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While immigration of unskilled workers often generates controversy
in the political arena, there is often more consensus in favor of selec-
tive immigration policies. This paper studies the effects of selective
immigration policies on the labor market. High skilled immigration
introduces two potentially confronting forces on labor market prospects
of native workers: first, it increases the competition for skilled jobs,
reducing labor market opportunities, and, as a result, reducing native
incentives to invest in human capital; second, it increases productivity
through spillovers and technological progress. I pose and estimate a labor
market equilibrium dynamic discrete choice model that can account for
these effects. The estimated model is used to evaluate the labor market
consequences of the two most important skill-biased immigration policies
in recent U.S. history: the introduction of H-1B visa program in 1990,
and the elimination of the National Origins Formula in 1965. I also use
the model to simulate the level of selectivity of immigration policy that
maximizes native workers’ wellbeing.

I. Introduction

The Syrian refugee crisis has put immigration policy back at the core of the

political debate in many developed countries. The possibility of exerting a larger

control on immigration and of having stronger borders was one of the main argu-

ments used to support Brexit, it was a salient issue in President Donald J. Trump’s

presidential campaign, who proposed the construction of a wall on the Mexico-

United States border, and it has been central in several (some of them successful)
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presidential campaigns in many European countries.1 Unlike with general immi-

gration, the policies that favor the inflow of highly skilled workers are generally

less challenged. Immigration policies in Canada, Australia, and the United King-

dom are mostly based on points systems that favor immigration of skilled workers,

and Japan recently implemented a similar policy. Canada recently launched as

well the Global Skills Strategy, a program that gives Canadian employers faster

access to highly skilled foreign workers. In the United States, the H-1B visa pro-

gram and some of the executive actions approved by President Barack Obama in

November 2014 aimed at facilitating immigration of highly skilled workers. And

even President Trump, who has questioned the efficacy of the H-1B program in

bringing in high quality immigration, and has announced changes to prevent fraud

and to make it more selective, has not threatened its existence.2

Are there economic gains of selective immigration policies relative to general im-

migration? Whose labor market prospects are improved by skilled immigration,

whose are worsened, and by how much? Does high skilled immigration discour-

age native investments in human capital? Are there knowledge spillovers from

skilled immigration? What level of selectivity in immigration policy maximizes

natives’ utility? The answers to these questions are fundamental for the design

of immigration policy. In this paper, I provide answers to these questions by

posing and estimating a labor market equilibrium dynamic discrete choice model.

The estimated model is used to simulate a different set of positive and normative

counterfactual exercises that provide the relevant answers. The positive analysis

focuses on the first four questions. These simulations evaluate the economic im-

pact of the two most important skill-biased immigration policies in recent U.S.

history: the introduction of the H-1B visa program in 1990, and the elimination

of the National Origins Formula in 1965.3 In the normative analysis, I quantify

1 For example, Jörg Haider and Norbert Hofer in Austria, Gábor Vona and Viktor Orban
in Hungary, Geert Wilders in the Netherlands, Nikos Michaloliakos in Greece, Timo Soini in
Finland, Frauke Petry in Germany, Kristian Thulesen Dahl in Denmark, Gianluca Iannone in
Italy, Björn Söder in Sweden, and Marine Le Pen in France.

2 In April 2017, President Trump signed the executive order “Buy American and Hire Amer-
ican” which dictates, among other things, that “in order to promote the proper functioning of
the H-1B visa program, the Secretary of State, the Attorney General, the Secretary of Labor,
and the Secretary of Homeland Security shall, as soon as practicable, suggest reforms to help
ensure that H-1B visas are awarded to the most-skilled or highest-paid petition beneficiaries”.
(The White House Press Office, April 18, 2017).

3 The H-1B visa program is a guest program targeted to attract workers in Science, Tech-
nology, Engineering and Mathematics (STEM) fields for a once-renewable period of three years,
after which the employer can sponsor the worker for permanent residency. The main users of this
program are immigrants from India, China, and other Asian countries. The National Origins
Formula was a quota system in place between 1924 and 1965 that selected immigrants on the
basis of national origin in order to preserve the ethnic mix of the U.S. population. The removal
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the level of selectivity of the immigration policy that maximizes the wellbeing of

native workers. On the one hand, attracting more skilled workers enhance native

productivity through externalities and knowledge spillovers. On the other hand,

skilled immigration poses competition on skilled natives, which may discourage

investments in the first place.

My modeling approach builds on ?, who shows the importance of accounting

for native human capital and labor supply adjustments to quantify labor market

effects of the increase in (mostly unskilled) immigration in the United States over

the last four decades. Unlike ?, the estimated model accounts for two confronting

forces of high skilled immigration in the labor market. First, the model allows for

a potential externality through knowledge spillovers and endogenous technological

progress. The model features the generation of ideas as a consequence of using

skilled labor (and equipment capital) in production. This generation of ideas and

knowledge spillovers endogenously produce neutral and skill-biased technological

change, which affects the productivity of other labor market inputs (and capital).

The second one, is a competition effect through the labor market equilibrium.

The inflow of skilled workers puts downward pressure on wages of competing

workers (the closest substitutes are skilled natives), reducing their incentives to

invest in human capital in the first place. These two confronting forces make

the determination of the level of selectivity in the immigration policy that native

workers are willing to accept an empirical question.

The estimated model is a labor market equilibrium model with knowledge

spillovers. On the labor demand side, a representative firm (which represents

the behavior of a continuum of atomistic firms) combines three types of labor

(blue collar, white collar, and STEM) and two types of capital (structures and

equipment) to produce a single output. In doing so, the firm generates ideas as a

by-product of using equipment capital and STEM labor in production. Ideas gen-

erate productivity spillovers changing the relative demand for different inputs, and

also fostering factor neutral technological progress. As a representation of atom-

istic firms, the representative firm does not take into account these productivity

enhancements in its labor demand, and, therefore, this constitutes an external-

ity. On the labor supply side, heterogeneous individuals decide on education,

participation, and occupation over their life cycle. Individuals are heterogeneous

in many dimensions, including, in the case of immigrants, national origin, which

of the National Origins Formula in 1965 completely reshaped the skill composition of immigrants
in the U.S., switching from a relatively educated Western immigration to a less educated Latin
American and then Asian one (???).
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is essential both to determine the prevalence of H-1B visas, and to simulate the

National Origins Formula.

The model is estimated using U.S. micro-data from both the Current Population

Survey (CPS) for years 1994–2020 (March Supplements, linked over two consecu-

tive years) and the Survey of Income and Program Participation (SIPP) for years

1987–2007, along with national-level data for some of the aggregate variables.

One of the central aspects of this paper is to credibly identify the knowledge ex-

ternality. Beyond functional form assumptions, and econometric implementation,

it is fundamental to understand the variation from the data that identifies the

spillovers. To this end, it is crucial to have a measurement of the stock of ideas.

In this paper, I use two alternative variables to measure it: the accumulation

of intellectual property products (IPP) capitalized in the National Income and

Product Accounts (NIPA) recently revised by the Bureau of Economic Analysis

(BEA), and the number of patents generated in the U.S. in a given year. Armed

with such measurements, the model interprets the data as follows. Changes in

wages that follow an exogenous change in STEM labor supply (or capital equip-

ment) holding fixed the stock of ideas (e.g. a negative “ideas shock” offsets the

change in labor inputs) are interpreted as elasticities of substitution across labor

inputs. On the contrary, changes in the stock of ideas that do not follow any

change in labor or capital inputs identify the externality.

The estimation of the model using full solution methods (like in ???) is compu-

tationally too demanding. Alternatively, I estimate the model using conditional

choice probability (CCP) estimation, combining techniques and arguments devel-

oped by ?, ?, ?, ?, and ? (see ? for a review). CCP estimation avoids solving

for the value functions in each iteration of the parameter search, which is very

costly. Additionally, it has the advantage of transparently presenting parameter

identification, as well as allowing for sensitivity analysis to different functional

form assumptions and different datasets.

? is the first (and, to my knowledge, only) paper that applies CCP estimation

methods to models that feature aggregate shocks. They present a labor supply

(and consumption) decision model that allows for aggregate conditions that are

consistent with Pareto optimal allocations. As these authors note, the implemen-

tation of this class of CCP estimators requires estimates for the CCPs for different

(counterfactual) realizations of the aggregate shocks in order to correctly specify

expectations about the future. ? obtain these CCPs exploiting the variation in

the shadow value of consumption, heterogeneous across individuals, along with

stationarity. For example, one can predict the behavior of a wealthy individual
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living in an economic slump by observing the behavior of a poorer individual living

in a prosperous world. They can use this argument in identification because they

have data on consumption. Absent consumption information in my data, I show

that one can still exploit the stationarity of the model along with the equilibrium

structure to infer the counterfactual CCPs from time series variation in aggregate

conditions. Given stationarity, calendar time only affects labor supply decisions

through skill prices (driven by the aggregate shock), and thus constitutes a suf-

ficient statistic for the aggregate shock in the observed baseline economy. This

allows me to recover equilibrium skill prices by estimating the wage equations us-

ing current period baseline CCPs. Having recovered them, I reestimate the CCPs

(now conditional on skill prices). In doing so, I interpret periods with high skill

prices as counterfactuals for periods with low prices, had these prices been high.

This paper contributes to the growing literature on the consequences of skilled

immigration.4 Different strands of this literature analyze: the effect of skilled

immigration on patenting and entrepreneurship (???); the displacement effect

on native STEM employment and wages (????????); the career prospects of

science and technology immigrants relative to similar natives (??); the crowding

out effects of H-1B visas on native students (??); and the competition and spillover

effects in the space of ideas, exploiting evidence on massive inflows of foreign

professors (???, and ?).

Among these strands of the literature, my paper is mostly related to the first

two.5 Except for ?, ?, and ?, all these papers use a reduced form approach. The

structural approach allows me to expand this literature in several dimensions.

First, I take into account potential displacement effects not only on employment

of natives, but also on their decisions to invest in education and to become STEM

workers. Second, the structural model allows me to identify the spillover effects

on wages through the generation of knowledge, measured as the accumulation of

patents, or IPP capital. For example, while ? and ? analyze the effect of skilled

immigration on patenting; I additionally measure how this extra intangible capital

maps into higher wages for natives, and how that affects their incentives in the

labor market. Third, I quantify the heterogeneous effects of size and selectivity

of immigration policy across different groups of native workers and I use the

4 More generally, it also contributes to the general literature on immigration on wages (?;
?; ?; ?; ??; see ? for a recent survey).

5 It is also related to the last strand, even though this group studies a narrower population
of interest, namely Soviet mathematicians migrating to the U.S. after the collapse of the Soviet
Union, and Jewish chemists migrating from Nazi Germany. The model is also able to speak to
the remaining two strands, but they are less central to the main contribution of the paper.
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estimated model to characterize the level of selectivity of the immigration policy

that maximizes native workers’ wellbeing. Four, I take into account capital-skill

complementarity, which is important to correctly measure the wage impact of

skilled (and unskilled) immigration (see ??, and ?), and I allow for skill-biased

technological spillovers from high skilled immigration. And five, on top of the H-

1B visa policy, the estimated model is also used to evaluate the National Origins

Formula as a selective immigration policy.

? present a macro-calibrated model of partial equilibrium for the market of

computer scientists. Even though they focus on a much narrower market (com-

puter scientists), their paper is more related to mine than the others above as it

takes into account the change in the supply of prospective workers with computer

science majors (education). It also allows, in a reduced form way, for spillovers of

immigration on overall productivity, even though their mechanism is not endoge-

nous. ? expand their previous model to endogenize technological change, linking

productivity increases in the U.S. during the 1990s to increase in the utilization

of computer scientists in the economy. ? goes beyond the computer scientist mar-

ket, and estimates a model in which natives and immigrants can work in either

computer science or in other STEM jobs. She studies the potential crowding out

of natives into other STEM fields, which is the differentiation mechanism that

allows them avoid competition from immigrants. She, however, abstracts from

knowledge spillovers, and from effects on non-STEM occupations.

More broadly, my paper is also related to other literatures. First, it is related

to the literature that estimates dynamic labor market equilibrium models of ca-

reer choices (??????). Moreover, it contributes to the literatures that analyze

skill-biased technical change and capital-skill complementarity (e.g., ?; see ??

for surveys), and knowledge spillovers in aggregate production (??; see ? for a

review), providing a model that features endogenous neutral and skill-biased tech-

nological change. Finally, it relates to the macro literature that explores the role

of intangible capital in explaining the recent evolution of labor productivity and

the labor share (e.g., ???).

The rest of the paper is organized as follows. Section II introduces some pol-

icy background and descriptive statistics. Section III presents the model. Sec-

tion IV discusses identification. Section V introduces the estimation procedure.

Section VI presents the estimated parameters of the model and evaluates the

goodness of fit. Section VII presents simulation results for the different policy

experiments. And Section VIII concludes.
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II. Immigration in the United States: Policy and Facts

A. U.S. Immigration Policy Background:
From the National Origins Formula to the H-1B Visa Program

Throughout its history, the United States has been a nation of immigrants.

From colonial times to mid-nineteenth century Western European immigrants

(especially from Britain and Ireland, but also from Germany and Scandinavia)

kept entering the U.S. without any federal legislation (?). Beginning in 1850s, the

so-called “new immigration” brought in immigrants from Eastern and Southern

Europe as well as from Asia and Russia. Americans’ preference for “old” rather

than “new” immigration reflected a sudden rise in conservatism and the appear-

ance of the first nativist movements. In 1875 the first federal immigration law was

passed; this law prohibited the entrance of criminals and convicts, prostitutes, and

Chinese contract laborers. This law paved the road for the 1882 Chinese Exclu-

sion Act, which almost prohibited Chinese workers to enter the United States.6

It was the first of many laws that targeted specific ethnic groups, starting a bias

against Asian that lasted until 1952.7

The Immigration Act of 1917 defined a “barred zone” of nations in the Asia-

Pacific triangle from which immigration was prohibited. In 1921 the U.S. Congress

passed the Emergency Quota Act, which limited the annual number of immigrants

to be admitted from any country to a maximum of the 3% of the number of

persons from that country living in the U.S. in 1910; in 1924, the share was

reduced to 2% and the reference year was switched to 1890. It was the birth

of the National Origins Formula. The Immigration and Nationality Act of 1952

consolidated this system setting the quotas for each country to one sixth of one

percent of the number of persons of that ancestry living in the United States

as of 1920. These restrictions, aimed at preserving the ethnic composition of

U.S. population, reserved most immigration slots for immigrants from the United

Kingdom, Ireland, and Germany (?).

The 1965 Amendments to the Immigration and Nationality Act radically changed

U.S. immigration policy. The National Origins Formula was abolished, and re-

placed by aggregate limitations (initially by hemisphere, worldwide from 1976)

with a maximum amount per country (common to all of them). The new policy

also allowed to issue an unlimited amount of visas to immediate relatives (parents,

6 Later on, Chinese were issued Japanese passports to enter the United States. In 1907, a
“Gentleman’s Agreement” with Japan effectively ended with Chinese and Japanese immigration.

7 The Immigration and Naturalization Act of 1952 was the first step towards removing racial
distinctions from U.S. immigration policies.
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spouses and children) of U.S. citizens and legal immigrants.8

The 1965 Amendments were not aimed at fostering immigration or changing the

ethnic composition of immigrant inflows. They were rather a reaction to the civil

rights movements during 1960s. According to the speech by President Lyndon B.

Johnson when he signed the legislation into law, the reform was not “revolution-

ary”:“it does not change the lives of millions” he said. Several of the promoters

of the reform defended it in the debate at the U.S. Senate. Senator Edward

M. Kennedy enumerated what, according to his view, the policy would not do:

“First, our cities will not be flooded with a million of immigrants annually. [...]

Secondly, the ethnic mix of this country will not be upset”. Several representa-

tives expressed the same opinion.9 Many of them, emphasized that “the proposed

legislation would not greatly increase the number of immigrants” (Senator Eugene

McCarthy) and highlighted that the ethnic mix would not change: “the people

from that part of the world [the Asia-Pacific Triangle] probably will never reach 1

percent of the U.S. population” (Senator Hiram Fong). However, as we discuss in

Section II.B, removing the National Origins Formula not only changed the ethnic

mix of the country drastically, but also precluded the radical change in the skill

composition of immigrant inflows that followed.

After subsequent policies mostly focused on preventing illegal immigration (e.g.,

the 1986 Immigration Reform and Control Act (IRCA), followed by an amnesty,

and the 1996 Illegal Immigration Reform and Immigrant Responsibility Act), one

of the most important policy changes after 1965 came with the 1990 Immigration

Act which restricted the number of visas to be issued to immediate relatives

of previous immigrants and U.S. citizens, and established a preference skilled

immigration. This policy introduced the H-1B visa for guest skilled immigrant

workers in “specialty occupations”. These occupations are defined as requiring

8 The quotas from the National Origins Formula were not of application for the Western
Hemisphere (Canada, Latin America, and the Caribbean). However, the legal immigration pro-
cess from Latin America and the Caribbean was very costly. These large costs kept immigration
from these countries not very far from the levels that would be implied the quotas. In 1942,
the U.S. government introduced a large-scale program of temporary immigration of Mexican
workers, the so-called bracero program. The costly process of immigrating permanently to the
U.S. fostered an important increase in unauthorized immigration (through braceros’ overstays).
In 1954, under the “Operation Wetback”, about one million Mexican immigrants were deported
(?). Even though this program ended in 1964, the introduction of the family reunification visa
completely transformed the immigration process from Mexico.

9 Among others, interventions along these lines included those from Senators Edward and
Robert Kennedy, Hart, Fong, Scott, Pell, Williams, Kuchel, Bartlett, Inouye, McCarthy, McNa-
mara, Moss, Proxmire, the Secretary of Labor Willard Wirtz, and the Secretary of State Dean
Rusk. Their interventions are transcribed in the Senate Part 1, Book 1 as made available at
http://vdare.com/articles/so-much-for-promises-quotes-re-1965-immigration-act,
accessed March 23th, 2017.
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theoretical and practical application of a body of highly specialized knowledge in

a field of human endeavor, including, but not limited to, architecture, engineering,

mathematics, physical sciences, social sciences, medicine and health, education,

law, accounting, business specialties, theology, and art (?). Applicants have an

educational requirement of at least a bachelor’s degree. H-1B visas restrict holders

to work only for the company that sponsored them. The standard duration of an

H-1B visa is for a stay of three years, renewable up to a maximum of 6 years.

However, firms can sponsor H-1B visa holders for a permanent resident visa.10

Since 1990 there has been a cap in the total number of H-1B visas that can be

issued, which has been binding since mid 1990s (except for years 2000–2003, in

which the cap was threefold increased). Since year 2000, universities and non-

profit research facilities are excluded from the cap. The H-1B visa has been

instrumental in the recent increase in highly skilled immigration, especially from

India, but also, to a lesser extent, from China and other parts of Asia.

B. Ethnic and Skill Composition of Immigration

This section provides descriptive statistics that offer a general picture about the

evolution of the skill composition of immigration in the United States over the

recent decades. It also shows the evolution of the national origin composition,

demonstrating that the two are highly associated. Finally, it provides evidence of

the increasing incidence of immigration in STEM occupations.

Figure 1 shows the evolution of the share of immigrants in the population

working-age by national origin over the last century. The figure shows that the

predictions of the promoters of the 1965 Amendments to the Immigration and Nat-

uralization Act were not very accurate. From the time the legislation was enacted

until the present day, the stock of immigrants aged 16 to 64 in the U.S. increased

by a factor of six, roughly from 6 to 37 million immigrants. This average inflow

of about 650,000 immigrants of per year increased the share of immigrants in the

population working-age from around 5.5% to 17.8%. Furthermore, the ethnic mix

changed substantially. By mid 1960s, the majority of working-age immigrants

were from Western countries (70.9%), but the inflows from these countries, which

by then had already been decreasing for decades, continued decreasing until today.

By 2015, Western immigrants only represent 14% of all immigrants working-age.

On the contrary, coinciding with the approval of the 1965 bill, a steady inflow

10 Before H-1B, the Immigration and Nationality Act of 1952 introduced the H-1 visa, targeted
at guest workers of “distinguished merit and ability” (?). However, they never became as popular
as H-1B visas because the H-1B program introduced the possibility of transferring to permanent
immigrant status, which made it more appealing for workers and firms.
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Figure 1. Immigrant Share by National Origin (1900-2015)
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 Note: Areas delimited by plotted lines show the share that immigrants from each national origin repre-
sent of all individuals of working-age. Country grouping and inter-census interpolations are described
in Appendix A. Sources: Census data (1900-2000) and ACS (2001-2015).

of Mexican and other Central American/Caribbean immigrants increased their

presence from 8.2% and 6.3% to 28% and 17.1% respectively. More recently, the

inflow of Asian immigrants has increased substantially, in particular, from China

and selected Southeast Asia, and, especially, India.11 In 1990, when H-1B visa

program was introduced, Indian immigrants were only 3.1% of all working-age

immigrants, while in 2015 they represent 7.3% of the total.

The national origin composition of immigration is closely associated to the skills

of immigrants. Table 1 explores the extent to which this is the case. Panel A re-

ports average years of education for natives, for immigrants as a whole, and for

immigrants from each national origin. Panel B reports the fraction of individuals

in each group that has a college degree. Both panels describe a similar picture.

In 1970, natives and immigrants had similar education levels. However, since

then, education of immigrants increased at a slower rate than that of natives.

Interestingly, the change in the national origin composition of immigration that

followed the removal of the National Origins Formula is crucially associated with

this slower increase. As noted in Figure 1, a massive increase in immigration from

Mexico and Central American and Caribbean countries followed the approval of

the 1965 bill. These two groups of countries have, by far, the lowest education

levels, which pushes the average education level of immigrants down. Once disag-

gregated by national origin, the average education level of immigrants from each

11 The selected set of Southeast Asian countries grouped together with China includes Taiwan,
Hong Kong, South Korea, Japan, the Philippines, and Singapore. Hereinafter, I refer to this
group as selected Southeast Asia.
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Table 1—Education of Natives and Immigrants

1970 1980 1990 2000 2010 2015

A. Average years of education:
Natives 11.2 12.3 13.0 13.7 13.7 13.8
Immigrants 11.0 11.7 12.1 13.1 13.1 13.3

Western countries 10.5 11.8 12.8 14.0 14.3 14.6
Mexico 6.3 7.1 7.6 9.1 9.3 9.6
Central America & Caribbean 10.2 10.9 11.0 11.9 11.5 11.5
South America 11.5 12.1 12.6 13.5 13.4 13.6
China & sel. Southeast Asia 11.7 13.2 13.7 14.4 14.6 14.6
India 15.6 15.2 15.1 15.5 15.4 15.4
Other Asia & Africa 11.2 11.8 12.2 13.3 13.2 13.5

B. Fraction with a college degree (%):
Natives 23.2 35.3 50.8 57.7 56.1 58.2
Immigrants 23.6 35.5 44.3 47.1 45.3 47.7

Western countries 22.1 35.2 51.3 61.2 64.8 69.1
Mexico 6.6 10.1 13.8 16.1 15.4 17.0
Central America & Caribbean 22.0 29.7 35.0 37.8 34.2 35.0
South America 33.5 40.6 48.4 56.2 52.9 55.9
China & sel. Southeast Asia 42.9 57.3 65.9 71.1 71.9 72.1
India 80.7 78.7 77.4 79.1 80.5 79.3
Other Asia & Africa 32.5 41.4 51.4 59.5 58.1 60.5

Note: Figures in each panel indicate respectively the average years of education and the percentage
of individuals with a college degree in each group. The sample is restricted to individuals aged 24-64.
Sources: Census data (1970-2000) and ACS (2009-2011, and 2014-2015).

of the origin country groups evolved with a similar slope than natives. More-

over, besides Mexican and Central American immigration, other groups also have

education levels that are similar to (or even higher than) natives. Table 1 also

shows evidence of the influence of the introduction of H-1B visas on the education

level of immigrants. Both at the aggregate level and for the majority of coun-

try groups individually, there is an important increase in education (relative to

natives) during the 1990s, coinciding with the introduction of these visas. On ag-

gregate, immigrants increased average education by one year, while natives only

did by 0.7 years, despite the aforementioned increase in the importance of Mex-

ico and Central American countries over the period. At the country group level,

average education increased, over that decade, by 1.2, 1.5, 0.9, 0.9, 0.7, 0.4, and

1.1 years for Western countries, Mexico, Central America and Caribbean, South

America, China and selected Southeast Asia, India, and other Asia and Africa

respectively.12 Indian immigrants are the only group that increased education in

1990s by less than natives, but that is a special case, because they already had

12 Some groups, like Western countries went from a slightly lower education level than natives
until 1990 to higher level than them (with an increasing gap) after that.
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Figure 2. Immigrant Share by National Origin and Education (1960-2015)
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Note: Areas delimited by plotted lines show the share that immigrants from each national origin rep-
resent of all individuals aged over 24 with the indicated education. Country grouping and inter-census
interpolations are described in Appendix A. Sources: Census data (1960-1990), and CPS (1994-2016).

extremely high education levels to begin with.

Figure 2 further explores the importance of national origin distribution in un-

derstanding skill composition of immigration. Compared to Table 1, it provides a

sense of the distribution of education by national origin, over and above averages.

The figure shows that U.S. immigration is bimodal. In particular, they are mostly

present among the highest educated (college graduates, 19% in 2015), and among

the lowest educated (less than high school, 49%). It also shows that the rela-

tive importance of immigrants from each national origin in each of the education

groups vary substantially. While Indian immigrants only represent 1.3% of the

U.S. working-age population, they represent more than 3% of college graduates,

and a negligible fraction of all individuals with less than high school. On the

other extreme, while Mexican immigrants represent 5% of the U.S. population,

and they represent 29% of all individuals with less than a high school diploma,

they only represent slightly above 1% of all individuals with a college degree.

Moreover, Panel A (and, importantly, not Panels B and C) also provides evidence

of a change in the slopes after the introduction of H-1B visas in 1990.

Finally, Figure 3 provides a similar picture for occupations. While immigrants

are relatively more resent in STEM and blue collar occupations, they are less

present in white collar occupations. Mimicking the results for education, the vast

majority of STEM occupations held by immigrants are executed by Asian nation-

als (more than 18.3% of all STEM employment, while they only represent less
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Figure 3. Immigrant Share by National Origin and Occupation (1960-2015)
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B. White collar workers
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C. Blue collar workers
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Note: Areas delimited by plotted lines show the share that immigrants from each national origin rep-
resent of all individuals working in the indicated occupation. Country grouping and inter-census inter-
polations are described in Appendix A. Sources: Census data (1960-1990), and CPS (1994-2016).

than 5% of the population), and very few of them are executed by Mexicans and

Central Americans/Caribbeans (less than 3%, even though they represent more

than 8% of the population). In this figure, the change in slope after the introduc-

tion of H-1B visas is more prominent, and it is mostly driven by Indian workers.

This claim is clearly supported by more direct evidence since, for example, of all

H-1B visas issued in 2016, 70.4% were issued to Indian nationals.13 Overall, Indian

workers represented 9.6% of STEM employment in 1993 and 18.3% in 2016.

C. Skilled Labor and the Generation of Ideas

One of the central aspects of the model presented below is the presence of knowl-

edge spillovers and externalities in the production of ideas from the use of STEM

labor in production. To illustrate the extent of the association between STEM

employment and the production of ideas, Figure 4 plots the spatial correlation

between the (log of 1 plus) number of patents per 100,000 workers and different

measurements of STEM intensity. To do so, I exploit metropolitan area variation

in labor supply (obtained from the American Comunity Survey (ACS) for years

2000–2015) and in the number of patents (from the U.S. Patent and Trademark

Office). In Panel A, STEM intensity is measured as the proportion of workers

in the metropolitan area that are employed in STEM. The figure shows a very

13 U.S. Department of State, Bureau of Consular Affairs, https://travel.state.gov/
content/dam/visas/Statistics/Non-Immigrant-Statistics/NIVDetailTables/FY16%
20NIV%20Detail%20Table.xls, accessed March 13th, 2017.
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Figure 4. Spatial Correlation Between STEM Labor and Patents (2000-2015)
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Note: The three figures plot the spatial correlation (scatter and regression fit) between different measures
of relative STEM labor and the log of (one plus) the number of patents per 100,000 workers. The left
figure measures STEM labor as the fraction of all workers that work in STEM. The central figure plots
the share of all workers that are native STEM (purple/diamonds) and the share of all workers that are
immigrant STEM (gray/circles). The right figure plots (the residuals of) the share of all STEM workers
that are migrants (from a regression that controls for the number of workers in the metro area and the
share of all workers that are STEM). An individual is defined as a worker if she worked at least 40
weeks in the reference year, and usually worked at least 20 hours per week. She is defined as a STEM
worker if she worked in a STEM occupation and has a college degree. Immigrants are defined as foreign
born individuals. Sources: ACS (2000–2015) for employment and U.S. Patent and Trademark Office
for patents.

strong and positive correlation.

A relevant question for this paper is whether this correlation is driven by na-

tives or immigrants. Panel B separates the STEM intensity in two parts: the one

driven by natives, and the one driven by immigrants. In particular, the figure

plots the share of all workers that are native (immigrant) STEM workers. The

correlation stays strong and positive for both groups, even though regression lines

seem to suggest a steeper pattern for natives. In order to corroborate or reject

this different correlation, Panel C correlates the residuals of the regressions of

the previous measure of patent productivity and the share of STEM workers that

are immigrants on the total number of workers in the metropolitan area and the

share of these workers that are employed in STEM occupations. The figure shows

that, once labor market size and STEM intensity are controlled for, the correla-

tion between immigrant intensity within STEM workers and the productivity in

producing patents is essentially zero.

Overall, Figure 4 suggests a strong positive correlation between STEM intensity

and productivity in patent production, and this correlation seems to be equally
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driven by native and immigrant STEM workers. As a final remark, it is important

to note these correlations are only meant to show the link between STEM intensity

and productivity in patent production, but the direction of causality could go in

both directions. The structure of the model below provides a better framework

to address these endogeneity concerns.

III. A Labor Market Equilibrium Model with Immigration and
Knowledge Spillovers

In this section, I present a labor market equilibrium model with skilled and

unskilled immigrants arriving from different countries of origin and competing

with natives in three different occupations. The model, estimated with U.S. data,

is then used to evaluate the selective immigration policies of interest, and to

quantify the selectivity of immigration policy that maximizes native workers well-

being. The modeling framework introduces heterogeneity across immigrants from

different nationalities, accounts for human capital and labor supply adjustments

by natives and previous generations of immigrants, and allows for economy-wide

knowledge spillovers from skilled (STEM) workers.

A. Representative firm

A representative firm combines capital and labor to produce a single output.

Knowledge spillovers are modeled as an externality through the production of

ideas, measured as intellectual property products or the number of patents pro-

duced in the economy. Innovation is generated endogenously as a by-product

of using STEM labor and capital equipment in general production. Replicating

the behavior of a continuum of atomistic firms, the representative firm takes the

stock of ideas as given, not internalizing the externality produced by equipment

and STEM labor through knowledge spillovers.

Innovation. Let It denote the stock of ideas in period t, ∆It denote the net

increase in the stock of ideas with respect to previous period (innovation), STt

denote the aggregate supply of STEM labor (measured in skill units), and KEt

denote equipment capital stock. Also let ξt denote an aggregate shock in the

production of ideas. Innovation is generated when using equipment capital and

STEM labor in general production, as described by the following technology:

∆It = ξtK
χ1

EtS
χ2

Tt . (1)

The parameters χ1 and χ2 are not restricted to sum to one, thus allowing for

increasing, constant, or decreasing returns to scale in the production of ideas.
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The exogenous innovation shock ξt is assumed to evolve according to:

∆ ln ξt+1 = πξ + σξυξt+1, (2)

where υξt is a zero-mean innovation independently and identically distributed over

time as a standard normal. The presence of such innovation shock is fundamental

in identification, as discussed below, because it provides exogenous variation in

innovation even when the inputs stay unchanged.

Production function. Let KSt denote capital structures, SBt and SWt denote

aggregate supplies of blue collar and white collar labor (skill units), and Yt denote

aggregate output. Also let ζt denote an aggregate (factor-neutral) productivity

shock. Output is produced according to the following nested CES technology:

Yt = (ζtI
ϕ
r )Kςt

St

{
αtS

ρ
Bt + (1− αt)

[
θtS

κ
Wt + (1− θt)

(
ιtS

ψ
Tt + (1− ιt)Kψ

Et

) κ
ψ

] ρ
κ

} 1−ςt
ρ

,

(3)

where the demand shifters are allowed to evolve over time with the stock of ideas:

ot ≡
exp(õ0 + õ1It)

1 + exp(õ0 + õ1It)
for o ∈ {ς, α, θ, ι}. (4)

This functional form ensures that the demand shifters lie between zero and one,

implying constant returns to scale when It is taken as given. The exogenous factor

neutral productivity shock ζt evolves according to the following process:

∆ ln ζt+1 = πζ + σζυζt+1, (5)

where υζt is a zero-mean innovation independently and identically distributed over

time as a standard normal.

In this production function, innovation increases productivity and generates

economic growth both in a factor neutral and in a skilled-biased way.14 The term

ζtI
ϕ
r can be interpreted as total factor productivity (TFP). To the extend to which

ϕ > 0, the generation of ideas produces factor-neutral technological progress by

enhancing TFP in the spirit of ? and ?. Furthermore, innovation also shifts

the relative demands of inputs by changing ςt, αt, θt, and/or ιt, thus inducing

endogenous skill-biased technological change (as long as õ1 6= 0 for some o ∈
{ς, α, θ, ι}). For example, the invention of computers may foster economic growth

14 The introduction of intangible capital in the aggregate production function has already
been discussed in the macroeconomics literature (e.g. ??). These papers, however, model it as a
(rival) intermediate input in which the firm invests, not as a non-rival stock of ideas generated
unintendedly in general production.
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(TFP), increase the relative productivity of STEM labor, and/or substitute out

blue collar labor. As in ?, this production function can also produce skilled-biased

technical change through capital-skill complementarity as a result of an exogenous

fall in the prices of equipment.15

It is also relevant to compare this technology to other production functions

specified in the immigration literature. This production function extends the one

used in ? to allow for a third input (STEM labor) and to incorporate knowledge

spillovers in the way described above. Both production functions differ from

the nested CES structure introduced in the immigration literature by ? and ?.

This is so because, unlike in these papers, the explicit modeling of labor supply

can account for occupational decisions of immigrants, which allows to reduce the

number of types of imperfect substitutability that I need to model to rationalize

the data. Specifically, ? discuss the importance of imperfect substitutability

between natives and immigrants with the same observable skills “because they

tend to work in different occupations”. The equilibrium structure endogenously

generates this imperfect substitutability (even though immigrants within a given

occupation are perfect substitutes) through endogenous sorting into occupations.

In fact, using data simulated from his model, ? finds a “reduced form” elasticity

of substitution between natives and immigrants that fits well within the ballpark

of estimates in ?.

Profit maximization. The representative firm maximizes profits in a static way.

Given the single output production, I normalize output prices to one. Let rjt for

j ∈ {T,W,B} denote the market prices of STEM, white collar, and blue collar

labor skill units. Let rSt and rEt denote the rates of return to structures and

equipment capital respectively. The firm’s problem is defined by:

max
STt,SWt,SBt ,KEt,KSt

{
Y (ζt, It, STt, SWt, SBt , KEt, KSt)− rTtSTt

−rWtSWt − rBtSBt − rEtKEt − rStKSt

}
. (6)

As a representation of atomistic firms, the representative firm takes the stock

of ideas in the economy It as given. Define the following Armington aggrega-

tors: Q1t ≡ (ιtS
ψ
Tt + (1− ιt)Kψ

Et)
1/ψ, Q2t ≡ (θtS

κ
Wt + (1− θt)Qκ

1t)
1/κ, and, finally,

Q3t ≡ (αtS
ρ
Bt + (1− αt)Qρ

2t)
1/ρ. The aggregate demand of STEM skill units is:

rTt = (1− ςt)(1− αt)(1− θt)ιt
(
Q2t

Q3t

)ρ(
Q1t

Q2t

)κ(
STt
Q1t

)ψ
Yt
STt

. (7)

15 ?? discusses the importance of capital-skill complementarity in measuring labor market
effects of immigration.
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The demand of white collar skill units is given by:

rWt = (1− ςt)(1− αt)θt
(
Q2t

Q3t

)ρ(
SWt

Q2t

)κ
Yt
SWt

. (8)

The demand of of blue collar skill units is given by:

rBt = (1− ςt)αt
(
SBt
Q3t

)ρ
Yt
SBt

. (9)

Finally, the demands for capital structures and equipment are:

rSt = ςt
Yt
KSt

, (10)

and:

rEt = (1− ςt)(1− αt)(1− θt)(1− ιt)
(
Q2t

Q3t

)ρ(
Q1t

Q2t

)κ(
KEt

Q1t

)ψ
Yt
KEt

. (11)

It is important to note that, despite the externalities, the representative firm

makes zero profits. This is so because, from the point of view of the atomistic

firms, the above production function is constant returns to scale, even if ϕ > 0 or

õ1 6= 0 for some o ∈ {ς, α, θ, ι}. As such, the factor shares sum to one, as it can

be trivially shown from (7) through (11).

B. Workers

Workers make life-cycle decisions on education, occupation and participation.

Consistent with standard models of human capital (?) they concentrate education

at the beginning of their careers, and then keep accumulating human capital

in the form of experience throughout their working life. Given the dynamics

of the model, individuals face the trade-off between wages/utility for today and

investment for the future. Through equilibrium and spillovers, immigration affects

this trade-off by changing relative wages.

Life cycle. Let a ∈ {16, ..., 65} denote age. Native individuals are born with

a = 16 and a given initial human capital endowment, to be specified below. They

make yearly decisions until a = 65, when they die with certainty. Immigrants only

start making decisions upon entry in the United States, which occurs at a given

(individual-specific) age of entry ã, and there is no return migration. They arrive

to the U.S. with a given initial human capital, which is also specified below, and

make yearly endogenous decisions over ages a ∈ {ã, ..., 65}.

Choice sets. Every year, individuals decide one of three to five mutually exclu-

sive alternatives: working in blue collar, white collar, or STEM, attending school,
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and staying home. The STEM occupation has a college degree requirement, and

therefore is not available to individuals with less than 16 years of education. Like-

wise, consistently with the very low rates of school reentry observed in the data, I

assume that leaving school is an absorbing state. Therefore, the choice set depends

on previous choice and education level.

Let D11 denote the choice set for individuals with at least 16 years of education

(college degree or more) who were in school in the previous period; let D10 denote

the choice set for college educated individuals whose previous choice was not

school; and let D01 and D00 denote the choice sets for individuals with less than

16 years of education who were and were not in school in the previous period. The

first set is formed off five alternatives: blue collar, white collar, STEM, school,

and home, that is D11 ≡ {B,W, T, S,H}. Furthermore, given the college degree

requirement for STEM occupations, D0i = D1i \ {T} for i ∈ {0, 1}. Finally, the

absorbing nature of dropping out from school implies Di0 = Di1\{S} for i ∈ {0, 1}.
More compactly, denote the choice set as D(ha), where ha is the vector of

individual-specific state variables defined below, which includes education and

previous period decision among other variables. The choice of a given individual

at age a is denoted by da ∈ D(ha), and a set of indicator variables is defined, such

that dja ≡ 1{da = j} for any j ∈ D(ha), with
∑

j∈D(ha) dja = 1.16

Observable idiosyncratic state variables. Let ha ≡ (a, `, Ea, da−1, na, ã)′ de-

note the vector of observable individual-specific state variables. This vector is de-

fined by age a, demographic type `, education Ea, lagged choice da−1, number of

preschool children at home na ∈ C ≡ {0, 1, 2+}, and, in the case of immigrants, age

at entry ã. I partition the workforce into a finite number of types, subscripted by `,

defined by observable characteristics. Natives are classified into six groups, defined

by race (Hispanic, non-Hispanic black, non-Hispanic non-black) and gender (male

and female). Immigrants are divided into fourteen groups, defined by national ori-

gin (Western countries, Mexico, Central America & Caribbean, South America,

China & selected Southeast Asia, India, and other Asia and Africa) and gender.

These groups identify twenty types of individuals, L ≡ (R×G)∪ (O×G), where

R denotes the set of races for natives, O denotes the set of national origins of im-

migrants, and G ≡ {1, 2} denotes the set of genders (male and female are denoted

by 1 and 2 respectively). I also define four sets of types, L̃1 ≡ {` : ` ∈ (R×{1})},
L̃2 ≡ {` : ` ∈ (R×{2})}, L̃3 ≡ {` : ` ∈ (O×{1})}, and L̃4 ≡ {` : ` ∈ (O×{2})},
to denote native male, native female, immigrant male, and immigrant female re-

16 The indicator function 1{·} is defined to be one if the argument is satisfied, zero otherwise.
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spectively, and the operator ˜̀(`) to index them. All this (observable) heterogeneity

is necessary for several reasons. The distinction between the six national origins

for immigrants is necessary to capture the different skill composition of immigrant

inflows, as described in Section II.B, their different labor supply and occupation

propensities, and ultimately the different probability of holding H-1B visas. Fur-

thermore, permanent unobserved heterogeneity is not identifiable in this model.

As noted by ?, to correctly identify the distribution of permanent unobserved

heterogeneity one would need data for the same individuals before and after mi-

gration to the U.S. (to my knowledge, unavailable), and the individual migration

decisions should be modeled explicitly, which would be intractable. The hetero-

geneity in the number of children provide an interesting exclusion restriction that

is useful to identify the model, as discussed below. Finally, the presence of age

at entry in immigrants’ state vector also allows for assimilation, as defined in ?:

among two individuals with the same observable skills, the one who spend more

time in the U.S. earns more. Capturing this feature, documented in the literature,

is important to correctly quantify the size of the labor supply shock induced by

immigration under different scenarios.

The initial state vector for natives is given by h16 = (16, `, E16, d15, 0, ·)′, where `

and E16 are exogenously determined at birth, and d15 = S if E16 = 12 and d15 = H

otherwise. Immigrants enter into the United States with a given state vector

hã = (ã, `, Eã, dã−1, 0, ã)′, where dã−1 = S if Eã ≥ (ã − 6) − 2, and dã−1 ≡ F

otherwise.17 The distribution of initial state variables of natives and immigrants

is specified outside of the model. The state vector is updated as follows: a is

increased in one unit, ` is constant, Ea+1 = Ea + dSa, the previous period choice

da−1 is replaced by the current choice da, ã is constant, and the number of children

is increased stochastically with cumulative distribution function Pn(n|ha, da) with

Pn(n|ha, j) = Pn(n|ha, k) for any j, k 6= S.18 The set of possible values for the

observable idiosyncratic state variables at age a+ l when the state variable was ha

at age a is denoted by Ha+l|ha , and the unconditional set of possible values is H.

Idiosyncratic shocks. This model includes two types of idiosyncratic shocks,

which are independent and identically distributed across individuals and over time.

17 This assumption implies that immigrants with up to two years of work experience abroad
can still enroll in school when they arrive in the United States. Given data availability, I assume
that F = H, so that the cost of reentry to work is the same if the individual was in the U.S.
but not working or she was abroad (whether working or not).

18 In order to capture the demographic transition, and the subsequent increase in female labor
force participation, I assume that the transition function before 1970 was P̃n(n|ha, da) instead
of Pn(n|ha, da). For tractability, I assume that the affected cohorts do not take into account the
change in the fertility process when, before the change, form expectations about the future.
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Let ηa denote a shock to individual productivity, with ηa|ha ∼ N (0, 1). Also let

εja denote a taste shock associated to alternative j ∈ D(ha). I define the vector

of combined idiosyncratic shocks, denoted by εa, as:

εa ≡ (σB`ηa + εBa, σW`ηa + εWa, σT`ηa + εTa, εSa, εHa)
′, (12)

where σj` is defined below. The distribution of εa is such that the combined

idiosyncratic shock is generalized extreme value distributed, εa|ha ∼ Fε(εa) with:

Fε(εa) ≡ exp
{
−
[(
e−εBa/% + e−εWa/% + e−εTa/%

)%
+ e−εSa + e−εHa

]}
, (13)

where % ≡
√

1− Corr(εja, εka) for any j, k ∈ {B,W, T}.

Wages, skill units, and aggregate state variables. Individual wages in this

model are defined as the product of the amount of skill units supplied by the

individual in occupation j, and the market price of these skill units. Let rt denote

the vector of skill prices at time t, defined as rt ≡ (rBt, rWt, rTt)
′. Let sj(ha, ηa)

denote the amount of skill units supplied by an individual with state variables ha

and ηa. The occupation-j wage of this individual is defined as:

wj(ha, ηa, rt) ≡ rjtsj(ha, ηa). (14)

The specification of the wage as the product of skill units and their market price

is very explicit about how immigration affects natives. On impact, relative skill

prices are changed in equilibrium due to the change in relative supplies induced by

immigration. Then natives adjust to this change in incentives by changing their

behavior and, as a result, their skill units. Individuals have different mechanisms

to adjust to (skilled and unskilled) immigration: they can adjust their education,

change their occupation, and decide to stay home. As for skilled immigration,

competition effects unambiguously incentivize natives to work in less skilled occu-

pations and discourage investments in education. However, knowledge spillovers

can potentially mitigate or even offset these competition effects.

As key determinants of individual choices, aggregate skill prices rt are included

as state variables. Given the presence of aggregate shocks (and uncertain future

migration, as discussed below), individuals cannot perfectly predict future skill

prices {rt+l}l∈{1,...,65−a}. Let $t denote all information available to individuals at

time t to forecast them. The state vector for the worker decision problem is thus

expanded to also include $t.

I assume the idiosyncratic productivity shock is log-additively separable. In
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particular, the skill unit production function sj(ha, ηa) is defined as:

sj(ha, ηa) ≡ exp(s̃j(ha) + σj`ηa), (15)

where s̃j(·) is a function of the observable idiosyncratic state vector ha, and σ2
j`

is the occupation-j-type-`-specific conditional variance. I assume that the fifth

element of ha (number of children) does not enter s̃j(·).

The model allows for different possibilities of adjustment at different points of

the life cycle. Young individuals may be more likely to change occupations and,

if still in school, to adjust their education decision, while older individuals, who

devoted all their career to a given occupation, may exhibit lower occupational

mobility. The skill units production function, specified in Equation (15) allows

for different transition costs at different ages through the interaction of previous

period choice and age, which allows for such behavior. Furthermore, the error

structure (along with these costs) gives freedom to the model to fit at the same

time the persistence in choices and wages in the data and the observed variance

in wages. Correctly reproducing the transition probability across alternatives

is crucial to credibly identify labor supply and human capital adjustments to

immigration. Given that the model is estimated with the CPS (which offers a one-

year panel dimension), I abstract from introducing accumulation of occupation-

specific work experience. This approach is in the spirit of ?, but differs from ??,

?, ??, or ?.

Alternative-specific period utility functions. I assume that individuals are

not allowed to save or borrow. Individuals are thus assumed to consume all earned

income when they work (wages), and I assume the utility functions for non-working

alternatives (school and home) include a given amount of consumption embedded

in parameter values. The utility of consumption is assumed to be logarithmic,

and other non-pecuniary elements enter additively. The utility of working in

occupation j is given by the sum of log-consumption (log-wage), a type-specific

amenity value of working in occupation j, denoted by Λ0j, an occupation-specific

re-entry cost if the individual was at home in the previous period Λ1j, and the

occupation-specific taste-shock εja:

uj(ha, εa, rt) ≡ lnwj(ha, ηa, rt) + Λ0j(`)− Λ1jd5a−1 + εja (16)

= ln rjt + s̃j(ha) + Λ0j(`)− Λ1jd5a−1 + εja, j ∈ {B,W, T},
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The net utility of attending school is assumed to depend on individual type `,

educational level Ea, and the idiosyncratic taste shock εSa:

uS(ha, εa, rt) ≡ τ(`, Ea) + εSa. (17)

Finally, the utility of staying home depends on individual type, the number of

children na, and the taste shock εHa:

uH(ha, εa, rt) ≡ ϑ(`, na) + εHa. (18)

Intertemporal decisions. Let β denote the subjective discount factor. Also

let ũj(·) denote the deterministic part of the period utility function, defined as

ũj(ha, rt) ≡ uj(ha, εa, rt)−εja.19 An individual with a state vector ha and idiosyn-

cratic shock εa, observed at time t (that is, when equilibrium prices are rt and the

information available to predict their future values is $t), chooses {dja}j∈D(ha) to

sequentially maximize the expected discounted sum of payoffs:

Et

65−a∑
l=0

βl

 ∑
j∈D(ha+l)

dja+l[ũj(ha+l, rt+l) + εja+l]

 , (19)

where Et[ · ] ≡ E[ · |ha, εa, rt, $t] denotes the conditional expectation of the argu-

ment given the information available to the individual at time t, including ha, εa,

rt, and $t. Appealing to the Bellman’s principle (?), I express worker’s decision

problem recursively as:

V (ha, εa, rt, $t) = max
{dja}j∈D(ha)

∑
j∈D(ha) dja {ũj(ha, rt) + εja + β Et[V (ha+1, εa+1, rt+1, $t+1)]} ,

(20)

where the terminal value is defined to be zero, V (h65, ε65, rt, $t) ≡ 0. Following

?, I define two additional objects derived from the above expression. First, define

the ex-ante value function (the continuation value of being in state (ha, rt, $t),

just before εa is revealed) as:

V̄ (ha, rt, $t) ≡
∫
V (ha, ε, rt, $t)dFε(ε). (21)

Second, define the alternative-specific conditional value function as:

vj(ha, rt, $t) ≡ ũj(ha, rt) + β

∫ ∑
h∈Ha+1|ha

V̄ (h, r,$)Ph(h|ha, j)dFr(r,$|$t, rt),

(22)

19 Given that εja enters uj(·) additively, and that εka for any k 6= j does not enter uj(·), the
above expression does not depend on εa.
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where the function Fr(r,$|$t, rt) is the distribution of aggregate conditions in

period t+1 given information available at time t, and Ph(h|ha, j) is the transition

probability mass function for ha discussed above, which is degenerate for all ele-

ments of h except for n. Thus, optimal choices, denoted by d∗ja(ha, εa, rt, $t) for

j ∈ D(ha), are given by:

{d∗ja(ha, εa, rt, $t)}j∈D(ha) = arg max
{dja}j∈D(ha)

∑
j∈D(ha) dja[vj(ha, rt, $t) + εja]. (23)

Expectations Rational individuals use Fε(εa), Ph(ha+1|ha, da), and Fr(rt+1|rt, $t)

to form expectations about future state variables. All these functions are spec-

ified in the model except for Fr(rt+1|rt, $t). Given the presence of aggregate

and idiosyncratic shocks, rational expectations imply that $t includes the entire

distribution of state variables in period t, which is intractable.20 This is a well

known problem in macroecnomics and applied microeconometrics that has been

addressed by approximating rational expectations by simpler forecasting rules

based on equilibrium outcomes (?????). In the immigration context, ? finds that

an autoregressive process in first differences and the contemporaneous change in

the aggregate shock can explain 99.9% of the variation in the level of skill prices.

Further results presented in ? show that the innovation in the aggregate shock

alone can still explain 99.9% of the variation in levels (along with current skill

price), and 71–76% of the first differences. Given this, and following a similar

approach as in ?, I assume skill prices are forecasted using the following rule:

ln rjt+1 = ln rjt + Ξ0j + Ξ1jσζυζt+1 + Ξ2jσξυξt+1 + σΥjΥjt+1, j ∈ {B,W, T},
(24)

where Υjt+1 ∼ N (0, 1) is an independent and identically distributed approxima-

tion error uncorrelated with Υkt for any k 6= j, σξυξt+1 and σζυζt+1 are defined

in (2) and (5) respectively, and Ξ0j, Ξ1j, Ξ2j, and σΥj are not parameters, but,

instead, implicit functions of the fundamentals derived as part of the solution of

the model. Equation (24) implicitly assumes that rt is a sufficient statistic of all

the information that individuals have at time t to predict rt+1 (as υζt+1 and υξt+1

are unknown at t and i.i.d. over time). This implies $t is a redundant state

variable and, thus, I omit it hereinafter.

20 Despite this complication, aggregate shocks are very necessary in the immigration con-
text to avoid making the unrealistic assumption that workers can perfectly predict the future
evolution of economic conditions including the future inflow of migrants.
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C. Capitalists

The comparison of results in ?, ?, and ? suggests that, even though the model

described so far is informative on distributional effects of immigration, the overall

labor market effects depend on our assumption of how capital reacts to immigra-

tion. These papers take one of the two most extreme assumptions (or both): ?

assumes that capital does not adjust to immigration; in ?, interest rates do not

react (long run small open economy); ? provides results with both assumptions

noting that reality should probably be somewhere in between.

In this paper, I opt for closing the economy with the simplest possible spec-

ification of capital supply, so that counterfactuals can provide a more credible

measurement of the overall effects of selective immigration policies.21 In particu-

lar, I assume that capital is supplied by a continuum of infinitely lived capitalists

that only make consumption and savings decisions and live out of the return to

their assets. These capitalists are homogeneous, and therefore are characterized

by a representative consumer model. Unlike workers, I assume they have perfect

foresight about future aggregate shocks and, therefore, future interest rates.

Let Ct denote aggregate consumption of capitalists in year t, and let At denote

their asset position (decided in period t − 1). Let rAt denote the interest rate

paid to assets, which is connected to rSt and rEt in the way described below. The

problem of the representative capitalist is given by:

max
{Ct+τ ,At+1+τ}∞τ=0

∞∑
τ=0

βτ lnCt+τ (25)

subject to:

Ct+τ + At+1+τ ≤ (1 + rAt+τ )At+τ , (26)

At+1+τ ≥ 0. (27)

The solution of this problem is obtained from the following Euler equation:

β(1 + rAt+1)

(1 + rAt+1)At+1 − At+2

=
1

(1 + rAt)At − At+1

. (28)

Define ∆At ≡ At+1

(1+rAt)At
. Equation (28) can be rewritten, upon rearrangement, as

the following differential equation:

∆At =
β

1−∆At+1 + β
. (29)

21 Given that I take (equilibrium) capital from the data, and that I do not impose any
orthogonality condition to aggregate variables with respect to aggregate shocks, this part of the
model is irrelevant for a consistent estimation of the rest of the model.
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Assuming that the transversality condition holds, the solution of the forward

recursion of this expression yields:

∆At = lim
T=∞

β
1− βT−t

1− βT−t+1
= β, (30)

which implies:

At+1 = β(1 + rAt)At. (31)

There is not a perfect mapping between assets and capital in this model: firms

can use a unit of assets to buy qSt units of capital structures, or qEt units of

equipment.22 These prices are exogenous in the model. I normalize qSt ≡ 1.

In the model there is a zero-profit intermediary that transforms assets into

capital at the beginning of the period, and capital into assets at the end. The

budget constraint of this intermediary is:

At ≥ KSt + qEtKEt, (32)

and the revenue function is:

At(1 + rAt) = (1− δs + rSt)KSt + qEt(1− δs + rEt)KEt, (33)

where δS and δE are, respectively, the depreciation rates of structures and equip-

ment. Given the linear objective function, there are infinite many interior solutions

if rSt − δS = rEt − δE, and unique corner solutions otherwise.

D. Equilibrium

The market structure in this model is as follows. Immigrant inflows are specified

outside of the model. Interest rates are such that capital markets clear. Returns

to skill units are such that supply equals labor demand.

The equilibrium capital (as a function of aggregate skill units) is determined as

follows. An interior solution of the intermediary’s problem (which is the only

candidate for equilibrium, given the firm’s problem described above) requires

rSt − δS = rEt − δE. Recursively substituting (33), (10) and (11) into (31) and

imposing this condition yields a system of equations that determines the sequence

of equilibrium levels of capital.

The labor market prices of skill units are also determined by market clearing

conditions. Aggregate supply of skills in occupation j ∈ {B,W, T}, denoted by

22 ? link the fall in prices of equipment capital and the increase in the college-high school
wage gap. It is important to keep this ingredient in the model so that it has room for exogenous
skill-biased technical change not driven by the accumulation of ideas.
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S
(S)
jt (rt), is given by the aggregation over all skill units supplied by individuals

working in occupation j:

S
(S)
jt (rt) =

∫∫ ∑
h∈H

d∗jt(h, ε+ η, rt, $t)sj(h, η)Ph(h)dFε(ε)dΦ(η), (34)

where Ph(·) is the probability mass function for each point of the (idiosyncratic)

state space, Φ(·) denotes the standard normal cumulative distribution function,

and Fε(·) is the cumulative distribution function of the taste shock εa.
23 Aggregate

labor demands, denoted by S
(D)
jt (rt) for j ∈ {B,W, T}, are given by the solution

of the system of equations defined by (7) through (9), replacing capital by the

equilibrium conditions described above.

Even though migration decisions are not modeled, immigration inflows (both

size and composition) and capital supplies are endogenously determined by pro-

cesses specified outside of the model. This is so because, as noted below, no

orthogonality condition is assumed between the aggregate productivity shocks, ζt

and ξt, and the aggregate variables (migration process, cohort sizes,...). Thus,

immigrant inflows are allowed to react to changes in the economic conditions in

the U.S. and other aggregate factors, like endogenous immigration policies.24

IV. Identification

The subjective discount factor β is assumed to be equal to 0.95. The capital

depreciation rates, δI , δE, and δS are assumed to be 20.88%, 11.93%, and 2.88%

respectively (see Appendix A for details). The transition function for preschool

children Pn(·) is directly identified from observed transitions in the data. And

the distribution of idiosyncratic and aggregate shocks are specified above. Thus,

in line with the literature, I assume that these objects, often summarized with

the notation (β, F,G), are known (????). The remaining parameters (and func-

tions) to be identified are: the skill unit production function {s̃j(ha)}j∈{B,W,T},
the variance parameters for wages {σj`}`∈Lj∈{B,W,T}, the re-entry costs for the three

working alternatives {Λkj(`)}{k∈{0,1}}j∈{B,W,T}, the parameter associated with the corre-

lation across idiosyncratic shocks %, the deterministic part of the schooling utility

function τ(`, Ea), the deterministic component of the home utility ϑ(`, na), the

equipment capital and STEM parameters in the generation of IPP capital technol-

ogy χ1 and χ2, the parameters of the production function ϕ, ς̃0, ς̃1, α̃0, α̃1, θ̃0, θ̃1,

23 Equation (34) assumes that there is a measure 1 of workers. In the empirical application,
this measure is scaled by population size.

24 ? provides evidence that, in equilibrium, aggregate flows seem to correlate with aggre-
gate shocks, while composition remains rather invariant. The counterfactual evolution of these
variables are precisely determined by the design of the policy experiments simulated below.
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ι̃0, ι̃1, ρ, κ, and ψ, the parameters from the aggregate shock processes πξ, πζ , σξ,

and σζ , and the reduced form parameters of the skill-price expectation function

{Ξ0j,Ξ1j,Ξ2j, σΥj}j∈{B,W,T} (which are not fundamentals of the model but part of

the solution, as noted above). The discussion on their identification builds on ?,

?, ?, ?, ?, ??, and ?.

The data consist of one-year panels with information on choices, idiosyncratic

state variables, and wages for a sample of individuals that is representative of the

United States between 1993 and 2015. Additional aggregate data are needed for

identification: aggregate output, capital stocks (equipment, structures, and IPP),

and native and immigrant cohort sizes. The distribution of initial skills (at age

16 for natives, and at entry for immigrants) and of observable types are necessary

for simulation, but not used in identification and estimation.

A. CCPs

Let {pj(ha, rt)}j∈D(ha) denote the CCPs. They are not directly identified from

the data, as rt is not observed. In order to recover them, I first note that calendar

time t is a sufficient statistic for r∗t , the vector of equilibrium skill prices at time t.

I also note that {p̃j(ha, t)}j∈D(ha) is non-parametrically identified from observed

choices by individuals with state vector ha at time t. Having identified them, I use

{p̃j(ha, t)}j∈D(ha) to recover equilibrium skill prices r∗t as described below. Finally,

I use recovered skill prices to identify {pj(ha, rt)}j∈D(ha) from observed choices by

individuals when skill prices are rt. Specifically, I exploit that the only source of

non-stationarity in the worker’s problem are skill prices, and use {pj(ha, r)}j∈D(ha)

as the counterfactual CCPs for an individual with state vector ha at time t if skill

prices were equal to r instead of r∗t .

B. Wage function and aggregate skill prices

The skill production function {s̃j(ha)}j∈{B,W,T} is identified from individual wage

data. Taking logs to (14) yields:

lnwj(ha, ηa, rt) = ln rjt + s̃j(ha) + σj`ηa. (35)

In the absence of self-selection, skill prices would be identified as time dummies,

and s̃j(ha) would be identified as a non-parametric function of ha. The scale

of ln rjt and s̃j(ha) is not separately identified, so s̃j(h∗) for some point of the

state space h∗ is normalized to zero. Even subject to this normalization, these

functions are not identified from least squares regression on Equation (35), because
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E[ηa|djt = 1, ha, t] 6= 0 (self-selection). Alternatively, I follow ? to express (35) as:

lnwj(ha, ηa, rt) = ln rjt + s̃j(ha) + σj`ωj`λ(p̃j(ha, t)) + νa, (36)

where ωj` is a nuisance parameter associated to the degree of endogenous self-

selection in wages, λ(p̃j(ha, t)) ≡ φ(Φ−1(p̃j(ha, t)))/p̃j(ha, t) is the selection cor-

rection term (where φ(·), Φ(·), and Φ−1(·) are the standard normal density, cumu-

lative distribution function, and its inverse respectively), and νa is an error term

that is orthogonal to ha and t. As p̃j(ha, t) is identified, λ(p̃j(ha, t)) is identified,

and, thus, rt, s̃j(ha), and σj`ωj` are identified from least squares regression on (36).

As discussed in the literature (see ? for a survey), credible identification requires

an exclusion restriction. In this model, the number of children in the household,

na affects the utility to stay home, but does not affect wages. Given this exclusion

restriction, the normality assumption could be relaxed, and λ(p̃j(ha, t)) could still

be identified nonparametrically, as noted by ?. In the estimation below, I check

the stability of the parameter estimates to this assumption.

Finally, σj` is identified from the conditional (residual) variance of wages, which

has the following form (?):

E[ν2
a|j, ha, t] = σ2

j` − (σj`ωj`)
2
[
Φ−1(p̃j(ha, t)) + λ(p̃j(ha, t))

]
λ(p̃j(ha, t)). (37)

By inspection, σj` is identified as all other elements of Equation (37) are identified.

C. Production function and expectation parameters

Combining identified individual skill units with aggregate data on cohort sizes,

equilibrium aggregate skill units are identified as the aggregation of individual skill

units over all individuals employed in each occupation. Given identified aggregate

skill units and skill prices, aggregate data on capital (KEt, KSt, and It) and output

(Yt), and assumed depreciation rates for strutures and equipment, interest rates

are identified for the specified production function because equipment, structures,

STEM, white collar, and blue collar shares add to one. Let Γlt denote the share of

output devoted to compensate input l. The three labor shares are identified given

that skill prices and aggregate skill units are identified. Imposing the condition

rEt − δE = rSt − δS, interest rates are identified solving for r in:

1− ΓTt − ΓWt − ΓBt =
rKEt

Yt
+

(r + δS − δE)KSt

Yt
. (38)

Production function parameters are identified from demand equations (7) through

(11) as follows. Rewriting Equation (10) as a factor share (ΓSt), deriving the analo-
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gous expression for 1−ΓSt, dividing the former by the latter, and taking logs yields:

ln
ΓSt

1− ΓSt
= ln

ςt
1− ςt

= ς̃0 + ς̃1It. (39)

Thus, the parameters ς̃0 and ς̃1 are identified in the above expression as regres-

sion coefficients of log relative shares on a constant and IPP capital. Combining

Equations (7) and (11) and taking logs to the resulting expression gives, upon

rearrangement:

ln
ΓTt
ΓEt

= ι̃0 + ι̃1It + ψ ln

(
STt
KEt

)
. (40)

Equation (40) provides the basis for identification of ι̃0, ι̃1, and ψ, which can be

obtained as regression coefficients. Having identified these parameters, Q1t is iden-

tified. Combining Equations (7) and (8), taking logs to the resulting expression,

and rearranging gives:

ln
ΓWt

ΓTt
+ ln ιt + ψ ln

STt
Q1t

= θ̃0 + θ̃1It + κ ln

(
SWt

Q1t

)
. (41)

Proceeding analogously with (8) and (9), α̃0, α̃1, and ρ are identified as regression

coefficients from the following expression:

ln
ΓBt
ΓWt

+ ln θt + κ ln
SWt

Q2t

= α̃0 + α̃1It + ρ ln

(
SBt
Q2t

)
. (42)

The parameters associated to IPP capital, ϕ, χ1, and χ2, and those associated to

the aggregate shock processes πξ, πζ , σξ, and σζ are identified as follows. Having

identified ςt, αt, ρ, θt, κ, ιt, and ψ, the term ζtI
ϕ
t is identified as the residual

in Equation (3), which I denote by zt. Taking logs and first differences, and

substituting Equation (5) into the resulting expression yields:

∆ ln zt = πζ + ϕ∆ ln It + σζυζt. (43)

Even though ∆ ln It is correlated with υζt because ln It is, ln It−1 is a valid in-

strument because it is correlated with ∆ ln It but not with υζt. Thus, πζ and ϕ

are identified as (instrumental variable) regression coefficients, and σζ is identi-

fied as the variance of the residual. Similarly, taking logs and first differences

to (1), and substituting Equation (2) into the resulting expression, we obtain,

upon rearrangement:

∆ ln(∆It) = πξ + χ1∆ lnKEt + χ2 lnSTt + σξυξt. (44)
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Thus, πξ, χ1, χ2, and σξ are identified in an analogous way using lnKEt−1 and

lnSTt−1 as an instrument for ∆ lnKEt and ∆ lnSTt.
25

Finally, identifying σζυζt and σξυξt as the residuals in Equations (5) and (2)

respectively, the reduced form parameters of the expectation rule in the baseline

equilibrium, Ξ0j, Ξ1j, and Ξ2j for j ∈ {B,W, T} are identified in Equation (24)

as regression coefficients and σΥj for j ∈ {B,W, T} is identified as the variance of

the residual.

D. Utility parameters

The remaining paramters to identify are the re-entry costs for the three working

alternatives {Λj}j∈{B,W,T}, the deterministic parts of the utilities of school and

home alternatives, {τi(`)}i∈{0,1,2} and ϑ(`, na), and the Generalized Extreme Value

parameter %. Define the vector of CCPs as p ≡ (pB, pW , pT , pS, pH)′. Appealing

to ? (with the reformulation in ?), there exist mappings µj(p) such that:

µj[p(ha, rt)] ≡ V̄ (ha, rt)− vj(ha, rt), for any j ∈ D(ha). (45)

Given the distributional assumption for Fε(·) in this model, µj(p) specializes to:

µj(p) =

{
γ − % ln pj − (1− %) ln

(∑
k∈{B,W,T} pk

)
if j ∈ {B,W, T}

γ − ln pj if j ∈ {S,H},
(46)

where γ is the Euler’s constant, approximately equal to 0.5772 (see Lemma 3 in

?). Substituting (45) into (22) yields:

vj(ha, rt) = ũj(ha, rt) + β

∫ ∑
h∈Ha+1|ha,j

[vk(h, r) + µk(p(h, r))]Ph(h|ha, j)dFr(r|rt),

(47)

for an arbitrary k ∈ D(ha+1). Since n is the only element of h whose transition

probability is not degenerate, Ha+1|ha,j includes only three elements.

The three sets of parameters are identified differently. For the re-entry and home

parameters, I exploit finite dependence, as in ?. In particular, consider two sets

of sequential choices for a given state vector. The first one is to stay home this

period, and then stay home again in the next period. The second one is to work in

one of the three occupations this period, and stay home in the next period. These

two sequences provide identical (expected) continuation values after the second

25 The approach described by Equations (43) and (44) exploits similar variation than the
popular estimation method proposed by ?, except that ? also exploit the panel dimension of
their firm microdata.
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period, which, thus, cancel out when subtracting one alternative-specific value

function to another. Given this, I set k = H. Evaluating (47) for j ∈ {B,W, T}
and j′ = H, substituting (46) into the resulting expressions, and subtracting one

result to the other yields, upon rearrangement:

vj(ha, rt)− vH(ha, rt) = ln rjt + s̃j(ha) + Λ0j − Λ1jd5a−1 − ϑ(`, na) (48)

− β
∫ ∑

n∈C

ln
pH(hj(n, ha), r)

pH(hH(n, ha), r)
Pn(n|ha, H)dFr(r|rt),

where hj(n, ha) ≡ (a + 1, `, Ea, j, n, ã)′, and where I exploit that Pn(n|ha, H) =

Pn(n|ha, j) by assumption, since only choosing education affects the fertility tran-

sition. Finally, solve for vj(ha, rt) in (45), substitute the resulting expression

(evaluated for j and H) into the left-hand side of (48), and obtain:

% ln
pj(ha, rt)∑

k∈{B,W,T} pk(ha, rt)
+ ϑ(`, na) = ln

pH(ha, rt)∑
k∈{B,W,T} pk(ha, rt)

(49)

+ ln rjt + s̃j(ha)− Λjd5a−1 − β
∫ ∑

n∈C

ln
pH(hj(n, ha), r)

pH(hH(n, ha), r)
Pn(n|ha, H)dFr(r|rt).

The right hand side of the above equation is identified from the arguments above.

Thus, {Λj}j∈{B,W,T}, %, and {ϑ(`, n)}n∈C`∈L are identified as a result of evaluating (49)

at all points of the state space and occupational choices, which provides an overde-

termined system of linear equations.

School parameters cannot be identified exploiting any form of finite dependence

because dropping out from school is an absorbing state. However, for the same

reason, vj(ha, rt) is identified for j ∈ {B,W, T,H} using the above arguments,

because returning to school is not an option (and thus τk(`) does not appear in

the value functions) and all other parameters are identified. Evaluating (47) for

j = H and j′ = S, substituting in (45), subtracting the resulting expressions, and

rearranging gives:

τ0(`)1{Ea < 12}+ τ1(`)1{12 ≤ Ea < 16}+ τ2(`)1{Ea ≥ 16} = ϑ(`, na) (50)

+ ln
pS(ha, rt)

pH(ha, rt)
− β

∫ 
∑

h∈Ha+1|ha,S

[
vH(h, r)

− ln pH(h, r)

]
Ph(h|ha, S)

−
∑

h∈Ha+1|ha,H

[
vH(h, r)

− ln pH(h, r)

]
Ph(h|ha, H)

 dFr(r|rt).

By inspection, {τk(`)}`∈Lk∈{0,1,2} is identified because the right hand side of the above

equation is identified. A similar argument could be done evaluating (47) at any

j ∈ {B,W, T} instead, and subtracting it again to the same function evaluated at
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j = S. As I discuss below, in estimation I use both the expression with j = H,

and those with j ∈ {B,W, T}.

V. Estimation

I proceed with estimation following a stepwise procedure that closely mimics

the identification arguments above. To do so, I combine aggregate data from

different sources with use two different micro-datasets: the March Supplements

of the CPS linked over two consecutive years for the period 1993–2015, and the

SIPP panel also matched over two consecutive years for the period 1988–2007.

First, I estimate the CCPs. Second, I estimate the parameters of the wage equa-

tion. Third, I proceed with the estimation of the representative firm problem.

And fourth, I estimate the remaining utility parameters. Variable definitions and

sample selection are specified in Appendix A.

A. CCPs and transition functions

The nonparametric estimates of the CCPs, ˆ̃p(ha, t), are obtained from run-

ning flexibly specified multinomial logit models on different subsamples. Because

previous choice and having a college degree determine the choice set, these two

characteristics always define subsamples. I further divide subsamples by types

`, but several types are often grouped due to sample size concerns. After r̂t is

obtained (as described in Section V.B), p̂(ha, r̂t) are obtained with an analogous

approach, replacing calendar time by the estimate of skill prices. The probability

of attending school is set to zero, p̂S = ˆ̃pS = 0, when da−1 6= S, and the probability

of working in STEM is set to zero, p̂T = ˆ̃pT = 0, if the worker does not possess a

college degree, E < 16.

The transition functions are all degenerate except for Pn(n|ha, da). As noted

above, this function is assumed to depend on the current choice only if this is

schooling. Furthermore, I assume that the dependence on ha is through type,

education level, age, and current number of children. The transition probability

matrix is estimated nonparametrically using Census data for 1970–2000, and ACS

data for 2001–2015. The probabilities are estimated on subsamples determined

by type, education level, and current number of children. The dependence on age

is obtained by means of a logit that includes a flexible polinomial in age.

B. Wage function

Even though s̃j(ha) is nonparametrically identified, I parametrize it to obtain

more precise estiamtes. Let Xa ≡ a−max{16, E+6} denote potential experience,
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and X̃a ≡ max{0, ã− Ea − 6} denote potential experience abroad. The function

s̃j(ha) specializes to the following Mincerian regression (?):

s̃j(ha) ≡ ([1j + [2j 1{˜̀(`) ∈ L̃3 ∪ L̃4}+ [3j 1{da−1 6= j})× Ea
+ ([4j + [5j 1{da−1 6= j})×Xa

+ ([6j + [7j 1{da−1 6= j})×X2
a

+ [8jX̃a +
∑
k∈L

[9kj 1{k = `}, (51)

where ˜̀(`) ∈ L̃3 ∪ L̃4 denotes that the type ` is included in the immigrant sub-

set. Substituting this expression into Equation (36), and evaluating λ(p) at the

CCPs p̃j(ha, t) estimated in the previous step, the wage function parameters are

estimated by least squares estimates on the resulting expression. The equilibrium

skill prices are obtained as the coefficients associated to calendar time dummies.

This procedure provides estimates for l̂n rjt, ˆ̃sj(h), and σ̂j`ω`j. The variance

parameter σj` is obtained from the sample analogs of moment conditions implied

by (37). In particular, by the law of iterated expectations, (37) implies:

σ2
j` = E

[
ν2
a + (σj`ωj`)

2
[
Φ−1(p̃j(ha, t)) + λ(p̃j(ha, t))

]
λ(p̃j(ha, t))

∣∣∣∣dja = 1, `

]
.

(52)

A consistent estimator is provided by the sample analog of this expression using

the estimated CCPs and σ̂j`ω`j. To obtain more precise estimates, I only allow

σj` to differ by gender and immigrant status (native/immigrant), this is, I assume

σj` = σj`′ if ˜̀(`) = ˜̀(`′).

C. Production function and expectation parameters

Let Π(i,t) denote the population elevation factor for individual i for year t, and

let N denote sample size. Having recovered l̂n rt, aggregate skill units in occupa-

tion j are obtained aggregating individual skill units over all individuals working

in occupation j:

Ŝjt =
N∑
i=1

Π(i,t)d
(i)
j exp

{
lnw

(i)
j − l̂n rjti

}
. (53)

Production function parameters are obtained combining these with data on struc-

tures, equipment, and IPP capital, and output. In particular, they are obtained

sequentially, from Equations (38) through (44). Interest rates are recovered solv-

ing for rKt in (38). Then, I estimate ς̃0 and ς̃1 from a linear regression in (39),
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and ι̃0, ι̃1, and ψ from a regression in (40).26 Using these estimates, I construct

Â1t and estimate θ̃0, θ̃1, and κ from (41). Similarly, I construct Â2t and estimate

α̃0, α̃1, and ρ from (42). Using lnKIt−1 as an instrument for ∆ ln It, I estimate

πζ and ϕ as the instrumental variables (IV) coefficients of Equation (43) (and

σζ is obtained as the estimated residual variance). Analogously, πξ, χ1, χ2, and

σξ are obtained from IV estimation of (44) using using lnKEt−1 and lnSTt−1 as

instruments for ∆ lnKEt and ∆ lnSTt. Finally, I obtain the baseline values of Ξ0j,

Ξ1j, and Ξ2j from a least squares regressions on (24) for each occupation using

the predicted values for skill prices and aggregate shocks obtained from previous

regressions, obtaining σΥj as the residual variances.

D. Utility parameters

Home utility parameters and the correlation parameter of the GEV distribution

are obtained from moment conditions specified based on (49). To do so, I first

compute, for each individual, the following expression:

Ω̂
(i)
Hj ≡ 0.95

∫∫∫∫∫ ∑
n∈C

ln
p̂H
(
hj(n, h

(i)), r̂(υζ , υξ,ΥT ,ΥW ,ΥB, r̂t)
)

p̂H (hH(n, h(i)), r̂(υζ , υξ,ΥT ,ΥW ,ΥB, r̂t))

×P̂n(n|h(i), H)φ(υζ)φ(υξ)φ(ΥT )φ(ΥW )φ(ΥB)


dυζdυξ
dΥTdΥW

dΥB

,

(54)

where r̂(υζ , υξ,ΥT ,ΥW ,ΥB, r̂t) is the vector of predicted skill prices from Equa-

tion (24). Furthermore, I parametrize ϑ(`, na) as:

ϑ(`, n) ≡ ϑ0` +
4∑

k=1

ϑ1k 1{˜̀(`) ∈ L̃k}n. (55)

In words, ϑ0` denotes the type-specific intercept, and ϑ1k for k ∈ {1, 2, 3, 4} denote

how this utility is shifted by each children in the household respectively for native

male, native female, immigrant male, and immigrant female. The parameters

{Λj}j∈{B,W,T}, %, {ϑ0`}`∈L, and {ϑ1k}k∈{1,2,3,4} are estimated by least squares from:(
ln

p̂H(h(i), rti)∑
k∈{B,W,T} p̂k(h

(i), rti)
+ l̂n rjt(i) + ˆ̃sj(h

(i))− Ω̂
(i)
Hj

)
= (56)

Λjd5a−1 + % ln
p̂j(h

(i), rti)∑
k∈{B,W,T} p̂k(h

(i), rti)
+
∑
`∈L

ϑ0` 1{`i = `}+
4∑

k=1

ϑ1k 1{˜̀(`i) ∈ L̃k}ni.

26 Equations (39) through (42) should hold exactly in the population. However, because some
elements of the equations are estimated in the sample, I allow for measurement error in these
expressions.
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This regression is estimated on a synthetic dataset generated by expanding the

original dataset with three observations per individual, one for each occupation.

Finally, for the estimation of the schooling parameters one needs to compute

the value functions that appear in the last term of (50). As, this is costly compu-

tationally, I follow ? and ? and use simulation methods to approximate them. In

particular, for each individual i, I simulate M sequences of skill prices and chil-

dren (denoted by mi) for periods li ∈ {1, ..., 65−ai}, drawing from the skill prices

and children transition functions at each simulation point (mi, li). The latter is

done by using the estimated transition probabilities P̂n(n|ha, da) to partition the

unit interval in three groups (for 0, 1, and 2+ children), and draw from a uni-

form distribution to assign a particular transition to that individual at age ai + li.

Thus, in each simulation mi, the individual is exposed to a sequence of skill prices

{r(mi)
ti+li
}li=1,...,65−ai , and a five sequences of state variables, depending on the initial

choice: hjli(n
(mi)
jli

, h(i)) ≡ (ai + li, `i, E
(i) + 1{j = S}, j, n(mi)

jli
, ãi). The difference

across sequences is as follows: at li = 1, the previous choice varies across paths;

education increases in one unit if j = S and stays constant otherwise; and there

are two sequences of children draws, depending on whether the choice is school or

not (the distinction between n
(mi)
Sli

and n
(mi)
jli

is necessary because children transi-

tion probabilities vary by education, but n
(mi)
jli

= n
(mi)
j′li

for any j, j′ 6= S for the

same reason). Using these simulations, the last term of (50) for individual (i) is

approximated by:

Ω̂
(i)
Sj =

1

M

M∑
mi=1

65−ai∑
li=1

0.95li


4∑

k=1

ϑ̂1k 1{˜̀(`i) ∈ L̃k}
(
n

(mi)
Sli
− n(mi)

jli

)
− ln

p̂H

(
hSli(n

(mi)
Sli

, h(i)), r
(mi)
ti+li

)
p̂H

(
hjli(n

(mi)
jli

, h(i)), r
(mi)
ti+li

)

 , (57)

for j ∈ {B,W, T,H}. Furthermore, I parametrize the school utility functions as:

τ0(`) ≡τ0`; τ1(`) ≡ τ0` + τ1; τ2(`) ≡ τ0` + τ2. (58)

The parameters {τ0`}`∈L, τ1, and τ2 are estimated by least squares from:(
ln
p̂S(h(i), rti)

p̂H(h(i), rti)
+
∑
`∈L

ϑ̂0` 1{`i = `}+
4∑

k=1

ϑ̂1k 1{˜̀(`i) ∈ L̃k}n(i) − Ω̂
(i)
SH

)
=∑

`∈L

τ0` 1{`i = `}+ τ1 1{12 ≤ E(i) < 16}+ τ2 1{E(i) ≥ 16}, (59)
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and:(
ln

p̂S(h(i),rti )∑
k∈{B,W,T} p̂k(h(i),rti )

− %̂ ln
p̂j(h

(i),rti )∑
k∈{B,W,T} p̂k(h(i),rti )

+ l̂n rjt(i) + ˆ̃sj(h
(i))− Ω̂

(i)
Sj

)
=

∑
`∈L

τ0` 1{`i = `}+ τ1 1{12 ≤ E(i) < 16}+ τ2 1{E(i) ≥ 16}, (60)

for j ∈ {B,W, T}.27 The first expression is obtained from the difference between

the school and home conditional value functions. The second one is obtained from

the difference between the conditional value functions of working in occupation

j and attending school. The two expressions are estimated jointly in a single

regression on a synthetic dataset generated by expanding the original data with

four observations per individual, one for each alternative.

E. Refinements

In order to improve the efficiency of the estimates and to correct for potential

biased generated by sampling error in the estimation of the CCPs, I introduce

several refinements to the estimation procedure outlined above.

Sampling error in the estimation of the CCPs. The estimation of the CCPs,

even with relatively large datasets, is subject to potentially non-trivial sampling

error. As a result, the estimation of equations that include regressors formed off

estimated CCPs may be subject to the standard attenuation bias. The estimation

of the model using with both CPS and SIPP provides a natural method to correct

for this measurement error. Given that CPS and SIPP provide two independent

measurements of the same population object, they can be used to instrument each

other in estimation, thus correcting the measurement error bias. This refinement

is used in the estimation of the wage equation (to instrument λ(p̃j(ha, t))), and in

the home utility (to instrument the term associated to % in (56)).

? for the labor supply. These authors propose an iterative procedure that

combines CCP estimation and the solution of the model to obtain more precise

estimates. Intuitively, their estimator obtains CCP estimates, solves the model

with them to obtain updated CCPs, and perform CCP estimation again with

the updated CCPs. They prove that this algorithm nests both the standard

? estimator (no iteration) and the full solution estimation, which is obtained

27 Note that the term Λ̂jd
(i)
5a−1 does not appear in the left hand side of the expression because,

by construction, d
(i)
5a−1 = 0 for all individuals in the sample used to estimate this regression.

Additional estimation results, available upon request, provide very similar results estimating the
school parameters from (59) alone.
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iterating this procedure until convergence. Every intermediate iteration provides

consistent estimates that are more efficient than those from the previous iteration.

In the context of this model, I treat skill prices as additional parameters, and I

iterate over the labor supply estimation.

Production function estimates. One of the key difficulties to obtain precise

estimates in this paper is the reduced number of time periods available in the data.

Since production function parameters are estimated off time series variation in

aggregate variables, they are obtained with less than 30 observations in all baseline

specifications.28 To refine this part of the estimation I iterate over equilibrium

simulations (holding labor supply parameters fixed). This refinement provide two

specific improvements. First, it allows me to simulate skill prices and aggregate

skill units for the entire period for which I have data on aggregate variables.

Second, it obtains production function parameter estimates and a sequence of

skill prices that are internally consistent with each other.

Standard errors. Regression standard errors in each step do not take into ac-

count that some of the variables included in the regression are themselves esti-

mated. To correct for that, I obtain standard errors through bootstrap.

VI. Parameter Estimates and Goodness of Fit

28 The baseline specifications include the estimation with the CPS (21 observations) and an
additional estimation with CPS data extrapolated from 1993 to 1989 using SIPP estimates of
skill prices and aggregate skill units (25 observations). Estimation with only SIPP was deemed
too imprecise (14 observations). The only exception is Equation (39), which does not require
data on skill prices or aggregate skill units and is quite precisely estimated (with 47 observations).
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Table 2—Wage Function Parameters — CCP Estimation

CPS SIPP

IV to correct for CCP measurement error:
No Yes No Yes

A. STEM:

Education ([1T ) 0.091 0.096 0.079 0.078
(0.003) (0.005) (0.004) (0.004)

Education × immigrant ([2T ) -0.031 -0.030 -0.045 -0.045
(0.006) (0.006) (0.009) (0.009)

Education × prev. choice 6= STEM ([3T ) -0.015 -0.024 -0.021 -0.016
(0.003) (0.007) (0.004) (0.006)

Potential experience ([4T ) 0.034 0.035 0.031 0.031
(0.002) (0.002) (0.002) (0.002)

Pot. exp. × prev. choice 6= STEM ([5T ) 0.010 0.007 0.006 0.009
(0.003) (0.004) (0.004) (0.005)

Potential experience squared ([6T ) -0.0006 -0.0006 -0.0006 -0.0006
(0.000) (0.000) (0.000) (0.000)

Pot. exp. sq. × prev. choice 6= STEM ([7T ) -0.0002 -0.0002 -0.0002 -0.0002
(0.000) (0.000) (0.000) (0.000)

Potential experience abroad ([8T ) -0.009 -0.010 -0.006 -0.007
(0.002) (0.002) (0.002) (0.002)

B. White collar:

Education ([1W ) 0.101 0.107 0.097 0.096
(0.001) (0.001) (0.001) (0.001)

Education × immigrant ([2W ) -0.026 -0.027 -0.031 -0.031
(0.002) (0.002) (0.002) (0.002)

Education × prev. choice 6= WC ([3W ) -0.007 -0.017 -0.016 -0.012
(0.001) (0.001) (0.001) (0.001)

Potential experience ([4W ) 0.035 0.040 0.035 0.034
(0.001) (0.001) (0.001) (0.001)

Pot. exp. × prev. choice 6= WC ([5W ) 0.007 0.003 -0.007 -0.005
(0.001) (0.001) (0.001) (0.001)

Potential experience squared ([6W ) -0.0006 -0.0007 -0.0006 -0.0006
(0.000) (0.000) (0.000) (0.000)

Pot. exp. sq. × prev. choice 6= WC ([7W ) -0.0001 -0.0001 0.0001 0.0001
(0.000) (0.000) (0.000) (0.000)

Potential experience abroad ([8W ) -0.009 -0.009 -0.008 -0.008
(0.001) (0.001) (0.001) (0.001)

C. Blue collar:

Education ([1B) 0.065 0.059 0.060 0.060
(0.002) (0.002) (0.001) (0.001)

Education × immigrant ([2B) -0.039 -0.031 -0.038 -0.039
(0.002) (0.002) (0.002) (0.002)

Education × prev. choice 6= BC ([3B) 0.000 -0.024 -0.015 -0.004
(0.002) (0.003) (0.002) (0.002)

Potential experience ([4B) 0.034 0.041 0.035 0.033
(0.001) (0.001) (0.001) (0.001)

Pot. exp. × prev. choice 6= BC ([5B) 0.002 0.000 -0.007 -0.006
(0.001) (0.001) (0.001) (0.001)

Potential experience squared ([6B) -0.0005 -0.0007 -0.0006 -0.0005
(0.000) (0.000) (0.000) (0.000)

Pot. exp. sq. × prev. choice 6= BC ([7B) -0.0000 -0.0000 0.0001 0.0001
(0.000) (0.000) (0.000) (0.000)

Potential experience abroad ([8B) -0.008 -0.007 -0.008 -0.008
(0.001) (0.001) (0.001) (0.001)

Note: Regression standard errors (not corrected for error in the estimation of CCPS) in parenthesis.
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Figure 5. Type-Specific Coefficients — CCP Estimation (with IV)
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B. White Collar Wages ( [9`W )
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C. Blue Collar Wages ( [9`B)
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D. School Utility ( τ0`)
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E. Home Utility ( ϑ0`)
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Male CPS Male SIPP Female CPS Female SIPP 

Note: The figure represents the type-specific coefficients estimated using CPS and SIPP using IV to
correct for measurement error in the estimation of the CCPs (estimates without the IV correction are
available from the author upon request). For each national origin/race, the first two columns indicate
male, and the last two are for female. The first columns of each block is estimated from the CPS and
the second is estimated from the SIPP. Two regression standard error confidence bands (not corrected
for estimation error in the CCPs and other regressors) are displayed.
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Table 3—Other Utility Parameters — CCP Estimation

CPS SIPP

IV to correct for CCP measurement error:
No Yes No Yes

A. Variances of wages:

i. STEM
Male Native (σ1T ) 0.530 0.542 0.511 0.509

(0.005) (0.005) (0.006) (0.006)
Female Native (σ2T ) 0.493 0.504 0.452 0.450

(0.006) (0.006) (0.006) (0.006)
Male Immigrant (σ3T ) 0.532 0.537 0.530 0.528

(0.010) (0.010) (0.016) (0.016)
Female Immigrant (σ4T ) 0.534 0.542 0.506 0.504

(0.012) (0.012) (0.017) (0.017)
ii. White collar

Male Native (σ1W ) 0.627 0.625 0.594 0.593
(0.002) (0.002) (0.002) (0.002)

Female Native (σ2W ) 0.555 0.548 0.512 0.513
(0.002) (0.002) (0.002) (0.002)

Male Immigrant (σ3W ) 0.647 0.653 0.619 0.617
(0.006) (0.006) (0.006) (0.006)

Female Immigrant (σ4W ) 0.581 0.586 0.543 0.541
(0.005) (0.005) (0.005) (0.005)

iii. Blue collar
Male Native (σ1B) 0.547 0.561 0.512 0.514

(0.002) (0.002) (0.002) (0.002)
Female Native (σ2B) 0.563 0.575 0.504 0.503

(0.006) (0.005) (0.005) (0.005)
Male Immigrant (σ3B) 0.519 0.549 0.479 0.475

(0.005) (0.005) (0.005) (0.005)
Female Immigrant (σ4B) 0.470 0.493 0.435 0.434

(0.010) (0.009) (0.009) (0.009)

B. GEV parameter:
GEV parameter (%) 0.223 0.286 0.279 0.238

(0.001) (0.001) (0.001) (0.001)

C. School utility parameters:
College Shifter (τ1) -0.007 -0.006 -0.042 -0.038

(0.004) (0.004) (0.002) (0.002)
Graduate Shifter (τ2) -1.136 -1.132 -0.674 -0.659

(0.008) (0.008) (0.004) (0.004)

D. Home utility parameters (children shifters):
Male Native (ϑ11) -0.610 -0.636 -0.570 -0.469

(0.004) (0.006) (0.005) (0.008)
Female Native (ϑ12) 0.412 0.591 0.555 0.908

(0.004) (0.006) (0.005) (0.008)
Male Immigrant (ϑ13) -0.407 -0.516 -0.334 -0.335

(0.009) (0.015) (0.012) (0.021)
Female Immigrant (ϑ14) 0.598 0.865 0.617 0.846

(0.009) (0.015) (0.012) (0.022)

Note: Standard errors (not corrected for estimation error in CCPS and other regressors) in parenthesis.
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Table 4—Production Function and Expectation Parameters — CCP Estimation

CPS CPS+SIPP

A. Factor share parameters:

i. Capital structures
Constant (ς̃0) -1.226 (0.015) -1.226 (0.015)
IPP Capital/1012 (ς̃1) 0.085 (0.008) 0.085 (0.008)

ii. Blue collar labor
Constant (α̃0) -0.572 (0.028) -0.576 (0.017)
IPP Capital/1012 (α̃1) -0.048 (0.024) -0.060 (0.019)

iii. White collar labor

Constant (θ̃0) -0.024 (0.190) 0.099 (0.144)

IPP Capital/1012 (θ̃1) -0.045 (0.019) -0.061 (0.014)
iv. STEM labor

Constant (ι̃0) 1.022 (0.246) 1.278 (0.235)
IPP Capital/1012 (ι̃1) 0.003 (0.014) 0.028 (0.011)

B. Elasticity of substitution parameters:

Blue collar (ρ) 1.030 (0.093) 0.999 (0.069)
White collar (κ) 1.033 (0.131) 0.916 (0.095)
STEM Equipment (ψ) 0.629 (0.172) 0.849 (0.157)

C. IPP capital parameters:

Externality (ϕ) 0.568 (0.526) 0.356 (0.675)
Equipment share (χ1) 0.956 (0.322) 1.142 (0.626)
STEM share (χ2) 0.066 (0.097) 0.124 (0.167)

D. Aggregate shocks parameters:

i. TFP Shock:
Drift (πζ) -0.017 (0.019) -0.010 (0.024)
Standard deviation (σζ) 0.015 (0.003) 0.014 (0.002)

ii. IPP Shock:
Drift (πξ) -0.000 (0.011) -0.007 (0.024)
Standard deviation (σξ) 0.016 (0.003) 0.016 (0.002)

E. Expectation parameters:

i. STEM:
Constant (Ξ0T ) 0.007 (0.005) 0.007 (0.004)
TFP shock (Ξ1T ) 0.673 (0.321) 0.721 (0.270)
IPP shock (Ξ2T ) -0.148 (0.314) -0.037 (0.243)
Standard deviation (σΥT ) 0.020 (0.003) 0.018 (0.003)

ii. White collar:
Constant (Ξ0W ) 0.004 (0.004) 0.003 (0.003)
TFP shock (Ξ1W ) 0.929 (0.252) 1.032 (0.196)
IPP shock (Ξ2W ) -0.015 (0.246) -0.072 (0.176)
Standard deviation (σΥW ) 0.016 (0.003) 0.013 (0.002)

iii. Blue collar:
Constant (Ξ0B) 0.002 (0.004) 0.002 (0.003)
TFP shock (Ξ1B) 0.924 (0.248) 0.931 (0.219)
IPP shock (Ξ2B) 0.349 (0.243) 0.064 (0.197)
Standard deviation (σΥB) 0.015 (0.003) 0.014 (0.002)

Note: CPS+SIPP indicates that CPS aggregate skill units and skill prices are extrapolated using SIPP
estimates. Standard errors (not corrected for estimation error of the regressors) in parenthesis.
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Figure 6. Relative Demand Shifters for Each Labor Input
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Note: The figure represents three combinations of the estimated values of ςt, αt, θt, and ιt that are
associated to the relative demand for each of the indicated labor inputs. The statistic associated to
blue collar labor is αt

1−(1−αt)(1−θt)(1−ιt) , the one associated to white collar is (1−αt)θt
1−(1−αt)(1−θt)(1−ιt) , and

the one associated to STEM is (1−αt)(1−θt)ιt
1−(1−αt)(1−θt)(1−ιt) .

VII. Counterfactual Simulations and Policy Analysis

VIII. Conclusions
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Appendix A: Sample Selection and Variable Definitions

The model is estimated using micro data from the Current Population Survey

(CPS), and the Survey of Income and Program Participation (SIPP). Additionally,

some aggregate macro data are used in the estimation and solution of the model,

as described in the main text. While my estimation period is 1987–2020, in

my simulations I initialize the model starting in 1860 in order to eliminate the

influence of initial conditions.29 In particular, I simulate the first 40 years, i.e.

the period 1860–99, using aggregate data for 1900. Then I simulate the remaining

years with actual macro data. As a result, two entire generations go by before

the first year of estimation. This appendix provides a detailed description of the

main data sources and the main data cleaning procedures.

A1. Aggregate data

Output. Output is measured as Real Gross Domestic Product at chained U.S.

dollars of 2012. The raw data is provided by the Bureau of Economic Analysis

(BEA) in the National Income and Product Accounts (NIPA), Table 1.1.6 “Real

Gross Domestic Product, Chained Dollars” (?). Given that the original series

starts in 1929, I use the average annual growth rate for the period 1929–2021 to

extrapolate backwards to year 1900.

Capital stock. There are three types of capital in the model: structures and

equipment, and intellectual property products (IPP) capital, which is my main

proxy for the stock of ideas in the economy. The three series are extracted from

the Fixed Assets Accounts Tables from the BEA. In all the analysis, I exclude

residential assets.30 For each of the three series, I multiply the chain-type quan-

tity indexes reported in Table 1.2 “Chain-Type Quantity Indexes for Net Stock

of Fixed Assets and Consumer Durable Goods” (?), which equal 100 in the base

year 2012, with the current cost stocks of 2012 obtained from Table 1.1 “Cur-

rent Cost Net Stock of Fixed Assets” (?). In all cases, I take the aggregation

of private and government values, reported in rows 18–20 of each of the tables.

29 In some refinements, my estimation period is 1967–2020.
30 ? shows that housing is a major responsible for the documented decreasing in the labor

share. The comment by Robert Solow published with the article suggests that an implication
of Rognlie’s results is that “for estimating an economy-wide elasticity of substitution, it would
be better to eliminate the housing stock and associated land on the capital-input side and the
rents on the output side.” Excluding the part of GDP associated to housing for such a long time
series is more complicated: disaggregated in the GDP measures above starting in year 2002.
However, not excluding this information from the GDP accounts is not particularly problematic
in the context of my paper because wages are deflated by a GDP to CPS/SIPP index, which
nets out such aggregate discrepancies in the predicted level of wages by design.
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The resulting series are expressed in chained U.S. dollars of 2012. Given that the

original series start in 1925, I extrapolate them backwards to 1900 using aver-

age annual growth rates.

Capital depreciation rates. The capital depreciation rates are computed com-

bining the Fixed Assets Account Table 1.1 described above with the Table 1.3

“Current-Cost Depreciation of Fixed Assets and Consumer Durable Goods” ?. In

particular, annual depreciation rates are obtained dividing the depreciation series

(Table 1.3) for each type of capital by the current cost stock of capital (Table

1.1). Given that the original series start in 1925, I impute the 1925–1929 average

to the period 1900–1928.

Cohort sizes. Cohort sizes are extracted from the Integrated Public Use Micro-

data Series (IPUMS) of the U.S. Census (?). In particular, I the largest available

sample from each decennial census for 1900–2000, and the American Commu-

nity Survey (ACS) for 2001–2020. A person is classified as an immigrant if born

abroad. Individuals born in Puerto Rico and other outlying areas are categorized

as natives. I compute aggregates using person weights provided in the data.31

Native and immigrant inter-census cohort sizes are estimated following different

procedures. For natives, I distribute the decade’s cohort size decrease across the

years between censuses using annual mortality rates by age from Vital Statistics of

the U.S.32 For immigrants, I use a similar procedure to distribute the net increase

in the cohort sizes, but using the estimates of the entry age distribution described

below instead of mortality rates.

Age at entry distribution. The distribution of entry age of immigrants is esti-

mated using U.S. Census IPUMS. In order to reduce small sample noise, I average

out the distributions for immigrants who arrived at t−1, t−2,..., t−5. Since the

exact year of immigration is only available in 1900–1930 and 2000 Censuses, and

in the ACS (2001–2020), intermediate years are linearly interpolated. Given that

the distribution is stable over the years, I estimate a single distribution for each of

the following intervals: 1900–1930, 1931–1940, 1941–1950, 1951–1960, 1961–1970,

1971–1980, 1981–1990 and 1991–2020. Finally, in order to obtain the joint distri-

31 The 1970 Census includes the six available files, each representative of the whole U.S.
Therefore, weights in that year are divided by six to represent the correct U.S. aggregates.

32 Mortality rates are obtained from different sources: Table 6 in ? for 1900–1940; Table 55
in ? for 1941–1960; Tables 1.3 in ? for 1961–1970 and in ? for 1971-1980; Table 1.4 in ?; and
Tables 2 in ?, ?, ?, ?, ?, and ? for each year between 1994 and 1999 respectively. The raw data
is presented in pdfs, and were manually tabulated. Age is grouped in different categories. For
each age, I apply the value of the corresponding aggregated age cell from the original data. In
the period 1900–1940, reported rates refer to the subset of U.S. states that reported death rates.
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bution of age at entry and initial education, I estimate the entry age distribution

conditional on education. Because of data limitations, I approximate it using the

“relative” distribution by educational level: I compute the ratio of conditional and

unconditional distributions from the Census 2000, and then I multiply this relative

distribution by the time varying unconditional distribution of age at entry.33

Regions of origin distribution. The share of immigrants from each region of

origin is obtained from U.S. Census IPUMS 1900–2000 and ACS 2001–2020. I

consider seven regions of origin for immigrants: Western Countries; Mexico; Cen-

tral America and the Caribbean; South America; China and selected Southeast

Asia; India; and Other Asia and Africa, which includes all the remaining immi-

grants from these two continents. Inter-census estimates of the distribution of

immigrants from each region of origin are obtained by linear interpolation.

Ethnicity distribution. The share of natives in each ethnic group is obtained

from the observed distributions in each U.S. Census IPUMS 1900-2000 and ACS

2001–2020 for individuals aged 16 to 25. I consider three ethnic groups for na-

tives: Hispanic, Non-Hispanic Black, and Non-Hispanic Non-Black. Inter-census

estimates of these shares are linearly interpolated.

Initial education distribution. The distribution of initial education is ob-

tained from the U.S. Census IPUMS 1940–2000 and ACS 2001–2020. For natives, I

take individuals aged 18 in each census, censoring the number of observed years of

education at 10. I focus on 18-years-old individuals instead of 16 to allow for some

individuals to temporarily drop out from school, something that is not allowed in

the model, and to account for other sources of systematic reporting errors such

as those derived from grade retention. The U.S. Census does not contain infor-

mation on education prior to 1940, so information on earlier cohorts are obtained

from the 1940 census, checking, respectively, individuals aged 28, 38, 48, and 58

respectively for years 1930, 1920, 1910, and 1900. For immigrants, I use data

starting from 1970, since the 1940–1960 censuses do not include information on

years since migration. For each 10-year cohort of arrival of immigrants I compute

the observed education distribution, merging the data of different censuses. Be-

cause of the grouping of the information of years since migration, the distribution

of education of immigrants that arrived before 1940 is assumed to be constant.

33 This calculation assumes that the relative distribution is constant over time. Estimates with
1970–1990 Censuses (year of entry only available by five-year intervals) support this assumption.

46



Fertility process. The fertility process consists of a three times three transition

probability matrix, from 0, 1, or 2+ preschool children in period t− 1 into 0, 1 or

2+ in t, conditional on age, college status, and demographic type. Given the model

assumes a stationary distribution for the whole estimation period, I estimate two

different processes: one for years before 1970, and and one for the years after

1970 (the transition from the first process to the second is unexpected in the

model). The pre-1970 distribution is estimated using Census microdata for census

years 1940–1970. The latter is estimated using the censuses of 1980–2000 and

the ACS files for 2009–2011 and 2018–2020 to mimic one census point each (the

weights of the ACS are divided by three to represent one year’s U.S. population).

Children are identified using the variables pernum, poploc, and momloc provided

by IPUMS, as well as the household identifier. I infer transitions out of cross-

sectional data based on the age of the child. In order to smooth probabilities

across different ages, I estimate different logits on flexible polynomials of age for

every number of children in t− 1, observable type and college status. Transitions

from 0 to 2+ children and from 2+ to 0 are assumed to happen with probability

zero.34 Therefore, the probabilities are estimated using binary logits if the number

of children in t− 1 is 0 or 2+, and a multinomial logit in case it is 1. The logits

are specified with up to fourth order polynomials in age. If they do not converge,

the order of the polynomial is progressively reduced until convergence is achieved

(the lowest specifications are with a quadratic polynomial). The order of the

polynomial is also reduced if the largest terms are insignificant. In a few cases,

when logits are to be run with less than 100 observations, the probability values

are imputed as follows: if the number of children in t− 1 was 2+, then it reduces

to 1 with probability 1/6 and stays at 2+ with probability 5/6; if the number of

children at t−1 was 1, it reduces to 0 with probability 1/6, it increases to 2+ with

a probability that equals the probability that individuals in the same cell have of

going from 0 to 1, and it stays at 1 with the remaining probability; if the number

of children was 0, it stays at 0 with probability 1. After age 40, the probability of

increasing the number of children is not allowed to grow, and, additionally, after

age 45 the probability of reducing the number of children is not allowed to decrease.

Wage adjustments. To avoid biases in parameter estimates, I make three ad-

justments to wages and/or aggregate skill units. On the one hand, CPS and SIPP

wages as well as output data include taxes, but individuals make decisions on a net

34 In practice, when I observe in the data an increase from 0 to 2+, I treat it as if this increase
was from 0 to 1, and when a decrease is observed from 2+ to 0, the decrease is treated as if it
was observed from 1 child to 0.
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income basis. To correct for this discrepancy, in the estimation and simulation of

individual choices I deflate gross wages by the ratio of Disposable Personal Income

over Personal Income from NIPA Table 2.1 “Personal Income and Its Disposition”

(?). On the other hand, there are two reasons why total labor compensation ob-

tained from the aggregation of my CPS or SIPP wage measurements may differ

from the observed wages and salaries from the national accounts. First, given

the discrete mutually-exclusive choices of the model and the annual frequency,

individuals may be assigned to work full-time in an occupation all year when they

worked part time or only during a fraction of the year. Likewise, some individuals

assigned to school or home may have worked for part of the year. Second, there

are forms of labor compensation that are not wages (e.g. some types of bonuses

and in-kind payments). These two discrepancies are corrected by adjusting total

wage compensation appropriately. To correct for the first, I adjust my predicted

aggregate skill units multiplying them by the ratio between the total Wages and

Salaries from NIPA Table 2.1 by the predicted aggregate wages from my CPS or

SIPP samples. To correct for the second, I multiply my skill prices by the ratio of

BEA Compensation of Employees over Wages and Salaries, also from NIPA Table

2.1. The NIPA series starts in 1929. When needed backwards, the ratios are

extrapolated backwards assuming them to be constant to the first available year.

A2. Microdata

Labor supply parameters are estimated using micro data from the March Sup-

plement of the Current Population Survey (CPS), and the Survey of Income and

Program Participation (SIPP). The CPS data are obtained from IPUMS (?). In

particular, I selected the longitudinal Annual Social Economic Supplement files,

linked by IPUMS across consecutive years. I extract those data from 1994–1995

to 2020–2021 which are the available years with information on immigrant status.

The second year corresponds to period t, and the first year is t− 1. The variables

referring to the latter are only used to clean the survey linkage, and to construct

the t − 1 choice da−1. To clean the linkage, I sequentially drop the observations

that satisfy the following criteria: age difference across surveys is more than two

years (28,818 observations); the reported sex differs across surveys (2,189 obser-

vations); immigrant status differs across surveys (640 observations); race differs

across surveys (3,234 observations); and region of origin differs across surveys (373

observations). For linked surveys 1994–1995 and 2020–2021, longitudinal weights

are not available. I assume constant weights (equal to 2800, the approximate av-

erage of the other years) for those two years. Immigrant status, race, and region
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of origin are defined as described below. The SIPP data, ?, was downloaded from

the website of the National Bureau of Economic Research (NBER). I downloaded

core and the second topical module of panels of 1988, 1990, 1991, 1992, 1993, 1996,

2000, and 2004, which are the ones in which region of origin can be identified with

the required granularity. For 1988, I dropped observations in which the interview

status is not 1, and I also drop information for reference month number five. For

all periods, I drop individuals whom, after cleaning, do not have information on

some of the state variables (including those without the second topical module,

which I drop at the beginning of the cleaning process).

Age. In line with the timing of the model, I keep individuals aged 16 to 65. To

accurately fit with the model’s timing, I make some small age adjustments to the

reported age as a result of the education adjustments described below. Other

than those, in the SIPP I clean the age variable by taking the most frequently

reported birth year among the different waves the same individual is interviewed,

and computing age accordingly.

Demographic types. Individuals are classified in 20 types depending on gender,

nativity, and race. Natives include individuals born in Puerto Rico and other U.S

territories, and immigrants are individuals born elsewhere. The regions of origin

for immigrants are defined above when describing their aggregate distributions.

Natives are classified into nativity groups based on the race and Hispanic variables

in the CPS, and race and ethnicity in the SIPP. The classification is done as

follows. First, individuals are classified as Hispanic if they have a non-zero value

in the hispan variable in the CPS, or, in the SIPP, either declare to be Mexican,

Mexican-American, Chicano, Puerto Rican, Cuban, Central or South American,

Dominican Republic or Other Spanish/Hispanic in the variables ethnicity (before

1993) or origin (1996 and 2001), or declare to be Hispanic in the variable origin

(2004). For the remaining individuals, those indicating black as their single race,

as one of their multiple races, or as their ethnicity are classified as non-Hispanic

black. Finally, the remaining individuals are classified as non-Hispanic non-black.

The variable sex is used to further classify individuals into males and females.35

Educational level. The main education variable is defined in years. In the CPS,

school is provided in categories. For each category I assign the following years: 0

for “None or preschool”; 2.5 for “Grades 1, 2, 3, or 4”; 5.5 for “Grades 5 or 6”; 7.5

for “Grades 7 or 8”; 9 for “Grade 9”; 10 for “Grade 10”; 11 for “Grade 11” and

35 In the SIPP, there are a very few discrepancies in the sex and race across waves for a given
individual. In these very few instances, the most frequently reported sex/race is considered.
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for “12th grade no diploma”; 12 for “High school diploma or equivalent”; 14 for

“Some college but not degree”, for “Associate’s degree, occupational/vocational”,

and for “Associate’s degree, academic program”; 16 for “Bachelor’s degree”; 17 for

“Master’s degree”; 20 for “Professional degree”; and 21 for “Doctorate degree”. I

then adjust age, education, and enrollment status to mimic the fact that in the

model individuals who quit school are not allowed to return. The adjustments

are as follows. If an individual reports to be enrolled in school in either t − 1 or

t, her education level is between 10 and 12 years, and her age is above education

level plus six but below education level plus nine, I adjust age to education level

plus six and the previous choice is defined to be school. If the individual reports

to be enrolled in school in either t − 1 or t, her education level is 7.5 or 9, and

her age is respectively 16 or 16/17, I adjust age to be 16, education level to be

10, and previous choice to be school. If an individual reports the same education

level in both t− 1 and t, that education level is respected. In that case, if age is

below what the education level would predict, I adjust as follows. If the individual

reports to be enrolled in education last year or this year, I modify the age to reflect

the minimum age that would allow for that education level and I ensure that the

previous year decision was schooling. If the education level was referring to a

range of years (e.g., some college), I additionally adjust exact years of education

within the range to fit accordingly. If the gap in education is one education level

and the individual reports to be enrolled in education last year or this year, I make

analogous adjustments. For education levels in intervals, education in this case is

assumed to be in the first year of the interval. For the remaining individuals that

declare to be in school in either t−1 or t, I make the following choices. If education

level is below 9 years or above 12 years I move their previous choice to not school

and I keep their education and age. If their education level is 9 and age is below

18, the education level is increased to 10, and previous choice is considered to be

school. If education is between 10 and 12 and their age is 20 or below, I keep their

education level, I adjust the age as above, and I keep the previous year decision

as school. For the remaining individuals, the previous choice is considered to

be other than education and, if age is below years of education plus seven, it is

increased to that level. Previous choice was set to non-school for all individuals

of final ages different from education plus six or if the education level is 21 years.

For the SIPP, I use different variables for the panels before and after 1993. In

panels 1988–1993, the highest grade of school attended (higrade) is converted into

years of education (codes 1–12 directly correspond to years, and codes 21–26 were

directly mapped into 13, 14, 16, 16, 17, and 17 years respectively, which, after
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the adjustments below, was the combination that best fits education distributions

and educational choices conditional on education in the U.S.).36 After 1993, the

highest degree received or completed (eeducate) is used, with the same corre-

spondence with years of education used in CPS. In both cases, when there were

discrepancies within a year, the modal educational level reported was selected.

Furthermore, age, education, and enrollment status is adjusted as in the CPS.

The only differences with the CPS are given by the different panel structure of

the two datasets. In the SIPP, an individual is considered enrolled if she reports

to be enrolled at least once the given year. Moreover, if the individual is enrolled

in t, this supersedes non-enrollment in t− 1. Finally, if enrollment and education

in t − 1 are unknown (e.g. for the first year in the panel), this is inferred from

enrollment at t (if enrolled) or by education level at t and age (if not enrolled).

Preschool children. Individuals are allowed to have 0,1, or 2+ preschool chil-

dren (zero to five years old). For the CPS, this variable has been created by

IPUMS: nchlt5. For SIPP, the variable is computed as follows. For each indi-

vidual aged zero to five, I identify parents and legal guardians, as well as their

spouses. Before 1996, only one of the parents can be identified. Then, I count

how many children are associated to each individual. Finally, I sum the number

of children assigned to respondent and spouse, and, to avoid double-counting, I

define the number of children as the minimum between the total number of chil-

dren in the household and the imputed sum of the two spouses. For each year

and individual, the mode of the resulting variable across the year is considered.

Age at immigration. This variable is defined, for immigrants, as current age

minus the difference between current year and year of immigration minus 16.

When the resulting variable is smaller than 0 (i.e., entry before age 16), it is

normalized to 0. In both datasets, some of the reported values correspond to

(short) intervals. I keep the following values for intervals: 1949 for before 1950;

1951 for before 1952; 1954 fir before 1955; 1959 for before 1960; the center of the

interval for periods of an odd number of years; and the first year above the center

of the interval for periods of an even number of years.

Choices. Individuals are assigned to one of the five mutually exclusive year round

alternatives: blue collar, white collar and white collar-STEM work, attend school,

or stay at home. For each individual I need to compute current and lagged

choices. The procedure to assign individuals follows a hierarchical rule. First,

36 In those years, if the individual is aged between 24 and 27, higrade is equal to 26, and is
enrolled in either t or t− 1, the education variable is further adjusted to fit age minus six.
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I assign individuals to education. Previous year education status is cleaned as

described above when introducing the education level. Current choice is assigned

to education if, on top of previous year being education, the individual reports

to be enrolled in education this year. Individuals not assigned to education, are

assigned to work or home following different criteria in CPS and SIPP. In the

CPS, an individual is assigned to work in the preceding year if she worked at

least 40 weeks (or at least 20 if last year’s choice was school) and at least 20

(usual) hours per week. In the SIPP, an individual is assigned to work in a

given month if she worked at least 40/52=76.9% of the weeks for which work

information is provided, and at least 20 usual hours per week averaged over the

months with available information weighted by the fraction of weeks worked in

that month.37 Individuals assigned to work are then classified into occupations

based on their reported main occupation.38 To classify them into occupations,

I first assign to STEM all individuals with a college degree that work in one of

the occupations that the Bureau of Labor Statistics lists as STEM in any of its

categories.39 For the remaining workers, blue collar occupations include service

workers, agricultural workers, construction workers, operatives, craftmen, and

military, and white collar include non-STEM managers, professionals, scientists,

technicians, and health workers, artists, sports and sales workers, and clerks.

37 Weeks and hours information is cleaned as follows. In panels before 1996, I replace zero
or missing total weeks worked by the largest number of weeks reported in the first or second
job, or first or second businesses. Furthermore, if earnings are positive and the total reported
weeks of work is smaller than the of weeks reported in the first or second job, or first or second
businesses, I replace the former by the largest among the latter. As for the hours, usual hours
worked in the weeks worked are used in panels before 1996. For panels of 1996 and later, I sum
hours reported in the first or second job and in the first and second business. Then I confront
this with the categorical variable that indicates hours worked per week in each month. If the
categorical variable indicates that the individual did not work, I switch usual hours worked per
week equal to zero. If the variable indicates that the individual worked 35+ hours all weeks and
the sum of hours reported are below 35, I scale them up to 40. If the variable indicates that the
individual worked 1–34 hours all weeks and the sum of hours reported are above 35, I reduce
them to 20. I proceed analogously for the categories that at least one week 35+ or 1–34 and
all others equal to zero. In the few cases in which all hours were missing but the categorical
variable was not, I assigned 40 and 20 hours analogously.

38 In the SIPP, individuals potentially report about two jobs and two business activities. Out
of this for, my definition of main occupation is as follows. First, the one in which the individual
worked more weeks (before 1996) or earned most income (1996 and after). If there is a tie, the
one in which the individual worked more usual hours per week. If there is still a tie (before 1996),
I use the one that provided the highest income. Finally, I resolve the very few remaining ties in
the following order of priority: job 1, job 2, business 1 and business 2. After this classification,
I take the most common job across all months in which the individual reported positive hours
in some job, and some weeks of work during the month (if there is more than one mode, I favor
occupations in the following order: STEM, then white collar, then blue collar.

39 https://www.bls.gov/soc/Attachment_B_STEM.pdf, accessed on September 30th, 2022.
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Wages. Hourly wage is computed for individuals that are assigned to either of

the work alternatives according to the previous definition. Workers are assumed to

earn their wage entirely in the occupation they are assigned to. Earnings include

wage and salary income, non-farm business income, and farm income in the CPS,

and total personal income in the SIPP. Wages are deflated to 2012 US dollars

using the consumer price indices provided by IPUMS with the CPS data. Wages

are divided by total hours worked (obtained as the product of usual weeks worked

last year and usual hours worked last year), and multiplied by 2080, which is the

corresponding amount for year-round full-time work. A few extreme observations

earning less than 1 dollar or more than 200 dollars per hour are set to missing.
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Appendix B: Simulation of Idiosyncratic Shocks

This appendix describes how to simulate idiosyncratic errors εa from the distri-

bution described in (13) along with productivity shocks ηa and taste shocks εja

for j ∈ {B,W, T, S,H}. Since εSa = εSa and εHa = εHa are independent of the

other shocks and of ηa, they are trivially obtained transforming uniform draws

by the quantile function of the Type-I extreme value distribution. That is, let qS

and qH denote two independent draws from a standard uniform, U(0, 1), then the

corresponding draws of εS and εH are obtained as:

εj = − ln(− ln qj), for j ∈ {S,H}. (B1)

To simulate draws for εj for j ∈ {B,W,H}, I first derive the marginal dis-

tribution of εB, the conditional distribution of εW given εB, and the one of εT

conditional on the other two. Let fεBεW εT (εB, εW , εT ) denote the joint probabil-

ity density function of εB, εW , and εT , and let FεBεW εT (εB, εW , εT ) denote their

cumulative distribution function. Equation (13) implies that:

FεBεW εT (εB, εW , εT ) = exp
{
−
(
e−εB/% + e−εW /% + e−εT /%

)%}
≡ exp {−Q(εB, εW , εT )%} , (B2)

and:

fεBεW εT (εB, εW , εT )

=
∂3

∂εB∂εW∂εT
exp {−Q(εB, εW , εT )%}

=
∂2

∂εW∂εT
exp

{
−
(
Q(εB, εW , εT )% +

εB
%

)}
Q(εB, εW , εT )(%−1)

=
∂

∂εT

 exp
{
−
(
Q(εB, εW , εT )% + εB+εW

%

)}
Q(εB, εW , εT )2(%−1)

×
(

1− %−1
%
Q(εB, εW , εT )−%

) 
= exp

{
−
(
Q(εB, εW , εT )% +

εB + εW + εT
%

)}
Q(εB, εW , εT )3(%−1)

×
(

1− %− 1

%
Q(εB, εW , εT )−%

[
3− %− 2

%
Q(εB, εW , εT )−%

])
(B3)

Given this expression, the marginal density function for εB is given by:

fεB(εB) ≡
∫ ∞
−∞

∫ ∞
−∞

fεBεW εT (εB, εW , εT )dεWdεT

= exp

{
−
(
Q(εB, εW , εT )% +

εB
%

)}
Q(εB, εW , εT )(%−1)

]+∞
−∞

]+∞
−∞

= exp{−(e−εB + εB)}, (B4)
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which is the probability density function of a Type-I Extreme Value distribution.

Thus, εB is drawn using the quantile function in (B1). Having drawn it, we now

need to draw from the conditional distribution of εW given εB. To compute it, we

first need to derive the joint distribution of εB and εW , which is given by:

fεBεW (εB, εW ) ≡
∫ ∞
−∞

fεBεW εT (εB, εW , εT )dεT

=

 exp
{
−
(
Q(εB, εW , εT )% + εB+εW

%

)}
Q(εB, εW , εT )2(%−1)

×
(

1− %−1
%
Q(εB, εW , εT )−%

) +∞

−∞

= exp

{
−
[
Q2(εB, εW )% +

εB + εW
%

]}
Q2(εB, εW )%−2

×
(
Q2(εB, εW )% +

1− %
%

)
, (B5)

where Q2(εB, εW ) ≡ exp(−εB/%)+exp(−εW/%). Thus, the conditional density is:

fεW | εB(εW |εB) ≡ fεBεW (εB, εW )

fεB(εB)

= exp

{
e−εB + εB −

[
Q2(εB, εW )% +

εB + εW
%

]}
×Q2(εB, εW )%−2

(
Q2(εB, εW )% +

1− %
%

)
. (B6)

The conditional cumulative function is obtained integrating the above expression

with respect to εW , which yields:

FεW | εB(εW |εB) ≡
∫ εW

−∞
fεW | εB(ε|εB)dε (B7)

= exp

{
e−εB + εB −

[
Q2(εB, εW )% +

εB
%

]}
Q2(εB, εW )%−1.

Inverting this function with respect to εW to obtain the conditional quantile func-

tion, and evaluating it on a uniform random draw qW , we simulate εW as:

εW = −% ln

{
−e−εB/% +

[
1− %
%

W
(

%

1− %
exp

{
%

1−%e
−εB − εB

}
q
%/(%−1)
W

)]1/%
}
,

(B8)

where W(·) is the Lambert-W function or product logarithm function, which is de-

fined as the inverse of the function f(x) = xex (or equivalently as W(y)eW(y) = y).

55



Finally, the conditional distribution of εT given εB and εW is given by:

fεT | εBεW (εT |εB, εW )

≡ fεBεW εT (εB, εW , εT )

fεBεW (εB, εW )

= exp

{
Q2(εB, εW )% −Q(εB, εW , εT )% − εT

%

}
Q(εB, εW , εT )3(%−1)

×
(

1− %− 1

%
Q(εB, εW , εT )−%

[
3− %− 2

%
Q(εB, εW , εT )−%

])
×Q2(εB, εW )2(%−1)

(
1− %− 1

%
Q2(εB, εW )−%

)−1

. (B9)

Integrating this expression with respect to εT we obtain:

FεT | εB ,εW (εT |εB, εW ) ≡
∫ εT

−∞
fεT | εBεW (ε|εB, εB)dε

= exp {Q2(εB, εW )% −Q(εB, εW , εT )%} (B10)

× (1− %)Q(εB, εW , εT )2%−3 + %Q(εB, εW , εT )3(%−1)

(1− %)Q2(εB, εW )2%−3 + %Q2(εB, εW )3(%−1)
.

Finally, the conditional quantile function, which does not have a closed form

solution, is used to transform uniform draws into draws from FεT | εBεW (εT |εB, εW ).

All the steps so far show how to simulate εB, εW , and εB from its joint distri-

bution. A prior step is needed to complete the simulation. In particular, we need

to independently draw εB from its unknown distribution and σB`ηa from a normal

distribution, and then obtain εB as the sum of the two (which by construction

will make it a Type-I extreme value). Having done that, we should then proceed

simulating εWa and εTa as described in this Appendix. And finally, the remain-

ing taste shocks are obtained as functions of these draws as εWa = εWa − σW`ηa

and εTa = εTa − σT`ηa.
The remaining unknown is the distribution of the taste shock εBa, fεB(εB). This

distribution is obtained as the deconvolution of a Type-I Extreme Value and a

normal distribution with zero mean and variance σB`. This deconvolution is de-

rived using the characteristic functions of the two distributions which are, respec-

tively, G(1 − it) and e−
t2

2
σ2
B` , where G(·) denotes the complete gamma function,

G(x) ≡
∫∞

0
zx−ze−zdz, and i denotes the imaginary unit. In particular:

fεB(εB) =
1

2π

∫ ∞
−∞

G(1− it)e−
t2

2
σ2
B`−itεBdt, (B11)

which does not have a closed form. The cumulative density function and the

quantile function are then computed numerically.
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