhood (i.e., of

how long the family stayed in that neighborhood), whereas in Abowd, Kramarz, and Margolis

(1999) the effect of firm j is the coefficient of the j-th firm indicator. In both cases, the

model involves a very large number of such covariates (e.g., many thousands of firm and worker

indicators or neighborhood exposures).

The primitive parameters of the RC model are the means and variances of the coefficients

(e.g., the neighborhood effects, or the worker and firm effects), as well as the variance of the

errors. All of these parameters are potentially functions of all the covariates. They satisfy first

and second moment conditions that we present. These moment conditions, which remain valid

absent normality, build on moment conditions previously derived for panel data settings (e.g.,

Chamberlain, 1992, Arellano and Bonhomme, 2012).

While means and variances are useful to answer substantive questions, such as how much

dispersion in outcomes is explained by neighborhood, worker, or firm heterogeneity, other im-

portant questions require additional information. As we describe, higher-order moments (such

1Abowd, Kramarz, and Woodcock (2008) and Bonhomme (2020) survey methods for bipartite networks and

matched employer-employee data.
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as skewness or kurtosis), nonlinear moments, as well as marginal and multivariate distributions,

can all be inferred under the normality assumption of the RC model. For example, researchers

may be interested in the distribution of neighborhood effects across space, or in the densities

of worker and firm effects. In addition, the normal RC model can be used to construct opti-

mal predictors of the effects. Such predictors or “forecasts” are also of considerable interest in

various literatures outside our three leading examples, including in the work on teacher quality

(e.g., Kane and Staiger, 2008, Chetty, Friedman, and Rockoff, 2014).

Taking the RC model to data, however, is challenging in the settings that we study, given the

large number of covariates (such as neighborhood exposures, or worker and firm effects) and the

complex forms of dependence implied by the model. We show that commonly used specifications

effectively impose conditional independence assumptions that may be economically restrictive.

For example, common strategies in the analysis of neighborhood effects require location choice

to be independent of neighborhood heterogeneity conditional on a set of neighborhood-specific

covariates. Estimating flexible models of means, covariances, and distributions in these settings

is an important yet still relatively unexplored research area.

Lastly, while the normal RC model provides a unified, self-contained framework to estimate

heterogeneous parameters, normality and linearity may both be restrictive. In the last part of

the paper, we briefly explore how these assumptions could be relaxed.

Relation to the literature. The framework we present builds on a vast methodological lit-

erature in statistics and econometrics. This includes the statistical literature on mixed models

(e.g., Jiang and Nguyen, 2007, McCulloch and Searle, 2004), the literature on random coeffi-

cients models and correlated random-effects approaches in panel data (e.g., Chamberlain, 1992,

Arellano and Bonhomme, 2012) and related panel data work based on decision-theoretic ap-

proaches (Chamberlain and Moreira, 2009, Chamberlain, 2016), as well as the empirical Bayes

literature (e.g., Efron, 2012) and the Bayesian and frequentist interpretations of best linear

unbiased predictors (BLUP, e.g., Robinson, 1991).

2 Regressions with fixed effects

It is common in empirical work to focus on the relationship between some (typically scalar)

outcomes yi and some covariates xi and zi, and to specify a linear regression model of the form

yi � x1iβ � z1iη � ui, i � 1, ..., n. (1)
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We assume that the researcher has access to multiple observations i about some economic

units j. The units may be firms, workers, or neighborhoods, depending on the application.

Our focus is on settings where zi contains unit-specific variables, as well as interactions of unit-

specific variables with other covariates. Let p denote the number of covariates in zi. Hence,

the coefficients ηj, j � 1, ..., p, are unit-specific “fixed effects”.2 Let q denote the number of

covariates in xi. We will focus on settings where p is large, and, depending on the application

of interest, q may be small or large.

Estimating high-dimensional regressions as in (1) is made possible by the availability of

increasingly large and detailed data sets, and by the development of powerful computational

methods and software. This enables researchers to “zoom in” on the effects of particular units

in the sample.

Under the assumption that ui are uncorrelated with xi and zi in (1), researchers typically

estimate β and η using OLS. This regression delivers parameter estimates pβ and pη. The re-

searcher’s goal is then to use the estimates pη1, ...,pηp to learn about the true effects η1, ..., ηp.

We now describe three examples where this setup arises.

Example 1. (Firm-specific discrimination) Kline, Rose, and Walters (2022) construct

firm-specific measures of racial discrimination in hiring. They send various fictitious job appli-

cations with randomized characteristics to some of the largest employers in the US. They then

measure call-back rates by race, for every firm in the sample. To map this setting to the current

setup, denote job applications as i and firms as j. The outcome yi is whether the firm calls back

the applicant, and zi contains the firm’s indicator and the interaction of the firm’s indicator with

the race of applicant (white or black). There are no additional covariates xi. The researchers

are interested in the coefficient in ηj of the interaction between firm j’s indicator with the race

of the applicant, which they interpret as reflecting firm j’s discrimination in hiring.

In this particular setting, the regression coefficient pηj is constructed using the observations

from firm j only, not other firms’ observations. The data structure is analogous to panel (or

grouped) data, and indeed, in this application, model (1) can be interpreted as a grouped data

model with group-specific intercepts and slopes, where the slope coefficients are associated with

the applicant’s race.

Increasingly, researchers estimate regressions where learning about ηj requires comparing

various units. In that case, the estimate pηj for unit j is constructed using the observations from

2We will refer to the ηj ’s as “fixed effects”, in line with the usual terminology in applied economics. In

contrast, in the statistical literature on mixed models β are often referred to as “fixed effects”, and η as

“random effects”. See, e.g., the monograph by Jiang and Nguyen (2007).
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several (and possibly a large number of) other units j1. Our next two examples are in this vein.

Example 2. (Neighborhood effects and intergenerational mobility) Chetty and Hen-

dren (2018b) estimate the effects of neighborhoods in the US (such as counties or commuting

zones) on income at adulthood. In the setting they propose, i are children, the outcome yi is the

income of a child at age 26 (specifically, her rank in the overall income distribution at age 26),

zi contains the time spent by the child in every neighborhood when young as well as its interac-

tion with parental income, and xi contains origin times destination indicators, also interacted

with parental income, as well as interactions between children’s cohort indicators and parental

income. The times spent by the child in every neighborhood, which the authors refer to as the

“exposures” to the neighborhoods, are key covariates in the model. Note that, in this case, both

zi and xi are high-dimensional.

The researchers are interested in neighborhood j’s effect on adult outcomes at some particular

level of parental income p. This neighborhood-specific parameter is a linear combination of the

ηj parameters that pertain to neighborhood j. The exposure-time research design, which builds

on Chetty and Hendren (2018a), implies that the estimate of neighborhood j’s effect depends

on the outcome data on other neighborhoods j1. The authors rely on this design to estimate the

causal effect of neighborhoods, under the assumption that the age at which children move across

neighborhoods does not directly affect adult outcomes.

Example 3. (Firm and worker effects in wage determination) Abowd, Kramarz, and

Margolis (1999) study how worker and firm heterogeneity contribute to wage dispersion. In the

setup they propose, yi are log wages in a given period, xi includes age and time indicators as

well as other demographics, and zi includes worker indicators and firm indicators. The worker

and firm indicators are key covariates in the model. The researchers are interested in the

coefficients ηj associated with workers and firms. A first question of interest is how dispersed

are those worker and firm effects? By answering this question, the AKM model sheds light into

how much of wage dispersion can be attributed to workers earning different wages irrespective

of where they work, versus firms paying similar workers differently. A second question is how

correlated are worker and firm effects? By answering this second question, the model sheds light

on the nature of sorting patterns and how sorting contributes to wage dispersion.

Recovering worker and firm effects requires exploiting movements between firms. Intuitively,

if workers remain in the same firms over time it is not possible to tell whether a high wage

reflects a high worker effect or a high firm effect. Hence, the estimates of the effects depend on

the network of employment relationships between workers and firms. Indeed, identification of

the effects requires the network to be connected (Abowd, Creecy, and Kramarz, 2002).
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3 Quantities of interest and noisy estimates

In the three applications that we have outlined, the researcher’s goal is to use the estimatespη1, ...,pηp to learn about the true effects η1, ..., ηp. We now provide examples of quantities of

interest taken from the literature.

Throughout the paper we will treat η1, ..., ηp as random. Our goal will be to estimate

features of the joint distribution of η1, ..., ηp, and construct predictors of those effects, without

imposing a priori that the ηj’s are independent of each other or independent of the xi’s and

zi’s. When the conditional distribution of η1, ..., ηp given x1, ..., xn, z1, ..., zn is left unrestricted,

proceeding in this way does not materially differ from a setup where the ηj’s are treated as

fixed parameters (i.e., as “fixed effects”). The model we will present in Section 4 will impose

restrictions on this conditional distribution, however.

3.1 Quantities of interest

Researchers may have various objectives. A first goal may be to estimate some moments of ηj.

For simplicity we will focus on the case where ηj is scalar, although the expressions below are

easily adapted to the case of vector-valued ηj’s.

Moments that are expectations of linear combinations of the ηj’s can be written as

mc � E rc1ηs , (2)

where c is a p� 1 vector. An example is the mean of the ηj’s,

E

�
1

p

p̧

j�1

ηj

�
.

Consider the coefficient in the linear regression of ηj on some covariates Wj. For example,

one may be interested in regressing firm effects on firm size or industry indicators in Example

3, or in regressing neighborhood effects on average income in the neighborhood in Example 2.

The regression coefficient can be written as
�
E
�
WjW

1
j

���1 E
�
Wjηj

�
, which takes the form (2)

for c �
�
E
�
WjW

1
j

���1
Wj.

Moments that are quadratic in η can be written as

vQ � E rη1Qηs , (3)

where Q is a p� p matrix. For example, the variance of the ηj’s,

Varpηjq � E

��1

p

p̧

j�1

�
ηj �

1

p

p̧

j1�1

ηj1

�2
�� ,
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can be written in this form for a suitable matrix Q. In Example 3, interest often centers on the

variances of worker and firm effects and on the covariance between worker and firm effects, all

of which can be written as (3).

Alternatively, one may be interested in the coefficient in the linear regression of some scalar

variable Wj on ηj. For example, in Example 3 one may be interested in regressing promotion

opportunities in a firm on the firm effects. The regression coefficient is
�
E
�
η2j
���1 E

�
ηjWj

�
,

which can be written as the ratio between some mc in (2) and some vQ in (3), for suitable c

vector and Q matrix.

More general, nonlinear moments can be written as

wH � E rHpηqs , (4)

for some function H : Rp Ñ R. For example, one may be interested in the skewness or kurtosis

of the ηj’s, which can be written as ratios of quantities of the form (4) for suitable H functions.

Learning about distributions of effects, beyond their means and variances, is important in

all the examples we have mentioned. In Example 1, Kline, Rose, and Walters (2022) report

estimates of the distribution of racial discrimination in hiring across firms. In Example 2,

researchers are often interested in documenting the distribution of neighborhood effects. In Ex-

ample 3, an increase in the variance of firm effects, say, has different implications for inequality

whether it comes from a deepening of the left tail, an expansion of the right tail, or a symmetric

increase in spread.

The weighted cumulative distribution function, for some weights ωj that sum up to one,

can be written as the following nonlinear moment

Fωpaq � E

�
p̧

j�1

ωj1
 
ηj ¤ a

(�
. (5)

One may also be interested in the (weighted) density of the ηj’s, fωpaq �
BFωpaq
Ba

. Bivariate

counterparts to Fωpaq and fωpaq, which reflect the bivariate distribution of workers and firms,

are of interest in Example 3 in order to document sorting patterns along the worker and firm

distributions.

Another common goal in applications is to construct predictors of the ηj’s. The optimal

predictor that minimizes the expected sum of squared errors is a set of functions φ1, ..., φp that

solves

min
φ1,...,φp

E

�
p̧

j�1

�
ηj � φjpy1, ..., yn, x1, ..., xn, z1, ..., znq

�2�
, (6)
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the solution of which is the set of conditional means

φjpy1, ..., yn, x1, ..., xn, z1, ..., znq � E
�
ηj | y1, ..., yn, x1, ..., xn, z1, ..., zn

�
, j � 1, ..., p. (7)

In Example 2, Chetty and Hendren (2018a) and Chetty and Hendren (2018b) construct predic-

tors of neighborhood-specific income effects. Bergman, Chetty, DeLuca, Hendren, Katz, and

Palmer (2019) use effect predictors to select the top census tracts for income mobility.3 A key

input to answering these questions is the set of conditional means given by (7).

3.2 Noisy estimates

The data is not directly informative about the ηj’s, but delivers estimates

pηj � ηj � vj, j � 1, ..., p, (8)

where vj � pηj � ηj reflects estimation noise. In many applications involving large data sets

(large n) and many unit-specific parameters (large p), the noise vj is substantial enough to

be of practical concern. Inferring ηj from pηj then requires solving a filtering (or “de-noising”)

problem.

It is important to note that directly using the estimates pηj in place of ηj may be misleading.

The noise vj in (8) reflects the presence of a form of measurement error. When the quantity of

interest is nonlinear in ηj, such as a variance, a higher-order moment, a cumulative distribution

function, or a density, the presence of measurement error often leads to unreliable, biased

estimates of the quantities of interest.

As an example, suppose the researcher is interested in the variance of the ηj’s, and that she

reports the following “plug in” estimate based on the pηj’s,
yVarppηjq � 1

p

p̧

j�1

�pηj � 1

p

p̧

j1�1

pηj1

�2

. (9)

Does a large estimate yVarppηjq indicate that the variance of the true effects ηj, Varpηjq, is large?
Or does the presence of measurement error vj artificially inflate the dispersion in the estimatespηj?

As another example, suppose the researcher uses pηj as a predictor of ηj. Since the p param-

eters η1, ..., ηp are estimated in the available sample and p is large (or, alternatively, the noise

3See Gu and Koenker (2023) for a broad account of ranking problems and selection of groups of units based

on noisy estimates.
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in (8) is substantial), it is likely that pηj “overfits”, in the sense that it reflects too much of the

noise vj and too little of the true effect ηj. In such cases, one may wish to construct predictors

that lead to a lower expected sum of squared errors in (6).

To illustrate these points, consider a simple setting inspired by Example 1, where ηj and vj

in (8) are independent, i.i.d. across j, and N pµη, σ
2
ηq and N p0, σ2

vq, respectively. In this case,

we have

E
�yVarppηjq� � Varpηjq �

p� 1

p
σ2
v, (10)

which shows that the variance of the estimates pηj is upward-biased for the variance of the true

ηj’s. Moreover, while the expected sum of squared errors of pηj is equal to pσ2
v, the expected

sum of squared errors of the conditional means

Epηj |pηjq � σ2
η

σ2
η � σ2

v

pηj � σ2
v

σ2
η � σ2

v

µη (11)

is smaller, equal to
pσ2

vσ
2
η

σ2
η�σ2

v
. This shows that the “shrunk” quantities Epηj |pηjq in (11) have a

lower expected sum of squared errors than the original estimates pηj. The difference between

the two is greater when the noise variance σ2
v is large relative to the variance σ2

η of the true

effects. Bias-correction methods for variance components based on equations in the spirit of

(10), and linear shrinkage predictors akin to (11), are now widespread in applied economics.

This simple example is too stylized to accurately describe the situations in Examples 2

and 3, however. In such settings, estimates pηj are constructed using observations from other

units j1 � j. Hence, the pηj’s are not independent. This gives rise to more complex forms

for the estimation noise vj in (8), and complicates the way the noise affects the quantities of

interest. Jochmans and Weidner (2019) study how, in settings where the matrix of covariates

zi has a network structure (such as Example 3, where zi represent worker and firm employment

relationships), the properties of the network, such as how connected it is, affect the precision

of the estimates pηj. Moreover, in the settings of Examples 2 and 3, unit-specific parameters ηj

may not be independent. We next present a framework that applies to an arbitrary matrix of

covariates zi and allows for dependence between units.

4 The normal random coefficients model

In this section we describe a normal Random Coefficients (RC) model, which allows researchers

to answer the questions introduced in the previous section.
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4.1 Model and assumptions

For the presentation we will remove the term x1iβ from equation (1). Depending on the setting,

β can be estimated using OLS or differenced out, see Remark 1 below. We then write (1) in

vector form, removing x1iβ from the equation, as follows,

Y � Zη � U, (12)

where Y is an n � 1 vector with generic element yi, Z is an n � p matrix with generic row z1i,

and U is an n� 1 vector with generic element ui.

The form of the design matrix Z differs across applications. In Example 1, Z takes the form

Z �

���������

Z1 0 0 ... 0

0 Z2 0 ... 0

0 0 Z3 ... 0

... ... ... ... ...

0 0 0 ... Zp

��������

,

where Zj contains two columns, the first one being a column of 1’s, and the second one being

a column of 0’s and 1’s, depending on the race of the applicant. This block-diagonal structure

characterizes panel data and grouped data settings.

In Examples 2 and 3, Z takes more complex forms. To present Example 2, let us abstract

from the dependence on parental income for simplicity. Then, zij in (1) is the exposure of i

to neighborhood j. In every row of the n � p matrix with elements zij, all but a handful of

elements are equal to zero.4 However, the matrix does not have a block-diagonal form. Then,

differencing out the origin-and-destination indicators xi (as explained in Remark 1 below) leads

to the matrix

Z �

���������

rz11 rz12 rz13 ... rz1Jrz21 rz22 rz23 ... rz2Jrz31 rz32 rz33 ... rz3J
... ... ... ... ...rzn1 rzn2 rzn3 ... rznJ

��������

, (13)

where rzij is equal to zij minus the mean of zi1j for all individuals i1 who experience the same

neighborhood moves in childhood as individual i (though the time i1 and i stay in each neigh-

borhood may differ). Z is sparse, and not block-diagonal.

4For example, Chetty and Hendren (2018b) focus on families that move exactly once, so every row in the

matrix has exactly two non-zero elements.
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In Example 3, Z stacks worker and firm indicators together. For example, with two periods,

K workers, and J firms, Z reads

Z �

�������������������

1 0 0 ... 0 f 1
11 ... fJ

11

1 0 0 ... 0 f 1
12 ... fJ

12

0 1 0 ... 0 f 1
21 ... fJ

21

0 1 0 ... 0 f 1
22 ... fJ

22

0 0 1 ... 0 f 1
31 ... fJ

31

0 0 1 ... 0 f 1
32 ... fJ

32

... ... ... ... ... ... ... ...

0 0 0 ... 1 f 1
K1 ... fJ

K1

0 0 0 ... 1 f 1
K2 ... fJ

K2

������������������


, (14)

where f j
kt � 1 if worker k is employed in firm j in period t, and f j

kt � 0 otherwise. Note that

Z is not block-diagonal in this case. However, it is typically a sparse matrix since each row

has exactly two non-zero elements. The form of Z reflects the network of workers’ and firms’

employment relationships (Andrews, Gill, Schank, and Upward, 2008, Jochmans and Weidner,

2019).

Throughout, we assume that Z has full column rank, so pZ 1Zq is non-singular. When p

is large, this assumption may be restrictive. In Example 3, ensuring non-singularity requires

imposing a normalization on the parameters ηj (e.g., that the firm-specific effects sum up to

zero), and focusing on a connected component of the firm-worker network (Abowd, Creecy, and

Kramarz, 2002). Similarly, in Example 2, a normalization is needed since neighborhood effects

are identified relative to the national average (Chetty and Hendren, 2018b).

The defining assumptions for the normal random coefficients model are as follows.

Assumption 1. (normal RC model)

(i) U |Z, η � N p0,ΩpZqq.

(ii) η |Z � N pµpZq,ΣpZqq.

In part (i) of Assumption 1 we assume that the error terms ui in (1) are normally distributed,

with zero mean and some n � n covariance matrix ΩpZq, independent of η. In part (ii) we

specify a normal model for η given Z, with mean µpZq (a p � 1 vector) and variance ΣpZq (a

p � p matrix). Hence, we treat the parameters ηj as random coefficients, and we specify their

conditional distribution given Z. This modeling device is often used in panel data and complex

data settings. Note that Assumption 1 implies that the conditional distribution of Y given Z
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is fully specified, and normal, given the parameters ΩpZq, µpZq, and ΣpZq,

Y |Z � N pZµpZq, ZΣpZqZ 1 � ΩpZqq .

Assumption 1 requires the following strict exogeneity assumption: ErU |Z, ηs � 0. This

assumption imposes substantive restrictions on the economic environment. In Example 2, it

requires that the times families spend in every neighborhoods are unrelated to the unobserved

determinants of adult outcomes. In Example 3, it imposes an assumption of so-called “exoge-

nous mobility”, through which workers’ decisions to change jobs may be driven by worker and

firm effects ηj but not by idiosyncratic time-varying shocks ui. Although some authors have

attempted to relax strict exogeneity in the setting of Example 3 (e.g., Abowd, McKinney, and

Schmutte, 2019, Bonhomme, Lamadon, and Manresa, 2019), most research to date relying on

model (1) makes this assumption.

The concrete specification of µpZq, ΣpZq, and ΩpZq will depend on the application. In

panel or grouped data settings, such as in Example 1, a common assumption is that pηj, Zjq

are independent across j, where Zj denotes the subset of observations zi that pertain to unit j.

In that case, µjpZq depends on Z only through Zj, ΣpZq is diagonal, and Σj,jpZq only depends

on Zj as well.

However, in Examples 2 and 3, it may be more plausible to allow for a rich dependence

of µjpZq and Σj,j1pZq on the elements of Z, and to allow ΣpZq to be a general, non-diagonal

symmetric matrix. Indeed, in Example 2, the de-meaned exposures rzij1 to other neighborhoods

j1 � j in (13) are unlikely to be independent of neighborhood effects ηj, unless mobility across

neighborhoods is unrelated to neighborhood heterogeneity. Likewise, in Example 3, indicators

of firms j1 � j in (14) will generally correlate with the effect of firm j unless workers’ sorting

patterns are independent of firm heterogeneity. We will return to specification issues in the

next section.

Given Assumption 1, the OLS estimator of η in (12) satisfies

pη � η � V, (15)

where, denoting the variance-covariance matrix of the OLS estimates pη as

SpZq � pZ 1Zq�1Z 1ΩpZqZpZ 1Zq�1, (16)

we have

V � pZ 1Zq�1Z 1U |Z, η � N p0, SpZqq.

13



Model (12) under Assumption 1 is a normal linear mixed model (see, e.g., Jiang and Nguyen,

2007 and McCulloch and Searle, 2004). As we will review below, normality is not needed to

obtain informative moment conditions on µpZq, ΣpZq, and ΩpZq, and the following restrictions

on first and second moments suffice.

Assumption 2. (RC model)

(i) ErU |Z, ηs � 0, VarrU |Zs � ΩpZq.

(ii) Erη |Zs � µpZq, Varrη |Zs � ΣpZq.

Note that, while Assumption 2 relaxes normality, it does maintain the strict exogeneity

condition ErU |Z, ηs � 0. If the researcher is only interested in means, variances or covariances

of the ηj’s, or alternatively in coefficients of regressions where ηj appears on the left- or right–

hand side, then Assumption 1 can be replaced by the weaker Assumption 2 that only restricts

first and second moments. However, normality is needed to answer questions related to the

higher-order and nonlinear moments of the ηj’s, their distributions, and to construct optimal

predictors of the ηj’s.

Remark 1. In (12) we have removed the term x1iβ. In applications with covariates xi, there are

two common ways of handling the presence of the unknown parameter β. When the dimension

q of β is low, one can often reliably estimate pβ jointly with pη using OLS in (1), and then replace

Y � pyiq with Y �
�
yi � x1i

pβ	 in (12). The analysis below is then essentially unchanged relative

to the case without xi’s. This approach is commonly used to handle the presence of age, time,

and other demographics in Example 3.

In applications where q is large, the parameter β can be differenced out as follows. Write

model (1) in vector form, as

Y � Xβ � Zη � U, (17)

where X is an n� q matrix with generic row x1i. Let M be an n� n matrix such that MX � 0

(e.g., a projection matrix). Left-multiplying (17) by M then gives

MY �MZη �MU, (18)

which takes the same form as (12). In Example 2, taking the within-group transformation

as matrix M , this differencing approach provides a way to handle the presence of the high-

dimensional origin-and-destination indicators in xi.
5

5Also, in Example 3, if one includes worker indicators in X, and Z contain only firm indicators, then first-

differencing yields an equation of the form (18).
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4.2 Quantities of interest in the normal RC model

Suppose that the normal RC model (12) holds and Assumption 1 is satisfied, and suppose the

covariance and mean functions ΩpZq, µpZq, and ΣpZq are known. Then the model implies

closed-form expressions for all the quantities that we mentioned in Section 3.

For example, the first and second moments mc in (2) and vQ in (3) are given, respectively,

by

mc � E rc1µpZqs (19)

and

vQ � E rµpZq1QµpZq � Trace pQΣpZqqs . (20)

The expressions (19) and (20) do not rely on normality, and hold under the weaker Assumption

2.

Under Assumption 1, we further can write the nonlinear moment wH in (4), and the cumu-

lative distribution function Fωpaq in (5), in closed form as, respectively,

wH � E

�»
Rp

Hpηq
1

p2πq
p
2 |ΣpZq|

1
2

exp

�
�
1

2
pη � µpZqq1 rΣpZqs�1 pη � µpZqq



dη

�
, (21)

and

Fωpaq � E

�
p̧

j�1

ωjΦ

�
a� µjpZqa

Σj,jpZq

��
, (22)

where µjpZq is the j-th element of µpZq, Σj,jpZq is the j-th diagonal element of ΣpZq, and Φ

denotes the standard normal cumulative distribution function. Note that, while the conditional

distribution of η |Z is normal under Assumption 1, the unconditional distribution of η is not

normal.

Lastly, under Assumption 1, one can also derive a closed-form expression for the conditional

mean of the vector η given the data pY, Zq, as

E rη |Y, Zs � GpZq
�
SpZq�1pη � ΣpZq�1µpZq

�
, (23)

where SpZq is given by (16), and

GpZq �
�
SpZq�1 � ΣpZq�1

��1

is the conditional variance of η given pY, Zq. The conditional density of η |Y, Z is then

η |Y, Z � N pE rη |Y, Zs , GpZqq . (24)
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5 Specification choices

In this section, we discuss several possibilities to specify ΩpZq, µpZq, and ΣpZq.

5.1 Specification of ΩpZq

The simplest specification for ΩpZq is independent homoskedastic, that is,

ΩpZq � σ2In,

for a constant variance parameter σ2. In Example 3, Andrews, Gill, Schank, and Upward (2008)

rely on this assumption and construct an unbiased estimator of σ2 for applications to matched

employer-employee data.

However, both homoskedasticity and independence can be restrictive. To relax homoskedas-

ticity, one can introduce covariates W � pwiq (for example, some functions of the elements of

Z), and model

ΩpZq � diag
�
σ2
θpw1q, ..., σ

2
θpwnq

�
,

where σ2
θpwiq is a parametric function of wi indexed by some parameter θ.6 In Example 2, Chetty

and Hendren (2018b) assume that SpZq in (16) is a diagonal matrix, i.e., that the estimatespηj are uncorrelated across neighborhoods. Under independence, Kline, Saggio, and Sølvsten

(2020) model ΩpZq as a diagonal matrix with unrestricted diagonal elements. They propose a

leave-out method that provides unbiased estimates of these diagonal variance elements.

To relax independence, one can model ΩpZq as a parametric, matrix-valued, non-diagonal

function of the covariates wi. In panel data settings, Arellano and Bonhomme (2012) propose

parametric ARMA specifications to allow for serial correlation. Relaxing independence has been

shown to be important in Example 3, where assuming serial independence within employment

spells is often empirically restrictive.

Lastly, it is worth noting that one cannot leave the matrix ΩpZq fully unrestricted while at

the same time identifying moments of the effects ηj. This is because ηj and vj in (8) are both

unobserved random variables. As a result, there is an essential trade-off between heterogeneity

(the ηj’s) and the dependence of errors (the matrix ΩpZq).

6While here we assume that wi is a function of the elements of Z, the covariates wi could also contain

additional covariates not functions of Z, such as neighborhood characteristics or worker or firm characteristics,

depending on the application.
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5.2 Specification of µpZq and ΣpZq

Turning now to µpZq and ΣpZq, a possible approach in applications is to specify µpZq as a

function of some covariates W (e.g., as a linear function of W ), and to model ΣpZq similarly

(e.g., as a constant diagonal matrix). However, the cost of such an approach is that it implicitly

imposes a conditional independence assumption that may be economically restrictive. We now

illustrate this important point through the help of examples.

Suppose that, in Example 2, the mean and variance of neighborhood effects are specified

as functions of a handful of covariates, for instance some variables measuring the racial and

economic composition of the neighborhoods. In that case, the researcher is effectively assuming

that the de-meaned neighborhood exposures in Z, see (13), are independent of the location-

specific effects ηj conditional on those covariates. This assumption may be hard to reconcile with

an economic model of location choice, and mobility across locations, where families’ decisions

are in part determined by neighborhood heterogeneity.

Similarly, in Example 3, assuming that the means, variances, and covariances of worker

and firm effects only depend on some worker and firm characteristics restricts job mobility

to be independent of the worker and firm effects ηj conditional on those characteristics. This

assumption may be at odds with economic models of sorting where workers’ and firms’ decisions

are in part determined by worker and firm heterogeneity.

To state the argument formally, let W denote some covariates. Then a specification where

µpZq and ΣpZq only depend on W amounts to assuming the following:

η |Z,W � N pµpW q,ΣpW qq,

which in particular imposes that:

Z and η are independent given W.

Likewise, assuming that µjpZq � µjpWjq, where Wj denotes the covariates of unit j, imposes

that:

ηj are mean of independent pW1, ...,Wj�1,Wj�1, ...,Wpq given Wj.

To illustrate that such conditional independence assumptions may be economically restric-

tive, let us consider two models of firm choice for Example 3. The first model assumes that

workers maximize utility among all firms in a market, period-by-period (Card, Cardoso, Hein-

ing, and Kline, 2018, Lamadon, Mogstad, and Setzler, 2022). Suppose that worker k’s indirect

utility in firm ℓ at time t is

Vkℓt � ρWkℓt � εkℓt,
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where εkℓt are i.i.d. type I extreme value preference shocks, independent of log wages Wkℓt,

and we abstract from non-wage amenities for simplicity. Then the probability that worker k

chooses firm ℓ, given all wages W � tWk1ℓ1tu, is

Pr pℓ | k,W q �
exp pρWkℓtq°

ℓ1PMpkq exp pρWkℓ1tq
, (25)

where Mpkq is the market that k considers when looking for a job. Therefore, the elements

in the Z matrix depend on the log wages Wkℓt. If, further, log wages are a function of worker

heterogeneity αk and firm heterogeneity ψℓ,
7 then (25) implies that the ηj’s, which here are the

αk’s and ψℓ’s, are not independent of Z, even conditional on observed characteristics.

Consider next a dynamic model of workers’ mobility across firms, as proposed by Lentz,

Piyapromdee, and Robin (2023) (see Sorkin, 2018 for a related model). The probability that

worker k moves between firms ℓ and ℓ1, conditional on worker heterogeneity α � tαku and firm

heterogeneity ψ � tψℓu, is specified as

Pr pℓ1 | ℓ, k, α, ψq � λkℓ1
γkℓ1

γkℓ � γkℓ1
, (26)

where λkℓ1 is the probability that k meets firm ℓ1, and γkℓ is interpreted as worker k’s value of

working in firm ℓ. If the value γkℓ � γpαk, ψℓq depends on worker heterogeneity αk and firm

heterogeneity ψℓ, then neither αk nor ψℓ are independent of Z, even conditional on observed

characteristics.

We now discuss several examples of specifications for µpZq and ΣpZq used in practice. In

Example 2, a common approach is to model µjpZq to be a linear function of some covariates

Wj, and ΣpZq to be a diagonal matrix, independent of Z and W . The model then assumes

independence across j’s, and rules out dependence between the true effects (ηj) and location

choice and mobility (Z) conditional on the covariates. Recently, Chen (2023) proposes an

extension of this approach that allows for dependence between the true effects ηj and the

precision of their estimates pηj (as measured by the diagonal elements of SpZq in (16)), while

maintaining independence across units.

In Example 3, Woodcock (2015) postulates a normal RC model where neither µpZq nor

ΣpZq depend on Z, and ΣpZq is a diagonal matrix. However, these assumptions impose that

workers’ sorting patterns, which are encoded in Z, do not depend on the worker and firm

effects ηj. Bonhomme, Holzheu, Lamadon, Manresa, Mogstad, and Setzler (2023) refine the

Woodcock (2015) model by allowing µpZq and ΣpZq to depend on Z. To model the dependence,

7For example, if log wages are given by the additive specification Wkℓt � αk�ψℓ�Ukℓt of Abowd, Kramarz,

and Margolis (1999), in which case Pr pℓ | k,W q in (25) does not depend on k.
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they cluster firms into a small number of groups using the k-means algorithm based on their

wage distributions (as in Bonhomme, Lamadon, and Manresa, 2019). Given this grouping, they

allow the means and variances of worker and firm effects to depend on the groups, but not on

the worker and firm identities within these groups. Similarly, they allow the covariances in

ΣpZq, which they do not assume to be diagonal, to depend on the groups. Generalizing such

approaches to accommodate structural economic models of workers’ mobility across firms is a

promising area for future investigation.

6 Estimation

In this section we describe various estimation strategies for the parameters of the normal RC

model and the quantities of interest introduced in Section 3.

6.1 Estimating the model’s parameters

We start by providing moment conditions on the primitive parameters of the normal RC model:

the error variance ΩpZq, and the mean and variance of the unit-specific effects µpZq and ΣpZq.

Moment conditions. Let Assumption 2 hold. Then we have

E rY Y 1 |Zs � ZE rηη1 |ZsZ 1 � ΩpZq, (27)

where the cross-product term is zero since ErU |Z, ηs � 0. This is a system of n � n moment

conditions. Following Arellano and Bonhomme (2012), we can construct a suitable n2 � n2

matrix MpZq that “differences out” the first term on the right-hand side of (27),8 to obtain

E rMpZq vec pY Y 1 � ΩpZqq |Zs � 0. (28)

where the vec operator stacks together the n columns of an n� n matrix into a n2 � 1 vector.

(28) provides a system of conditional moment conditions on the elements of ΩpZq. Note that,

depending on the specification of ΩpZq, the moment conditions (28) do not necessarily guarantee

that the elements of ΩpZq are identified. Note also that MpZq in (28) being singular implies

that the system of equations has multiple solutions in the absence of restrictions on ΩpZq.

8Let AbB denote the Kronecker product between A and B, and let In2 be the n2 � n2 identity matrix. A

possible choice is MpZq � In2 �
�
ZpZ 1Zq�1Z 1

�
b

�
ZpZ 1Zq�1Z 1

�
. The key property is that MpZqpZ b Zq � 0,

which implies that MpZq vec pZE rηη1 |ZsZ 1q �MpZqpZ b Zq vec pE rηη1 |Zsq � 0.
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Next, taking the conditional mean in (15), we obtain

Erpη � µpZq |Zs � 0, (29)

which provide conditional moment conditions on µpZq. These moment conditions depend nei-

ther on ΩpZq nor on ΣpZq.

Lastly, using (15) we obtain

Varrpη |Zs � ΣpZq � SpZq,

where SpZq given by (16) is a function of ΩpZq. This gives the following moment conditions

on ΣpZq, ΩpZq, and µpZq,

Erppη � µpZqq ppη � µpZqq1 � SpZq � ΣpZq |Zs � 0. (30)

Remark 2. In general, (28)-(29)-(30) do not exhaust all the information about ΩpZq, µpZq,

and ΣpZq. The complete set of first- and second-moment conditions implied by Assumption 2

consists of (29) and

E rY Y 1 |Zs � Z pΣpZq � µpZqµpZq1qZ 1 � ΩpZq. (31)

An advantage of the moment conditions in (28) is that they are robust to possible misspecification

of µpZq and ΣpZq.

Parameter estimation. Given a parametric or semi-parametric specification for ΩpZq, µpZq,

and ΣpZq, a possible estimation approach is to exploit the moment conditions (28)-(29)-(30) us-

ing method-of-moments or minimum-distance estimation. This strategy is used in Bonhomme,

Holzheu, Lamadon, Manresa, Mogstad, and Setzler (2023) in Example 3, for instance. Let θ

be a parameter vector indexing µθpZq, ΣθpZq, and ΩθpZq, possibly adding other conditioning

covariates W . This estimation step delivers an estimate pθ, as well as estimates pµpZq � µ
pθpZq,pΣpZq � Σ

pθpZq, and
pΩpZq � Ω

pθpZq. An alternative is to perform (quasi-) maximum likelihood

estimation, as in the following remark.

Remark 3. An alternative approach to estimation of µ, Σ and Ω is to rely on the log-likelihood

function conditional on Z,

Lpµ,Σ,Ωq � �
n

2
log p2πq �

1

2
log p|ZΣpZqZ 1 � ΩpZq|q

�
1

2
pY � ZµpZqq1 rZΣpZqZ 1 � ΩpZqs

�1
pY � ZµpZqq . (32)
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In the absence of normality, i.e., under Assumption 2, Lpµ,Σ,Ωq can be interpreted as a quasi

log-likelihood function.9

6.2 Estimating the quantities of interest: three strategies

We now present three types of estimators for the quantities of interest introduced in Section 3.

#1 Bias-corrected fixed-effects estimators. Suppose first that the researcher is only

interested in estimating linear combinations of the ηj’s or quadratic forms. In that case, she

does not need to estimate µpZq and ΣpZq. Indeed, linear combinations mc � E rc1ηs and, given
knowledge of ΩpZq, quadratic forms vQ � Erη1Qηs, are nonparametrically identified under

Assumption 2 (without the need for normality), as

mc � Erc1pηs (33)

and

vQ � Erpη1Qpηs � E rTrace pQSpZqqs , (34)

respectively. By (33), linear combinations of the elements in pη are unbiased. Moreover, (34)

shows that, while quadratic forms in pη are biased, the bias is a known function of the variance-

covariance matrix SpZq of pη.
Then, a fixed-effects estimator of mc is

pmFE
c � c1pη. (35)

Moreover, given an estimator pΩpZq and an associated estimator pSpZq given by

pSpZq � pZ 1Zq�1Z 1pΩpZqZpZ 1Zq�1, (36)

a bias-corrected fixed-effects estimator of vQ is

pvFEQ � pη1Qpη � Trace
�
QpSpZq	 . (37)

Under Assumption 2, the estimator pvFEQ is unbiased whenever pΩpZq, and hence pSpZq, are

themselves unbiased.

9Moreover, when based on A1Y and A1Z, where M � AA1 is the Cholesky decomposition of the matrix M

of Remark 1, (32) is the basis for restricted maximum likelihood (REML) estimation, and the resulting REML

estimator does not depend on the choice of A (see, e.g., Jiang and Nguyen, 2007).

21



In Example 3, Andrews, Gill, Schank, and Upward (2008) assume that ΩpZq � σ2In. In

this case, (28) is equivalent to

E
��
In � ZpZ 1Zq�1Z 1

�
Y Y 1

�
In � ZpZ 1Zq�1Z 1

�
|Z

�
� σ2

�
In � ZpZ 1Zq�1Z 1

�
.

So, by taking the trace and expectation with respect to Z, it follows that

σ2 � E
�
Y 1 pIn � ZpZ 1Zq�1Z 1qY

n� p

�
. (38)

The formula (38) is the well-known degree of freedom correction for variance estimation. In

Example 3, Andrews, Gill, Schank, and Upward (2008) propose the estimators

pσ2 �
Y 1 pIn � ZpZ 1Zq�1Z 1qY

n� p
(39)

and

pvFEQ � pη1Qpη � pσ2Trace
�
QpZ 1Zq�1

�
, (40)

which are unbiased for σ2 and vQ, respectively. Kline, Saggio, and Sølvsten (2020) generalize

their approach to the case where ΩpZq is a diagonal matrix with unrestricted diagonal elements.

#2 Model-based estimators. Suppose now that the researcher wishes to estimate not

only linear combinations and quadratic forms but also other quantities, such as distributions,

nonlinear moments, or predictors. In that case, she first needs to produce estimates pΩpZq,pµpZq, and pΣpZq. Given those, the researcher can produce estimates of all the quantities of

interest we listed in Section 3, as follows:

pmc � c1pµpZq, (41)

pvQ � pµpZq1QpµpZq � Trace
�
QpΣpZq	 , (42)

pwH �

»
Rp

Hpηq
1

p2πq
p
2 |pΣpZq| 12 exp

�
�
1

2
pη � pµpZqq1 �pΣpZq��1

pη � pµpZqq
 dη, (43)

pFωpaq �
p̧

j�1

ωjΦ

��a� pµjpZqbpΣj,jpZq

�
, (44)

including estimates of the posterior mean and variance of η:

pE rη |Y, Zs � pGpZq�pSpZq�1pη � pΣpZq�1pµpZq	 , (45)

pGpZq � �pSpZq�1 � pΣpZq�1
	�1

, (46)

where pSpZq is given by (36).

22



#3 Posterior estimators. To motivate the third type of estimators, consider a generic

nonlinear moment of η, wH � E rHpηqs, and note that, by the law of iterated expectations,

wH � E rE pHpηq |Y, Zqs

� E

�»
Rp

Hpηq
1

p2πq
p
2 |GpZq|

1
2

exp

�
�
1

2
pη � Erη |Y, Zsq1 rGpZqs�1 pη � Erη |Y, Zsq



dη

�
,

(47)

where we have used the expression in (24) of the conditional density of η |Y, Z.

Equation (47) motivates the following posterior estimator of wH :

pwPOST
H �

»
Rp

Hpηq
1

p2πq
p
2 | pGpZq| 12 exp

�
�
1

2

�
η � pErη |Y, Zs	1 � pGpZq��1 �

η � pErη |Y, Zs	
 dη,
(48)

where pErη |Y, Zs and pGpZq are given by (45) and (46), respectively.

To provide intuition about the posterior estimator, we note that, by a change in variables,

pwPOST
H � E

�
H
�pErη |Y, Zs � pGpZq 1

2 ε
	
|Y, Z

�
, (49)

where ε |Y, Z � N p0, Ipq. Consider two special cases in (49). When the pηj are poorly estimated

so pSpZq�1 � 0, then (49) becomes

pwPOST
H � E

�
H
�pµpZq � pΣpZq 1

2 ε
	
|Z

�
, (50)

which coincides with the model-based estimator (43). Now, when the pηj are well estimated sopSpZq � 0 (and SpZq � 0), then (49) becomes

pwPOST
H � H ppηq � H pηq , (51)

which means that the posterior estimator recovers the true quantity in this situation, irre-

spective of whether the normal RC model is well specified or not. This illustrates a robustness

property of posterior estimators, as studied by Arellano and Bonhomme (2009) and Bonhomme

and Weidner (2022), and provides a motivation for reporting such estimators in practice.

6.3 Remarks on asymptotic properties and inference

There are several challenges to deriving asymptotic properties for the estimators mentioned in

this section, in the type of settings we are focusing on in this paper. A first challenge is the

dimensionality of the data and model. Typically, the vector µpZq and the matrices ΩpZq and
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ΣpZq are very large (i.e., both n and p are large). It is therefore necessary to work in a high-

dimensional asymptotic regime where both n and p tend to infinity. Moreover, the specifications

for ΩpZq, µpZq, and ΣpZq often depend on many parameters. Another challenge is the nature

of the matrix Z. In Examples 2 and 3, Z does not have a block-diagonal structure, which

further complicates the asymptotic analysis. Related to this, ΣpZq is often non-diagonal, hence

creating complex forms of dependence among observations.

To give a simple example, suppose we are interested in the mean mc � Er1
p

°p
j�1 ηjs. Con-

sistency of pmc �
1
p

°p
j�1 pµjpZq for mc is not immediate. To see this, consider first the case

where there is no estimation error and one can compute rmc �
1
p

°p
j�1 µjpZq. Consistency of rmc

for mc requires limiting the dependence of the µjpZq’s across j. For instance, in Example 2,

this requires limiting the dependence of mean exposure effects across neighborhoods, while in

Example 3, this requires limiting the dependence of mean firm effects across different firms, for

example, allowing for dependence among “similar” firms only. Next, the addition of estimation

error further complicates the argument, since the pµjpZq’s are dependent across j conditional

on Z.

Nevertheless, several results are available in the literature. For the case of fixed-effects

estimators of quadratic forms, as in (37), Kline, Saggio, and Sølvsten (2020) provide conditions

for consistency, as well as inference theory, in a setup that assumes ΩpZq to be diagonal while

leaving µpZq and ΣpZq unrestricted.

The mixed models literature in statistics (as reviewed by, e.g., Jiang, 2017) provides a variety

of asymptotic results for the quantities of interest we have listed here, including for estimators

of posterior means such as (45). However, the models studied in the theoretical literature on

mixed models impose specific assumptions on ΩpZq, µpZq, and ΣpZq. In particular, a typical

assumption is that ΣpZq is a diagonal matrix, as in the so-called “mixed ANOVA” model. We

have argued here that such an assumption may be economically restrictive. For example, in

Example 3, ΣpZq is not diagonal whenever the effects of two firms j and j1 depend on each

other given Z, as happens in the model of Lentz, Piyapromdee, and Robin (2023) mentioned

in Section 5.

Under Assumption 1, which imposes normality, Heijmans and Magnus (1986b) provide

conditions for consistency of the maximum likelihood estimator (as in Remark 3) in models

with general forms of dependence across observations induced by the matrices ΩpZq and ΣpZq.

Heijmans and Magnus (1986a) provide a further set of conditions under which the maximum

likelihood estimator is asymptotically normal. Importantly, however, while their setup allows

for general forms of dependence, it relies on the assumption that the dimension of the model’s
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parameter θ is kept fixed as the sample size tends to infinity.

To make the model more flexible while keeping the number of parameters to estimate mod-

erate, a possibility is to assume that, while means and variances vary across observations, this

variation is driven by a small number of groups. For example, Bonhomme, Holzheu, Lamadon,

Manresa, Mogstad, and Setzler (2023) assume that the means and variances of worker and

firm effects depend on firm groups. Grouping methods, where group membership is estimated

using methods akin to the k-means algorithm, are theoretically justified under suitable condi-

tions (Bonhomme and Manresa, 2015, Bonhomme, Lamadon, and Manresa, 2022). Assuming

a grouped structure reduces the dimension of the model, and can allow for a simpler character-

ization of asymptotic distributions.

Given the relevance of these high-dimensional, dependent settings for the applied economic

literature, more research needs to be done regarding the formal analysis of asymptotic properties

and inference methods, both in cases where normality is assumed to hold (as in Assumption 1)

and in cases where distributions may be non-normal. We next comment on the possibility that

normality may be violated.

7 Extensions

While the normal random coefficients model provides a simple and powerful tool to estimate

heterogeneous effects in high-dimensional settings, it relies on functional forms assumptions

that may be empirically restrictive. In this final section of the paper, we briefly explore some

strategies that could be used to relax some of those assumptions.

Non-normal effects. When it is suspected that the distribution of η |Z is not truly normal,

that distribution is sometimes interpreted as a Bayesian prior. This interpretation is central to

the empirical Bayes approach, and it is often invoked in applications such as Example 2. In this

perspective, the conditional distribution of η |Y, Z in (24) can be interpreted as the posterior

distribution of η. Linear shrinkage predictors as in (45) possess attractive robustness properties

under misspecification (James and Stein, 1961).10 Moreover, estimators of nonlinear moments

based on posterior distributions (see Subsection 6.2) are less sensitive to misspecification of the

normal model compared to estimators based on the prior distribution η |Z. However, in many

applications the variance of the noise is substantial, and it is still important to correctly model

10In particular, the James-Stein linear shrinkage estimator in the normal means model achieves asymptotically

minimax expected sum-of-squares loss in Euclidean balls (see Theorem 7.48 in Wasserman, 2006).
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the distribution of η |Z.

Suppose that we maintain the normality of U |Z in Assumption 1, while leaving the con-

ditional distribution of η |Z unrestricted. Then, (8) becomes a nonparametric deconvolution

model with normal errors. Identification and estimation strategies exist in a variety of settings.

In Example 1, Kline, Rose, and Walters (2022) use Efron’s deconvolution method (Efron, 2016)

to estimate the density of firm-specific discrimination under an independence assumption. Chen

(2023) proposes a location-scale model to handle situations where the precision of the estimatespηj predicts the true ηj, assuming independence across units. He shows that this modeling

can improve the prediction performance of conditional mean estimates. Relaxing independence

across units, thereby fitting the settings of Examples 2 and 3, is an important task for future

work on these approaches.

Non-normal noise. One may also suspect that the distribution of U |Z is not normal. In

applications to Examples 1 and 2, the error V in (15) may be approximately normal even when

U |Z is not, due to the fact that V is an estimation error, hence asymptotically normal under

standard conditions as the relevant sample size tends to infinity. Approximate normality of V

will typically hold in grouped data settings as Example 1 provided that group sizes be large

enough.11 However, the normal approximation need not be accurate in other applications.12

Dealing with settings where V in (15) is not normal, and η |Z is not normal either, is

challenging. This requires using the individual outcome model (1), while allowing for a non-

normal distribution of U | Z. In panel data settings, Arellano and Bonhomme (2012) show how

to identify and estimate the distribution of U under the assumption that it follows a linear

independent factor model (see also Kotlarski, 1967, Li and Vuong, 1998, and Bonhomme and

Robin, 2010). We are not aware of extensions of such generalized deconvolution approaches to

the settings of Examples 2 and 3, however.

Nonlinear mean. Lastly, an important assumption in the RC model is that the mean out-

come is linear in η, in the sense that

E rY |Z, ηs � Zη. (52)

11For example, V may be approximately normal even when Y is a vector of binary outcomes. In Kline, Rose,

and Walters (2022), the outcomes yi are binary call-back indicators, yet estimates pηj may still be approximately

normal with variance SpZq.
12When U |Z is not normal, the right-hand side in (23) remains unbiased whenever U has zero mean given Z

and η. However, it is no longer the best predictor of η in general.
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Equation (52) has empirical and economic content. In Example 2, assuming that neighbor-

hood exposures experienced by children have a separable, constant impact on outcomes may be

restrictive (Chetty and Hendren, 2018b). In Example 3, assuming away interactions between

worker and firm effects in wages implicitly imposes restrictive assumptions on input comple-

mentarity, which in turn drives the nature of sorting patterns in many economic models (e.g.,

Becker, 1973, Eeckhout and Kircher, 2011).

Within the context of Example 3, Bonhomme, Lamadon, and Manresa (2019) show how

to allow for complementarity patterns between firm and worker effects, in a setup where they

assume that firm heterogeneity is discrete.13 More work is needed in this direction.

13In that application, the presence of complementarity between worker and firm effects can alternatively be

interpreted as reflecting individual heterogeneity in the “treatment effect” of a firm, as studied in Hull (2018).
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