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Abstract

This paper presents a unified perspective on multi-contracting in competitive markets

afflicted by adverse selection. We subsume the two polar cases of exclusive and nonexclu-

sive competition in the literature by introducing the concept of a market structure, i.e., a

trading rule that specifies the subset of sellers with whom buyers can jointly trade. Our

analysis reveals that modifying the market structure alone can alleviate perceived inef-

ficiencies in market-based mechanisms. Normative results single out the “1+1” market

structure, where buyers can trade with at most one seller from each of two subgroups.

We prove that if adverse selection is severe, adopting the “1+1” market structure Pareto-

improves upon the initial exclusive equilibrium allocation in an unregulated competitive

market. When requiring, in addition, that all purchases include a contract exceeding a

minimum quantity, the resulting equilibrium allocation is second-best efficient.
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1 Introduction

Since Akerlof (1970) first showed that markets afflicted by adverse selection1 can unravel,

economists have widely emphasized the need to regulate and in some instances outright replace

decentralized exchange with a mechanism of centralized allocation.2 Insurance markets are a

particular case in point. Adverse selection prevails in that high levels of coverage are exceed-

ingly sought by buyers with greater innate risk. Competitive allocations are seen to provide less

insurance than would be optimal even when taking into account resource and information con-

straints. In response, many countries (e.g., UK, Brazil, India) have sought to bypass adversely

selected markets by establishing publicly funded health systems.

We here argue that the presumption that market-based mechanisms are inefficient is pre-

mature and largely premised on the assumption that competition is exclusive: buyers observe

the many price-quantity contracts posted by competing sellers; they can, however, buy cover-

age from a single insurance provider only. In this paradigm, based on Rothschild and Stiglitz

(1976),3 quantity distortions are significant (see Gottlieb and Moreira (2023)) because incum-

bent sellers fear cream-skimming—competitors targeting low-risk buyers while leaving high-risk

buyers with incumbent sellers.

More recently, Attar et al. (2011, 2014, 2021, 2022) dispensed with the assumption that

sellers propose exclusive contracts. They show that if buyers can purchase arbitrarily many

contracts from different sellers, a paradigm referred to as nonexclusive competition, quantity

distortions of low-risk buyers can be alleviated while risk premia on high-risk buyers are lower.

Stiglitz et al. (2020); Asriyan and Vanasco (2023) echo these findings in related settings. De-

spite these desirable properties, normative policy prescriptions remain elusive. Exclusive and

nonexclusive equilibria are not always Pareto-ranked; pure strategy equilibria do not always

exist.4

In this paper, we adopt a unified perspective on multi-contracting. We view exclusive

and nonexclusive competition as the two polar cases within the much larger set of market

structures. A market structure specifies which sellers a buyer can jointly trade with. Examples

include market structures where policy makers cap the number of policies that buyers can

1A market is adversely selected if the least desirable informed trading partners are also those most eager to
trade.

2Low-risk agents must be incentivized or compelled to cross-subsidize high-risk agents through subsidies or
mandates Einav et al. (2010); costly pre-market trades by the planner must change the prevailing risk profile
of the market Tirole (2012), or costly verification must first restore the symmetry of risk via risk adjustments
for trade to resume Glazer and McGuire (2006).

3A version of their model allowing for withdrawal of contracts was concurrently studied by Wilson (1977).
4Nonexistence of a pure-strategy equilibrium under exclusive competition is well-explored since Rothschild

and Stiglitz (1976). See Mimra and Wambach (2014) for a survey. Azevedo and Gottlieb (2017) propose
a perturbation-based equilibrium concept that restores equilibrium existence. The Pareto-efficient allocation
among all zero profit separating allocations (cf. Riley (1979); Engers and Fernandez (1987)) prevails. Ania
et al. (2002) establish this finding in an evolutionary analysis where sellers only locally deviate from incumbent
contracts. This prediction is not anonymous, however, if pooling Pareto dominates the separating allocation
(cf. Wilson (1977); Miyazaki (1977); Netzer and Scheuer (2014)). In a recent contribution, Farinha Luz (2017)
proved existence of a unique mixed strategy equilibrium and characterized it. Attar et al. (2014) show that
under nonexclusive competition a pure-strategy equilibrium typically fails to exist when sellers post menus.
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hold, or an industry association that prohibits multiple contracting only within the subset of

member firms. In practice, the market structure is a deliberate choice that usually falls under

the purview of legislative or executive regulation. US health exchanges are an example of

institutionalized exclusive competition; life insurance and annuity markets serve as examples of

purely nonexclusive competition.5 In light of the size of these markets, understanding how the

regulator’s choice of the market structure affects the competitive equilibrium, and consequently

welfare, seems imperative.

Our game-theoretic analysis builds on the canonical adverse selection model in a compet-

itive insurance market (refer to Rothschild and Stiglitz (1976); Wilson (1977) for results on

exclusive competition and Attar et al. (2014, 2021) for results on nonexclusive competition). In

this model, sellers compete by offering price-quantity contracts. Insurance demand stems from

high- and low-risk buyers who are indistinguishable to sellers. Exclusive trading, by design, is

bound to be inefficient. As demonstrated by Crocker and Snow (1985), the set of second-best

efficient (i.e. incentive compatible and budget balanced) allocations involves both pooling and

separating contracts. Yet, simultaneous pooling and separation was previously thought of as

unattainable via a market mechanism. Rothschild and Stiglitz (1976) show that pooling is

deterred under exclusive competition, whereas Attar et al. (2014) show that low-risk separa-

tion is deterred under nonexclusive competition. A preliminary result (see Claim 1) generalizes

the set of market structures under which pooling can never occur: when sellers can offer ex-

clusive contracts, cream-skimming deviations that uniquely target low-risk buyers destabilize

any equilibrium involving pooling. Consequently, the unique equilibrium candidate for any

competitive partially exclusive market structure is the separating Rothschild-Stiglitz allocation

which often entails excessive rationing of low-risk buyers. To possibly improve welfare, empha-

sis must be placed on market structures that prohibit sellers from offering (what can be viewed

as anti-competitive) exclusive contracts.

On normative grounds, our analysis singles out the “1+1” market structure. Here, sellers are

divided into two subgroups, and buyers can trade with at most one seller from each subgroup.

In effect, trade is exclusive within groups and nonexclusive across groups. Interestingly, this

market structure largely replicates the public-private two-tier health insurance system in France,

with the one difference that the public securité sociale is now offered by a competitive private

health insurance market.6 This structure suggests an equilibrium in which all buyers purchase

the same pooling contract in group 1, and different separating contracts in group 2.

What are the advantages of restricting nonexclusive competition? More specifically, why

5The US Affordable Care Act explicitly requires qualified health plans offered on individual or group health
exchanges to limit expected out-of-pocket expenses to at most 40% (cf. Affordable Care Act, Sec. 1302(d)),
making it impossible to offer top-up plans.

6In France, all individuals subscribe to the public securité sociale—a pooling contract—and top-up to reduce
co-payments by purchasing additional private health insurance called mutuelle. Recent work by Einav and
Finkelstein (2023) endorses features of this system also for adoption in the United States. Relative to these
policy ideas, our work shows that by regulating exclusivity covenants, a regulator can achieve the same allocation
via private insurance markets.
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stipulate that contracts within the same group cannot be purchased jointly? In a fully nonex-

clusive market, any contract with a sufficiently low price per unit of coverage is liable to attract

high-risk buyers. In particular, this happens when inactive sellers pivot on existing, more at-

tractively priced low-risk contracts. By offering complementary coverage, the combined low-risk

and pivoting contracts replicate the initial coverage of the high-risk type but at a lower price.

The implication is that “Pooling + Separation” may be technically feasible, but does not oc-

cur in equilibrium because any contract solely targeting low-risk buyers will inadvertently also

attract high-risk buyers, thereby increasing its cost. The economic virtue of the “1+1” mar-

ket structure is that it shields sellers serving low-risk buyers from pivoting deviations. Unlike

under fully nonexclusive competition, the “1+1” market structure imposes that buyers have

only two buy options. If a high-risk buyer wishes to purchase a contract that pivots on the

low-risk contract in group 2, he must purchase said contract in group 1. This entails foregoing

the contract previously bought in group 1. If this contract is pooling, it is more attractively

priced than any profitable pivoting contract. In effect, pivoting deviations will fail to attract

high-risk buyers and break even if pooling is sufficiently large.

Our first main result formulates necessary conditions that must hold in equilibrium under

any given never exclusive market structure (see Theorem 1).7 The derivation of this set of

candidate equilibria relies on probing active trades with three classes of unilateral seller devia-

tions: undercutting (as in Bertrand competition), pivoting (cf. Attar et al. (2011, 2014)), and

efficiency-improvements (buyers trading the most desirable quantity at a given marginal price).

The deviations pinpoint a set of “Pooling + Separating” aggregate trades where, in addition to

pooling, low-risk buyer types almost always trade a separating contract. For fixed unit prices,

equilibrium candidates are not unique but described by a continuum: if pooling coverage is

greater under candidate 1 than 2, individuals typically purchase less separating coverage under

candidate 1 than 2 (see Proposition 2).

From a welfare perspective, never exclusive equilibrium candidates qualitatively resemble

the second-best efficient allocation: both characterize a set of “Pooling + Separating” allo-

cations. However, an important distinction remains. Unlike under second-best efficiency, an

increase in low-risk coverage, even though advantageous to low-risk buyers, will not entice

high-risk buyers to opt for the more attractively priced lesser-coverage low-risk contract. Put

differently, incentive constraints remain slack. However undesirable from a welfare perspective,

this equilibrium condition must persist; otherwise, inactive sellers could attract low-risk buyers

by proposing an alternative pooling contract with less coverage.

Our second main result (see Theorem 2) shows that any allocation that satisfies the necessary

conditions identified by Theorem 1 can be decentralized as an equilibrium under the “1+1”

market structure. A low type separating contract prevails in equilibrium. Our result establishes,

moreover, that there is no benefit in adopting any never exclusive market structure different

7The set of never exclusive market structure encompasses the “1+1” market structure by imposing the
minimal constraint that no seller contract is exclusive (which cancels the threat of pivoting).

4



from the “1+1” market structure. For the result to hold we require, as in Attar et al. (2022), the

additional flatter curvature assumption that imposes restrictions on the curvature of indifference

curves across types. As in their work, equilibrium existence hinges on so-called latent contracts,

i.e., contracts that are not traded actively in equilibrium but that play a role to deter cream-

skimming deviations uniquely targeting low-risk buyers. Analogously, we identify a principal

latent contract that can be derived via a thought experiment. Suppose that some inactive sellers

were to offer a cream-skimming contract uniquely targeting low-risk buyers. Since low-risk

buyers cross-subsidize high-risk buyers when purchasing the pooling contract, cream-skimming

can exploit potential gains from trade (to the detriment of sellers offering pooling contracts).

The flatter curvature assumption posits that there always exists an additional, latent contract so

that the latent contract and the cream-skimming contract taken together achieve greater high

type utility than the high type’s initial allocation. This ensures that large cream-skimming

deviations are never profitable. Reassuringly, Attar et al. (2022) show that quadratic utility,

as derived from constant-absolute-risk-aversion (CARA) preferences with normally distributed

health shocks (as in Einav et al. (2013); Azevedo and Gottlieb (2017)), satisfies the flatter

curvature assumption provided that low-risk buyers are weakly more risk-averse than high-risk

buyers.

We wish to stress a normative implication of both results: the choice of market structure

can be seen as a regulatory optimization problem given some utilitarian welfare objective. Our

existence result suggests that the regulator’s problem reduces to the binary choice between

the fully exclusive “1 or 1” and the never exclusive “1+1” market structure. A comparison

between equilibria under both market structures is therefore required. We show that “Pooling

+ Separating” allocations that occur under the “1+1” market structure Pareto dominate the

Rothschild-Stiglitz allocation when adverse selection and therefore rationing of low-risk buyers

is severe. By contrast, the Rothschild-Stiglitz allocation never Pareto dominates because high-

risk buyers benefit from the cross-subsidies implied by pooling contracts. A positive reading, by

contrast, suggests that the emergence of the “1+1” structure can also be understood as an infor-

mal industry agreement. Specifically, we show (see Proposition 3) that for any “Pooling + Sep-

arating” allocation, and once trade has taken place, no seller can deviate from the pre-assigned

identities and propose profitable additional trades to the buyers. We refer to this stability con-

cept as serendipitous-aftermarket-proofness in that the aftermarket occurs unexpectedly. The

Rothschild-Stiglitz allocation, by contrast, need not be serendipitous-aftermarket-proof, even

if it is an equilibrium.

Our third main result furthers this normative insight. We prove that when coupling the

“1+1” market structure with the requirement that all purchases include a group 1 contract ex-

ceeding a minimum quantity, the ensuing equilibrium allocation need not only Pareto-improve

upon the exclusive allocation but is always second-best efficient.8 Minimum quantity require-

8We emphasize the distinction between minimum quantity regulations and an insurance mandate, particu-
larly in light of the legal ruling in Texas v. United States, No. 4:18-cv-00167-O (N.D. Tex. Dec. 14, 2018),
which invalidated the insurance mandate under the Affordable Care Act. Unlike a mandate, minimum quantity
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ments can be beneficial even if the required coverage equals the amount of coverage offered in

group 1 prior to the quantity regulation. The reason is that a minimum quantity requirement

cancels all cream-skimming deviations in group 1. Absent the threat of cream-skimming, sellers

in group 2 can provide greater low-risk coverage without concurrently creating incentives for

inactive sellers to offer less pooling coverage in group 1. The main constraint for minimum

quantity regulations to be beneficial is that they are robust to pivoting deviations, i.e., they

must be sufficiently large. Largeness ensures that high-risk buyers prefer the group 1 pooling

contract and the group 2 high-risk separating contract over any profitable high-risk pivoting

contract in group 2 combined with the group 1 low-risk separating contract. A small group 1

quantity requirement is inconsequential by contrast.

We would like to note that our result exhibits features akin to a second welfare theorem.

Any second-best efficient allocation that satisfies large pooling can be decentralized as an equi-

librium if regulators impose the “1+1” market structure and a minimum quantity regulation.

Changes in the minimum quantity move the equilibrium allocation along the Pareto frontier.

A greater minimum quantity benefits high-risk buyers to the detriment of low-risk buyers. In

addition to enhancing consumer welfare, introducing a minimum quantity regulation further

stabilizes the equilibrium: The regulation dispenses with the need of sustaining an allocation

with latent contracts. Where previously latent contracts deterred cream-skimming deviations,

the minimum quantity regulation now outright bans cream-skimming deviations, thus obviating

the need to issue latent contracts to begin with.

Related Literature

Our paper relates to the literature on adverse selection in competitive markets. The dom-

inant framework is exclusive competition, introduced by Rothschild and Stiglitz (1976) with

an important contribution by Azevedo and Gottlieb (2017). A recent, burgeoning literature

considers nonexclusive competition instead. An early paper is Pauly (1974) who restricts atten-

tion to linear contracts.9 The JHG allocations was derived by Jaynes (1978), Hellwig (1988),

Glosten (1994). Our paper most closely relates to Attar et al. (2022), who share our focus on

single contracts as opposed to menus, and more broadly the research agenda on nonexclusive

competition in markets afflicted by adverse selection (see Attar et al. (2011)).10 Attar et al.

(2014) singled out the JHG allocation as the unique equilibrium candidate in competitive in-

surance markets, later shown to be the unique equilibrium allocation under a sequential auction

mechanism (see Attar et al. (2021)) and single contracting (see Attar et al. (2022)). In further

work, Stiglitz et al. (2020) consider disclosure rules that sustain the JHG allocation when sellers

requirements pertain to contract characteristics on the supply side, akin to current regulations still in effect in
U.S. health insurance marketplaces (e.g., bronze, silver, gold, or platinum plans). In contrast to a mandate,
buyers are only affected if they choose to purchase insurance.

9This restriction arises naturally in a Walrasian equilibrium where the agents’ trades cannot be monitored
as in Bisin and Gottardi (1999, 2003). Much of the literature instead focuses on competition in contracts where
sellers compete in price and the extent of coverage.

10See also the earlier and related common agency literature that employed mechanism design tools, cf. Biais
et al. (2000).
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post menus and Asriyan and Vanasco (2023); Donaldson et al. (2020) prove how nonexclusive

securitization of asset cash flows gives rise to the JHG allocation.11,12

A key assumption of our baseline model is that each seller offers only a single contract.

This rules out deviations involving a loss-making contract to high-risk buyers in group 2 and

a cream-skimming deviation to low-risk buyers in group 1. These deviations are at the heart

of the nonexistence of a pure-strategy equilibrium result in Attar et al. (2014). Introducing

regulation that penalizes issuers of loss-making contracts would restore the competitive envi-

ronment analyzed here—the set of equilibrium allocations would be unchanged—while allowing

sellers to offer a menu of contracts. Penalties on loss-making contracts are advocated for by

Attar et al. (2022) and loosely resemble cost-sharing mechanisms that pool and redistribute

costs among sellers of a standardized basic-coverage contract.13 The complementary analysis

of the unregulated menu pricing game is found in Huang (2022).14

It is a priori not clear whether multiple contracting is pro-competitive or anti-competitive.

On the one hand, and as Attar et al. (2011) argue, nonexclusive competition allows for more

possible deviations for sellers, in particular pivoting on other sellers’ contracts. On the other

hand, sellers have more tools at their disposal to block deviations through the issuance of latent

contracts. 15

There is an extensive empirical literature that tests whether adverse selection occurs (see

Chiappori and Salanie (2000); Chiappori et al. (2006)).16 As pointed out by Attar et al. (2022),

multiple contracting or nonexclusive competition likely reverses the predictions on the corre-

lation between risk and coverage on a per-contract basis. Mimra and Waibel (2021) conduct

11In Asriyan and Vanasco (2023), securities must be fully backed by the asset cash flows, thus allowing the
security originator to effectively commit to exclusive trading when pledging the entire cash flow at a given
level of return. In Donaldson et al. (2020), the security originator can instead restore exclusivity of trades in
a priori nonexclusive markets by pledging collateral. In their model, collateral claims, unlike cashflows, cannot
be diluted.

12Auster et al. (2022), building on Guerrieri et al. (2010), consider an otherwise standard directed search
model where agents can apply for several contracts. In relation to the literature on nonexclusive competition,
they show that agents’ indirect utilities conditional on already made applications can feature a reversal of
single-crossing.

13Countries using such schemes include Australia, Germany, Ireland, the Netherlands, Slovenia and Switzer-
land. Glazer and McGuire (2006) offer a more detailed description of risk-adjustments and offer a discussion of
the ”sickness fund” system in Germany.

14An equilibrium only exists under a perfect translation property of indifference curves (e.g., quadratic utility
with identical risk preferences) which is stronger than requiring the flatter curvature assumption.

15Latent contracts were first introduced in the context of competing mechanisms in the seminal paper by
Peters (2001). Since, latent contracts have mainly appeared under multiple contracting in the literature on
moral hazard. Hellwig (1983) argues that latent contracts can deter entry into the insurance market when
agents’ effort decisions are not contractible. This can result in positive equilibrium profits. In Attar et al.
(2019) latent contracts collectively sustain the monopoly profit for the sellers. Ours is the first paper on
multiple contracting in the context of adverse selection where latent contracts allow some sellers to sustain
positive profits.

16Finkelstein and Poterba (2004) study the UK annuities market and find a positive correlation between
buyers’ ex-post risk (i.e., longevity) and the coverage level purchased. Bauer et al. (2020) find evidence for
adverse selection in the secondary market for settlements of life insurance policies. Other studies point towards
the absence of adverse selection. Cawley and Philipson (1999) finds no evidence that adverse selection exists in
the primary life insurance market. Chiappori and Salanie (2000) use data on the French car insurance market
on contracts and accidents and find no evidence for adverse selection, even when considering senior drivers only.
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an experiment to assess whether the predictions of the theory on contracting under adverse

selection hold up in a laboratory environment. They show that in the context of menu-pricing

and both exclusive and nonexclusive competition the theory’s predictions match the observed

behavior. Their study design invites further investigation into the “1+1” market structure; it

would equally be helpful to see whether double-deviations that are feasible under menu-pricing

play as destructive a role in a laboratory environment as the theory suggests.

Our paper suggests that markets can perform better under segmentation—indeed, the “1+1”

market structure proposes such segmentation for policies that could a priori be sold as a single

policy. Up until now, similar positive results on market segmentation were only reported in

the context of private values: Malamud and Rostek (2017) show that equilibrium utilities in a

decentralized market can be strictly higher in the Pareto sense than in a centralized market with

the same traders and assets. Chen and Duffie (2021) argue that fragmentation induces agents

to trade more aggressively; any degree of fragmentation is welfare-superior to a centralized

financial market. And Rostek and Yoon (2021) find that multiple trading protocols that clear

independently can be designed to be at least as efficient as joint market clearing for all assets.

Finally, our welfare result complements a literature that studies market interventions un-

der exclusive competition. Minimum coverage requirements are sometimes seen to be benefi-

cial17 while also aggravating adverse selection for levels of coverage exceeding said requirement

(Azevedo and Gottlieb (2017)).18 Welfare implications of market interventions in even partially

nonexclusive insurance economies, by contrast, remain unexplored to the best of our knowledge.

This paper is organized as follows. Section 2 introduces the model and proposes the concept

of a market structure. Section 3 partitions the set of competitive market structures into par-

tially exclusive and never exclusive market structures that subsume exclusive and nonexclusive

competition as two (polar) cases. Sections 4 and 5 present our main positive results: necessary

conditions that any equilibrium candidate under a never exclusive competitive market struc-

ture must satisfy, and an equilibrium existence result. In particular, we prove the existence of

“Pooling + Separating” equilibrium allocations that have never been studied before. Finally,

Section 6 explores normative and positive implications. Here we prove our main normative

result: imposing that competition—as governed by the “1+1” market structure —be partially

nonexclusive and jointly introducing a minimum requirement on group 1 coverage results in an

equilibrium that is second-best efficient. If adverse selection is severe, the equilibrium moreover

Pareto-improves upon the separating exclusive equilibrium.

17See also Neudeck and Podczeck (1996), Encinosa (2001), McFadden et al. (2015) who build on the Grossman
(1979) equilibrium concept.

18Veiga and Levy (2023) expand on the welfare implications of regulating contract characteristics in exclusive
markets.
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2 Set-up

We here introduce a model of strategic price-setting in a competitive market plagued by adverse

selection. The common interpretation given to this model is that of an insurance economy in

which buyers with an exogenously given high- and low-risk profile purchase coverage in exchange

for a premium.

Our description of the economy (preferences, cost and the space of admissible contracts) is

identical to that in Attar et al. (2021), Attar et al. (2022) and encompasses the classical set-up

in Rothschild and Stiglitz (1976). We innovate in that we introduce the concept of a market

structure, i.e., a trading rule that specifies the subsets of sellers whom the buyers can jointly

with. The definition admits as special cases the market structures where each buyer can trade

with at most one (exclusive competition) and with arbitrarily many (nonexclusive competition)

sellers.

2.1 The Contracting Environment

We consider a finite set of sellers K = {1, ..., K} and a continuum of buyers that are character-

ized by their type θ ∈ {L,H}. Sellers compete by proposing contracts (qk, tk) ∈ R2
+ specifying

a quantity and a transfer. Types are non-contractible so that all buyers can select identical

trades if they so wish.

Preferences. Buyers view sellers as perfect substitutes, so that their preferences can be

represented over aggregate trades: Denote M ⊂ {1, ..., K} a subset of sellers that buyer type

θ trades with and Q =
∑
k∈M

qk and T =
∑
k∈M

tk the corresponding aggregate quantity and

transfer. Preferences over aggregate trades are represented by a utility function Uθ(Q, T ) that

is increasing in Q and decreasing in T and that satisfies the following assumptions:

First, we impose regularity conditions so that the buyer’s demand is well-behaved.19

Assumption 1 (quasi-concavity). Uθ(Q, T ) is strictly quasi-concave, i.e. ∀α ∈ (0, 1), and

(Q1, T1) ̸= (Q2, T2) it holds that Uθ(α(Q1, T1)+ (1−α)(Q2, T2)) > min{Uθ(Q1, T1), Uθ(Q2, T2)}.

Assumption 2 (finite demand). argmax
Q≥0

Uθ(Q,Qcx) is finite ∀ cx > 0 and θ ∈ {L,H}.

Notice that strict quasi-concavity implies that argmax
Q≥0

Uθ(Q,Qcx) is a singleton.

Second, we assume that types are ordered so that high buyer types’ demand exceeds low

buyer types’ demand:20

Assumption 3 (single-crossing). For all (Q, T ) and (Q′, T ′) so that Q′ > Q it holds that

UL(Q
′, T ′) ≥ UL(Q, T ) ⇒ UH(Q

′, T ′) > UH(Q, T ).

19In Section 5 we introduce further regularity conditions that ensure the existence of an equilibrium.
20Provided that utility is differentiable, this is equivalent to assuming that the slope of the indifference curve

τH(Q,T ) = −∂1Uθ(Q,T )
∂2Uθ(Q,T ) is greater for higher types, i.e., τH(Q,T ) > τL(Q,T ).
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Cost. Trading a contract (q, t) with a buyer type θ earns the seller an expected profit t− cθq.

Here cθ denotes the marginal cost of serving type θ. In line with a model of adverse selection,

we assume that those buyer types most eager to trade, i.e., high types H, are also the most

costly to serve.

Assumption 4 (Adverse Selection). cH > cL.

Finally, denote mH the proportion of type H and mL the proportion of type L buyers so

that the average marginal cost is c = cHmH + cLmL.

2.2 Market Structure

The key innovation of our framework is the concept of a market structure. A market structure

specifies which sellers a buyer can jointly trade with.

Definition 1. A market structure M is a (non-empty) collection of subsets of sellers with

whom a buyer can jointly trade: M ⊆ P({1, ..., K}) ≡ P({all sellers}).

The two polar cases considered in the literature are defined as follows:

Example 1. (i) Exclusive competition M =
{
∅, {1}, {2}, ..., {K}

}
.

(ii) Nonexclusive competition : M = P({1, ..., K})

Here P({1, ..., K}) denotes the power set, i.e., the set of all subsets of {1, ..., K}.
In line with the two polar cases of exclusive and nonexclusive market structures, our focus is

on competitive market structures. Therefore, we require that buyers can decline sellers’ offers

and that each seller is replaceable.

Definition 2. A market structure M is competitive if

� buyers can trade with any subset of a feasible set of trading partners, i.e., for all M ∈ M
and j ∈ K, if j ∈ M , then also M \ {j} ∈ M;

� each seller is twice replaceable, i.e. for all M ∈ M and j ∈ K, if j ∈ M , then there exist

distinct k1, k2 ∈ K \M so that M ∪ {k1} \ {j} ∈ M and M ∪ {k2} \ {j} ∈ M.

The ability to decline offers allows buyers to play some sellers against others by threatening

to accept only a subset of the offers they receive. Bernheim and Whinston (1986) call this

arrangement delegated common agency. Less intuitively, our definition insists that sellers be

twice replaceable. This requirement ensures that an active seller is always competing with an

inactive seller, preserving undercutting incentives.21

21If seller h had only one replacement seller, ℓ, it is conceivable that seller ℓ also has only one replacement
seller, h. This scenario would allow sellers h and ℓ to collude, with one seller profitably serving high types and
the other profitably serving low types.
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2.3 Equilibrium

One can imagine a benevolent regulator that decides on the jointly feasible trades before the

market opens. For now we shall take the (competitive) market structure as given and focus

our analysis on the ensuing equilibria. Welfare considerations that can inform the selection of

different market structures will be discussed in Section 7.

The Simultaneous Move Game. We consider a competitive screening game in which firms

compete by each posting a single contract.22 Given a fixed market structureM ∈ P({1, ..., K}),
the game unfolds as follows:

� Stage 1: Each seller k proposes a contract (qk, tk) ∈ R2
+.

� Stage 2: Each buyer learns her type, selects someM ∈ M and derives utility Uθ

( ∑
k∈M

qk,
∑
k∈M

tk
)
.

Our equilibrium concept is standard:

Definition 3 (Equilibrium). A pure strategy perfect Bayesian equilibrium (PBE) specifies, for a

fixed market structure M, buyer strategies S = (Sθ)θ∈{L,H} and seller contracts C = (qk, tk)k∈K.

Optimality of individual choices and consistency of the sellers’ beliefs entail that:

� Each buyer type’s strategy Sθ selects a set of sellers M ∈ M that collectively offers the

most advantageous contracts:

Sθ

(
C ′) ∈ argmax

M∈M
Uθ

(∑
k∈M

qk,
∑
k∈M

tk
)

∀ C ′ ∈ R2K
+ .

� Individual seller k offers a contract (qk, tk) that is profit-maximizing given the contracts

offered by their competitors and anticipating the buyers’ choices:

(qk, tk) ∈ argmax
(q′k,t′k)∈R2

+

∑
θ∈{L,H}

[
t′k − cθ q

′k]mθ 1
{
k ∈ Sθ

(
{(qℓ, tℓ), (q′k, t′k)}ℓ̸=k

)}
.

An immediate consequence of our focus on PBE is that along the equilibrium path we can

distinguish between active sellers and inactive sellers. Active sellers propose contracts that are

actively traded, inactive sellers may propose so called latent contracts. As we shall see, latent

contracts play an important role to sustain an equilibrium (if it exists).

22Our focus on single contracts avoids the issue of some sellers offering loss-making contracts on the equilibrium
path. Alternatively, we can consider a regulated insurance market (as discussed in Attar et al. (2022)) in which
sellers face heavy fines if some contracts on their menu incur a loss. The restriction that contracts must not be
loss-making is crucial in our environment. In a companion paper, Huang (2022) shows that when firms can post
menus instead of single contracts, an equilibrium often fails to exist for certain parameter values, even when it
exists in our set-up. The unique equilibrium allocation, if it exists, is the JHG allocation studied in the next
section.
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3 Partially and Never Exclusive Market Structures

As a precursor to our main results, we here introduce a partition of the set of competitive market

structures into two disjoint subsets. We show that if the market structure permits exclusive

trades, then the Rothschild-Stiglitz separating allocation is the unique equilibrium candidate

allocation. Conversely, we show that if the market structure prohibits exclusive trades, then

any admissible equilibrium candidate allocation is at least partially pooling. This serves as

a precursor to our subsequent analysis which will be concerned with characterizing the set of

non-separating equilibria when the market structure is never exclusive.

3.1 Partially Exclusive Market Structures

The most prominently discussed equilibrium candidate in the literature is the Rothschild-

Stiglitz separating allocation. It is defined as follows:

Definition 4 (Rothschild-Stiglitz (RS)). The RS allocation is the separating allocation (QRS
L , TRS

L )

and (QRS
H , TRS

H ) where, subject to UH(Q
RS
H , TRS

H ) ≥ UH(Q
RS
L , TRS

L ),

QRS
H = argmax

QH≥0
UH(QH , cHQH), TRS

H = cHQ
RS
H

QRS
L = argmax

QL≥0
UL(QL, cLQL), TRS

L = cLQ
RS
H .

This allocation usually entails rationing (as depicted in the left panel of Figure 1): low

type buyers would like to purchase more quantity at the low unit price cL offered. The sellers,

by contrast, refuse to provide more coverage because they anticipate that doing so would also

attract high type buyers who are more costly to serve. Rothschild and Stiglitz (1976) show that

the RS separating allocation is the unique equilibrium candidate when the market structure is

exclusive.

We extend this result and introduce the largest class of market structures for which the RS

allocation is the unique equilibrium candidate. This class, rather than imposing that all sellers

can offer exclusive trades, only requires that some seller can offer exclusive contracts. (Since

each seller is twice replaceable, the presence of one exclusive seller implies that there are at

least three sellers that offer exclusive contracts.) If a market structure satisfies this property,

we say that the market structure is partially exclusive.

Definition 5. A market structure M is partially exclusive if there exists a seller that trades

exclusively, i.e., max
M∈M:k∈M

|M | = 1 for some k ∈ K.

The right to offer an exclusive contract gives sellers the ability to destabilize any partially

pooling equilibrium via cream-skimming deviations, i.e., deviations that uniquely target low

type (and low cost) buyers. It follows that any equilibrium allocation must be fully-separating.

Efficiency arguments then imply that the separating equilibrium candidate is uniquely defined.

12
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Figure 1: Rothschild-Stiglitz (RS) and Jaynes-Hellwig-Glosten (JHG) allocation

Claim 1. Posit Assumptions 3 and 4 . The RS separating allocation is the unique equilibrium

candidate allocation under a partially exclusive and competitive market structure.

3.2 Never Exclusive Market Structures

We now consider the complement to partially exclusive market structures: no seller can offer an

exclusive contract that prohibits further trade with other sellers. If so, we say that the market

structure is never exclusive.

Definition 6. A market structure M is never-exclusive if no seller exclusively trades with

buyers, i.e., max
M∈M:k∈M

|M | ≠ 1 for all k ∈ K.

Nonexclusive competition is an example of a never exclusive market structure. Another

example of a never exclusive market structure —indeed the key example —is the following:

Example 2 (“1+1” market structure). M is a “1+1” market structure if the sellers K =

{1, ..., K} can be partitioned into two disjoint subgroups K1 and K2 so that buyers can never

trade with two sellers from the same subgroup at the same time:

M =
{
{j, k} : j ∈ K1 ∪ {∅}, k ∈ K2 ∪ {∅}

}
.

In contrast to partially exclusive market structures, never exclusive market structures never

admit fully-separating equilibria. This means that if a (non-trivial) equilibrium exists, some

sellers must actively trade a pooling contract with both buyer types.
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All Sellers

1 seller

1 seller

Aggregate
trade “1+1”

Figure 2: The “1+1” market structure. Buyers select at most one seller from each subgroup.

Claim 2. Posit Assumptions 3 and 4. No allocation that is fully-separating can occur as an

equilibrium allocation under a never exclusive and competitive market structure.

This claim is due to a pivoting argument: Suppose that some seller exclusively trades

with low type buyers. Since the separating contract has low unit cost, there always exists a

profitable complementary contract so that both the separating and the complementary contract

taken together match the high type’s quantity allocation at a lower total price. In particular,

following the introduction of the complementary contract, the initially separating contract is

pooling and loss-making.

If not fully-separating, what will be the equilibrium? One candidate is given by the Jaynes-

Hellwig-Glosten allocation. This allocation consists of two competitively priced layers: a basic

pooling layer and an additional layer purchased only by high type buyers. In a series of recent

contributions, Attar et al. (2022) show that the JHG allocation is the unique equilibrium candi-

date when the market structure is nonexclusive. As the next section shows, the JHG allocation

remains a viable equilibrium candidate when considering the larger class of never exclusive mar-

ket structures. The more surprising insight is that many other equilibrium candidates become

viable, too.

Definition 7 (Jaynes-Hellwig-Glosten (JHG)). The JHG allocation is the partially pooling

allocation (QJHG
L , T JHG

L ) and (QJHG
H , T JHG

H ) where

QJHG

L = argmax
Q≥0

UL(Q, cQ) and QJHG

H −QJHG

L = argmax
Q≥0

UH(Q
JHG

L +Q, T JHG

L + cHQ),

purchased at actuarially fair transfers T JHG
L = cQJHG

L and T JHG
H − T JHG

H = cH(Q
JHG
H −QJHG

L ).

4 Non-Fully-Separating Equilibrium Candidates

The preceding section shows: if an equilibrium exists, the ensuing allocation will be non-fully-

separating if and only if the market structure is never exclusive. But what are the possible

partially pooling allocations that can occur in equilibrium? A characterization extending be-

yond the example of the JHG allocation is still missing. We here consider arbitrary competitive

(and in light of Claim 1 necessarily never exclusive) market structures. Our objective in this sec-

tion is to present four necessary conditions that any non-fully-separating equilibrium allocation

must satisfy.
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An allocation consists of the sum of trades of the low type, (QL, TL), and the sum of trades

of the high type, (QH , TH). Clearly, equilibrium allocations must be incentive compatible, that

is the high (low) type prefers her allocation over the low (high) type’s allocation.

Condition 1 (Incentive Compatibility). An allocation (QL, TL) and (QH , TH) is incentive com-

patible if UL(QL, TL) ≥ UL(QH , TH) and UH(QH , TH) ≥ UH(QL, TL).

In general, thinking in terms of allocations is imprecise. Since high buyer types are more

costly to serve than low types, we must distinguish between contracts purchased by low, high

and both buyer types. Refer to these as the aggregate active trades (qL, tL), (qH , tH) and

(QP , TP ). Then (QL, TL) = (QP + qL, TP + tL) and (QH , TH) = (QP + qH , TP + tH).

4.1 Necessary Conditions

As is commonly the case in competitive equilibrium we identify the set of equilibrium candidates

via possible seller and buyer one-shot deviations.

4.1.1 Undercutting and Pivoting

Much insight can be won by probing a candidate equilibrium with two kinds of seller deviations

only: undercutting, i.e., sell the same quantity of an existing active contract for less, and

pivoting, ask the buyer to combine an existing contract with a deviating contract without

changing the aggregate quantity traded. Undercutting deviations are well-understood in the

context of Bertrand competition. Pivoting deviations have been extensively explored in the

context of non-exclusive competition but may in general be less well-known. What is important

to observe is that neither deviation requires actual knowledge of the buyers’ preferences. This

makes necessary conditions derived from this class of deviations particularly robust.

Condition 2. Active trades are single-seller separating and competitively priced if

(i) each component is competitively priced, i.e.,

tℓ ∈ qℓ[cL, c], th = qhcH and tp = qpc

for all ℓ ∈ ML\MH and h ∈ MH\ML and p∈ML∩MH ;

(ii) the low type separating component, if non-zero, is actively traded by a single seller only,

i.e., |ML\MH | = 1.

Proposition 1. Posit Assumptions 1, 3 and 4. Active trades that occur in a non-fully-

separating equilibrium under a competitive market structure are competitively priced and single-

seller separating.
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The idea that all contracts must be competitively priced is reminiscent of Bertrand com-

petition. What is concerning is that it does not apply to the low type contract. Serving the

low type is potentially profitable. The reason is that by undercutting a contract exclusively

targeting low type buyers one may also attract high type buyers, thereby greatly increasing the

cost of said contract.

The key insight here is that sellers can be endogenously separated into two groups, K1

and K2, so that along the equilibrium path sellers in group one sell pooling contracts and

sellers in group two sell separating contracts. Denote (QP , TP ) =
∑

k∈ML∩MH
(qk, tk) the sum

of active pooling contracts and (qL, tL), (qH , tH) the (sum of) active separating contracts. The

parentheses are warranted, for Proposition 1 asserts that (qL, tL) is in fact a single contract.

Single-seller separation must occur because of possible pivoting deviations. To see why, suppose

there were (at least) two sellers that exclusively trade with low type buyers, e.g., qL = q1L + q2L.

Then possible undercutting deviations ensure that none of them makes a profit. Yet one of the

two, say seller one, could pivot on seller two’s contract traded in conjunction with the aggregate

pooling trade (QP , TP ) and propose the quantity QH−q1L−QP at a unit price slightly exceeding

cH (and thereby be profitable). Due to (q2L, t
2
L) being priced competitively (at unit cost cL),

high type buyers must be strictly better off following this deviation.

Proposition 1 opens up the possibility of separation of low type buyers. Whether this can

happen is a property of the prevailing market structure. (It does for some). A consequence of

another pivoting deviation is however that the separating contract must be sufficiently small

vis-à-vis the aggregate pooling quantity.

Condition 3 (large pooling). Active aggregate trades are largely pooling if

TH − TL + TP ≤ cH(QH −QL +QP ).

Condition 3 prevents pivoting deviations that target the high type: complement type L’s

separating contract (qL, tL) with a pivoting contract promising quantity (QH − qL). Trading

the pivoting contract is potentially attractive, because high type buyers benefit from the lower

unit cost of the separating contract (qL, tL). Previously, they elected not to trade this contract

because it forced them to forfeit some (if not all) of the contracts that made up the aggregate

separating trade (qH , tH). Yet by complementing the low type’s separating contract, high type

buyers can now purchase the same aggregate quantity as before. Condition 3 ensures that

rendering this deviation incentive compatible is too costly to the seller. Indeed, the pivoting

contract comprises quantity QH − qL = QH −QL+QP which includes the pooling segment QP .

The cost of this segment is higher than before, because the pivoting unlike the pooling contract

exclusively targets high type buyers.

Lemma 1. Posit Assumptions 1, 2, 3 and 4. Any aggregate active trades that occur in a

non-fully-separating equilibrium under a competitive market structure are largely pooling.

Due to competitive pricing asserted by Proposition 1, the lower bound on the pooling
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quantity can be expressed more explicitly. Competitive pricing, e.g., Condition 2, implies that

TP = cQP and TH − TP = cH(QH −QP ). Then Condition 3 re-writes as follows:

cHqL − tL ≤ (cH − c)QP .

4.1.2 Efficiency-improving Deviations

Undercutting and pivoting deviations only require the seller to observe which trades are active.

They do not require the seller to know the buyers’ preferences. We now consider properties of

any equilibrium that must hold due to possible efficiency-improving deviations.

Condition 4 (conditional efficiency). Active aggregate trades are conditionally efficient if QP ∈
argmax

Q≥0
UL(Q + qL, Qc + tH), and qH ∈ argmax

q≥0
UH(QP + q, TP + qcH) whenever qH > 0. If

instead qH = qL = 0, it must hold that max
q≥0

UH(1/2QP + q, 1/2QP c+ qcH) ≤ UH(QP , QP c).

Of course, assuming that indifference curves are continuously differentiable, this is equivalent

to requiring that the slope of the indifference curve satisfies τL(QP + qL, TP + tL) = c whenever

QP > 0 and τH(QP + qH , TP + tH) = cH whenever qH > 0.

Condition 4 is motivated as follows. Fix as a unit price the lower tail expectation, i.e.,

the expected unit cost conditional on all buyer types greater than oneself purchasing the same

contract. If a buyer wanted to trade at this price to deviate from the candidate allocation, the

desire to trade would not go away if the unit price were slightly less favorable to him. Since

this price is profitable to the sellers, we should expect that any such gain from trade will be

exploited in equilibrium.23

Lemma 2. Posit Assumptions 1, 2, 3 and 4. Any aggregate active trades that occur in a non-

fully-separating equilibrium under a competitive market structure are conditionally efficient.

Review of the Necessary Conditions

We now take stock and summarize in a single theorem the findings of Proposition 1, Lemma 1

and Lemma 2.

Theorem 1. Posit Assumptions 1, 2, 3 and 4. Active trades that occur in a non-fully-separating

equilibrium are single-seller separating. Moreover, aggregate active trades satisfy Conditions 1,

2, 3 and 4, i.e., are incentive compatible, competitively priced, largely pooling and conditionally

efficient.

23 The case where QH = QP , yet max
q≥0

UH(QP + q,QP c + qcH) > UH(QP , QP c) is pathological. It allows

for situations in which the high type would like to purchase additional coverage at unit price cH but cannot,
because he has exhausted his purchasing options in both groups by choosing pooling contracts. Efficiency would
suggest that only one group should offer (the entire) pooling contract (QP , QP c), to liberate the high buyer
type’s option of purchasing a separating contract in the other group. This could only arise due to a coordination
failure among sellers. We view such coordination failure as implausible: profitable deviations exist if two sellers
from both groups could simultaneously deviate.
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4.2 Existence of an Equilibrium Candidate

How can we ensure that aggregate active trades satisfying Conditions 1, 2, 3 and 4 do exist?

First, observe that the set of equilibrium candidates is non-empty: the JHG allocation is an

admissible candidate. Do there exist other? And how large a space do they comprise?

If we fix the low type contract’s unit price cx ∈ [cL, c), the equilibrium candidate is uniquely

determined by the pooling quantity QP . TP follows from competitive pricing, and (qH , qHcH)

and (qL, qLcx) are uniquely determined by conditional efficiency. Visually, one may walk along

the separating cH and cx-unit cost lines emanating from the pooling allocation until one finds

the separating trades that satisfy conditional efficiency.

Uniqueness of qH and qL, however, is conditional on the competitively priced pooling allo-

cation (QP , QP c). And as we now shall see, many pooling quantities QP are conceivable. For

every low type unit price cx ∈ [cL, c) there exists an open set of equilibrium candidates. This

stands in contrast to the unique equilibrium candidates that have been identified for exclu-

sive and nonexclusive market structures. To show this result, we must slightly strengthen our

assumptions: we require that utility is strictly quasi-concave and twice continuously differen-

tiable.

Assumption 5. The utility function of buyers Uθ(Q, T ) is twice continuously and differentiable.

Proposition 2 (Existence of a continuum of equilibrium candidates). Posit Assumptions 1,

2, 3, 4 and 5. Then for all cx ∈ [cL, c] there exist Q
x
, Qx : 1

2
QJHG

L ≤ Q
x

≤ QJHG
L ≤

Qx so that for all QP ∈ [Q
x
, Qx] there exists unique qL, qH and associated aggregate trades

(qL, qLcx), (qH , qHcH) and (QP , QP c) that satisfy Conditions 1, 2, 3 and 4. If, moreover,

QJHG
H > QJHG

L , then the set of equilibrium candidates is a continuum, i.e., Qx > Q
x
.

Note that typically (but not always) Qx = QJHG
L . Figure 3 illustrates the set of candidate

allocations that are consistent with Conditions 1, 2, 3 and 4 when utility is quasi-linear.

4.3 Welfare Comparison

A wealth of equilibrium candidates is sometimes viewed with suspicion. Here it should not.

Within the set of “Pooling + Separating” equilibrium candidates, no allocation is typically

more plausible than another. Indeed, in most cases, high and low types Pareto-rank the set of

candidates in opposite directions: high-type buyers prefer greater pooling over less, whereas for

low types, increased pooling is generally accompanied by a reduction in the separating quantity,

making low-risk buyers worse off overall.24 What is evident is that high-risk buyers are always

24One can construct an exceptional example where, contrary to intuition, the greatest admissible pooling
allocation involves low-risk buyers purchasing a separating contract on top. In such a case, trivially, the
greatest admissible pooling allocation Pareto-improves upon the JHG allocation. The necessary and sufficient
condition for this to occur is that there exists a cx > cL for which the directional (1, cx)-derivative of the low-risk
indifference curve is zero, i.e., DQIL(QJHG

L , T JHG
L ) + DTIL(QJHG

L , T JHG
L )cx = 0. If satisfied, there exists a

JHG-utility-surpassing low-risk indifference curve whose slope for some (Q,T ) above the low-risk separating
zero-profit line emanating from the JHG allocation is c.
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better off under any “Pooling + Separating” equilibrium allocation than under the Rothschild-

Stiglitz allocation resulting from exclusive competition. Similar to the previous comparison,

this is due to cross-subsidies from low to high-risk buyers. Moreover, in situations where adverse

selection is severe and the Rothschild-Stiglitz allocation leads to significant rationing of low-risk

types, the low type benefits from purchasing a greater coverage amount at a higher unit price

in a “Pooling + Separating” equilibrium.

Example 3 (Quasi-Linear Utility). Consider quasi-linear utility, i.e., preferences Uθ(Q, T ) =

Uθ(Q) − T that are linear in transfers for both types. Here the amount of transfers paid does

not affect preferences over coverage and is an appropriate assumption when T is small, e.g.,

because rare tail risks are being insured. Then the aggregate quantities QL and QH are uniquely

determined due to conditional efficiency. And pooling has a purely distributional effect: more

pooling benefits high-risk buyers as it lowers their premia at the expense of raised low-risk

premia.

5 Existence of Non-Fully-Separating Equilibria

The existence of a pure strategy Bayesian equilibrium is a thorny issue. As Rothschild-Stiglitz

and Attar-Mariotti-Salanié show, pure strategy equilibria may fail to exist, and do so for un-

related reasons. In partially exclusive markets, pooling deviations can unravel separating allo-

cations when the proportion of low type buyers is sufficiently large. In nonexclusive markets,

Attar et al. (2022) demonstrate that the existence of a PBE can be guaranteed by imposing a

further curvature assumption on the buyers’ utility functions.

In this section, we establish a sweeping existence result. Maintaining the same curvature

assumption as in Attar et al. (2022), we show that any set of aggregate trades that satisfy

our necessary conditions can occur in an equilibrium under the “1+1” market structure. In

particular, it follows from here that from a regulator’s point of view this simplest never exclusive

market structure is sufficient to implement any equilibrium allocation that occurs for some never

exclusive and competitive market structure.

5.1 Cream-Skimming Deviations and Latent Contracts

What can destabilize an equilibrium allocation are cream-skimming deviations: a cream-

skimming deviation is a contract (q′, t′) that (the more profitable) low type buyers find attrac-

tive, whereas high type buyers prefer their initial allocation (QH , TH). In partially exclusive

markets the possibility of cream-skimming deviations alone guarantees that any equilibrium

candidate must be fully-separating. In never exclusive markets, by contrast, competing sellers

have more tools at their disposal to ”block” a cream-skimming deviation, i.e., render it attrac-

tive to (less profitable) high type buyers also. These tools are contracts that are not traded

actively in equilibrium. The literature calls these latent contracts.
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The purpose of the flatter curvature assumption (Assumption 6) is to identify a principal

latent contract that can block large cream-skimming deviations, i.e., contracts (q′, t′) that (the

more profitable) low type buyers find attractive on a stand-alone basis. The latent contract

blocks such a cream-skimming deviation if, when combining contract (q′, t′) with the latent

contract (qℓ, tℓ), also high type buyers find it advantageous to purchase contract (q′, t′). If so,

the unit cost of the deviating contract is c, and so it can never be at the same time profitable

and attract the low type.25

5.2 Flatter Curvature Assumption

We will first introduce the flatter curvature assumption as a property that resembles increasing

differences. This representation highlights why the flatter curvature assumption is sufficient to

block cream-skimming deviations. We will then discuss geometric implications for the slope of

translated indifference curves.26

Assumption 6 (flatter-curvature). UL(q, t) is of flatter-curvature than UH(q, t) if for all

(QL, TL), (QH , TH) satisfying UH(QH , TH) ≥ UH(QL, TL) there exists (qℓ, tℓ) so that

UL(q
′, t′) > UL(QL, TL) ⇒ UH(q

ℓ + q′, tℓ + t′) > UH(q
ℓ +QL, t

ℓ + TL) for all (q′, t′)

where UH(q
ℓ +QL, t

ℓ + TL) = UH(QH , TH).

It is readily apparent from here that the latent contract (qℓ, tℓ) does indeed block a large

cream-skimming deviation (q′, t′). As to the required latent contract, it is uniquely pinned

down by a tangency condition: the high type’s utility when trading (QL + qℓ, TL + tℓ) must lie

on the on same indifference curve as (QH , TH) and be tangent to average unit cost c. Since the

indifference curve’s slope is uniquely defined, so is the latent contract.

Lemma 3. Posit Assumptions 5 and Condition 4. Then for given (QL, TL) and (QH , TH) the

principal latent contract as given by Assumption 6 is unique, and for this contract it holds that

max
q

UH(QL + qℓ + q, TL + tℓ + q c) = UH(QL + qℓ, TL + tℓ).

25The terminology principal latent contract is motivated by the fact that further latent contracts are required.
Indeed, the presence of the principal latent contract invites the possibility of pivoting: complement the latent
contract with a deviating contract proposed by an inactive seller. Such a deviation motivates further, derivative
latent contracts that block the pivoting contract. And those derivative latent contracts invite even further
pivoting deviations. Since, as we shall see, latent contracts are pricey, i.e., tℓ > qℓc, this motivates a problem of
finite regress only so that finitely many latent contracts suffice to sustain the equilibrium allocation.

26The importance of latent contracts in stabilizing an equilibrium is not a new insight. Assumptions 5 and 6,
however presented in a new guise, are equivalent to Assumption C in Attar et al. (2022). They also provide a
characterization in the context of the classical preferences over final wealth when types encode the probability
of suffering a loss considered by Rothschild-Stiglitz Rothschild and Stiglitz (1976) (also more recently studied
by Chade and Schlee (2012)): Uθ(Q,T ) = pθuθ(w − (1−Q)ℓ− T ) + (1− pθ)u(w − T ). More specifically, they

show that if low type consumers are uniformly weakly more risk-averse, i.e., if min
w

−v′′
L(w)

v′
L(w) > max

w
− v′′

H(w)
v′

H(w) ,

then the flatter curvature assumption holds. CARA utility with a weakly greater coefficient of risk-aversion for
low types is one common and admissible example.
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Some readers may object to the flatter-curvature assumption on the grounds that it operates

on an object that is endogenous to preferences, namely the set of incentive compatible alloca-

tions. This reading is perhaps misled by our presentation that emphasizes the assumption’s

connection to the question of equilibrium existence. To the contrary, a representation in terms

of indifference curves shows that the flatter curvature assumption acts in the same domain as

the more standard single-crossing assumption.

Lemma 4. Posit Assumption 5 so that indifference curves I ūθ
θ (Qθ), as given by Uθ(Qθ, I ūθ

θ (Qθ)) =

ūθ, are twice differentiable. Then Assumption 6 holds if for all QH ≥ QL and ūH , ūL

İ ūH
H (QH) = İ ūL

L (QL) ⇒ Ï ūH
H (QH) ≥ Ï ūL

L (QL).

Proof. Assumption 6 holds if

UL(QL + q, TL + t) > UL(QL + q, IUL(QL,TL)
L (QL + q))

⇒ UH(QH + q, TH + t) > UH(QH + q, IUH(QH ,TH)
H (QH + q)).

To see this, set qℓ = QH − QL, t
ℓ = TH − TL and q′ = QL + q, t′ = TL + t.) Equivalently, we

require that for all ūL, ūH

I ūL
L (QL) + t < I ūL

L (QL + q) ⇒ I ūH
H (QH) + t < I ūH

H (QH + q).

Then set ūL = UL(QL, TL) and ūH = UH(QH , TH). Assuming differentiability of the utility

functions, this is equivalent to assuming that for all quantities QH , QL and utility levels it

holds that İ ūH
H (QH + q) ≥ İ ūL

L (QL + q) for q > 0 and İ ūH
H (QH + q) ≤ İ ūL

L (QL + q) for q < 0.

If second-order derivatives exist, this is equivalent to requiring that Ï ūH
H (QH) ≥ Ï ūL

L (QL) when

first-order derivatives coincide.27

Example 4 (CARA utility with exponential shocks). We follow Einav et al. (2013); Azevedo

and Gottlieb (2017); Farinha Luz et al. (2023): insurance coverage Q ∈ [0, 1] specifies the

fraction of health expenditures that are reimbursed. Insurees face normally distributed health

shocks. Expected utility is quasi-linear and equal to

Uθ(Q, T ) = cθQ− γθ
2
(1−Q)2 − T.

The parameter cθ is the mean expected health shock and coincides with the seller’s marginal

cost. γθ rises in the variance of health shocks and the degree of risk aversion. Then the flatter

27Note that

Ï ūθ

θ (Q) =
−D2

11Uθ(·)(D2Uθ(·))2 + 2D2
12Uθ(·)D1Uθ(·)D2Uθ(·)−D2

22Uθ(·)(D1Uθ(·))2

(D2Uθ(·))3
.

In particular, if utility is quasi-linear, i.e., of the form Uθ(Q,T ) = Uθ(Q)− T , the curvature of the indifference
curve satisfies Ï ūθ

θ (Qθ) = Üθ(Q).
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Figure 3: The “1+1” equilibria. The continuum of equilibrium allocations is drawn and located
at the endpoints of the individual zero-profit lines. Partial efficiency dictates high and low-risk
aggregate coverage. Under quasi-linear utility, aggregate coverage is not affected by the extent
of pooling which exclusively determines the amount of cross-subsidies paid from low to high-risk
buyers. Notice that all incentive constraints are slack.

curvature assumption holds iff γH ≤ γL, meaning that high-risk buyers are either more risk-

averse or indeed riskier (as measured by the variance of the normally distributed health shocks)

or both.

5.3 The Equilibrium Existence Theorem

Equipped with the flatter curvature assumption, we can state our main existence result.

Theorem 2. Posit Assumptions 1, 2, 3, 4 and 6. Any non-fully-separating aggregate active

trades that satisfy Conditions 1, 2, 3 and 4 can occur in an equilibrium under the “1+1” market

structure.

This is a positive result: a PBE may fail to exist for many market structures. Yet under

the stated assumptions a PBE always exists under the “1+1” market structure. Moreover, if a

PBE exists for some competitive market structure, we need not look further than at the more

familiar “1+1” or exlusive ”1 or 1” market structures, for the same allocation can also occur

as an equilibrium here.

Corollary 1. Posit Assumptions 1, 2, 3, 4. Any equilibrium allocation that occurs under a

never exclusive competitive market structure is also an equilibrium allocation under the “1+1”

market structure. Any equilibrium allocation that occurs under a partially exclusive competitive

market structure is also an equilibrium allocation under the “1 or 1” market structure.

The first part of the corollary is an immediate consequence of Theorem 1 because our

assumptions guarantee that any non-fully-separating equilibrium trades must satisfy Conditions
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1, 2, 3 and 4 (see Proposition 1, Lemma 1 and Lemma 2). And the second part of the corollary

is a reminder of Claim 1.

6 Positive Implications

In the introduction, we had emphasized two viewpoints that one can adopt vis-à-vis the concept

of a market structure. We here pursue the positive viewpoint. In particular, we assess the plau-

sibility of our equilibrium predictions and introduce an equilibrium refinement—serendipitous-

aftermarket-proofness—in competitive markets.

Theorems 1 and 2 provided us with a set of aggregative active trades that occur in equi-

librium. This set can be divided into two subsets: a continuum of allocations (“Pooling +

Separation”) and two isolated points (Rothschild-Stiglitz and full pooling). Is there a sense in

which one prediction is more plausible than the other? We now propose an equilibrium refine-

ment that will argue that “Pooling + Separating” allocations are more plausible than either a

fully-pooling or a fully-separating allocation. This refinement is motivated by the conspicuous

absence of dynamics from our model thus far. We now introduce dynamics, albeit in a very

crude way. Fix an allocation (QL, TL) and (QH , TH) and define indirect utility functions

VL(q, t) = UL(QL + q, TL + t) and VH(q, t) = UH(QH + q, TH + t).

Our equilibrium refinement requires that conditional on the initial allocation any additional

deviation contracts is loss-making. This implies that the market is in a form of rest. Future side-

trading is impossible. What is crude about this definition is that ex-post trading opportunities

are not anticipated.

Definition 8. An allocation (QL, TL) and (QH , TH) is serendipitous-aftermarket-proof if in the

aftermarket economy ((VL, VH), (cL, cH), (mL,mH)) there do not exist profitable seller devia-

tions.

We view this definition as complementary to Hendren (2013). Whereas Hendren adopts

an ex-ante perspective and asks when adverse selection shuts down the market, serendipitous-

aftermarket-proofness adopts an ex-post perspective: once trading has taken place, will the

market remain inactive going forward?

Proposition 3. Under Assumptions 1, 2, 3, 4 and 6 it holds that:

1. Full pooling is serendipitous-aftermarket-proof if and only if full pooling is conditionally

efficient, i.e., 0 = argmax
q≥0

UH(QP + q, TP + qcH) and 0 = argmax
q

UL(QP +Q, TP + qc).

2. Any “Pooling + Separating” allocation satisfying conditions 1, 2, 3 and 4 is serendipitous-

aftermarket-proof.
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3. The RS allocation is serendipitous-aftermarket-proof if and only if low type buyers do not

wish to trade additional, competitively priced pooling contracts, i.e., 0 = argmax
q≥0

UL(QL+

q, TL + qc).

Proposition 3 further facilitates the viewpoint that market structures can emerge as an in-

formal industry agreement between sellers. If so, serendipitous-aftermarket-proofness provides

the analyst with a criterion that speaks to the plausibility of competitive allocations without

further knowledge of the market structure.

To formalize this view, take a dynamic perspective and imagine that every period a new

cohort of previously uninsured buyers purchases insurance policies. In a steady state, there will

exist a huge population of policy holders. Some policy holders will exogenously exit from this

population, e.g., due to death or expiry of existing policies. And there will be a continuous

inflow of entrants who are yet to make their first purchase. Then we can ask: What would

happen in such a dynamic market if the sellers had agreed, e.g., through the appropriate labeling

of their policies in red or blue, or core and complementary policies, that buyers should only be

able to trade according to the “1+1” market structure? Would any seller be able to approach

(or rather poach) the existing policy holders and profitably offer an additional contract? Such

a trading offer would be an unexpected, serendipitous opportunity for the buyer. Based on the

belief that no further offers are to follow, Proposition 3 asserts that no such offer can be made

if the initial allocation is serendipitous-aftermarket-proof, e.g., satisfies conditions 1, 2, 3 and

4. This gives credence to the view that the “1+1” market structure can endogenously arise as

an industry agreement.

The prediction that the Rothschild-Stiglitz separating allocation emerge, on the other hand,

is often implausible. Whenever an equilibrium fails to exist under an exclusive market struc-

ture, the Rothschild-Stiglitz allocation is not serendipitous-aftermarket-proof. Conversely, the

Rothschild-Stiglitz allocation may occur in equilibrium under the exclusive market structure,

yet not be serendiptious-aftermarket-proof.

7 Welfare

Under the normative view, a regulator can select any competitive market structure. Corollary

1 shows that this choice reduces to selecting among the partially exclusive “1+1” or the fully

exclusive “1 or 1” market structure. As Figure 3 illustrates, the “1+1” market structure

becomes all the more desirable if adverse selection is severe.

Our main welfare result goes beyond the mere selection of the market structure. It is

motivated by the observation that equilibria under the “1+1” market structure fail an important

efficiency benchmark: they are not Pareto-efficient among the set of allocations that satisfy

incentive compatibility and break even for the sellers.
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7.1 Incentive and Participation Efficiency

Recall that an allocation (QL, TL), (QH , TH) is incentive compatible if

UL(QL, TL) ≥ UL(QH , TH) and UH(QH , TH) ≥ UH(QL, TL).

An allocation further satisfies participation constraints if

UL(QL, TL) ≥ UL(0, 0) and UH(QH , TH) ≥ UH(0, 0).

Finally, say that an allocation is feasible if

QHcHmH +QLcLmL ≤ THmH + TLmL.

As Bisin and Gottardi (2006) observe, incentive compatibility and feasibility are insurmountable

obstacles to achieving greater efficiency for the planner and the market alike. Market allocations

are further constrained by participation constraints. We here define the allocations that are

Pareto efficient within the set of allocations that are feasible, incentive compatible and satisfy

participation constraints. Following Bisin and Gottardi (2006), we call such an allocation

incentive and participation efficient.

Definition 9. An allocation is incentive and participation efficient if it satisfies participation

constraints, is feasible and incentive compatible and if there does not exist another allocation

(Q′
L, T

′
L), (Q

′
H , T

′
H), satisfying the same constraints, such that UL(Q

′
L, T

′
L) ≥ UL(QL, TL) and

UH(Q
′
H , T

′
H) ≥ UH(QH , TH) with at least one inequality being strict.

As argued earlier, allocations are imprecise in that they obfuscate the cross-subsidies across

types that a planner may find desirable. Thus decompose any allocation (QH , TH), (QL, TL) sat-

isfying the aggregate resource constraint into pooling (QP , TP ) and separating trades (qL, tL), (qH , tH)

so that the sum of trades replicates the initial allocation,

QH = QP + qH , TH = TP + tH and QL = QP + qL, TL = TP + tL,

and each trade breaks even conditional on the buyers that trade it:

QP c = TP and qHcH = tH , qLcL = tL.

This decomposition exists and is given by

QP =
QHcH − TH

cH − c
=

TL −QLcL
c− cL

, qH =
TH − cQH

cH − c
and qL =

QLc− TL

c− cL
.

This shows algebraically how greater pooling increases cross-subsidies from low to high-risk

buyers. It offers, moreover, a path towards decentralization of incentive and participation
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efficient allocations.

7.2 Main Welfare Result

Incentive and participation efficiency is an important concept because it is a key demand that

a regulator would impose on the market. The rationale behind this demand is the maxim

that a constraint that does not affect a benevolent planner designing a menu of contracts must

not constrain the market allocation either. To this, our preceding (positive) analysis conveys

bad news. Deterred by the prospect of cream-skimming deviations, even partially nonexclusive

market structures fail to be efficient. To restore efficiency, a stronger market intervention that

goes beyond merely changing the market structure is required.

Our proposal is markedly simple and involves both a market structure and contract reg-

ulation. First, we propose the implementation of the “1+1” market structure, where buyers

acquire one contract from each of two seller groups. By facilitating “Pooling + Separating”

allocations, this market structures implements implicit transfers from low to high-risk buyers.

Second, we suggest to expand upon the extent to which low-risk buyers can seek out additional

coverage at actuarial fair low cost. To achieve this, we propose an additional minimum quantity

requirement on group 1 contracts that emerge as pooling contracts in equilibrium. This require-

ment is designed to prevent group 1 sellers from exclusively attracting low-risk buyers through

cream-skimming, where less coverage is offered at more attractive prices. Efficiency improves

for both risk profiles even if the regulation merely replicates the present pooling quantity QP :

In the absence of destabilizing cream-skimming deviations in group 1, there is scope for group

2 sellers to offer additional low cost coverage to low-risk types up to the incentive efficient level.

Finally, we stipulate that group 2 contracts must be limit orders, allowing buyers to trade any

fraction (αq, αt) with α ∈ [0, 1] of a contract (q, t) offered in group 2. Although inactive in

equilibrium, the option to purchase partial coverage is required to sustain an equilibrium in the

odd case where both types’ incentive constraints are slack. The reason is that, as demonstrated

in Theorem 2, latent contracts can deter group 1 deviations that promise coverage in excess of

QP .

Our main welfare result is as follows:28

Theorem 3. Posit Assumptions 1, 2, 3 and 4. Consider any incentive and participation

efficient allocation (QL, TL), (QH , TH) and let (QP , QP c), (qH , qHcH), (qL, qLcL) be the aggregate

trades that decentralize it. If aggregate trades satisfy large pooling, i.e., Condition 3 whereby

qL(cH − cL) ≤ QP (cH − c), are partially efficient, i.e., QP ≥ argmax
Q̃

UL(Q̃+ qL, Q̃c+ qLcL) and

are non-negative, i.e., QP , qH , qL ≥ 0, then this second-best allocation occurs as an equilibrium

under the “1+1” market structure if the regulator imposes the minimum quantity requirement

28Partial efficiency rules out pooling deviations that, as in the original Rothschild and Stiglitz (1976) model
prevent the existence of a pure strategy equilibrium. If we imposed the flatter curvature assumption here and
relied on latent contracts (as we do not do here) once more, then partial efficiency would be superfluous to the
result.
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that any buyer making a purchase must purchase a quantity weakly greater than QP in group 1

and group 2 contracts are limit orders.

We wish to emphasize that a minimum quantity requirement on group 1 contracts does not

only Pareto improve upon the equilibrium under the unregulated “1+1” market structure, but

also obviates the necessity of implausible latent contracts that are guaranteed to incur a loss

were they ever mistakenly traded. Any contract offered in equilibrium will be actively traded.

Discussion: From a theoretical standpoint, expanding the regulation of group 1 contracts

to entirely determine the level of group 1 coverage (where QP serves as both a lower and upper

bound) might seem advantageous. This approach would eliminate altogether the possibility of

deviations within group 1 that could disrupt an incentive and participation efficient allocation.

Under this stronger regulatory intervention, Theorem 3 continues to hold, although without

the necessity for group 2 offers to be limit orders. Market orders, as indicated in our positive

analysis, would be sufficient to sustain the allocation. However, from a practical perspective,

we do not find this approach desirable. Imposing an upper limit on group 1 coverage could

have unfavorable implications. It would essentially prohibit the inclusion of new advanced

treatments in basic plans, potentially resulting in long-term stagnation in the quality of care

provided.

7.3 Utilitarian Welfare

We conclude this section by offering an interpretation of our main welfare result in terms of

utilitarian welfare maximization.

Surely, if an allocation satisfies participation constraints and maximizes utilitarian welfare

for some non-zero λ = (λL, λH) ∈ R2
+ (λL + λH = 1) welfare weights,

max
(Q̃H ,T̃H),(Q̃L,T̃L)

UL(Q̃L, T̃L)λL + UH(Q̃H , T̃H)λH s.t.


QHcHmH +QLcLmL = THmH + TLmL

UL(Q̃L, T̃L) ≥ UL(Q̃H , T̃H)

UH(Q̃H , T̃H) ≥ UH(Q̃L, T̃L),

i.e., it is second-best efficient in the sense of Harris and Townsend (1981); Crocker and Snow

(1985), then it is incentive and participation efficient. Although the reverse need not be true,29

welfare weights greatly facilitate the interpretation of the implications of greater or lesser pool-

ing. Specifically, we can identify changes in the degree of pooling along the Pareto-frontier with

the identity of the buyers that stand to benefit. This highlights that the minimum quantity

requirement serves as a policy tool whose level is ranked in opposite directions by low and

high-risk individuals. Whereas high-risk individuals prefer greater minimum quantity require-

ments, low-risk individuals (along the incentive and participation efficient frontier) prefer lower

29Since utility is non-linear in the allocation, the set of incentive compatible allocations need not be convex.
In the quasi-linear case, convexity (and hence equivalence of the two efficiency notions) would hold if

...
U H(Q) ≥

0 ≥
...
U L(Q).
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Figure 4: Efficient allocations attainable via group 1 coverage requirements. A continuum of
allocations is drawn. Allocations are located at the endpoint of zero profit lines. The group 1
minimum coverage requirement (MCR) effectively dictates the extent of pooling coverage. This
is located at the origin of individual zero profit lines. Since separating coverage is large under
incentive efficiency, large pooling implies that the MCR exceeds the JHG level of coverage.
Notice that incentive constraints bind and determine the extent of low-risk buyers’ separating
coverage.

minimum quantity requirements. Critically, a regulator can attain second-best efficiency for

a wide range of welfare weights, although these tend to favor high-risk buyers. In particular,

large pooling and partial efficiency raise the level of required pooling coverage and as such may

constrain low-risk buyers’ welfare. We define L the smallest bound so that QP satisfies large

pooling and partial efficiency for all λH

λL
≥ L and L the greatest bound so that qL remains

positive for all λH

λL
≤ L and satisfies low-risk participation constraints.

Lemma 5. If utility is quasi-linear, bounds L and L are well-defined.

Critically, pooling coverage QP is bounded from below and rises in the relative welfare

weight placed on high-risk buyers. Quasi-linearity further allows to deduce that equilibrium

separating quantities, denoted qL(QP ) and qH(QP ), are non-increasing in QP . The low-risk

buyer allocation QP 7→ QP + qL(QP ) is increasing due to the relaxed incentive constraint.

Corollary 2. Suppose that utility is quasi-linear and posit Assumption 1, 2, 3, 4. Then consider

any second-best efficient allocation (QL, TL), (QH , TH) and let (QP , TP ), (qH , tH), (qL, tL) be the

aggregate trades that decentralize it. If the associated welfare weights λL, λH are intermediate,

i.e., λH

λL
∈ [L,L], then this second-best allocation occurs as an equilibrium under the “1+1”

market structure if the regulator imposes the minimum quantity requirement that any buyer

making a purchase must purchase a quantity weakly greater than QP in group 1 and group 2

contracts are limit orders.
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8 Discussion of the Model with Multiple Types

An obvious limitation of our work—albeit common since the celebrated work by Rothschild

and Stiglitz (1976)—is our focus on binary types. With more than two types, the “1+1”

market structure would surely not encompass all non-fully separating equilibria for an arbitrary

market structure. One could imagine an allocation where low, middle, and high-risk buyers

can potentially buy three distinct contracts. Then consider pooling on contract (q1,C , t1,C).

And further suppose that low-risk buyers purchase a further separating contract (q2,S, t2,S),

whereas middle and high-risk buyers are assigned a “Pooling + Separating” allocation and

wound up purchasing contracts (q2,C , t2,C), (q3,H , t3,H) and (q2,C , t2,C), (q3,L, t3,L) respectively

instead. The “1+1” market structure can impossibly replicate this allocation, a third group

would be required. Furthermore, with many types it is conceivable that moving beyond the

“1+1” market structure is Pareto-improving: If there is pooling in group 1, yet separation in

group 2, there is likely scope for further partial pooling among types {k, ..., N} in group 2 that

would analogously increase welfare as in the two-type model.

We would like to offer two comments on the model with multiple types. First we note that

the “1+1” market structure admits a straightforward extension to multi-type models. The

objective of this generalized market structure is to facilitate partial pooling among a subset

of types. It can be visualized like the famous centipede game in game theory: Given N types

that satisfy single-crossing, consider 2N − 2 groups so that for k ∈ {1, ..., N − 2} an agent that

makes a purchase in group 2k is ineligible to make a purchase in any group k′ > 2k. This invites

an interpretation to think of groups {1, 3, 5, ..., 2N−3} as continuation groups, for they allow

the agent to make further purchases, and groups {2, 4, ..., 2N−2} as stopping groups, for any

purchase here forfeits the right to make further purchases. Observe that the induced market

structure when only considering the final groups 2N − 3 and 2N − 2 corresponds to the “1+1”

market structure studied in the main text. The centipede market structure naturally suggests

an equilibrium in which types {k, ..., N} (with k the lowest and N the highest risk type) all

purchase the same pooling contracts in groups {1, 3, ..., 2k − 1}, whereas type k then makes a

purchase in group {2k} and types {k + 1, ..., N} go on to make a purchase in group {2k + 1}
instead. Existence would be a daunting issue, however. Minimum quantity requirements in

continuation groups or a extensive rather than a simultaneous-move game form could possibly

sidestep these.30

Our second comment is more practical. Extensive centipede-like market structures may

work well in perfectly competitive markets. But this theory de-emphasizes search and informa-

30In an extensive game the regulator could stipulate that sellers start posting contracts in group k + 1 only
once contracts have been irreversibly posted in group k. A distinction would have to be made as to whether
buyers make purchases right after contracts in group k have been posted, or only once contracts in all groups
have been posted. Future work of ours is to address these issues. The spirit of the exercise should be clear,
however: In line with Attar et al. (2021), a sequential auction-like mechanism that breaks the simultaneity of
moves cancels many destabilizing deviations without altering the competitive character of the game. And where
a simultaneous-move game must wrestle with equilibrium existence (requiring ever-more restrictive assumption
akin to the flatter curvature assumption), the extensive-form would neatly bypass these issues.
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Figure 5: The centipede market structure

tion frictions. As the stakes of individual contracts become smaller due to the sheer number

of contracts purchased, buyers’ willingness to explore less established sellers will likely dimin-

ish. Reduced incentives for further search, disregarded in our model, will likely diminish the

competitiveness of markets governed by more intricate market structures. A further reason to

prioritize the “1+1” market structure over more intricate designs is rooted in political econ-

omy considerations. Indeed, the default option for policy makers when intervening in markets

where adverse selection prevails is to propose an exclusive market structure. Regulation of

contract characteristics in US healthcare markets (‘platinum’, ‘gold’, ‘silver’, or ‘bronze’) or

Chilean post-retirement annuity contracts (where the pension law stipulates that every annuity

contract purchased must provide a minimum pension requirement) are cases in point. In the

spirit of policy incrementalism, the “1+1” market structure will well enhance flexibility over

markets that are—without theoretical justification—to date designed to be fully exclusive. In

light of this reality, experimenting with the simplest form of partially exclusive competition

first, namely the “1+1” market structure, appears to be the more prudent design.

9 Conclusion

This paper revisits the canonical model of competitive markets plagued by adverse selection.

We propose the concept of a market structure and show that under severe adverse selection a

compromise between fully exclusive and nonexclusive competition results in Pareto-improving

equilibrium allocations that have never been studied before. Our analysis singles out the “1+1”

market structure whereby buyers can purchase a single contract from each of two groups of

sellers.

As a key result we show that, despite the presence of adverse selection, a minimal regu-

lation—imposing the “1+1” market structure coupled with a minimum quantity requirement

in group 1—results in a second-best efficient equilibrium allocation. Since different risk types

value greater minimum quantity requirements in opposite directions, changes in said required

quantity result in moves along the Pareto-frontier. Thus our minimal regulation plays a similar

redistributive role as do initial allocations in perfectly competitive markets without information

asymmetries as highlighted by the second-welfare theorem.
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Appendix

A Necessary Conditions: missing proofs

A.1 Proof of Claim 1

Proof. Fix a partially exclusive and competitive market structure and consider an equilibrium

allocation (QL, TL) and (QH , TH).

Step 1. we show that TL = QL cL. First, TL ≥ QL cL. Otherwise, there exists at least

one seller who makes a negative profit. Then this seller can choose to be inactive instead.

Second, TL ≤ QL cL. Otherwise, suppose that TL > QLcL + ϵ. Since the market structure is

competitive and partially exclusive, there exist at least three exclusive sellers, i.e., sellers k for

whom max
M∈M:k∈M

|M | = 1. Then at least one of these three is inactive and makes zero profit

on-path. A profitable deviation for an exclusive seller consists in offering a cream-skimming

contract (q′, t′) so that UL(q
′, t′) > UL(QL, TL) and UH(q

′, t′) < UH(QL, TL). Following standard

arguments (using single-crossing and continuity of the utility function), such a contract (q′, t′)

always exists and can be chosen to be arbitrarily close to (QL, TL). In effect, one can choose

a (q′, t′) that is profitable conditional on trading with low type buyers only: q′ < QL + ϵ
2
and

t′ > TL − ϵ
2
> QLcL + ϵ

2
> q′cL + ϵ

2
. And since UH(QL, TL) ≤ UH(QH , TH) due to incentive

compatibility, the exclusive contract (q′, t′) only attracts low type buyers.

Step 2. we show that TH = QH cH . First, step 1 implies that in equilibrium no pooling

contract can be actively traded. Since sellers serving high types cannot make a negative profit,

it follows that TH ≥ QH cH . And due to Bertrand’s competition, the unit price for serving high

type buyers must be smaller or equal to cH . As a result, we have that TH = QH cH .

Step 3. we observe that the allocation must be efficient. This means thatQH = argmax
Q≥0

UH(Q, cHQ),

andQL = argmax
Q≥0

UL(Q, cLQ) subject to high type incentive compatibility, i.e., UH(QH , QHcH) ≥

UH(QL, QLcL). But this is the Rothschild-Stiglitz allocation so efficiency follows from their fa-

miliar arguments.

A.2 Proof of Claim 2

Proof. Denote (QH , TH) and (QL, TL) the equilibrium allocation for high and low type buyers.

Then notice that any fully-separating equilibrium allocation must satisfy TH = cHQH and

TL ≤ cQL. This follows from probing the equilibrium candidate with undercutting deviations

familiar from Bertrand’s competition. (Actually, it holds that TL = cLQL, but we do not

require this here.) The bounds on profit imply that there exists a seller k who actively trades

a contract (q′, t′) with low type buyers such that t′ ≤ cq′. And since the market structure is

never exclusive, there exists another seller j0 who can jointly trade with seller k. If seller j0 is

inactive, denote j = j0. If this seller is active instead, denote j seller j0’s inactive replacement,
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i.e., j ̸∈ ML, yet ML ∪ {j}\j0 ∈ M. (Seller j0’s replacement j exists because the market

structure is competitive.) Then seller j can propose a contract (QH − q′, TH − t′ − ϵ). This

deviation attracts high types buyers, because trading jointly with sellers k and j following j’s

deviation gives high type buyers strictly greater utility than the initial allocation which was

preferred among all trades excluding seller j: UH(QH −q′+q′, TH − t′− ϵ+ t′) ≥ UH(QH , TH) =

max
M∈M:j ̸∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti). And attracting high type buyers suffices to render this deviation

profitable; profit is TH − t′ − ϵ− cH(QH − q′) = cHq
′ − t′ − ϵ ≥ cHq

′ − cq′ − ϵ which is positive

for ϵ sufficiently small.

A.3 Proof of Proposition 1

Proof. If (QL, TL) and (QH , TH) is an equilibrium allocation, then there exists an equilibrium

in which, first, sellers collectively offer the menu {(qk, tk)}k∈K and, second, buyer types L and

H trade with sellers ML and MH in M so that

(QL, TL) =
∑
k∈ML

(qk, tk) and (QH , TH) =
∑

k∈MH

(qk, tk).

Then define the pooling component (QP , TP ) =
∑

p∈ML∩MH

(qp, tp) and the separating components

(qL, tL) =
∑

ℓ∈ML\MH

(qℓ, tℓ) and (qH , tH) =
∑

h∈MH\ML

(qh, th) as in Condition 2. Item (i) trivially

holds.

Next observe that seller j’s profit is proportional to

tj − c′qj where c′ =


cL if j ∈ ML\MH

cH if j ∈ MH\ML

c if j ∈ MH ∩ML.

Since seller j can offer the null trade (0, 0) instead, he cannot make a loss in equilibrium. It

follows that the unit price of serving the low type θ is at least cL, the unit price of serving the

high type θ is at least cH and the unit price of serving both types is at least c.

Then we prove that tj = qjcH for all j ∈ MH \ML by drawing on undercutting deviations

as in Bertrand’s competition. For there to be viable competitors that can undercut we will

require that tp = qpc for all p ∈ ML ∩MH . This is proven by drawing on a pivoting deviation

instead.

Step 1: We show by contradiction that all sellers in ML∩MH make zero profit. Or, suppose

that j ∈ ML ∩ MH made a positive profit. Since the market structure is competitive, there

exists k ∈ K\ {j} so that ML ∪{k}\{j} ∈ M. In particular, seller k does not actively trade in
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

j ∈ ML ∩MH ⇒ πj = 0 (step 1)

j ∈ MH \ML ⇒
{

πj = 0 if |MH \ML| > 1 (step 2)
πj = 0 if |MH \ML| = 1 (step 5)

j ∈ ML \MH ⇒
{

tj ≤ qj c if |ML \MH | > 1 (step 3)
tj ≤ qj c if |ML \MH | = 1 (step 6)

|ML \MH | = 1 (step 4).

Figure 6: A roadmap of the proof of Proposition 1

equilibrium and makes zero profit. If so, seller k could propose the contract (qj, tj − ϵ) so that

tj − ϵ > qjc. In effect, the deviation is profitable conditional on trading with both buyer types.

Then denote ((q̂i, t̂i))i∈K the new menu of contracts following seller k’s deviation. Clearly,

due to monotonicity of transfers, for both θ ∈ {L,H}

max
M∈M
k∈M

Uθ(
∑
i∈M

q̂i,
∑
i∈M

t̂i) ≥ Uθ(
∑

i∈Mθ∪{k}\{j}

q̂i,
∑

i∈Mθ∪{k}\{j}

t̂i) = Uθ(
∑
i∈Mθ

qi,−ϵ+
∑
i∈Mθ

ti) > Uθ(
∑
i∈Mθ

qi,
∑
i∈Mθ

ti)

= max
M∈M

Uθ(
∑
i∈M

qi,
∑
i∈M

ti) ≥ max
M∈M
k/∈M

Uθ(
∑
i∈M

qi,
∑
i∈M

ti) = max
M∈M
k/∈M

Uθ(
∑
i∈M

q̂i,
∑
i∈M

t̂i).

So, following the deviation both buyer types trade with seller k, thereby rendering seller k’s

deviating contract (qj, tj − ϵ) strictly profitable.

Step 2: We show by contradiction that if there is more than one seller only serving high

type buyers, then all those sellers make zero profit. Or, suppose that some seller j ∈ MH \ML

made a positive profit and |MH\ML| > 1. Then there exists another seller k ∈ MH\(ML∪{j})
that could deviate and offer (qj + qk, tj − ϵ + tk) instead where tj − ϵ > qjcH . Since (qk, tk) is

weakly profitable, the deviation is strictly profitable conditional on continued trade with high

type buyers (and even more profitable if it also attracts low type buyers).

To see that high type buyers will trade with seller k following the deviation, denote ((q̂i, t̂i))i∈K

the new menu of contracts and note that

max
M∈M
k∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i) ≥ UH(
∑

i∈MH\{j}

q̂i,
∑

i∈MH\{j}

t̂i) = UH(
∑
i∈MH

qi,−ϵ+
∑
i∈MH

ti) > UH(
∑
i∈MH

qi,
∑
i∈MH

ti)

= max
M∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) ≥ max
M∈M
k/∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) = max
M∈M
k/∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i).

Step 3: We claim that if there is more than one seller only serving low type buyers, then unit

profit must be bounded by the cost of serving both types, i.e., tj ≤ qj c for all j ∈ ML \MH .

This employs essentially identical arguments as in Step 2 where the undercutting deviation

comes from a seller k ∈ ML \MH .

Step 4: We show by contradiction that there is at most one seller only serving low type
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buyers. This corresponds to item (ii) of Condition 2. Or, suppose that there exist distinct

j1, j2 ∈ ML\MH . Since the market structure is competitive, there exist distinct k1, k2 ∈ M\ML

so that ML ∪{k1} \ {j1} and ML ∪{k2} \ {j1} in M. Then either at least one of the two sellers

k1, k2 does not belong to MH , i.e., one of the two is an inactive trader that makes zero profit.

Or they both belong to MH (but not ML) in which case they must also make zero profit due

to step 2.31

Then consider the seller k1 pivoting deviation: propose the contract (qH − q2L, tH − t2L − ϵ)

with tH − t2L − cH(qH − q2L) > ϵ. By jointly trading with sellers in (ML ∩ MH) ∪ {j2} and

the pivoting seller k1, buyers trade the aggregate quantity QH = QP + qH at the lesser price

TH − ϵ = TP + tH − ϵ. Moreover, since t2L ≤ q2L c, this deviation is profitable conditional on

trading with high type buyers (and even more profitable if it also attracts low type buyers).

We verify that the deviation attracts high type buyers. Observe that (ML ∩MH) ∪ {j2} ∪
{k1} ⊂ ML ∪ {k1} \ {j1}. Since the market structure is competitive, ML ∪ {k1} \ {j1} ∈ M
implies that buyers can drop trades and trade with sellers (ML∩MH)∪{j2}∪{k1} ∈ M. Then

denote ((q̂i, t̂i))i∈K the new menu of contracts following seller k’s deviation.

max
M∈M
k1∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i) ≥ UH(
∑

i∈(ML∩MH)∪{j2}∪{k1}

q̂i,
∑

i∈(ML∩MH)∪{j2}∪{k1}

t̂i) = UH(
∑
i∈MH

qi,−ϵ+
∑
i∈MH

ti)

> UH(
∑
i∈MH

qi,
∑
i∈MH

ti) = max
M∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) ≥ max
M∈M
k1 /∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) = max
M∈M
k1 /∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i).

And so high type buyers are strictly better off by trading with seller k1 following the deviation.

Step 5: We show by contradiction that if there is exactly one seller only serving high

type buyers, then this seller makes zero profit. Or, suppose that |MH \ML| = 1 and seller

j ∈ MH\ML made a positive profit. Since sellers are twice replaceable, there exist distinct sell-

ers k1, k2 ∈ K\MH so thatMH∪{k1}\{j} ∈ M andMH∪{k2}\{j} ∈ M. Since |ML\MH | = 1

due to step 4, at least one of the two, say k1, must be an inactive seller in K\ (ML∪MH). Then

the deviating contract (qj, tj − ϵ) where tj − ϵ > qj cH is strictly profitable for the inactive seller

k1 conditional on trading with high type buyers (and even more profitable if it also attracts low

type buyers). And following analogous arguments as before, trading with sellers MH∪{k1}\{j}
is feasible because the market structure is competitive and gives strictly greater utility to high

type buyers than not trading with seller k1: max
M∈M
k1∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i) > max
M∈M
k1∈M

UH(
∑
i∈M

q̂i,
∑
i/∈M

t̂i).

Step 6: We show by contradiction that if there is exactly one seller only serving low type

buyers, then this seller’s unit price must be bounded by the marginal pooling cost c. Or,

suppose that |ML \ MH | = 1 and seller j ∈ ML \ MH ’s contract satisfies tj > qj c. Then,

following symmetric arguments as in step 5, an inactive seller can propose an undercutting

31Step 4 and 5 are the only instances where we use that sellers are twice replaceable (cf. Definition 2). If
sellers were only once replaceable, we could not rule out that seller ℓ ∈ ML \MH ’s replacement is h ∈ MH \ML

and seller H’s replacement is ℓ and they both make a profit by serving the low and the high type respectively.
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contract and attract low type buyers:Since sellers are twice replaceable, there exist distinct

sellers k1, k2 ∈ K \ ML so that ML ∪ {k1} \ {j} ∈ M and ML ∪ {k2} \ {j} ∈ M. Since

|MH \ ML| = 1 due to step 4, at least one of the two, say k1, must be an inactive seller in

K\ (ML ∪MH). Then the deviating contract (qj, tj − ϵ) where tj − ϵ > qj c is strictly profitable

for the inactive seller k1 conditional on trading with buyers of both types (and even more

profitable if it only attracts low type buyers). Finally, trading with sellers ML ∪ {k1} \ {j} is

feasible because the market structure is competitive. And, following analogous arguments as

before low type buyers are better off when trading with seller k1 following the undercutting

deviation: max
M∈M
k1∈M

UL(
∑
i∈M

q̂i,
∑
i∈M

t̂i) > max
M∈M
k1∈M

UL(
∑
i∈M

q̂i,
∑
i/∈M

t̂i).

A.4 Proof of Lemma 2

Proof. (1) We first show that QP ∈ argmax
q

UL(Q+ qL, Qc+ tL) whenever QP > 0. Otherwise,

a seller k actively trading a pooling contract has a profitable deviation.

Suppose by contradiction that the pooling quantity QP > 0 satisfies UL(qL + q′, tL + q′c) >

UL(QP +qL, QP c+ tL) for some q′ > 0. Then there exists ϵ > 0 so that UL(qL+q′, tL+q′c+ϵ) >

UL(QL, TL). And seller k trading a (competitively priced) pooling contract can profitably

deviate by proposing the contract (q′, q′c + ϵ) instead of (qk, qkc). This deviation is profitable

conditional on trading with both buyer types and even more profitable if it only attracts low

buyer types. And low type buyers are strictly better off following seller k’s deviation and will

want to trade the deviating contract (possibly by dropping all other pooling contracts). To see

this, denote ((q̂i, t̂i))i∈K the new menu of contracts following seller k’s deviation. We find that

max
M∈M
k∈M

UL(
∑
i∈M

q̂i,
∑
i∈M

t̂i) ≥ UL(q
′ + qL, q

′c+ϵ+ tL)

> UL(QL, TL) = max
M∈M

UL(
∑
i∈M

qi,
∑
i∈M

ti) ≥ max
M∈M
k/∈M

UL(
∑
i∈M

qi,
∑
i∈M

ti) = max
M∈M
k/∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i).

(2) Second, we show using analogous arguments that qH ∈ argmax
q

UH(QP + q, TP + q cH)

whenever qH > 0. Otherwise, a seller h actively trading a separating contract with the high

type has a profitable deviation.

Suppose by contradiction that there exists q′ > 0 such that UH(QP + q′, QP c + q′cH) >

UH(QP+qH , TP+tH). Then there exists ϵ > 0 so that UH(QP+q′, QP c+q′cH+ϵ) > UH(QH , TH).

Then a seller h actively trading a (competitively priced) separating contract (qh, qhcH) can

profitably deviate by proposing the contract (q′, q′ cH + ϵ) instead of (qh, qhcH). This deviation

is profitable conditional on trading only with high type buyers and even more profitable if it

also attracts low buyer types. And high type buyers are strictly better off the following seller

k’s deviation and will want to trade the deviating contract (possibly by dropping all other

separating contracts). To see this, denote ((q̂i, t̂i))i∈K the new menu of contracts following
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seller k’s deviation. We find that

max
M∈M
k∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i) ≥ UH(QP + q′, TP + q′ cH + ϵ) > UH(QH , TH)

= max
M∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) ≥ max
M∈M
k/∈M

UH(
∑
i∈M

qi,
∑
i∈M

ti) = max
M∈M
k/∈M

UH(
∑
i∈M

q̂i,
∑
i∈M

t̂i).

(3) Finally, to understand the qualifying condition when qH = qL = 0 (or equivalently

QH = QP ), observe that max
q≥0

UH(
1
2
QP + q, 1

2
QP c + qcH) the utility from purchasing only half

the pooling allocation and the most desired separating quantity at unit price cH is equal to

min
α∈[0,1]

max{max
q≥0

UH(αQP + q, αQP c+ qcH);max
q≥0

UH((1− α)QP + q, (1− α)QP c+ qcH)}

due to quasi-concavity. Here α corresponds to the share of the pooling quantity purchased in

group one, and 1−α to the share purchased in group two. Or, whenever the high type purchases

pooling contracts in both groups, the possibility of only purchasing one pooling contract and

complementing it with the desired quantity at a unit cost cH is least attractive when the pooling

quantity offered in both groups is identical, i.e., α = 1
2
.

A.5 Proof of Lemma 3

Proof. Define TH(q), TL(q) so that UH(q, TH(q)) = UH(QL + qℓ, TL + tℓ) for all q in an open

ball around QL + qℓ and UL(q, TL(q)) = UL(QL, TL) for all q in an open ball around QL.

Since UH(q, t) is increasing in q, decreasing in t and continuously differentiable, TH(q), TL(q)

are well-defined and continuously differentiable due to the implicit function theorem, moreover

increasing.

And by construction Uj(q, Tj(q)) is constant in q so that differentiation yieldsD1Uj(q, Tj(q))+

D2Uj(q, Tj(q))T ′
j (q) = 0. Applying the first-order condition to low type conditional efficiency

4 then implies that D1UL(QL, TL) +D2UL(QL, TL)c = 0. Therefore T ′
j (q) = c.

Next, observe that for all ϵ in an open ball around zero it must hold that UL(QL+ϵ, TL(QL+

ϵ) − ϵ2) > UL(QL, TL). The flatter-curvature assumption 6 thus implies that UH(QL + qℓ +

ϵ, TL(QL + ϵ) + tℓ − ϵ2) > UH(QL + qell, TL + tℓ) = UH(QL + qℓ + ϵ, TH(QL + qℓ + ϵ)). In effect,

the function ϵ 7→ UH(QL + qℓ + ϵ, TL(QL + ϵ) + tℓ − ϵ2) − UH(QL + qℓ + ϵ, TH(QL + qℓ + ϵ))

attains a local minimum at ϵ = 0. Whence differentiating with respect to ϵ and noting that

TL(QL) = TL and TH(QL + qℓ) = TL + tℓ establishes that

0 =D1UH(QL + qℓ, TL(QL) + tℓ)−D1UH(QL + qℓ, TH(QL + qℓ))

+D2UH(QL + qℓ, TL(QL) + tℓ)T ′
L(QL)−D2UH(QL + qℓ, TH(QL + qℓ))T ′

H(QL + qℓ),

that is to say that T ′
H(QL + qℓ) = T ′

L(QL) = c.

36



Finally, if (q′, t′) were such that UH(QL + qℓ + q′, TL + tℓ + t′) > UH(QL + qℓ, TL + tℓ) =

UH(QL+qℓ+q′, TH(QL+qℓ+q′)), it must be that TH(QL+qℓ+q′) > TL+tℓ+t′ = TH(QL+qℓ)+t′.

Taking differences gives

TH(QL + qℓ + q′)− TH(QL + qℓ)

q′
>

t′

q′
.

It remains observed that the left-hand side is less than c. This holds because UH(q, t) is quasi-

concave so that TH(q) is concave. In conclusion, t′ < q′ c, so that UH(QL+qℓ+q′, TL+tℓ+q′ c) ≤
UH(QL + qℓ, TL + tℓ) as claimed.

A.6 Proof of Proposition 2

Proof. Step 1: The JHG allocation (QJHG
L , T JHG

L ) = (QP , TP ) = (QL, TL), (Q
JHG
H , T JHG

H ) =

(QP + qH , TP + tH) = (QH , TL) (see Definition 7) always satisfies conditions 1, 2, 3 and 4.

By construction, it is single-seller separating, competitively priced, and conditionally efficient.

Incentive compatibility follows from conditional efficiency as shown in Section 2. It remains to

verify large pooling, i.e., TH − TL + TP ≤ cH(QH −QL +QP ). This is always satisfied, for by

construction TL = TP and QL = QP , and TH = TP + tH = QP c+ qHcH .

Step 2: We claim that there exists a regular curve γ(t) in an open ball around the JHG

allocation (QJHG
L , T JHG

L ) so that γ(0) = (QJHG
L , T JHG

L ) and τL(γ(t)) = c for all t ∈ (−1, 1).

Case 1: if cD2
22UL(Q

JHG
L , T JHG

L ) ̸= −D2
12UL(Q

JHG
L , T JHG

L ), the existence of such a curve

is a consequence of the implicit function theorem. To see this, define implicitly ρ(Q) so

that τL(Q, ρ(Q)) = c. Clearly, ρ(QJHG
L ) = T JHG

L by construction of the JHG allocation.

We then show that ρ(Q) is well-defined locally around (QJHG
L , T JHG

L ). To apply the implicit

function theorem we require that τ is continuously differentiable and that D2τL(Q, T ) ̸= 0

when evaluated at (Q, T ) = (QJHG
L , T JHG

L ). τL(Q, T ) is continuously differentiable if UL(Q, T )

is twice continuously differentiable. And D2τL(Q, T ) ̸= 0 at (QJHG
L , T JHG

L ) is equivalent to

D2
22UL(Q, T )D1UL(Q, T ) ̸= D2

12UL(Q, T )D2UL(Q, T ). Then note that by construction of the

JHG allocation c = τL(Q
JHG
L , T JHG

L ) = −D1UL(Q
JHG
L ,TJHG

L )

D2UL(Q
JHG
L ,TJHG

L )
So, equivalently, cD2

22UL(Q
JHG
L , T JHG

L ) ̸=
−D2

12UL(Q
JHG
L , T JHG

L ) as we had assumed. And so γ(t) is a parametrization of the graph of

ρ(Q).

Case 2: if cD2
12UL(Q

JHG
L , T JHG

L ) ̸= −D2
11UL(Q

JHG
L , T JHG

L ), the existence of such a curve

is a consequence of the implicit function theorem. To see this, define implicitly σ(T ) so that

τL(σ(T ), Q) = c and follow the same steps as before.

Case 3: if both cD2
22UL(Q

JHG
L , T JHG

L ) = −D2
12UL(Q

JHG
L , T JHG

L ) and cD2
12UL(Q

JHG
L , T JHG

L ) =

−D2
11UL(Q

JHG
L , T JHG

L ), then D1τL(Q
JHG
L , T JHG

L ) = D2τL(Q
JHG
L , T JHG

L ) = 0. This means that

there exists an open ball around (QJHG
L , T JHG

L ) so that τL(Q, T ) = c for all (Q, T ) inside.

Step 3: We observe that QP 7→ max
q

UH(QP + q,QP c + q cH) is continuous. This is a
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consequence of Berge’s maximum theorem: UH(Q, T ) is continuous, moreover argmax
Q≥0

UH(Q+

q,Qc+qcH) ≤ max{argmax
q

UH(q, qc), argmax
q

UH(q, qcH)} due to quasi-concavity of UH(Q, T ).

Step 4: We show that UH(Q
JHG
H , T JHG

H ) > UH(Q
JHG
L , T JHG

L ). Or, suppose by contradiction

that UH(Q
JHG
H , T JHG

H ) = UH(Q
JHG
L , T JHG

L ). Whence, due to strict quasi-concavity, it holds that

UH(λQ
JHG
L +(1−λ)QJHG

L , λT JHG
L +(1−λ)T JHG

L ) > min{UH(Q
JHG
H , T JHG

H ), UH(Q
JHG
L , T JHG

L )}
for all λ ∈ (0, 1). Yet, by construction of the JHG allocation, UH(Q

JHG
H , T JHG

H ) = max
q

UH(Q
JHG
L +

q, T JHG
L + qcH) and this establishes the desired contradiction.

Conclusion: Fix ϵ > 0 so that UH(Q
JHG
H , T JHG

H ) > UH(Q
JHG
L , T JHG

L ) + ϵ. Such an ϵ exists

due to Step 4. Next, due to step 3, there exists δH so that max
q

UH(QP + q,QP c + qcH) >

max
q

UH(Q
JHG
L + q,QJHG

L c+ qcH)− ϵ
2
for all QP : |QP −QJHG

L | < δ1. And due to continuity of

UH there exists δL so that UH(Q
JHG
L , QJHG

L ) + ϵ
2
> UH(QP + qL, QP c + qLcx) for all (QP , qL)

so that 0 < qL < δ2 and |QP − QJHG
L | < δ2. Finally, by construction of γ, i.e., Step 2, for

all δ > 0 there exists a low type allocation (QP + qL, QP c + qLcx) in the image of γ so that

|QP−QJHG
L | < δ and 0 < qL < δ. In particular, we can choose such (QP , qL) for δ = min{δ1, δ2}.

Then pick qH ∈ argmax
q

UH(QP + q,QP c+ qcH).

Thus constructed aggregate trades (QP , QP c), (qL, qLcx) and (qH , qHcH) are incentive com-

patible, competitively priced and conditionally efficient. For δ sufficiently small they moreover

satisfy large pooling, because the JHG allocation satisfies large pooling.

B Existence: missing proofs

B.1 Proof of Theorem 2

We distinguish between two possible classes of equilibrium. In one set of equilibrium candidates,

sellers in both groups actively trade pooling contracts. Due to its inefficiency—there exist

additional incentive compatible separating contracts that are profitable—Footnote 23 and our

subsequent Proposition 3 argue that this case is pathological. In another set of equilibrium

candidates, actively traded contracts in group K1 are pooling, and actively traded contracts in

group K2 are separating. We will consider this case first.

“Pooling + Separating” Equilibria

We here construct an equilibrium where pooling contracts are only traded with sellers in group

K1. Any active aggregate trades (QP , TP ) and (qL, tL), (qH , tH) that satisfy conditions 1, 2,

3 and 4 with the restriction that the separating quantity qH satisfies qH ∈ argmax
q≥0

UH(QP +

q, TP + qcH) are admissible. This includes the possibility that qH = 0. Sellers in group K1 offer

contract (QP , TP ) or latent contracts, sellers in group K2 offer contracts (qL, tL), (qH , tH) or

latent contracts. Latent contracts are as follows: The principal latent contract (qℓ, tℓ) is offered

by inactive sellers in both groups K1 and K2, with the principal contract as defined in Lemma
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3. For reasons that shall become apparent shortly, we also introduce a larger class of derivative

latent contracts. Denote (qnℓ, tnℓ) = (nqℓ, ntℓ). And let N ∈ N be the smallest N such that

qNℓ > QH . The set of latent contracts offered in group K1 is

{
(qnℓ, tnℓ), (QP + qnℓ, TP + tnℓ) : 1 ≤ n ≤ N

}
.

The set of latent contracts offered in group K2 is

{
(qnℓ, tnℓ), (qL + qnℓ, tL + tnℓ), (qH + qnℓ, tH + tnℓ) : 1 ≤ n ≤ N

}
.

Figure 7 summarizes the entire set of contracts offered.

Subgroup K1 Subgroup K2

On-path sellers (actively trade) (QP , TP ) (qL, tL), (qH , tH)

Off-path sellers (latent contracts) (qnℓ, tnℓ) (qnℓ, tnℓ)
(qL + qnℓ, tL + tnℓ)

(QP + qnℓ, TP + tnℓ) (qH + qnℓ, tH + tnℓ)

Figure 7: The on-path and off-path contracts in equilibrium

The proof of Theorem 2 under partial pooling is the consequence of three lemmata, each

of which maintains identical assumptions and conditions as the main theorem. We first ensure

that the latent contracts are not destabilizing, i.e., no agent has an incentive to purchase latent

contracts.

Lemma 6. No buyer is better off when actively trading at least one latent contract.

We then show that for every cream-skimming deviation there exists a latent contract that

blocks it.

Lemma 7. No seller can offer a profitable deviating contract that only attracts low type buyers.

We finally show that pivoting on latent contracts to attract high type buyers cannot be

profitable. This concludes the proof of Theorem 2, for the set of relevant one-shot seller devia-

tions, comprises (i) undercutting, (ii) pivoting on the on-path contracts to attract high types,

(iii) efficiency-improving deviations, (iv) pivoting on the on-path contracts to attract low types,

(v) pivoting on the off-path latent contracts to attract low types, (vi) pivoting on the off-path

contracts to attract high types. (i) Undercutting was not profitable due to Condition 2, (ii) piv-

oting on the on-path contracts to attract high types was not profitable due to Condition 3, (iii)

efficiency-improving deviations do not exist due to Condition 4, and so called cream-skimming

deviations (iv) and (v) were not profitable due to the preceding lemma.
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Lemma 8. No seller can offer a profitable deviating contract that only attracts high type buyers.

“Pooling + Pooling” Equilibria

We now construct an equilibrium where sellers from both groups actively trade pooling con-

tracts. Any active aggregate trades (QP , TP ) and (qL, tL), (qH , tH) that satisfy conditions 1, 2,

3 and 4 with the restriction that the separating quantities qH , qL are zero are admissible. In

the aggregate, both types purchase the conditionally efficient quantity for the low type. For

comparison, this is the low type’s JHG allocation. To keep the analysis disjoint from the pre-

ceding, further assume that 0 ̸∈ argmax
q≥0

UH(QP + q, TP + qcH), i.e., that the active aggregate

trades are payoff-dominated by a more efficient equilibrium that occurs when there is “Pooling

+ Separation”.

To construct the equilibrium “pooling+pooling” allocation, sellers in each group propose

contracts (1
2
QP ,

1
2
TP ) = 1

2
(QJHG

L , T JHG
L ) or latent contracts. The principal latent contract

(qℓ, tℓ) is still as given by Lemma 3. As before, denote (qnℓ, tnℓ) = (nqℓ, ntℓ). And let N ∈ N be

the smallest N such that qNℓ > QH . The set of latent contracts offered in groups K1 and K2 is

{
(qnℓ, tnℓ), (

1

2
QP + qnℓ,

1

2
TP + tnℓ) : 1 ≤ n ≤ N

}
.

The set of contracts that sustain the equilibrium is depicted in Figure 8.

Subgroup K1 Subgroup K2

On-path sellers (actively trade) (1
2
QP ,

1
2
TP ) (1

2
QP ,

1
2
TP )

Off-path sellers (latent contracts) (qnℓ, tnℓ) (qnℓ, tnℓ)

(1
2
QP + qnℓ, 1

2
TP + tnℓ) (1

2
QP + qnℓ, 1

2
TP + tnℓ)

Figure 8: The equilibrium contracts of “pooling +pooling ”

To see that this is an equilibrium in which both types actively trade pooling contracts in

both groups, one must consider the same set of deviations as in the analysis under “Pooling +

Separation”. Inspection of the proofs of Lemma 6 and Lemma 7 reveals that both results hold

for identical reasons as before. It remains to verify that no profitable deviation only attracts

high type buyers, i.e., Lemma, 8. In addition to the deviations considered in the preceding,

buyers in either group can now pivot on (1
2
QP ,

1
2
TP ) to attract type H buyers. Doing so is

not feasible due to Condition 4: max
q≥0

UH(1/2QP + q, 1/2QP c + qcH) ≤ UH(QP , QP c) ensures

that no profitable deviation can attract high type buyers by pivoting on (1
2
QP ,

1
2
TP ). In terms

of pivoting on the latent contract, we use the same argument as in Lemma 8: UH(QH , TH) =
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max
q

UH(qL + qℓ + q, tL + tℓ + q c) ≥ max
q

UH(q
ℓ + q, tℓ + q c), so that any pivoting contract that

attracts the high type must have a unit price lower than c.

Proof of Lemma 6

Proof. First, it follows from Condition 4 and t > qℓc that

UL(QL, TL) = max
q

UL(QL + q, TL + q c) ≥ max
q

UL(qL + q, tL + q c).

This is weakly greater than the utility when purchasing at least one latent contract: Condition

2 asserts that buyers can at most once purchase contract (qL, tL) (possibly part of a latent

contract (qL + qnℓ, tL + tnℓ); and due to Condition 2 and t > qℓc any other contract offered has

unit price weakly greater than c.

Second, observe that by construction and Lemma 3

UH(QH , TH) = UH(QL + qℓ, TL + tℓ)

≥ max
q

UH(QL + qℓ + q, TL + tℓ + q c) = max
q

UH(qL + q, tL + q c).

Thereby derived utility is weakly greater than purchasing any latent contract for identical

reasons.

Proof of Lemma 7

Proof. First, consider a large cream-skimming deviation (q′, t′) in either group K1 or K2 so that

UL(q
′, t′) > UL(QL, TL). Then the flatter-curvature assumption implies that UH(q

′+qℓ, t′+tℓ) >

UH(QL + qℓ, TL + tℓ) = UH(QH , TH). So, the latent contract (qℓ, tℓ) blocks this deviation.

Analogously, consider a small cream-skimming deviation (q′, t′) in either group K1 or K2

that pivots on the latent contract (q(n−1)ℓ, t(n−1)ℓ) where n > 1. Or, UL(q
′+q(n−1)ℓ, t′+t(n−1)ℓ) >

UL(QL, TL). Then the flatter-curvature assumption implies that UH(q
′+q(n−1)ℓ+qℓ, t′+t(n−1)ℓ+

tℓ) > UH(QL+qℓ, TL+tℓ) = UH(QH , TH). So, the latent contract (q
nℓ, tnℓ) blocks this deviation.

Finally, we show that there does not exist a small cream-skimming deviation (q′, t′) in either

group K1 or K2 that pivots on the latent contract (qNℓ, tNℓ) and thereby exclusively attracts

low type buyers. If it did, due to incentive compatibility, UL(q
′ + qNℓ, t′ + tNℓ) > UL(QL, TL) ≥

UL(QH , TH). Yet since qNℓ > QH , also UH(q
′ + qNℓ, t′ + tNℓ) > UH(QH , TH) due to single-

crossing. Analogously, one cannot exclusively attract low type buyers by pivoting on the latent

contracts (qL + qNℓ, tL + tNℓ), (qH + qNℓ, tH + tNℓ) and (QP + qNℓ, TP + tNℓ).

Second, consider a cream-skimming deviation (q′, t′) in group K1 that pivots on a contract

(qL+q(n−1)ℓ, tL+t(n−1ℓ) in group K2 where 1 ≤ n ≤ N . Or, UL(q
′+qL+q(n−1)ℓ, t′+tL+t(n−1)ℓ) >

UL(QL, TL). Then the flatter-curvature assumption implies that UH(q
′ + qL + q(n−1)ℓ + qℓ, t′ +

tL + t(n−1)ℓ + tℓ) > UH(QL + qℓ, TL + tℓ) = UH(QH , TH). So, the contract (qL + qnℓ, tL + tnℓ)
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in group K2 blocks this deviation. (The same argument applies for cream-skimming deviations

that pivot on a contract (qH + q(n−1)ℓ, tH + t(n−1ℓ) in the group K2 where 1 ≤ n ≤ N .).

Third, consider a cream-skimming deviation (q′, t′) in group K2 that pivots on a contract

(QP + q(n−1)ℓ, TP + t(n−1ℓ) in group K1 where 1 ≤ n ≤ N . Or, UL(q
′ + QP + q(n−1)ℓ, t′ +

TP + t(n−1)ℓ) > UL(QL, TL). Then the flatter-curvature assumption implies that UH(q
′ +QP +

q(n−1)ℓ + qℓ, t′ + TP + t(n−1)ℓ + tℓ) > UH(QL + qℓ, TL + tℓ) = UH(QH , TH). So, the contract

(QP + qnℓ, TP + tnℓ) in group K1 blocks this deviation.

Proof of Lemma 8

Proof. First observe that a deviation (q′, t′) exclusively targeting high type buyers must satisfy

q′cH < t′ in order to be profitable. Then recall that qℓc < tℓ. It follows that if a deviating

contract (q′, t′) pivots on a latent contract that is different from (qL + qnℓ, tL + tnℓ), then the

total unit cost of the quantity traded following the deviation must exceed c (due to competitive

pricing, Condition 2). But then (q′, t′) traded in conjunction with the latent contract can

impossibly be advantageous to high type buyers, for on-path utility satisfies UH(QH , TH) =

max
q

UH(qL+qℓ+q, tL+ tℓ+q c) ≥ max
q

UH(q
ℓ+q, tℓ+q c) (due to Lemma 3, moreover tL ≤ qL c

due to competitive pricing in Condition 2).

Thus consider a deviation (q′, t′) in group K1 that pivots on a contract of the form (qL +

qnℓ, tL + tnℓ). If n = 0 this deviation is not profitable and at the same time advantageous to

high type buyers due to Condition 3. Thus suppose that 1 ≤ n. If high type buyers were better

off by trading (q′, t′), it follows (due to Lemma 3) that

UH(q
′ + qL + qnℓ, t′ + tL + tnℓ) > UH(QH , TH) = max

q
UH(qL + qℓ + q, tL + tℓ + q c)

≥ UH(q
′ + qnℓ + qL, tL + tℓ + (q′ + qnℓ + qL − qL − qℓ)c).

It must therefore hold that

t′ + tnℓ + tL < tL + tℓ + (q′ + qnℓ − qℓ)c ⇔ t′ < q(n−1)ℓc− t(n−1)ℓ + q′c.

Since qℓc < tℓ, this implies that t′ < q′c and so (q′, t′) must be lossmaking.

C Positive Implications: missing proofs

C.1 Proof of Proposition 3

Proof of Proposition 3, claim 1. Denote (QP , TP ) the equilibrium pooling allocation. If there

exists a non-zero quantity QH −QP = argmax
q≥0

UH(QP + q, TP + qcH), an aftermarket seller can
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propose the contract (QH − QP , (QH − QP )cH + ϵ). For ϵ > 0 sufficiently low, this contract

attracts type H and is profitable. Whence (QP , TP ) is not a serendipitous-aftermarket-proof.

If to the contrary pooling is conditionally efficient, no profitable pooling nor a separating

contract targeting high type buyers will generate the desired demand. Cream-skimming devi-

ations uniquely targeting low type buyers, meanwhile, will be infeasible due to single-crossing.

Proof of Proposition 3, claim 2. To prove the claim it suffices to consider aftermarket cream-

skimming deviations that uniquely target the low type. For conditional efficiency ensures that

UH(QH , TH) = max
q≥0

UH(QH + q, TH + qcH) and UL(QL, TL) = max
q≥0

UL(QL + q, TL + qc), so

that neither a pooling deviation nor a deviation uniquely targeting high type buyers can be

both incentive compatible and profitable. The proof that there do not exist profitable cream-

skimming deviations relies on the following arguments:

Step 1: For any three contracts (Q1, T1), (Q2, T2) and (q′, t′) so that Q2 > Q1 satisfying

UH(Q1, T1) = UH(Q2, T2) and UH(Q2, T2) < UH(Q2 + q′, T2 + t′): it must hold that T2−T1

Q2−Q1
>

T2−T1+t′

Q2−Q1+q′
.

This is an immediate consequence of strict quasi-concavity. Otherwise, there exists a

contract (Q3, T3) : Q3 > Q2 with T3−T2

Q3−Q2
= T2−T1

Q2−Q1
and UH(Q3, T3) ≥ UH(Q2, T2). And,

due to strict quasi-concavity, it must hold that UH(λQ1 + (1 − λ)Q3, λT1 + (1 − λ)T3) >

min{UH(Q1, T1), UH(Q3, T3)} = UH(Q1, T1) = UH(Q2, T2). Yet when setting λ̂ = Q3−Q2

Q3−Q1

(which is equal to T3−T2

T3−T1
by construction), it thereby follows that UH(Q2, T2) = UH(λ̂Q1 +

(1− λ̂)Q3, λ̂T1 + (1− λ̂)T3) > UH(Q2, T2), which establishes the desired contradiction.

Step 2: For any three contracts (Q1, T1), (Q2, T2) and (q′, t′) so that Q2 > Q1 satisfying

UH(Q1, T1) = UH(Q2, T2) and UH(Q2, T2) < UH(Q2+q′, T2+t′): it must hold that UH(Q1, T1) <

UH(Q1 + q′, T1 + t′).

This is also a consequence of strict quasi-concavity: UH(λQ1 + (1− λ)(Q2 + q′), λ T1 + (1−
λ)(T2 + t′)) > min{UH(Q1, T1), UH(Q2 + q′, T2 + t′)} = UH(Q1, T1) for all λ ∈ (0, 1). Then set

λ̂ = Q2−Q1

Q2−Q1+q′
so that λ̂Q1 + (1 − λ̂)(Q2 + q′) = Q1 + q′. In effect, λ̂T1 + (1 − λ̂)(T2 + t′) =

T1+t′+(T2−T1)+ λ̂(t′−T2+T1) = T1+t′+(T2−T1)−(Q2−Q1)
T2−T1+t′

Q2−Q1+q′
> T1+t′+(T2−T1)−

(Q2 −Q1)
T2−T1

Q2−Q1
= T1 + t′ where the inequality is due to the step 1. Since utility is decreasing

in transfers, this proves that UH(Q1 + q′, T1 + t′) > UH(λ̂(Q1, T1) + (1− λ̂)(Q2 + q′, T2 + t′)) >

UH(Q1, T1).

Step 3: For any “Pooling + Separating” allocation (QL, TL), (QH , TH) satisfying conditions

1, 2, 3 and 4, the unique principal latent contract (qℓ, tℓ) (see Assumption 6 and Lemma 3)

satisfies QL + qℓ > QH .

To see this, recall that UH(QL + qℓ, TL + tℓ) = UH(QH , TH). Then first, due to strict

quasi-concavity for λ = 1/2, it holds that UH(QH + 1/2(QL + qℓ − QH), TH + 1/2(TL + tℓ −
TH)) > UH(QH , TH) = max

q
UH(QH + q, TH + q cH) ≥ UH(QH + 1/2(QL + qℓ − QH), TH +

1/2(QL + qℓ − QH)cH) where the equality is due to conditional efficiency. It follows that

TL+ tℓ−TH < cH(QL+ qℓ−QH). Second, due to strict quasi-concavity for λ = 1/2 it similarly
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holds that UH(QL+qℓ+1/2(QH−QL−qℓ), TL+tℓ+1/2(TH−TL−tℓ)) > UH(QL+qℓ, TL+tℓ) =

max
q

UH(QL+qℓ+q, TL+tℓ+q c) ≥ UH(QL+qℓ+1/2(QH−QL−qℓ), TL+tℓ+1/2(QH−QL−qℓ)c)

where the equality is due to Lemma 3. It follows that TH − TL − tℓ < c(QH − QL − qℓ). To

conclude, combining the conclusions of the first and the second argument establishes that

(QL + qℓ −QH)cH > (QL + qℓ −QH)c. This can impossibly hold if QL + qℓ ≤ QH .

Step 4: We now prove claim (ii): Consider an aftermarket cream-skimming deviation (q′, t′)

so that UL(QL + q′, TL + t′) > UL(QL, TL). Then Assumption 6 ensures that UH(QL + qℓ +

q′, TL+tℓ+t′, UH(QL+qℓ, TL+tℓ) = UH(QH , TH). Then set (Q1, T1) = (QH , TH) and (Q2, T2) =

(QL + qℓ, TL + tℓ). Step 3 implies that Q2 > Q1. Then step 2 implies that UH(Q1, T1) <

UH(Q1 + q′, T1 + t′), as claimed.

Proof of Proposition 3 claim 3 . To begin with, we show that there do not exist cream-skimming

aftermarket deviations uniquely attracting low type buyers. Indeed, due to Assumption 6 there

exists a (unique due to Lemma 3) contract (qℓ, tℓ) satisfying UH(QL+qℓ, TL+tℓ) = UH(QH , TH)

so that UL(QL+q, TL+t) ≥ UL(QL, TL) implies UH(QL+qℓ+q, TL+tℓ+t) > UH(QL+qℓ, TL+tℓ)

for all (q, t) (although strictly speaking we only require this for positive (q, t)). And by Steps

2 and 3 from the proof of Claim 2, QL + qℓ > QH , and UH(QL + qℓ + q, TL + tℓ + t) >

UH(QL + qℓ, TL + tℓ) implies that UH(QH + q, TH + t) > UH(QH , TH). It follows that no

cream-skimming deviation that uniquely attracts low type buyers exists.

We then prove the ”if” claim. If 0 = argmax
q≥0

UL(QL + q, TL + qc), no profitable pooling

contract can attract low type buyers. And due to the conditional efficiency of (QRS
H , TRS

H ), no

separating contract targeting high type buyers can generate positive profit.

We then prove the ”only if” claim: If to the contrary QP ∈ argmax
q≥0

UL(QL + q, TL + qc),

there exists ϵ > 0 so that UL(QL + QP , TL + QP c + ϵ) > UL(QL, TL). In effect, this contract

surely attracts type L buyers and is already profitable and conditional on attracting both buyer

types.

D Welfare: missing proofs

We here prove our main welfare result within a more general environment where group 2 sellers

can post menus:

� Stage 1: Each seller k ∈ K proposes a single contract (qkP , t
k
P ) so that qkP ≥ Q

P
in group

1 or a menu of contracts (qkL, t
k
L) and (qkH , t

k
H) in group 2. Further denote (q0ϑ, t

0
ϑ) = (0, 0)

with ϑ ∈ {L,H} the group 2 null contract.

� Stage 2: Each buyer learns her type θ, and decides to purchase insurance or not. If so,

she selects one group 1 seller k1 in K and one group 2 seller k2 in K∪{0}, makes a report

ϑ ∈ {L,H} and derives utility Uθ(q
k1
P + qk2ϑ , tk1P + tk2ϑ ). Otherwise that buyer’s utility is

Uθ(0, 0).
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We emphasize that any buyer that wishes to purchase some coverage must purchase a contract

in group 1.

Proof of Theorem 3. We decentralize the equilibrium allocation without relying on latent con-

tracts: all contracts offered in equilibrium are active. Only two sellers per group are required.

At least two group 1 sellers offer (QP , QP c) and at least two group 2 sellers offer (qL, qLcL)

and (qH , qHcH). Since the aggregate allocation is incentive compatible and satisfies participa-

tion constraints, on path the low (high) risk type is better off purchasing than not purchasing

even if this includes mandatory group 1 coverage (QP , QP c), and upon purchasing weakly

prefers (qL, qLcL) ((qH , qHcH) respectively) over purchasing (qH , qHcH) ((qL, qLcL) respectively)

in group 2.

We then show that there do not exist any profitable group 1 seller deviations. Our proof

does not consider group 2 deviations because those are encompassed by the familiar arguments

pertaining to the exclusive Rothschild and Stiglitz (1976) model.

Suppose that some seller were to offer the deviating contract (Q′
P , T

′
P ) in group 1. If so,

this deviation must necessarily satisfy the minimum quantity requirement, i.e., Q′
P ≥ QP . To

be profitable, such a contract can never uniquely attract high-risk buyers because all the gains

from trading with high-risk buyers are already exhausted by the candidate allocation, i.e., it

holds that qH ∈ argmax
q≥0

UH(QP + q,QP c + qcH). In effect, any group 1 deviation must also

attract low-risk buyers in which case low-risk buyers may also adjust their group 2 demand,

denoted (q′L, t
′
L). We distinguish between three cases.

Case 1: high-risk buyers’ incentive constraint is binding. Three possibilities arise. (i) If

Q′
P + q′L > QP + qL, then the allocation (Q′

P + q′L, T
′
P + t′L) also attracts high-risk buyers and is

therefore not profitable. This is an immediate consequence of single-crossing, i.e., Assumption

3 whereby UL(Q
′
P + q′L, T

′
P + t′L) > UL(QP + qL, TP + tL) implies UH(Q

′
P + q′L, T

′
P + t′L) >

UH(QP + qL, TP + tL) = UH(QH , TH). (ii) If Q
′
P + q′L = QP + qL, allocation (Q′

P + q′L, T
′
P + t′L)

attracting low-risk buyers implies that T ′
P + t′L < TP + tL, so that once more UH(Q

′
P + q′L, T

′
P +

t′L) > UH(QP + qL, TP + tL) = UH(QH , TH) due to the binding incentive constraint.

(iii) If Q′
P + q′L < QP + qL, proceed in two steps. We first show that H trading (Q′

P , T
′
P ) in

group 1 and (qL, tL) in group 2 dominates H’s initial allocation so that the group 1 deviation

also attract high-risk buyers:

UH(Q
′
P + qL, T

′
P + tL) > UH(QH , TH).

To see this, note that there exists α ∈ (0, 1) so that Q′
P + qL = QP + αqL + (1 − α)qH . That

is, a convex combination of L’s and H’s on-path coverage corresponds to the level of coverage

available following the deviation. Since, by Assumption 1 and H’s binding incentive constraint

the convex combination of allocations is desirable to high-risk buyers, i.e., UH(QP +αqL+(1−
α)qH) > UH(QL, TL) = UH(QH , TH), it suffices to show that the newly available allocation,

while replicating the desirable coverage now becomes available at an even cheaper aggregate
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transfer: T ′
P + tL < cQP + αqLcL + (1− α)qHcH . This holds because

T ′
L + tL < cQ′

P + cLqL = c(QP + (1− α)(qH − qL)) + cLqL

cQP + (1− α)qHc+ qLcL − (1− α)qLc = cQP + αqLcL + (1− α)qH c︸︷︷︸
<cH

−(1− α)qL(c− cL)︸ ︷︷ ︸
<0

.

We secondly show that the seller’s loss on (Q′
P , T

′
P ) upon both types purchasing group 1 deviat-

ing contract (Q′
P , T

′
P ) cannot be offset by a possible profit on contract (q′L, t

′
L) (which exclusively

attracts low-risk buyers).

To see this, employ an accounting argument: To begin with, note that there exists α ∈ (0, 1)

so that QP +αqL = Q′
P +q′L. And, due to incentive efficiency, it holds that UL(QP +αqL, QP c+

αqLcL) < UL(QP + qL, QP c + qLcL). Yet, by assumption, low-risk types are attracted by the

deviation so that UL(QP + qL, QP c + qLcL) < UL(Q
′
P + q′L, T

′
P + t′L). Then it must hold that

T ′
P + t′L < QP c + αqLcL. Furthermore, note that since T ′

P < Q′
P c, Q

′
P > QP and TP = QP c it

holds that T ′
P −Q′

P c < TP −QP c. Or, T ′
P −Q′c = QP (

T ′
P

Q′
P
−c)+(Q′

P −QP )(
T ′
P

Q′
P
−c) < QP (

TP

QP
−c)

as claimed. In effect, the seller’s profit of the deviation of offering (Q′
P , T

′
P ) in group 1 and

(q′L, t
′
L) in group 2 is

T ′
P −Q′

P c+mL(t
′
L − q′LcL) =

(
T ′
P −Q′

P cL + t′L − q′LcL
)
mL +

(
T ′
P −Q′

P cH
)
mH

<
(
QP c+ αqLcL −Q′

P cL − q′LcL
)
mL +

(
T ′
P −Q′

P cH
)
mH = Qp(c− cL)mL +

(
T ′
P −Q′

P cH
)
mH

< Qp(c− cL)mL +
(
QP c−QP cH

)
mH = 0.

Or, the deviation is not profitable.32

Case 2: low-risk buyers’ incentive constraint is binding. If so qL = qH = 0, and the high-risk

buyer’s incentive constraint is binding as well. Then refer to Case 1.

Case 3: Both incentive constraints are slack. Note that since incentive constraints are slack,

it holds that

UL(QL, TL) = max
(Q,T ):QcL−T≤QP (c−cL),Q≥QP

UL(Q, T )

(and analogously UH(QH , TH) = max
(Q,T ):QcH−T≤QP (c−cH),Q≥QP

UH(Q, T )). It follows that any de-

viation meant to attract L (H) risk buyers will earn a lower per L (H) type profit than the

candidate allocation. Since on path each contract traded breaks even, for any deviation to be

profitable it must now uniquely attract L risk buyers in group 1. Thus suppose that (Q′
P , T

′
P )

attracts low-risk buyers, but not high-risk buyers. If Q′
P ≥ QH , then single-crossing, i.e., As-

sumption 3 readily implies that H risk buyers purchase the deviating allocation if L risk buyers

do. Thus suppose that Q′
P < QH . If H risk buyers choose not to buy (Q′

P , T
′
P ), then they

must prefer their allocation (QH , TH) over purchasing (Q′
P , T

′
P ) in group 1 joint with some limit

32Observe that we did not require sellers to post limit orders to rule out the existence of profitable group 1
deviations.
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order (αqH , αqHcH) in group 2:

UH(QP + qH , QP c+ qHcH) ≥ max
q∈[0,qH ]

UH(Q
′
P + q, T ′

P + qcL) ≥ UH(QH , T
′
P + (QH −Q′

P )cH).

In effect, QP c + qHcH ≤ T ′
P + (QH − Q′

P )cH , or, equivalently, T
′
P ≥ QP c + (Q′

P − QP )cH . We

then show that L risk buyers do not find group 1 contract (Q′
P , T

′
P ) desirable either. Ensuing

utility if they did is

max
α∈[0,1]

UL(Q
′
P + αqL, T

′
P + αqLcL) ≤ max

α∈[0,1]
UL(Q

′
P + αqL, QP c+ (Q′

P −QP )cH + αqLcL).

This, however, is dominated by the on-path allocation (recall that Q′
P ≥ QP ):

UL(QL, TL) = max
q

UL(QP + q,QP c+ qcL) ≥ max
q∈[0,qL]

UL(Q
′
P + q,QP c+ (Q′

P −QP )cH + qcL)

= max
α∈[0,1]

UL(Q
′
P + αqL, QP c+ (Q′

P −QP )cH + αqLcL)

and strictly so if Q′
P > QP .

Proof of Lemma 5. Part 1: We first show that the second-best decentralizing pooling quantity

QP is non-decreasing in the ratio λH

λL
. Quasi-linearity is not required for this to hold. Without

loss normalize λL = 1 and consider λH > λL. Then denote (QP , QP c), (qH , qHcH), (qL, qLcL)

and (Q
P
, Q

P
c), (q

H
, q

H
cH), (qL, qLcL) the aggregate trades that decentralize the second-best al-

location for the respective welfare weights. Under the single-crossing assumption (cf. 3) indif-

ference curves cannot bind for both type. And, noting that the second-best efficient allocation

is continuous in welfare weights due to an application of Berge’s theorem of the maximum,

it suffices to focus on the case where the same incentive constraint binds for distinct welfare

weights. Thus distinguish between two cases. First, suppose that H’s IC constraint is slack. If

so, by construction it must hold that

UL + λH max
q̃

UH(QP + q̃, QP c+ q̃cH) ≥ UL + λH max
q̃

UH(QP
+ q̃, Q

P
c+ q̃cH)

UL + λH max
q̃

UH(QP
+ q̃, Q

P
c+ q̃cH) ≥ UL + λH max

q̃
UH(QP + q̃, QP c+ q̃cH)

where we denote UL = UL(QP +qL, QP c+qLcL) and UL = UL(QP
+q

L
, Q

P
c+q

L
cL) to facilitate

the notation. Taking differences gives

UL − UL ≥ λH

(
max

q̃
UH(QP

+ q̃, Q
P
c+ q̃cH)−max

q̃
UH(QP + q̃, QP c+ q̃cH)

)
λH

(
max

q̃
UH(QP

+ q̃, Q
P
c+ q̃cH)−max

q̃
UH(QP + q̃, QP c+ q̃cH)

)
≥ UL − UL.

Since λH > λH , this poses a contradiction provided that max
q̃

UH(QP
+ q̃, Q

P
c + q̃cH) >

max
q̃

UH(QP + q̃, QP c + q̃cH), or, (in light of cH > c) equivalently if Q
P

> QP . We deduce
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that QP ≥ Q
P
as desired.

The case where L’s IC constraint is slack follows from largely symmetric arguments. If so,

by construction it must hold that

UH + 1/λH max
q̃

UL(QP + q̃, QP c+ q̃cL) ≥ UH + 1/λH max
q̃

UL(QP
+ q̃, Q

P
c+ q̃cL)

UH + 1/λH max
q̃

UL(QP
+ q̃, Q

P
c+ q̃cL) ≥ UH + 1/λH max

q̃
UL(QP + q̃, QP c+ q̃cL)

where we denote UH = UH(QP + qH , QP c + qHcH) and UH = UH(QP
+ q

H
, Q

P
c + q

H
cH) to

facilitate the notation. Taking differences gives

UH − UH ≥ 1/λH

(
max

q̃
UL(QP

+ q̃, Q
P
c+ q̃cL)−max

q̃
UL(QP + q̃, QP c+ q̃cL)

)
1/λH

(
max

q̃
UL(QP

+ q̃, Q
P
c+ q̃cL)−max

q̃
UL(QP + q̃, QP c+ q̃cL)

)
≥ UH − UH .

Since λH > λH , this poses a contradiction provided that max
q̃

UL(QP
+ q̃, Q

P
c + q̃cL) <

max
q̃

UL(QP + q̃, QP c + q̃cL), or, (in light of cL < c) equivalently if Q
P

> QP . We deduce

that QP ≥ Q
P
as desired.

Part 2: We show that as we move along the second-best frontier and increase the aggregate

pooling quantity QP by one unit, the corresponding low-risk separating quantity qL does not

increase.33 For convenience, we here impose quasi-linearity. First note that coupled with strict

quasi-concavity, i.e., Assumption 1, this implies that Q 7→ Uθ(Q) is strictly concave, whence

differentiable almost everywhere. Then consider two cases. First, suppose that H’s incentive

constraint is slack so that the second-best efficient qL is the solution to an unconstrained

optimization problem. If so, it suffices to show that qL(QP ) = argmax
q̃

UL(QP+q̃)−QP c−q̃cL is

non-increasing. This follows readily from familiar arguments: Topkis (1998) shows that qL(QP )

is non-increasing if (QP , q̃) 7→ −UL(QP + q̃) − QP c − q̃cL satisfies nondecreasing differences,

which, under quasi-linear utility is equivalent to Q 7→ UL(Q) being concave. Second, suppose

that H’s incentive constraint is binding. Then, due to Assumption 3, L’s incentive constraint

is slack. In effect, qL ≡ qL(QP ) is the solution to an implicit equation:

UH(QP + qL(QP ))−QP c− qL(QP )cL = max
q̃

UH(QP + q̃)−QP c− q̃cH ≡ UH(QP + qH)−QP c− qHcH .

Differentiating with respect to QP (and applying an envelope condition) gives

q̇L(QP ) =
U̇H(QP + qH)− U̇H(QP + qL(QP ))

U̇H(QP + qL(QP ))− cL
.

33qL non-increasing is likely not necessary. Large pooling, i.e., Condition 3, would hold as long as qL increases
by at most cH−c

cH−cL
.
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This expression is negative because U̇H(QP +qL(QP )) > U̇H(QP + qH) = cH under quasi-linear

utility.

Part 3: It remains to show that partial efficiency holds for sufficiently large λH/λL. Or,

since QP rises in λH/λL we prove that QP 7→ U̇(QP + QL(QP )) is decreasing. Then, due to

Assumption 2, it follows that U̇(QP +QL(QP )) ≤ c for sufficiently large λH/λL. Equivalently,

we show that QP 7→ QP +QL(QP ) is increasing. Consider the case where H IC is tight. Then

let QL(QP ) = QP + qL(QP ) with qL(QP ) as before. From the above we note that for x > cH

it holds that Q̇L(QP ) = 1 + cH−x
x−cL

> 0 which is equivalent to cH > cL.

To summarize, we have shown that as λH

λL
increases, the aggregate trades corresponding to

a second-best efficient allocation are such that QP does not decrease and qL does not increase.

Hence there exists a maximal interval so that for all λH

λL
∈ [L,L] it holds that qL ≥ 0, (cH −

cL)qL ≤ (cH − c)QP , i.e., Condition 3, and partial efficiency is satisfied.
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