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1 Introduction

Asset markets are large and global. Trades are regularly executed over-the-counter in

multiple decentralized exchanges. Some assets are clearly “lemons” as defined by Akerlof

(1970), e.g., a firm might have issues with information security or customer management,

just waiting to surface. However, even these assets often generate positive value for their

owner, new trading opportunities arrive constantly, and buyers can inspect assets before

trading. Indeed, the law requires due diligence in acquisitions and caveat emptor applies.

How do such decentralized markets with informative signals fare? Will the market remain

inefficient, as in Moreno and Wooders (2010) without signals? Or, will the lemons problem

resolve on its own with time and the market settle to an efficient equilibrium? Which

dynamic trade patterns, as characterized by Kaya and Kim (2018), are sustained in the

long run? What is the role of frictions and information?

In this article, we reply to these questions by investigating the effect of signals in a

decentralized lemons market, where (i) traders are small, numerous and anonymous, (ii)

trade frictions are vanishingly small, and (iii) trading has settled to a steady-state.1 The

setup adheres loosely to the seminal model of dynamic trade by Moreno and Wooders

(2010): asset sellers enter the market with different asset qualities, meet a sequence of

random buyers, and exit the market upon trading. To incorporate asset information in

this model, we introduce the assumption that a buyer can obtain a signal of a seller’s

asset quality before making the seller a price offer. Our setup emulates information-rich

financial markets. This provides an extended version of canonical models for decentralized

trade2 where traders face not only a constant flow of trade opportunities, as in the previous

literature, but also an incessant flow of asset information.

We establish new efficiency results for this formerly neglected class of markets that has

more recently garnered great interest from financial economists.3 In particular, this article

observes that all key properties of an equilibrium – existence, efficiency, and dynamics

– derive from the screening intensities of different asset qualities, i.e., the difficulty of

obtaining a high price offer for low quality versus high quality. In the model, signal

distributions differ between sellers, i.e., a lower signal suggests a lower asset quality. As a

result, it is possible for buyers to screen the quality of assets by offering high prices only

for high enough signals. Furthermore, assuming that signals are sufficiently informative

relative to frictions of trading, low quality can be screened more strongly than high as

frictions become negligible. To equate the costs of waiting with those of paying too much,

a buyer could thus make obtaining a high price offer, e.g., either equally hard for both

1This case is particularly interesting as a decentralized counterpart of the Walrasian equilibrium;
Gale (1986a,b, 1987); Rubinstein and Wolinsky (1985) and Binmore and Herrero (1988).

2See Wolinsky (1990); Serrano and Yosha (1993, 1996); Blouin and Serrano (2001); Blouin (2003)
3For examples of recent high impact work, see Rostek and Yoon (2021) for imperfectly competitive

trade and Azevedo and Gottlieb (2017) for perfect competition and adverse selection.
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qualities, or infinitely harder for low quality. This insight permits us to characterize

steady-state equilibria by focusing on screening.

Our first main result is that a market settles to an efficient steady-state equilibrium

for an extensive range of parameter values as trade frictions disappear. The range is

partly characterized by the severity of the lemons problem and partly by the relative trade

surpluses among different asset qualities, which is novel. Specifically, we show that an

efficient limit equilibrium exists (i) if the trade surplus of low quality is larger, i.e., if

∆l ≥ ∆h, or (ii) if the static lemons problem is not severe, i.e., if ∆h ≥ ∆g; ∆l (∆h)

denotes the surplus of trading low (high) quality assets and ∆g the gap between the

value of buying low quality and selling high quality. As it turns out, efficiency hinges

on adjusting screening to market conditions: In the former case (i), trade dynamics are

standard (low quality trades faster) and the screening intensity of low quality is strong

enough to make the seller accept a low price and not wait for a high signal. In the

latter case (ii), trade dynamics are reversed (high quality trades faster) and the screening

intensities of both qualities stay relatively low, encouraging a low quality seller to wait for

a high price offer. Our efficiency results contrast with the persistence of trading problems

in the literature (e.g., Blouin and Serrano (2001); Camargo and Lester (2014); Guerrieri

and Shimer (2014); Moreno and Wooders (2010)).4

The analysis admits to quantify neatly the information requirements of efficient trad-

ing, basically by inverting the related screening mapping to uncover the information needs

associated with the frictions. As our second key literature contribution, we can thus

demonstrate that our findings, derived in a model with highly informative signals, imme-

diately transfer to any markets where signals are sufficiently informative relative to the

prevailing trade frictions. In general, the information required to separate assets elevates

as frictions decrease because the low quality sellers’ costs of waiting become smaller. This

shows that our finding of efficient decentralized screening relies jointly on (i) the existence

of small positive trade frictions and (ii) the availability of sufficiently informative signals.

This revises and verifies Moreno and Wooders (2010)’s hypothesis that “decentralized

trade mitigates the lemons problem”.

Our third major result is the observation that, if there exists no efficient equilibrium,

there exists no equilibrium in the market. This occurs when trading high quality is both

more difficult (i.e., the lemons problem is severe) and more valuable (i.e., the trade surplus

is larger), that is, for ∆l < ∆h < ∆g. This finding derives basically from a discrepancy

between the required trade dynamics and the presumed trade surpluses. On one hand, we

can show that, when the static lemons problem is severe, only standard trade dynamics

4Camargo et al. (2020) find that non-steady-state equilibria with aggregate uncertainty become effi-
cient as frictions vanish. For other positive efficiency results in decentralized markets, see Golosov et al.
(2014) for divisible assets and aggregate uncertainty and Asriyan et al. (2017) for correlated values and
information spillovers. In our model, all learning happens through private quality screening.

3



may prevail.5 This alleviates the lemons problem by increasing the average quality of

assets. On the other hand, elevating asset quality and vanishing trade frictions also mean

that the opportunity cost of trading increases. This intensifies screening and boosts the

quality of unsold assets. Thereby, we find that buyers only offer high prices when they

are almost certain about high asset quality, which increases their payoffs up to ∆h.
6

However, this implies that buyers cannot agree on a price with low quality sellers under

lower expectations, because the trade surplus is smaller ∆l – contradicting the assumed

standard dynamics. The existence and efficiency of an equilibrium thus depend not only

on the severity of the lemons problem, as known since Akerlof (1970), but also on the

relative trade surpluses across traded assets.7

This article contributes to the rapidly growing literature that studies adverse selection

in decentralized market environments with random sequential search. There is also a

large literature about dynamic trading with incomplete information in directed search

markets, e.g., Inderst and Müller (2002); Inderst (2005); Guerrieri et al. (2010); Camargo

and Lester (2014), and in competitive lemons markets, e.g., Janssen and Roy (2002, 2004);

Daley and Green (2012); Fuchs and Skrzypacz (2019).

A voluminous literature studies whether decentralized trade results in equal payoffs as

its centralized counterpart if trade frictions are small. Gale (1986a,b, 1987) and Binmore

and Herrero (1988) investigate the question under complete information, finding efficient

payoffs. Moreno and Wooders (2010) extend the analysis to markets with a lemons prob-

lem where no efficient one-price equilibrium may exist. They find that payoff limits remain

as the highest payoffs in a static one-price model, i.e., inefficient if and only if the lemons

problem is severe.8 Unlike our current case, buyers can only separate sellers by random-

izing between different prices, which leaves the surplus to low quality sellers and screens

all assets with the same intensity – thereby fostering inefficient outcomes.

Our work contributes to this literature by showing that efficient decentralized screening

can outperform inefficient centralized trade.9 Previously, efficient trade mechanisms in a

lemons market have been related to sorting. In Hendel et al. (2005), observed asset

5Otherwise, buyers should only offer high prices and only trade for high signals but, then, average
asset quality decreases so much that buyers only offer low prices – a contradiction.

6Here, buyers obtain positive trade surplus for at least the highest signals, unlike in Moreno and
Wooders (2010), where buyers mix between high and low prices and receive no payoffs.

7As stressed already by Wilson (1980), different stable equilibria can exist. For example, if ∆l ≥
∆h ≥ ∆g, an inefficient limit equilibrium with standard trade dynamics exists in addition to the two
previously described efficient ones. In this case, intensive screening of both assets erodes payoffs, however,
the payoffs may exceed the static one-price model payoffs.

8For inefficient outcomes or non-Walrasian payoffs, see Rubinstein and Wolinsky (1985, 1990);
De Fraja and Sakovics (2001); Blouin and Serrano (2001); Serrano (2002); Blouin (2003); Shneyerov
and Wong (2010). As the key differences, our model allows buyers to choose their prices, has constant
exogenous entry, and does not rely on coordinated punishments.

9When frictions remain positive, Moreno and Wooders (2010) also demonstrate that the surplus
created by trade can be higher in the decentralized equilibrium than in the centralized equilibrium.
However, the described payoffs remain generally inefficient. Moreover, as noted by Kim (2017), the result
does not survive extension to continuous time trading.
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vintages allow the establishment of approximately efficient rental markets for all assets.

In Inderst and Müller (2002), different assets are traded in separate markets with distinct

prices and liquidity conditions. Interestingly, in Inderst and Müller (2002) the expected

quality in markets adjusts to support the Riley separating equilibrium outcome whereas,

here, only the cutoff signal adjusts to support efficient trading while prices remain semi-

pooling as in Moreno and Wooders (2010) or Cho and Matsui (2018).10

Another impressive literature considers dynamic trading with adverse selection. Due

to the different time preferences of high and low quality sellers, standard dynamics are

derived in almost all articles in the literature. The few exceptions that feature reversed

dynamics (Taylor, 1999; Zhu, 2012; Kaya and Kim, 2018; Palazzo, 2017; Martel, 2018;

Hwang, 2018; Martel et al., 2022) are characterized by a non-steady-state setup and

observable time-on-market. Kaya and Kim (2018) explore a dynamic model where an asset

seller meets a sequence of buyers who offer prices after observing the marketing time and

a private quality signal of the asset. Trade dynamics depend on exogenous prior beliefs.

If the prior is low, dynamics are standard. However, reversed dynamics prevail when

buyers have inflated prior beliefs about quality, which alleviates screening to the point

that no seller accepts low prices. Our article changes the setup by focusing on markets

where the average asset quality is endogenous and constant.11,12 Because assets exit the

market upon trading, reversed dynamics mean that low quality remains in the market

longer, thus decreasing the average market quality and buyers’ quality expectations. As

a consequence, because quality expectations at the cutoff are bounded above by prior,

we can show that dynamics only reverse when the lemons problem is non-severe; this

follows immediately from simple application of the monotone likelihood ratio property.

Our work connects trade dynamics to efficient asset screening and delivers a measure of the

information required in efficient trading for given trade frictions. Previous work remains

mute about the relationship between efficiency and dynamics and the complementary

roles of information and frictions in mitigating the lemons problem.

The article is organized as follows. The model is outlined in Section 2 and its basic

features in Section 3. Section 4 describes limit equilibria first with unbounded information

and later with bounded information. Section 5 concludes by discussing the effects of

alternative model assumptions and the role of commitment granted by signal information.

Proofs are relegated to the Appendix.

10Contrary to what we have, Inderst and Müller (2002) assume that buyers outnumber sellers, which
erases buyers’ payoffs fostering therefore an efficient outcome.

11In the sequential adverse selection experiment of Araujo et al. (2021) the majority of players applied
stationary responses in contrast to the optimal time varying ones.

12We also dispense with the assumption in Kaya and Kim (2018) that time-on-market is observable,
our focus being on decentralized markets where assets sell quietly.
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2 Model

The model closely follows that of Moreno and Wooders (2010) except for the added buyer

signals. The general setup emulates modern information-rich over-the-counter markets,

where buyers face a steady flow of new trade opportunities and asset information.

Time t is discrete and horizon infinite. A unit mass of buyers and a unit mass of sellers

enter the market in each period t. Thereafter, all buyers and sellers in the market are

randomly matched in pairs in order to trade. A buyer and a seller who trade will exit the

market. If there is no trade, the match dissolves and the buyer and the seller will return

to the market, where both have an opportunity to trade with someone else in the next

period.

Buyers and sellers discount future payoffs by the common discount factor δ < 1.

This discount factor captures trade frictions by showing how much payoffs are reduced

if opportunities for trading are delayed. We will be focused on the limit δ → 1 where

frictions of trade disappear.

Every seller holds an indivisible asset whose quality θ = h, l is the seller’s private

information. The payoff from an asset of quality θ to the seller is denoted as Cθ and the

payoff to the buyer as Uθ. The buyer’s payoff exceeds the seller’s payoff, and gains from

trade therefore arise: Uθ > Cθ.

We assume that one half of the entering sellers have a high-quality asset (θ = h) and

the rest a low-quality asset (θ = l). The assumption is innocuous. It delivers a tractable

parametrization that will help to highlight the drivers of our results. We relax it later

without substantial changes.

We assign the following magnitudes to the payoffs, which allow for the presence of a

lemons problem.

Uh > Ch > Ul > Cl

Properties of equilibria will depend on the relative trade surpluses of assets and the ”gap”,

defined as follows

∆h := Uh − Ch,

∆l := Ul − Cl,

∆g := Ch − Ul.

Note that, although high-quality assets are always more valuable to both buyers and

sellers, the low trade surplus ∆l can still exceed the high ∆h if the spread between a

buyer’s and a seller’s payoffs is higher.

The gap ∆g = Ch − Ul represents the temptation of low quality sellers to trade for a

high price p ≥ Ch in stead of a low price p ≤ Ul. The minimum price a high quality seller
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accepts is Ch; the maximum price a buyer is willing to pay for a low-quality asset is Ul.

In a static one-price model, a lemons problem always arises if a buyer’s payoff of buying

a random asset, Uh+Ul

2
, remains below a high quality seller’s payoff of holding his asset,

Ch, which gives

U :=
Uh + Ul

2
< Ch,

Uh + Ul < 2Ch,

Uh − Ch < Ch − Ul,

∆h < ∆g.

We can thus see that only low-quality assets can be traded in a static one-price model if

the gap exceeds the high trade surplus. However, in the gap remains smaller, ∆h ≥ ∆g,

a lemons problem may not arise. In that case, the static one-price model has both an

efficient equilibrium where trade occurs at p ≥ Ch (all assets are traded) and an inefficient

equilibrium where trade occurs at p ≤ Ul (low quality is traded).

Our dynamic model extends the static one-price model in that (i) there could be

trade at different prices for different signals in a meeting between a buyer and a seller,

and (ii) trade could be postponed if the terms of trade in the ongoing meeting are not

sufficiently attractive. Furthermore, unlike many papers which presume that the static

lemons condition holds, our paper studies markets with both ∆g ≥ ∆h (”severe lemons

problem”) and ∆h > ∆g (”non-severe lemons problem”). We also allow for both ∆h ≥ ∆l

and ∆l > ∆g. These cases lead to different equilibria.

Assets are traded ”over-the-counter” in meetings with a buyer and a seller. After a

buyer and a seller are randomly matched, the buyer obtains a signal s of the seller’s asset

quality and, thereafter, makes the seller a take-it-or-leave-it-offer p about the price. If the

seller accepts the price p, the asset is traded to the buyer, and both traders exit the market.

Otherwise, the buyer and seller separate and wait until the next trade opportunity arises

in the following period with someone else. The market is so large that the same buyer

and seller are almost never matched again.

To investigate how much information is required for efficient decentralized screening,

we allow the informativeness of signals span all values from uninformative to revealing.

Signals s are distributed according to distribution functions Fθ : [0, 1] → [0, 1], which are

continuous and supported on the unit interval [0, 1] = cl{s|fθ(s) > 0}, where fθ denotes

the density function related to Fθ.
13 For simplicity, we assume that higher signals indicate

higher quality. Extreme signals at the limits of [0, 1] approach being perfectly revealing.
14 Assumption 1 captures these ideas.

13The set closure clA is the smallest closed set which contains the original set A.
14As Fθ are continuous, the likelihood of observing a revealing signal is almost zero.
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Assumption 1

fh(s)

fl(s)
∈ (0,∞) , for all s ∈ (0, 1) ,

∂

∂s

fh(s)

fl(s)
∈ (0,∞) , for all s ∈ (0, 1) ,

lim
s→0

fh(s)

fl(s)
= 0,

lim
s→1

fh(s)

fl(s)
= ∞.

The first two lines just state that signals s ∈ (0, 1) satisfy the standard monotone

likelihood ratio property (MLRP). The two latter lines entail more specifically that any

likelihood ratio fh(s)
fl(s)

∈ (0,∞) is attainable for an appropriate signal s ∈ (0, 1).

To focus on decentralized environments and simple trading strategies, we further as-

sume that (i) the signals and actions in a pairwise meeting are not observable by outsiders,

and (ii) strategies do not condition on the signals observed in earlier meetings.

We study simple steady-state equilibria in behavioral strategies σ = (p, ah, al). The

strategy of a buyer is a function p : [0, 1] → ∆ [0,∞) mapping a signal s to the probability

distribution G(s) of offers p(s). The strategy of a seller is a function aθ : R → [0, 1] that

maps a price p to the probability of acceptance aθ(p).

The employed solution concept is a perfect Bayesian equilibrium (PBE). A PBE is

a pair (σ,π) consisting of a strategy profile σ and a belief system π such that (i) the

strategy profile σ is optimal given the beliefs π, and (ii) the belief system π is derived

from the profile σ with Bayes’ rule whenever possible.

Our focus on a steady-state market, maintaining constant proportions of high and

low-quality assets, enables us to endogenize buyers’ expectations of average asset quality.

Subsequently, we find that equilibrium trading strategies impose significant restrictions

on market quality and future payoffs, mitigating a buyer’s tendency for excessive asset

screening. This finding is pivotal for supporting efficient limit equilibria.

The existence of an equilibrium is not immediately evident. In general, low frictions

render buyers selective, to the point where they might only offer low prices accepted by

low-quality sellers. In contrast, the implied surge in asset quality suggests they should

only offer high prices - raising the possibility of a contradiction. Our analysis demonstrates

how this contradiction can be avoided by adjusting asset screening.

Intuitively, as costs of waiting disappear, buyers become more selective and only offer

a high price when almost certain about high quality. In a steady-state market, non-traded

assets accumulate, and a buyer thus expects to trade both assets with equal probabilities

in future matches. Therefore, as the benefit of waiting is bounded, a buyer becomes more

willing to make a high offer, leading to the discovery of an equilibrium.
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In the upcoming sections, we link the properties of equilibria to asset screening, that

is, the time cost of obtaining a high price for the asset. Details of the analysis depend on

whether ∆g > ∆h and ∆l > ∆h.

3 Preliminaries

Any equilibrium defines continuation values, Vb for a buyer and Vθ for a seller.
15 Sequential

rationality requires that the strategies of a buyer and a seller in a meeting are optimal

given Vb and Vθ.

After observing a buyer’s price offer p, a seller chooses whether to accept it. The

optimal choice satisfies the Bellman equation:

Vθ(p) = max
aθ

aθ(p− Cθ) + (1− aθ)δVθ. (1)

By accepting the offer, the seller obtains the price p but loses the value of holding the

asset Cθ. Instead, by rejecting the price, the seller keeps the asset and retains the value

of selling it later, δVθ. The problem of the seller does not depend on whether the seller

can observe the signal.

We can see immediately that the optimal strategy of a seller is a cutoff strategy: a

seller accepts any price above a cutoff but rejects smaller offers. The cutoff equals the sum

of a seller’s reservation value and continuation value Cθ + δVθ, denoting the opportunity

cost of accepting the price.

Lemma 1 (Seller’s cutoffs) For any Vθ, the optimal strategy of a seller is a cutoff

strategy, defined as follows for a seller of quality θ = h, l

aθ(p) =

1, if p ≥ Cθ + δVθ,

0, if p < Cθ + δVθ.

Conditional on observing the quality signal s, a buyer offers the seller a price. The

optimal price offer satisfies the Bellman equation:

Vb(s) = max
p

q(s)ah(p)(Uh − p) + (1− q(s))al(p)(Ul − p)+

(q(s)(1− ah(p)) + (1− q(s))(1− ah(p)))δVb, (2)

where q(s) denotes the probability conditional on signal s that the asset has high quality.

If asset quality is high and the price is accepted, the buyer obtains Uh − p, but if the

price is accepted by a low-quality seller, the buyer’s payoff is Ul−p. Otherwise, the buyer

15These continuation values are derived in the Appendix.
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returns to the market, obtaining the value of δVb.

Knowing that a seller of quality θ accepts any price above a cutoff, a buyer who targets

this seller never offers more than Cθ + δVθ. In general, a buyer either offers i. a high price

ph that targets a high-quality seller, ii. a low price pl that targets a low-quality seller, or

iii. an even lower price p0 that neither seller accepts.

Lemma 2 (Buyer’s cutoffs) For any (Vb, Vl), there is a cutoff signal y ∈ [0, 1] that

allows to express the optimal strategy of a buyer as follows

p(s) =


ph, if s ≥ y,

pl, if s < y and ∆l ≥ δ(Vl + Vb).

p0, if s < y and ∆l < δ(Vl + Vb),

where p0 < pl = Cl + δVl ≤ ph = Ch + δVh = Ch.

The optimal price strategy of a buyer is subtle as it depends on the endogenous

valuations Vb and Vl. Without showing the existence of an equilibrium and without

knowing the exact values of Vb and Vl – which come later – we can show that a buyer will

offer ph for signals that exceed a cutoff y, when the buyer is sufficiently certain of high

quality. Instead, for signals below the cutoff y, a buyer offers lower prices pl or p0.

Which of these offers is made for low signals depends on the continuation values of a

buyer and a low-quality seller, δ(Vl + Vb). In a static one-price setup, a buyer can offer

a low price pl and trade low quality if the expected asset quality is low. However, in our

dynamic setting, both buyers and low-quality sellers can also wait for higher signals that

suggest high quality and allow for trade at a high price ph. This prospect can increase

the continuation values δ(Vl + Vb) to the point where they exceed the gains from trade

∆l. When this is so, it is impossible for a buyer and a low-quality seller to agree on a low

price p < Ul that would cover δVb to the buyer and Cl + δVl to the seller.

It can be shown that the offer to a low-quality seller, pl, lies below the offer to the

high-quality seller, ph, because the seller’s reservation value, Cl, is lower. Additionally, we

observe that the offer that targets the high-quality seller, ph, cannot exceed Ch. This is

because a holdup problem arises in a pairwise meeting, allowing the buyer to reduce the

offer from ph to (1 − δ)Ch + δph unless ph equals the seller’s reservation value Ch. This

entails that the continuation value of a high-quality seller must be zero. The gains from

trade are therefore shared by buyers and low-quality sellers. The non-accepted price offer

p0 is indeterminate, but it has to lie below the low price cutoff pl(≤ ph).
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3.1 Expected quality

Because gains from trade are positive with both qualities, buyers are willing to pay higher

prices for higher quality, but are reluctant to do so if the expected quality remains low.

Buyers’ optimal price strategies hence depend on their beliefs. Specifically, a buyer will

offer a high price ph = Ch which both sellers will accept if and only if the probability q(s)

that the seller has a high-quality asset reaches a cutoff, i.e., q(s) ≥ q(y). The cutoff q(y)

solves the following equality, requiring that a buyer is indifferent between offering a high

price, ph, and either pl or p0 – whichever provides a higher buyer payoff:

q(y) (Uh − Ch)︸ ︷︷ ︸
>0

+(1− q(y)) (Ul − Ch)︸ ︷︷ ︸
<0

= max {(1− q(y)) (Ul − pl) + q(y)δVb, δVb} . (3)

If a buyer offers a high price ph = Ch, the buyer’s payoff is positive Uh − Ch = ∆h

if the seller has a high-quality asset but, if the seller has a low-quality asset, the buyer’s

payoff is negative Ul − Ch = −∆g. Instead, the payoff for offering a low price pl is

(1− q(y)) (Ul − pl) + q(y)δVb (only low quality sellers accept the offer) and the payoff for

offering a low price p0 is δVb (neither of the sellers accepts this offer). If the seller does

not accept a price, the buyer’s continuation value is δVb.

Buyer beliefs about asset quality q(s) are shaped by both market composition and

signal information. First, buyers take into account the endogenous market composition,

that is, how many assets of each quality circulate in the market. We call these buyers’ prior

beliefs, that only condition on the equilibrium trade probabilities of assets, unconditional

beliefs qu. Second, buyers consider information conveyed by the signal they obtain in the

current meeting. These conditional beliefs are denoted by qc(s).

Because sellers enter the market in equal proportions and exit the market upon trading,

the market composition is determined solely by the sellers’ relative trading probabilities.

In a steady-state, the mass of assets of quality θ in the market remains constant, denoted

as Mθ, and the inflow of each quality to the market has to equal outflow:

1/2 = Mθ(1−Gθ(pθ−)).

On the left-hand side (lhs), 1/2 denotes the entry of assets of each quality in the

market. In each time period, a unit mass of assets enters, half of each quality. The right-

hand side (rhs) represents asset exits, with Mθ assets of each quality in the market. Each

asset trades with a probability of 1−Gθ(pθ−), of a buyer offering at least pθ.
16

Solving for the measures Mθ and using Bayes’ rule, qu and qc(s) can be derived as

16Technically, Gθ(pθ−) = limp→pθ
Gθ(p) denotes the left derivative of a buyer’s unconditional

(marginal) offer distribution Gθ to sellers of quality θ at x.
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follows

qu =
Mh

Mh +Ml

=
1

1 + 1−Gh(xh−)
1−Gl(xl−)

, (4)

qc(s) =
Mhfh(s)

Mhfh(s) +Mlfl(s)
=

1

1 + 1−Gh(xh−)
1−Gl(xl−)

fl(s)
fh(s)

, (5)

where qc(s) is derived from qu by incorporating the information about the likelihood ratio
fl(s)
fh(s)

of receiving the observed signal s from a low-quality asset versus high.

We observe that buyers’ beliefs about asset quality increase under three conditions:

when low-quality assets trade faster, when high-quality assets trade slower, or when the

observed signal increases. Namely, if one asset quality is traded more slowly than the other

asset quality, it amasses in the market in relative terms, increasing a buyer’s expectation

of meeting a seller with this quality. Further, because the likelihood ratio fh(s)/fl(s) is

by assumption increasing in s, buyers’ conditional beliefs qc(s) are clearly increasing in

the observed signal. Consequently, a buyer will offer a high price if and only if the signal

is above the cutoff, i.e., q(s) ≥ q(y) iff s ≥ y.

Our framework deviates from most earlier approaches in that buyers observe con-

tinuous signals with variable information content. By conditioning pricing on signals,

equilibria in pure strategies are sustained, allowing signals to act as a purification device,

as proposed by (Harsanyi, 1973).17 Mixing between higher and lower prices occurs, for

example, in a model without signals by Moreno and Wooders (2010) and in a model with

binary signals by Kaya and Kim (2018). Similar to signals, mixing allows for the adjust-

ment of screening, albeit less finely than signals. Unlike here, limit equilibria are hence

inefficient in Moreno and Wooders (2010).

3.2 Trading dynamics

Whether trade dynamics are standard, reversed, or what we call “knife-edge” depends on

the endogenous valuations Vb and Vl.

Lemma 3 Feasible equilibrium dynamics can be classified into the following patterns:

1. If ∆l ≥ δ(Vl + Vb), trade dynamics are standard and low-quality assets trade faster:

p(s) = Ch for s ≥ y, p(s) = pl for s < y, and qu = 1
1+(1−Fh(y))

≥ 1/2.

2. If ∆l < δ(Vl + Vb), trade dynamics are reversed and high-quality assets trade faster:

p(s) = Ch for s ≥ y, p(s) = p0 for s < y, and qu = 1

1+
1−Fh(y)

1−Fl(y)

≤ 1/2.

17Later-defined ”knife-edge” dynamics allow for both pure and mixed price strategies as buyers can
either randomize between p0 and pl for s < y or offer p0 for s ∈ [0, z) and pl for s ∈ [z, y). Any equilibrium
payoffs can be sustained by pure strategies.
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3. If ∆l = δ(Vl+Vb), ”knife-edge” trade dynamics arise: p(s) = Ch for s ≥ y, p(s) = pl

for s ∈ [z, y) and p(s) = p0 for s ∈ [0, z), and qu = 1

1+
1−Fh(y)

1−Fl(z)

⋚ 1/2.

We focus on standard and reversed trade dynamics in the main text; the analysis

of knife-edge dynamics is delegated to the Appendix. We can show immediately that

reversed dynamics cannot arise under a severe lemons problem due to the deteriorating

market quality.

Lemma 4 A necessary condition for reversed dynamics is ∆h ≥ ∆g.

Proof. Consider the beliefs of a buyer who has observed the cutoff signal y. This buyer

must be indifferent between offering prices ph and p0. As both assets are only traded for

high signals, low quality with probability 1 − Fl(y) and high quality with probability

1− Fh(y), the beliefs of the buyer are given as follows.

qc(y) =
1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

< q0 =
1

2
,

But now, our assumption of MLRP implies increasing hazard rate, 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

> 1,

indicating that the asset is more likely of low quality. Also, if ∆g > ∆h, the buyer is

not willing to offer a high price if both qualities are equally likely – because the lemons

problem is severe.

Thus, if ∆g > ∆h, the buyer is not willing to offer a high price after observing the

cutoff signal – at which expectations are worse. This contradicts the assumption that

a buyer is willing to offer ph, demonstrating that reversed dynamics cannot arise under

∆g > ∆h.

The result shows that steady-state trade places new restrictions on equilibrium dy-

namics, absent from non-steady-state setups such as Kaya and Kim (2018), where reversed

dynamics arise when the exogenous prior is inflated above the long run level. Our analysis

in the following Section 4 shows that the steady-state market composition not only places

limitations on the quality at the cutoff qc(y), in shown in the proof of Lemma 4, but

also notably restricts the buyer continuation value Vb, with significant effects on search

incentives.

4 Equilibrium

4.1 Positive frictions

To evaluate market welfare in a steady-state equilibrium, we use the measure applied by

Moreno and Wooders (2010),
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W = Vb +
1

2
Vh +

1

2
Vl = Vb +

1

2
Vl,

denoting the expected present discounted value of the trade surplus accruing to one entry

cohort of buyers and sellers. The maximum trade surplus is given by the complete in-

formation benchmark, ∆h+∆l

2
, which is reached if all assets are traded in the period they

enter the market. Lemma 5 shows that the maximum is generally unattainable due to

positive asset screening (y > 0) and positive trade frictions (δ < 1).

Lemma 5 y > 0 for δ < 1.

According to Lemma 5, the cutoff y is positive in dynamic markets with signals.

This indicates that, although the surplus of trading is positive with both qualities, some

meetings are not conductive to trade as would be efficient. By Lemma 2, high-quality

sellers only trade for high prices ph = Ch, which a buyer offers to them with probability

1− Fh(y). Because the cutoff y is positive, this probability is less than one.

The result is notable in showing that screening reduces efficiency even when the lemons

problem is not severe in the market. In the absence of signals, all sellers could trade in

their first meeting for a common high price Ch, maintaining high average asset quality

if the lemons problem is non-severe. Trade would thus be efficient. However, Lemma 5

demonstrates that the pooling equilibrium becomes impossible to sustain when signals

are introduced. By Assumption 1, for any Mh,Ml, ϵ > 0, there is a positive probability

Fh(s(ϵ)) > 0 of observing such a low signal s < s(ϵ) that a buyer’s beliefs in (5) collapse

to qc(s) < ϵ. Almost certain about low asset quality, a buyer hence makes a low price

offer, which a high-quality seller rejects. An endogenous lemons problem therefore arises.

Previously, Daley and Green (2012) observe in a model with news that trade could

be delayed without a severe lemons problem because traders wait for news to accumulate

in order to trade. The reason for trade delay is much like here, that information renders

buyer beliefs noisy. This will make it harder for a buyer and a seller to agree on a price

when the noise takes a buyer’s belief about an asset far from its seller’s belief.18

4.2 Vanishing frictions

We move to investigate markets where trade frictions are negligible. Decreasing trading

frictions increase the information requirements of buyers. Buyers thus require exceeding

quality confirmation before a high offer is made.

Lemma 6 y → 1 as δ → 1.

Lemma 6 shows that the cutoff approaches its upper bound as frictions vanish. This

18This is akin to the so called Hirshleifer (1971) effect, which shows that information can destroy
efficient pooling opportunities.
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is because the buyer continuation value of waiting for higher signals increases as trading

frictions decrease. A buyer thus needs to be more strongly convinced about high asset

quality to terminate search by offering Ch.

The mechanism is mediated by the MLRP. Specifically, because faster trading assets

accumulate in a steady-state, increasing hazard rate implies that the quality that the buyer

expects to trade at the cutoff (proportional to ∆h − (1 − Fh)
fl
fh
∆g or ∆h − 1−Fh

1−Fl

fl
fh
∆g)

cannot attain the quality that the buyer expects to trade in later meetings (proportional

to ∆h − (1− Fl)∆g or ∆h −∆g), unless y → 1 as δ → 1. An incentive to postpone trade

thus arises for buyers, driving up the cutoff as trading frictions diminish.

While buyers become more selective as frictions disappear, the efficiency properties of

limit equilibria are uncertain. On the one hand, buyers obtain cheaper information when

frictions decrease since it costs less to wait for highly informative signals. On the other

hand, buyers also become more selective, possibly foregoing valuable trades. Interestingly,

we find that equilibrium properties are not governed by either of the limit properties alone

but the proportions of δ and y in which the limit (y, δ) → (1, 1) is approached.

In particular, we find that there are different paths satisfying (y, δ) → (1, 1) that

correspond with potential limit equilibria.

1. In the first tentative equilibrium, the odds ratio of high asset quality fh(y)
fl(y)

remains

low with respect to discounting δ. The general ease of trading at high prices thus

entails that dynamics are reversed and efficient pooling prevails.

2. In the second equilibrium candidate, fh(y)
fl(y)

increases relative to discounting δ. This

guarantees that the cost of obtaining a high price ph is much lower for high quality

than low-quality assets. Dynamics are standard and screening efficient.

3. In the third possible equilibrium, fh(y)
fl(y)

is even higher with respect to discounting

δ. All sellers thus face extremely high cost of waiting for a high price offer. This

excessive screening is inefficient. Trade dynamics remain standard.

Equilibrium existence hinges on the severity of the lemons problem (whether ∆g > ∆h)

and the relative gains from trade (whether ∆l > ∆h).

4.3 Screening with unbounded signal information

We proceed to describe conditions when each of these equilibrium candidates represents a

steady-state limit equilibrium. This is done by partitioning the signal space by screening,

i.e., the time cost of trading different assets at a high price. Lemma 7 formalizes our

notion of screening.
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Lemma 7 For any M > 1, there exist signals 0 < s0 < sl < sh < 1 and functions

νh(y, δ) < νl(y, δ) such that

νh(y, δ) :=
1− δFh(y)

1− Fh(y)
,

νl(y, δ) :=
1− δFl(y)

1− Fl(y)
,

νl(s0, δ) = νh(sl, δ) =
1

M
< M ≤ νl(sl, δ) = νh(sh, δ),

and s0 → 1 as M → ∞.

Lemma 7 introduces screening functions νθ, which quantify the difficulty associated

with selling an asset of quality θ for a high price. The inverse of νθ denotes the probability

of receiving a high price offer for the asset in either this period or in any future time period.

(
1− δFθ(y)

1− Fθ(y)

)−1

= (1− Fθ(y))(1 + δFθ(y) + δ2Fθ(y)
2 + . . .)

Both νh and νl are increasing in y and decreasing in δ because waiting for a high price

has a higher cost if either the discount factor δ (representing frictions) is lower or the

cutoff signal y (representing screening) is higher. In general, the screening function of

high quality νh always stays below that of low quality νl because higher signals s ≥ y are

observed more frequently with high-quality assets. In addition, both screening functions

are continuous in arguments (y, δ), approaching unity as δ → 1, for fixed y ∈ (0, 1), and

approaching infinity as y → 1, for fixed δ ∈ (0, 1).

Lemma 7 shows that screening partitions the signal space in four regions: First, if

the cutoff y belongs to I0 = [0, s0], it is very easy for all assets to trade for ph. Second,

if y ∈ Il = (s0, sl), obtaining a high price for low quality becomes hard (i.e., as hard as

we want) whereas receiving a high price for high quality remains easy (i.e., as easy as we

want). Third, presuming the cutoff reaches higher levels, y ∈ Ih = [sl, sh) , screening also

intensifies for high quality. Finally, for y ∈ I1 = [sh, 1], it becomes very hard to sell high

quality, which never settles for a low price pl.

Figure 1 illustrates this partitioning by mapping νh and νl as functions of y and

showing the cutoffs s0 and sl corresponding to M = 4 and δ = 0.95; sh is so close to unity

that it is indiscernible. Similar to cutoffs s0 and sh, sl increases if δ increases. Thus, to

keep the relative screening of low quality above a certain level, νl
νh
(y, δ) ≥ M2, screening

must intensify if frictions of trading are decreased.

Leveraging these basic properties, we can demonstrate existence and characterize equi-

libria by focusing on screening. This involves rewriting payoffs in terms of νh and νl. A

powerful steady-state property we find is that, irrespective of which dynamics of trade

prevail, screening cannot increase the likelihood of trading one quality over the other in
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Figure 1: Illustration of Lemma 7.

the future. For example, if high quality is screened more strongly its concentration in

market will elevate, entailing that a buyer will trade it equally often as before, despite

stronger screening. As a result, because assets are assumed to enter the market in equal

proportions, a buyer will expect to trade both assets with the same probability. This

allows a simple expression of continuation values.

Proposition 3 shows that, under standard dynamics, the probability of trading high

quality is qu(1 − Fh) =
1−Fh

1+(1−Fh)
and the probability of trading low quality is (1 − qu) =

1−Fh

1+(1−Fh)
, which equal. We can thus show that the buyer continuation value is

Vb(y, δ) =
∆h − (1− Fl(y))∆g + Fl(y)(Ul − Vl)

2 + νh(y, δ)
,

obtained by dividing buyer payoffs in (2) by the common trade probability of assets and

reorganizing terms. Screening of high-quality assets νh reduces payoffs because a buyer is

foregoing valuable trade opportunities of high-quality assets for low signals.

For reversed dynamics, Proposition 3 shows that a buyer expects to trade high quality

with probability qu(1−Fh) =
(1−Fl)(1−Fh)
(1−Fl)+(1−Fh)

and expects to trade low quality with the same

probability (1− qu)(1− Fl) =
(1−Fl)(1−Fh)
(1−Fl)+(1−Fh)

. The buyer value is this case is hence

Vb(y, δ) =
∆h −∆g

2 + νh(y, δ) + νl(y, δ)
,

derived as before by dividing buyer payoffs in (2) by the trade probability and reorganizing

terms. The payoffs of a buyer are reduced by both νh and νl because assets only trade for

high signals. A buyer is hence foregoing trades with both assets for low signals.
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Similarly, screening also reduces the payoffs of a low quality seller in (1) who obtains

rents from trading at high prices for high signals, which gives

Vl(y, δ) =
∆g +∆l

1 + νl(y, δ)
.

Generally, an equilibrium with standard trade dynamics is given by y and (Vb, Vl)

satisfying the following system19

qc(s) =
1

1 + 1−Fh(y)
1

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = (1− qc(y)) (Ul − Vl) + qc(y)Vb, (FP-s)

Vb + (Vl − Cl) ≤ ∆l. (IC-s)

Similarly, an equilibrium with reversed trade dynamics is given by y and (Vb, Vl) sat-

isfying the system of conditions

qc(s) =
1

1 + 1−Fh(y)
1−Fl(y)

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = Vb, (FP-r)

Vb + (Vl − Cl) > ∆l. (IC-r)

In both systems the first line denotes buyer beliefs. The next line is a fixed point

condition FPh that defines the cutoff. The last line is an incentive condition IC0l which

ascertains that dynamics are as assumed. Because FPh and IC0l are continuous in y, we

can demonstrate existence and characterize equilibria by locating for the roots of FPh(y)

and IC0l(y) as frictions of trading are reduced. The roots that correspond to equilibria

are shown as the black circles in Figure 2. We describe the conditions of equilibrium

existence in the following Propositions 1-3.

(a) ∆h ≥ ∆g (b) ∆l ≥ ∆h (c) ∆g > ∆h > ∆l

Figure 2: FPh and IC0l for low frictions.

19See the Appendix for the details and additional commentary.
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4.3.1 Reversed dynamics

The first equilibrium illustrated in Figure 2a has the most relaxed screening and thus

reversed dynamics.

Proposition 1 (Reversed dynamics) If ∆h ≥ ∆g, there exists an efficient limit equi-

librium where νh ≤ νl → 0,

Vl → ∆l +∆g, Vb →
∆h −∆g

2

W = Vb +
1

2
Vl →

∆h +∆l

2
,

as δ → 1. The equilibrium features reversed dynamics and low average market quality

with qu = 0 and qc(y) = 1/2.

We know from Lemma 4 that reversed dynamics cannot arise under a severe lemons

problem. A necessary condition for equilibrium existence is thus ∆h ≥ ∆g. We demon-

strate next that this condition is sufficient as well.

By (FP-r), the cutoff signal under reversed dynamics satisfies the following fixed point

condition

1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

(Uh − Ch) +

(
1− 1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

)
(Ul − Ch) =

1

2 + νh(y, δ) + νl(y, δ)
(Uh − Ch) +

1

2 + νh(y, δ) + νl(y, δ)
(Uh − Ch),

where the lhs captures the payoff for offering ph, E(u|y)−Ch and the rhs that of offering

p0, Vb.

The lhs spans from Ul −Ch < 0 to U −Ch > 0 and the rhs spans from U −Ch > 0 to

0 as y increases from 0 to 1. By the continuity of the lhs and rhs, we can thus see that a

cutoff signal satisfying the fixed point condition (FP-r) exists.

Intuition is rather simple. For very low cutoffs, buyer is almost certain of low asset

quality. On the other hand, buyer continuation value remains positive. A buyer will thus

rather return to the market than obtain the negative payoff of trading low quality for

a high price. As the cutoff is raised, buyer beliefs about the traded asset improve. At

the same time, average asset quality in the market deteriorates under reversed dynamics

because low-quality assets leave the market slower. Even for the highest cutoffs, a buyer

only expects to trade assets with approximately the same probability. However, since

there is no severe lemons problem, this gives the buyer a positive payoff. Further, due

to stronger screening of assets, buyer continuation value decreases, gradually reaching a

level at which a buyer is better off by making a high price offer for average asset quality

than returning back to the market. Thus, although reduced frictions decrease the costs of
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waiting for higher signals, the benefit of waiting is limited as i. screening does not elevate

the average traded quality, and ii. screening delays valuable future trading opportunities.

If frictions are low but positive, the costs and benefits of waiting thus equal at a certain

positive cutoff below sl, given in Lemma 7.

After demonstrating the existence of a fixed point we characterize the limit equilibrium.

Lemma 6 tells us that the cutoff increases to the limit y → 1 as frictions decrease to the

limit δ → 1. The fixed-point condition for equilibrium cutoff thus becomes

1

2
∆h +

1

2
(−∆g) = Vb =

∆h −∆g

2 + νh + νl
,

which shows that the screening of both qualities remains low in the limit equilibrium. It

other words, we find that under reversed dynamics, the limit equilibrium is approached

over a path for which both assets are screened very mildly: νh = νh = 0.

Lenient screening is important for reversed dynamics where both qualities only trade

for high prices as it encourages low quality sellers to wait for high price signals. Lemma

7 is crucial in showing that it is indeed possible to approach the limit (y, δ) → (1, 1)

over a path which keeps both νh(y, δ) and νl(y, δ) as low as desired by keeping the cutoff

below the value sl. An limit equilibrium with the above properties thus exists. Because

buyer payoff is ∆h−∆g

2
and a low-quality seller’s payoff is ∆l +∆g, this equilibrium is also

efficient; half the sellers hold a low-quality asset.

These are novel findings, extending reversed dynamics in markets with signals to

efficient steady-state markets.20 Kaya and Kim (2018) describe reversed dynamics in a

non-stationary environment, of unknown efficiency properties. A significant caveat to

practitioners arising from our research is that, although Kaya and Kim (2018) show that

reversed dynamics arise under flexible conditions assuming the prior is above the steady-

state beliefs, we observe instead that reversed dynamics cannot be sustained in the long

run in steady-state markets under a severe lemons problem.

The restriction may seem unfortunate. There is ample evidence of reversed dynamics

in different setups (Hendel et al., 2009; Lei, 2011; Tucker et al., 2013; Albertazzi et al.,

2015; Jolivet et al., 2016; Aydin et al., 2019) whereas standard dynamics seem rare (Ghose,

2009). An explanation is suggested by our Lemma 5, which shows that an endogenous

lemons problem arises in dynamic markets with informative signals irrespective of whether

the lemons problem is severe, i.e., ∆g > ∆h. Hence, while the literature has concentrated

on severe lemons problems, real-world applications might well be dominated by non-severe

ones. The severity of the problem, is hardly known in practice.

20Without signals the standard dynamics in lemons markets derive straight from the skimming property
(Fudenberg and Tirole, 1991), which states that all prices that are accepted by high quality sellers are
also accepted by low quality sellers. If the same prices are offered to all sellers, this means that low
quality is traded faster. By Lemmata 1 and 2, the skimming property holds also in this article. However,
because signals enable buyers to target high prices to high quality sellers, as accurately as desirable, the
property does not suffice to characterize trade dynamics with signals.

20



4.3.2 Standard dynamics

The remaining equilibria pictured in Figure 2b have more intensive screening and thus

standard dynamics.

Proposition 2 (Standard dynamics) If ∆l ≥ ∆h, there exist both an efficient limit

equilibrium where νh → 0 < νl → ∆g+∆h

∆l−∆h

Vl → ∆l −∆h, Vb → ∆h

W = Vb +
1

2
Vl →

∆h +∆l

2
,

as δ → 1, and an inefficient limit equilibrium where νh → ∆l−∆h

∆h
< νl → ∞

Vl → 0, Vb → ∆h

W = Vb +
1

2
Vl → ∆h <

∆h +∆l

2
.

as δ → 1. These equilibria feature standard dynamics and high average quality with

qu = qc(y) → 1.

By (FP-s) and (IC-s), the cutoff signal under standard dynamics satisfies the following

fixed point condition.

1

1 + 1−Fh(y)
1

fl(y)
fh(y)

(Uh − Ch) +

(
1− 1

1 + 1−Fh(y)
1

fl(y)
fh(y)

)
(Ul − Ch) =

1

1 + 1−Fh(y)
1

fl(y)
fh(y)

Vb +

(
1− 1

1 + 1−Fh(y)
1

fl(y)
fh(y)

)
max{Ul − Vl, Vb}, (FP-s′)

The lhs denotes the value of trading at a high price ph and the rhs that of trading at a

low price pl.

The lhs spans from Ul − Ch < 0 to Uh − Ch > 0 and the rhs spans from Vb to Ul − Vl

as y increases from 0 to 1. By the continuity of the lhs and rhs, we can thus see that a

cutoff signal satisfying the fixed point condition (FP-s′) exists. Indeed, there can exist

several such cutoffs as in Figure 2b. The first one features too low screening to sustain

standard dynamics. It satisfies (FP-s′) but not (IC-s). However, as the screening of low

quality is increased, buyer rents from low quality trades increase. As these rents Ul − Vl

exceed the benefits of waiting for higher signals Vb, two cutoffs that satisfy (FP-s′) and

(IC-s) are found for ∆l ≥ ∆h. Intuition is that stronger screening decreases a low-quality

seller’s payoff from waiting for high signals. This allows buyers and low-quality sellers to

trade at low prices for low signals, sustaining standard dynamics.

As (δ, y) → (1, 1), the fixed point condition (FP-s) approaches the expression
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∆h = Vb =
∆h +

(
∆l − ∆g+∆l

1+νl

)
2 + νh

. (6)

The lhs of (6) reinstates our earlier finding in Lemma 6 that buyers only offer high

prices when almost sure about high asset quality as the costs of waiting vanish. Certainty

of trading high quality is important as it shows that a buyer will capture the entire high

trade surplus ∆h since a buyer must be indifferent between offering a high price for ∆h

(lhs) and returning to the market for Vb (rhs) at s = y.21

On the other hand, as discussed, a buyer expects to trade both assets with equal

probability if she returns to the market. The buyer continuation value Vb on the rhs of

(6) thus lies below ∆h+∆l

2
. The screening of low-quality assets νl increases this benefit

of waiting while the screening of high-quality assets νh decreases it, allowing to sustain

equilibria where the costs and benefits of waiting are aligned.

Closer examination demonstrates that (6) has two solutions satisfying (FP-s) and (IC-

s), an efficient one and an inefficient one. First, there is a solution where νh → 0 < νl →
∆g+∆h

∆l−∆h
as (y, δ) → (1, 1). Second, there is another solution with νh → ∆l−∆h

∆h
< νl → ∞ as

(y, δ) → (1, 1). Lemma 7 shows that, presuming ∆l > ∆h, there are paths (y, δ) → (1, 1)

corresponding with such νh and νl.

The multiplicicity of equilibria originates from the strategic complementarity between

the screening of low and high-quality assets:

∂Vb

∂νl
> 0,

∂Vb

∂νh
< 0.

The effect of higher νl on Vb is positive because stronger screening reduces low quality

sellers’ payoff, permitting a buyer to capture a larger share of low quality trade surplus ∆l

if the signal is low. This contrasts starkly with the negative effect of νh on Vb. A higher

νh implies both a higher average quality in the market and an increased buyer threshold

for offering Ch. As a buyer expects to trade assets at the same rate in a steady-state

market, more high-quality assets remain unsold although more meetings involve high-

quality assets. Thus, exceeding numbers of meetings result in no trade, eroding buyer

payoffs.

In general, standard dynamics increase the expected market quality so much that the

(opportunity) cost of waiting E(u|s)−ph surpasses the benefit of waiting Vb without strong

screening. To equate the cost and benefit, we can nevertheless increase the screening of

low-quality assets, allowing a buyer to decrease the offer pl = Vl made to a low quality seller

for low signals. The resulting increase in the buyer continuation value Vb =
∆h+

(
∆l−

∆g+∆l
1+νl

)
2+νh

21In Moreno and Wooders (2010), the surplus of trading ∆l is fully extracted by low quality sellers.
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reaching up to ∆h gives the first efficient equilibrium, where the screening of high-quality

assets remains low.

Now, any additional increase in low quality screening and buyer continuation value

implies that the benefit of waiting again exceeds the opportunity cost of trading high

quality. To equate the benefit of waiting with the cost, it is thus necessary to increase the

screening of high-quality assets, which restricts buyer continuation value by reducing trad-

ing frequency. The associated reduction in buyer continuation value Vb =
∆h+

(
∆l−

∆g+∆l
1+νl

)
2+νh

until it meets ∆h allows to sustain the inefficient equilibrium, with excessive screening of

high-quality assets.

4.3.3 Non-existence

Figure 2c points out that a non-existence of an equilibrium is also a possibility. This is

already suggested by our previous analysis, which shows that the maximum for market

surplus and buyer continuation value is

Vb =
∆h +∆l

2
, (7)

If high quality is more valuable, ∆h > ∆l, no equilibrium with standard dynamics, where

Vh = ∆h, thereby exists. Adding to this, if the lemons problem is severe, ∆g > ∆h, no

equilibrium with reverse dynamics exists either.

Proposition 3 (Non-existence of equilibrium) If ∆g > ∆h > ∆l, there exists no

steady-state limit equilibrium as δ → 1.

The intuition for the non-existence of an equilibrium is given by a fundamental dis-

crepancy between (i) the required screening to overcome a severe lemons problem and (ii)

the higher payoff of trading high quality than low quality. In particular, although different

qualities can in the limit be separated efficiently by signals, buyers cannot be indifferent

between trading high quality, for the higher payoff of ∆h, and low quality, for the lower

payoff of ∆l. The logic is quite simple. In equilibria with standard dynamics, negligible

information costs and increasing market quality allow buyers to obtain the full surplus of

high quality trade ∆h. But this means that buyers are no longer interested in trading low

quality for a lower trade surplus ∆l, thus contradicting the assumed dynamics.

Figure 3 summarizes the existence conditions of different equilibria in terms of welfare

and dynamics. A multiplicity of equilibria with different dynamics and efficiency proper-

ties arises when low quality is more valuable to trade while either a unique equilibrium

or no equilirium exists if low quality has smaller trade surplus. The relatively neglected

trade value of “lemons” thus determines trade possibilities.

The equilibrium set can be refined by focusing on, e.g., (i) undefeated equilibria with

maximal payoffs (primarilty) to buyers and (secondarily) to sellers (Mailath et al., 1993)
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Figure 3: Existence of equilibria for r → 0.

or (ii) “simple” and “robust” equilibria. The former criterion advocates efficient standard

dynamics, which yield the highest payoffs ∆h to buyers and positive payoffs ∆l −∆h to

sellers. However, the low information needs speak for efficient reversed dynamics.

Regarding comparative statics, we further observe that buyers’ payoffs are increasing

in ∆h (and decreasing in ∆g) while low quality sellers’ payoffs are increasing in ∆l (and

decreasing in ∆h and ∆g). This arises because of two forces. The first force is that

efficiency considerations combined with flexible screening possibilities allow buyers and

sellers to enjoy the entire trade surplus ∆l+∆h

2
. The second novel force is that as frictions

vanish optimal screening must keep a buyer indifferent between offering min {p0, pl} and

offering ph. As screening intensifies, the payoff of the former approximates Vb and the

payoff of the latter approaches ∆h. Buyers’ payoffs will hence turn to ∆h−∆g

2
under reversed

dynamics and to ∆h under standard dynamics. We are not aware of any counterpart to

this result in the literature.

It is also noteworthy that, if there exists a steady-state equilibrium, there exists an

efficient steady-state equilibrium. As discussed, efficient screening arises in our model

because of two main reasons: (i) frictions of trading are vanishingly small and (ii) in-

formation in signals is sufficiently rich (e.g., in Moreno and Wooders (2010) no quality

information is observed and in Kaya and Kim (2018) the observed information is coarse).

However, a remaining problem that we have is that efficient trading only arises here in

a steady-state equilibrium. Thereby, unless the market has reached an efficient steady-
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state equilibrium, the properties of the transition path are important for efficiency. This

is left for future study. Non-steady-state dynamics may also play a key role when no

steady-state equilibrum exists for ∆g > ∆h > ∆l.

4.4 Screening with bounded signal information

To demonstrate the usefulness of considering rich information structures, we next show

how our analysis with unboundedly informative signals informs analyses with bounded

signal information. To proceed, we thus suppose there exists an upper bound B < ∞ on

the informativeness of quality signals s, i.e., 1
B
≤ fh

fh
(s) ≤ B.

To transport the idea immediately into our framework, we thus assume that all signals
fh
fh
(s) < 1

B
and fh

fh
(s) > B are replaced by, respectively, the (lowest) signal s which gives

fh
fh
(s) = 1

B
and the (highest) signal s which gives fh

fh
(s) = B.22 To retain the feature that

high signals indicate high quality, we assume that E[u|s, q0] > E[u|q0] = U .

Our previous analysis permits us to derive limits on the information content of signals

that suffices to sustain almost efficient trade with positive trade frictions. In other words,

we obtain a new measure for bounded signal information B < ∞ needed for “constrained

efficient screening” of assets with positive frictions δ < 1.

Corollary 1 (of Propositions 1 and 2) For any (small) r > there exists (large) B < ∞
such that a steady-state equilibrium generates higher welfare than the static one-price

model if ∆g > ∆h and ∆l ≥ ∆h and almost equal payoff if ∆h ≥ ∆g.

In the limit δ → 1, equilibrium analysis can be conducted similarly as in the previous

section. The upper bound on signal informativeness implies that the payoffs of offering

ph cannot exceed

E[u|s, qu]− Ch,

which gives ∆h only when market quality is very high qc = 1. Another novelty is that in

the limit screening becomes ineffective with bounded signals, i.e., νθ(s, r) =
1−δFθ(s)
1−Fθ(s)

→ 0

as δ → 1 for any s.

Still, if the lemons problem is not severe, the fixed point condition remains

1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

∆h +

(
1− 1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

)
(−∆g) = (8)

1

2 + νh(y, δ) + νl(y, δ)
∆h +

1

2 + νh(y, δ) + νl(y, δ)
(−∆g),

as with unboundedly informative signals. Because ∆h ≥ ∆g, we can easily see that a

fixed point exists for low r as the utility of offering ph on the lhs is Ul − Ch at y = 0 and

22Because only the upper bound is binding, the lower information bound is redundant.
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E[u|s, q0]−Ch at y = s whereas the utility from p0 on the rhs is U −Ch at y = 0 through

y = s. Payoffs thus remain as in Proposition 1 in the limit δ → 1.

Remark 1 If ∆g ≤ ∆h, an efficient equilibrium with bounded signals exists for δ → 1.

This contrasts with cases where the lemons problem is severe. The ineffectiveness of

screening low-quality assets then implies that a steady-state limit equilibrium cannot be

sustained without mixing.

Remark 2 If ∆g > ∆h, no pure equilibrium with bounded information exits for δ → 1.

In other words, to make it unattractive for low quality sellers to wait for high prices, a

buyer needs to randomize between offering pl and ph at s = s , e.g., in proportions rl > 0

and rh > 0 with rl = 1− rh. This mixing is optimal for a buyer at s provided

1

1 + (1−Fh(s))rgh
1−(1−Fl(s))(1−rh)

fl(s)
fh(s)

(s) (Uh − Ch) +

(
1− 1

1 + (1−Fh(s))rh
1−(1−Fl(s))(1−rh)

fl(s)
fh(s)

)
(Ul − Ch) =

1

1 + (1−Fh(s))rh
1−(1−Fl(s))(1−rh)

fl(s)
fh(s)

Vb +

(
1− 1

1 + (1−Fh(s))rh
1−(1−Fl(s))(1−rh)

fl(s)
fh(s)

)
(Ul − Vl) ,

Again, sufficient screening of low quality requires r
(1−Fl(s))rh

≥ ∆g

∆l
, which implies rh → 0

as δ → 1. Trading at high prices thus becomes very difficult at the limit, increasing the

average market quality to the highest possible level, which gives a contradiction

∆h = Vb =
∆h

1 + r
(1−Fh(s))rh

.

Because (δ, rh) → (1, 0), r
(1−Fl(s))rh

≥ ∆g

∆l
is incompatible with r

(1−Fh(s))ph
→ 0. To reduce

average market quality, low quality must trade less often; knife-edge dynamics represent

a possibility.

Thereby, if the lemons problem is severe and signals bounded, we need mixing both

in high price offers and in low price offers, much like previously in Moreno and Wood-

ers (2010) and Kaya and Kim (2018). Complete analysis lies beyond the scope of this

article. However, a fact of life remains that highly informative signals about assets are

observed with positive probability, albeit perhaps small, if waiting is costless. Charac-

terizing the equilibrium in these natural circumstances is hence crucial to understanding

market performance.

5 Conclusion

The main lessons from our analysis for practical market design are the following.

1. Large enough trade surpluses ∆h > ∆g, for high quality, or ∆l > ∆h, for low quality,
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are sufficient to guarantee (almost) efficient trade in markets with signals.

2. Information requirements supporting (almost) efficient trade are negligible for van-

ishing frictions if ∆h > ∆g but increase proportional to δ∆g+∆h

∆l−∆h
if ∆l > ∆h.

3. With sufficient information, trading problems thus persist only in markets infested,

at the same time, by (i) assets with high value differences (high ∆g) and (ii) assets

with low gains from trade (low ∆h and ∆l). Sorting out the assets with negative

contribution to market performance, e.g., by a fixed entry cost as in Heinsalu (2020)

or by splitting the markets as in Inderst and Müller (2002), can then help to restore

efficient trading incentives in the market.

Our research has significant policy implications. We find that all efficient screening

patterns, regardless of trading dynamics, exhibit lenient screening of high-quality assets.

This characteristic of efficient screening is pivotal for designing screening protocols and

tests to ensure high quality. We identify the potential for sustaining an inefficient equi-

librium where excessively stringent screening, while preventing low-quality assets from

trading at high prices, simultaneously severely impedes the trade of high-quality assets.

Our results suggest that such screening protocols should be avoided. Optimal screening

entails the lenient screening of high-quality assets, highlighting the importance of designs

exhibiting this characteristic.

We close by discussing some extensions and alternative modeling frameworks.

Coasian payoffs

Because uninformed buyers are given full bargaining power over informed asset sellers, it

is also interesting to study whether payoffs become Coasian as frictions disappear, i.e.,

whether buyers lose all commitment power to low prices and there will be efficient trade

in the limit. Fuchs and Skrzypacz (2022) argue that a form of the Coase conjecture often

survives even if trading is delayed. According to Fuchs and Skrzypacz (2022), translated

to our case a generalized Coase conjecture could also mean that buyers trade at prices

equal to (i) the highest seller valuation (i.e., here Ch) or (ii) the marginal buyer utility

(i.e., here E[U |s]).
Indeed, when dynamics are reversed, we do find that trade only occurs for high prices

Ch which both high and low quality sellers can accept. However, when dynamics are

standard, a buyer will price at marginal utility for s = y only when indifferent between

offering pl and ph. In other words, in our model buyers are not always (i) pricing at the

highest seller valuation Ch nor (ii) obtaining only the marginal buyer utility Vb. Thus,

payoffs are not Coasian even when they are efficient.23

23Yet, a mathematical fact remains that buyers obtain positive payoffs in our model only if there is
common knowledge of positive gains from trading high quality, i.e., Vb → 0 as ∆h → 0.
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Here payoffs are non-Coasian in the limit under standard dynamics, in short, because

signals grant the buyer an additional degree of commitment power, which is absent from

models where no information is available to a buyer. Buyers know that, by waiting for

a high signal, they can trade high quality with high certainty whereas, if they prefer not

to wait, they also have a chance to buy low quality for low prices. Thus, low quality

only obtains a payoff of ∆l−∆h > 0 under standard dynamics whereas buyers obtain the

payoff of ∆h > 0 if they trade high quality for ph and ∆l − (∆l −∆h) > 0 if they trade

low quality for pl.
24

Sellers offer prices

The signaling version of our model is studied more closely in Hämäläinen (2015). Focusing

on seller-optimal equilibria, this article observes that, if ∆l = λ is rather high relative to

∆h = 1 − λ, a steady-state equilibrium with standard dynamics exists for λ ≥ λ but, if

∆h = 1 − λ is instead high relative to ∆l = λ, a steady-state equilibrium with reversed

dynamics exists for λ ≤ λ. In between, for λ ∈ (λ, λ) both kinds of dynamics can be

supported in a steady-state equilibrium.

Standard dynamics arise in an equilibrium where sellers are pooling for high signals

and separating for low signals. Reversed dynamics arise in an equilibrium where sellers

pool for high signals but return to the market for low signals.25 Seller-optimal prices

leave no surplus to buyers, i.e., Vb = 0: Pooling prices thus equal p(s) = E[U |s] whereas
separating prices are ph = Uh for high quality and pl = Ul for low quality. In the seller-

optimal case, p(s) and pl are accepted by buyers with probability one but, to prevent low

quality from mimicking high, ph can only be accepted with probability pl−Vl

ph−Vl
< 1.

Efficiency properties of equilibria are not analyzed for vanishing trade frictions in

Hämäläinen (2015). Reasonably, one would think it possible to employ the same cutoffs

as in this article, e.g., screen low quality much harder than high quality under a severe

lemons problem. A key question then is whether this would allow high quality trade

almost certainly for high prices p(s) (or ph) and low quality trade almost certainly for low

prices pl, implementing therefore an efficient equilibrium where Vl → ∆l and Vh → ∆h as

δ → 1. Lemma 7 suggests this is possible under signaling as well.26

24In the efficient equilibrium, the likelihood of the events adjusts so that buyers’ payoffs will be given
by ∆h/2 + (∆l − (∆l −∆h))/2 = ∆h > 0.

25In a so called semi-pooling equilibrium, bridging the pooling and separating cases, low quality sellers
mix between offering pl and p0 for s < y.

26The cutoff signal y and the associated screening, νl(y) → nl >> νh(y) → 0, should yield E[U |y] ≥
Vb + Vh(→ Uh) as δ → 1 (high quality sellers offer pooling prices p(y) = E[U |y] for s = y) and Ul ≥
Vb + Vl(→ Ul) as δ → 1 (low quality sellers offer separating prices pl = Ul for s < y); this may require
giving at least a small payoff to buyers Vb → 0 as δ → 1 to prevent low quality sellers from obtaining
more than Ul − Cl for δ → 1.
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Different entry rates

Different entry flows eh for high quality and el = 1− eh for low quality, alter the steady-

state market composition through the following equilibrium condition

eθ = Mθ(1−G−(xθ)).

Because buyers’ expectations qu and qc(s) of sellers assets thus change, the fixed point

condition under standard dynamics will transform into

∆h −
1− Fh(y)

1

fl(s)

fh(s)

el
eh

∆g = δV ′
b +

1− Fh(y)

1

fl(s)

fh(s)

el
eh

(∆l − δV ′
l )

where

V ′
b =

∆h − (1− Fl)
el
eh
∆g + Fl

el
eh
(∆l − V ′

l )

1 + el
eh

+ r el
eh

+ νh
,

V ′
l =

1

1 + νl
(∆g +∆l) .

The fixed point condition hence turns into

∆h =
∆h +

el
eh
∆l − el

eh

1
1+νl

(∆g +∆l)

1 + el
eh

.

for δ → 1, y → 1 and νh → 0 and

∆h =
∆h +

el
eh
∆l

1 + el
eh

+ νh
.

for δ → 1, y → 1 and νl → ∞.

We can thus see that the existence condition and properties of equilibria for standard

dynamics are unchanged. The payoffs are in the efficient equilibrium

Vb + elVl = ∆h + el(∆l −∆h) = eh∆h + el∆l

and in the inefficient equilibrium Vl = ∆h and Vl = 0. An equilibrium with reversed

dynamics exists if the following static lemons condition holds

∆h ≥ el
eh

∆g.

Ergo, our assumption that different asset qualities enter the market at equal rates is

innocuous.
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Appendix

The paper is under revision. Below proofs relate to en earlier version, set up in a

continuous-time environment. Discrete time analysis is given by our earlier paper ver-

sion. The associated proofs will be transferred here later.
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Proof of Lemma 1

We denote by Vθ ≥ Cθ the continuation value of a seller with quality θ, which gives the

opportunity cost of selling an asset of quality θ in the current meeting. Optimally, a

seller accepts any price p that is higher or equals Vθ, i.e., p ≥ Vθ. Knowing this buyers

offer either Vh (to target sellers with Vθ ≤ Vh) or Vl (to target sellers with Vθ ≤ Vl) or

p0 < minθ Vθ to pass the meeting without trading. Especially, offering a strictly higher

price p > Vθ to target a seller with quality θ is dominated by lowering the price until it

equals the highest continuation value that lies below the offer.

Proof of Lemma 2

Denote by Vb the continuation valuation of a buyer and by q(s) a buyer’s belief after

seeing signal s, i.e., the probability that the buyer assigns to the random event that the

signal comes from a high-quality asset. We show in the main text that q(s) is increasing

in s. We can therefore conjecture that, if there is a signal y such that

Vb = q(y)∆h + (1− q(y))(−∆g),

then the buyer optimally offers Vh for s ≥ y and min {Vl, Ul − Vb} for s < y. Otherwise,

y = 0 or y = 1. Note that the maximal price a buyer offers for the asset quality θ is

max {Uθ − Vb, 0} because acquiring the asset now gives Uθ but purchasing another asset

later yields Vb. It is assured that Vh < Uh − Vb because Vh = Ch but not certain that

Vl < Ul − Vb.

If a seller expects to trade for price p with the next buyer, the continuation value of

the seller solves the Bellman equation

Vθ(t) = cθdt+ pdt+ (1− dt) (1− rdt)Vθ(t+ dt)

Vθ(t) = (cθ + p) dt+
(
1− (1 + r)dt+ r(dt)2

)
Vθ(t+ dt)

Vθ(t+ dt) =
cθ + p

r + 1
+

1

r + 1

Vθ(t+ dt)− Vθ(t)

dt
+

rdt

r + 1
Vθ(t+ dt)

Vθ(t) =
cθ + p

r + 1
+

1

r + 1
V ′
θ (t)

Vθ(t) =
rCθ + p

r + 1
+

1

r + 1
V ′
θ (t)

as dt → 0. During the interval dt the seller receives a dividend with probability 1dt and

meets a buyer with probability 1dt. If the seller does not meet a buyer, time goes on

and the seller obtains the continuation value (1− rdt)Vθ(t+ dt), where (1− rdt) ≈ e−rdt

when dt takes a small enough value. This implies that, in a steady-state equilibrium,

Vθ(t) =
rCθ+p
r+1

as V ′
θ (t) = 0. Vθ(t) is therefore a weighted average between Cθ and p. The

optimality of accepting the price p requires that p ≥ Vθ(t).
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This shows that a high quality seller has a higher continuation value than a low quality

seller, Vh > Vl, because the dividend yield is higher ch > cl even in cases where the prices

p remain intact.27

We next show that the highest price offered by a buyer is Vh = Ch. The reasoning

follows Diamond’s paradox kind of logic. Suppose instead that the highest price is strictly

larger p′ > Ch. Thus,

Vh ≤ rCh + p′

r + 1
< p′.

But then the buyer can lower the offer to p′′ ∈ (Vh, p
′), which the seller would still accept

with certainty. The original price offer p′ > Ch is thereby not optimal. The contradiction

proves the result.

Proof of Lemma 3

Lemma 3 follows from Lemmata 1–2 and the following analysis in the text once we note

that a buyer strictly prefers offering pl to p0 (p0 to pl) if Vb+(Vl−Cl) < ∆l (Vb+(Vl−Cl) >

∆l) but remains indifferent between pl and p0 if Vb + (Vl −Cl) = ∆l. Because pl = Vl and

p0 = max {Ul − Vb, 0}, we have that Vb + (Vl − Cl) = ∆l ⇐⇒ Ul − Vl = Vb ⇐⇒ Ul − pl =

Vb ⇐⇒ Ul − p0 = Vb.

Buyers’ conditional beliefs (5) are obtained directly from (4) by Bayesian updating.

We only have to consider the fact that, when buyers offer pl for s < y, high quality trades

with probability 1 − Fh(y) and low quality with probability 1 but, when buyers offer p0

for s < y, high quality trades with probability 1−Fh(y) and low quality with probability

1− Fl(y) in a meeting.

If buyers instead offer p0 for s < z, pl for s ∈ (z, y) and pl for s > y, high quality

trades with probability 1− Fh(y) and low quality with probability 1− Fl(z).

Proof of Lemma 4

Consider a steady-state equilibrium with reversed dynamics in a market with a severe

lemons problem ∆h < ∆g.

Under reversed dynamics, buyers’ conditional beliefs at the cutoff signal s = y are

given by qc(y) =
(
1 + 1−Fh(y)

1−Fl(y)
fl(y)
fh(y)

)−1

.

By MLRP, qc(y) < 1/2 such that qc(y)(Uh − Ch) + (1 − qc(y))(Ul − Ch) < 0 in cases

where ∆h < ∆g.

But this implies that a buyer is not willing to make a high price offer ph = Ch at

the cutoff signal s = y, which contradicts the assumption that a steady-state equilibrium

with reversed dynamics can exist for ∆h < ∆g.

27Here prices are higher when a seller has a higher quality asset because buyers offer higher prices for
higher signals.
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Derivation of value functions

Continuation values, Vl and Vb, are derived by dynamic programming, by defining the

value functions (Bellman equations) related to buyers and low quality sellers’ optimal

stopping problems.28

In what follows, Ub(s ≥ y) and Ub(s < y) denote the expected flow valuations of a

buyer associated with observing a high signal s ≥ y and a low signal s < y, respectively,

Ub(s ≥ y) :=qu (1− Fh(y)) (Uh − Ch)+

(1− qu) (1− Fl(y)) (Ul − Ch) ,

Ub(s < y) :=(1− qu)Fl(y)min {(Ul − pl) , p0} .

A buyer meets sellers at a rate equal to unity. The probability of meeting a high quality

seller and obtaining a high signal is qu (1− Fh(y)) whereas that of meeting a low quality

seller and receiving a high signal is (1 − qu) (1− Fl(y)). If the signal is above c, the

buyer offers ph, which both sellers accept. The probability of observing a low signal when

meeting with a high quality seller is quFh(y) and that of detecting a low signal when

meeting a low quality seller is (1− qu)Fl(y). If the signal is below c, the buyer offers the

minimum of pl (accepted by low quality) and p0 (rejected by all sellers).

Under standard dynamics, a buyer’s value function can be written as follows

Vb(t) = dt (Ub(s ≥ y) + Ub(s < y)) + dtquFh(y)Vb(t) + (1− (1 + r)dt)Vb(t+ dt)

(1 + r)Vb(t+ dt)− quFh(y)Vb(t) = Ub(s ≥ y) + Ub(s < y) +
Vb(t+ dt)− Vb(t)

dt

Vb(t) =
Ub(s ≥ y) + Ub(s < y)

1− quFh(y) + r
+

1

1− quFh(y) + r
V ′
b (t), (9)

as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored. In-

tuitively, a buyer trades under a high signal at rate Ub(s ≥ y) and under a low signal at

rate Ub(s < y). A buyer continues searching in the market either (i) if the buyer does not

meet any seller in the market, which will occur with probability 1−dt, or (ii) if the buyer

does not trade with a matched seller, happening with probability qcFh(y)dt. There is no

trade in a meeting if the buyer’s signal is low but the seller’s quality high.

Under reversed dynamics, a buyer’s value function can be defined instead as

Vb(t) = Ub(s ≥ y)dt+ (1− (1− qcFh(y)− (1− qc)Fl(y))dt) (1− rdt)Vb(t+ dt),

=
Ub(s ≥ y)

1− quFh(y)− (1− qu)Fl(y) + r
+

1

1− quFh(y)− (1− qu)Fl(y) + r
V ′
b (t). (10)

28We omit here the maximization over the strategy space because we have already described the
optimal strategies in Lemmata 1–2 and 3.
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as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored. In this

case, there is no trade in a meeting if the signal is low, irrespective of the quality of the

seller’s asset. As before, a buyer will thus trade under a high signal at rate Ub(s ≥ y) but,

when the signal is low, the trade rate is zero. As a result, a buyer continues searching in

the market either (i) if there is no meeting with a seller, with probability 1− dt, or (ii) if

there is no trade in a meeting, with probability (qcFh(y)− (1− qc)Fl(y))dt.

The ordinary differential equations (9) and (10) describe the evolution of Vb under

different equilibrium trade dynamics. In a steady-state equilibrium, V ′
b (t) = 0 for all t,

because the evolution dynamics of Vb have then reached a steady-state.

In a steady-state equilibrium with standard dynamics, we thus obtain that a buyer’s

continuation value is

Vb =
Ub(s ≥ y) + Ub(s < y)

1− quFh(y) + r
,

whereas a buyer’s continuation value in a steady-state equilibrium with reversed dynamics

can be expressed as

Vb =
Ub(s ≥ y)

1− quFh(y)− (1− qu)Fl(y) + r
.

Moving on to sellers, the continuation value of holding a high-quality asset is fixed at

Vh = Ch whereas the seller’s continuation value of keeping a low-quality asset is given by

Vl(t) = dtcl + dt ((1− Fl(y))Ch + Fl(y)Vl(t)) + (1− (1 + r)dt)Vl(t+ dt)

(1 + r)Vl(t+ dt)− Fl(y)Vl(t) = cl + (1− Fl(y))Ch +
Vl(t+ dt)− Vl(t)

dt

Vl(t) =
rCl + (1− Fl(y))Ch

1− Fl(y) + r
+

1

1− Fl(y) + r
V ′
l (t), (11)

as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored.

Note that two events may happen to low quality sellers at each time point: (i) the

seller’s asset may generate a new dividend with payoff cl, or (ii) the seller may encounter

a new potential buyer with signal s. Both events follow a Poisson process with the rate

equal to unity. If the buyer’s signal is high, with probability 1− Fl(y), the seller obtains

Ch − Vl whereas, if the buyer’s signal is low, with probability Fl(y), the seller receives

Vl, irrespective of which trade dynamics prevail (i.e., with standard trade dynamics, a

buyer offers pl = Vl, which the seller accepts, and, with reversed trade dynamics, the

buyer offers, p0 < Vl, which the seller rejects). However, if neither event occurs, the seller

continues searching in the market, which gives the seller the continuation value, Vl(t+dt).

In a steady-state equilibrium, Vl is hence given by

Vl(t) =
(1− Fl(y))Ch + rCl

1− Fl(y) + r
=

Ch − Cl

1 + r
1−Fl(y)

+ Cl.
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The first term captures the value of trading low quality for a high price whereas the second

term denotes the valuation of dividends.

Value functions for screening

The screening intensities

νh : νh(y, δ) =
r

1− Fh(y)
,

νl : νl(y, δ) =
r

1− Fl(y)
,

are increasing in r and y.

Rearranging (11) gives

Vl =
Ch + νlCl

1 + νl
=

Ch + νlCl

1 + νl
=

Ch − Cl + (1 + νl)Cl

1 + νl
,

= Ch −
νl

1 + νl
(Ch − Cl) = Ch −

νl
1 + νl

(∆g +∆l) ,

= Cl +
1

1 + νl
(Ch − Cl) = Cl +

1

1 + νl
(∆g +∆l) , (12)

which shows that, as a function of y, Vl(y) = Vl(νl(y, δ)) is continuous and decreasing.

Note also that Vl(y) attains any value in between Vl(0) = (Ch+rCl)/(1+r) and Vl(1) = Cl

at some unique signal cutoff y ∈ (0, 1).

Assuming standard dynamics, (9) gives

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)Fl(Ul − Vl)

1− Fhqu + r

=
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)Fl(Ul − Vl)

qu(1− Fh) + (1− qu)(1− Fl) + (1− qu)Fl + r

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r 1
qu(1−Fh)

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r 2−Fh

1−Fh

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r
(
1 + 1

1−Fh

) =
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r + νh
(13)

if Vb + (Vl − Cl) < ∆l and Vb ≥ 0, and

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)FlVb

1− Fhqu + r

=
∆h − (1− Fl)∆g + FlVb

2 + r + νh
=

∆h − (1− Fl)∆g

2− Fl + r + νh
(14)
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if Vb + (Vl − Cl) ≥ ∆l and Vb ≥ 0.29

Above, we have thus expressed average quality qu in terms of y and Fl, Fh. To derive

the first lines, we have used the fact that, assuming standard dynamics,

qu(1− Fh) =
1− Fh

2− Fh

,

(1− qu)(1− Fl) = (1− Fl)
1− Fh

2− Fh

,

(1− qu)Fl = Fl
1− Fh

2− Fh

.

Assuming reversed dynamics, (10) gives

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g

1− quFh(y)− (1− qu)Fl + r

=
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g

qu(1− Fh) + (1− qu)(1− Fl) + r

=
∆h −∆g

2 + r 1
qu(1−Fh)

=
∆h −∆g

2 + r 2−Fh−Fl

(1−Fl)(1−Fh)

=
∆h −∆g

2 + r
(

1
1−Fh

+ 1
1−Fh

) =
∆h −∆g

2 + νh + νl
(15)

for Vb + (Vl − Cl) > ∆l and Vb ≥ 0.

To obtain the first lines, we have used the fact that, assuming reversed dynamics,

qu(1− Fh) = (1− Fh)
1− Fl

2− Fh − Fl

,

(1− qu)(1− Fl) = (1− Fl)
1− Fh

2− Fh − Fl

.

Independent of which trade dynamics prevail, we can thus see that Vb(y) is continuous

for all y ∈ [0, 1], and first increasing in y and later decreasing in y. With standard dy-

namics, Vb(0) = max
{
0, ∆h−∆g

2+νh

}
and, with reversed dynamics, Vb(0) = max

{
0, ∆h−∆g

2+νh+νl

}
.

In both cases, Vb(y) → 0 as y → 1.

Proof of Lemma 5

Suppose trade takes place with probability one. By Lemmata 1–2 and 3 this implies that

y = 0. As a result, buyers offer Ch, which all sellers accept, for all signals s.

By the continuity of fl and fh, the buyers’ conditional beliefs (5) are continuous and,

according to Assumption 1, qc(0) = 0. The continuity of beliefs qc in signals s entails that

29To make sure the later given fixed point correspondences FP and incentive condition correspondences
IC are everywhere continuous, we need both payoffs in our fixed point analysis for standard dynamics,
although only the former ones are consistent with the assumed dynamics.
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for any number ϵ > 0 there exists a number δ(ϵ) > 0 such that qc(s) < ϵ for all s < δ.

Accordingly, if we choose the number ϵ = Ch−Ul

Uh−Ul
= ∆g

∆h+∆g
> 0, then for all signals

s < δ(ϵ), beliefs qc(s) are so low that a buyer’s expected valuation for offering a high price

is negative,

E(u|s)− Ch < ϵUh + (1− ϵ)Ul − Ch = ϵ∆h − (1− ϵ)∆g < 0,

which shows that a buyer strictly prefers offering min {p0, pl} to offering Ch for s < δ(ϵ).

This contradicts the assumption that trade takes place with probability one for all signals.

Proof of Lemma 6

Note first that for any y < 1

Vl(r) = Cl +
1

1 + νl(r)
(Ch − Cl) → Ch,

as r → 0, which means that

Vl + Vb > Vl > Ul

for low values of r because Ch > Ul. Thus, y → 1 as r → 0 is a necessary condition for

the existence of a limit equilibrium under standard trade dynamics.

To provide a general proof, note that, according to (3), the cutoff is the signal y solving

the following fixed point condition,

Uh − Ch +
1−G−(ph)

1−G−(pl)

fl(y)

fh(y)
(Ul − Ch) = Vb +

1−G−(ph)

1−G−(pl)

fl(y)

fh(y)
max {Ul − pl, Vb} . (16)

This condition is obtained from (3) by rewriting the equation in terms of qc(y) and sup-

pressing the denominators 1 + 1−G−(ph)
1−G−(pl)

fl(y)
fh(y)

.

As a preliminary observation, note that for the lowest signal values s ∈ (0, 1), the lhs of

(16) is smaller than the rhs of (16). The lhs is negative for low enough s by Assumption 1.

The rhs is non-negative because Vb is non-negative by definition. Instead, for the highest

signal values s ∈ (0, 1), the lhs of (16) is larger than the rhs of (16) because the lhs is

positive for low enough s whereas the rhs approaches zero by Assumption 1 for Vb → 0

as y → 1. By the continuity of the condition (16) a fixed point y will thus exist.

The smallest fixed point corresponds to a cutoff signal at which the sides of (16) are

larger than zero. To see why satisfying (16) as 0 = 0 is impossible, consider signals y < 1

for which the lhs of (16) is equal to zero. This entails both (i) zero buyers’ payoff for

offering ph at s = y and (ii) positive buyers’ payoff for offering ph for s > y. As a result,

we can see from (9) and (10) that Vb > 0 because U(s < y) > Vb (irrespective of whether
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Vb ≥ Ul − pl for which U(s < y) = Vb or Vb < Ul − pl for which U(s < y) > Vb).

Lemma 8 shows later in more detail that, there is both a (higher) signal y < 1 which

satisfies (16) as

Uh − Ch +
1−Gh(ph−)

1−Gl(pl−)

fl(y)

fh(y)
(Ul − Ch) = Vb +

1−G−(ph)

1−G−(pl)

fl(y)

fh(y)
(Ul − pl) ,

and a (lower) signal y > 0 which satisfies (16) as

Uh − Ch +
1−Gh(ph−)

1−Gl(pl−)

fl(y)

fh(y)
(Ul − Ch) =

(
1 +

1−Gh(ph−)

1−Gl(pl−)

fl(y)

fh(y)

)
Vb.

For standard dynamics, the latter condition results in30

∆h − (1− Fh)
fl
fh
∆g

1 + (1− Fh)
fl
fh

=
∆h − (1− Fl)∆g

2 + νh + r − Fl

= Vb, (17)

whereas, for reversed dynamics, the same condition implies

∆h − 1−Fh

1−Fl

fl
fh
∆g

1 + 1−Fh

1−Fl

fl
fh

=
∆h −∆g

2 + νh + νl
= Vb. (18)

We consider these cases one by one next. For (weakly) standard dynamics, observe

that (17) can be written as

α∆h − (1− α)∆g = α′∆h −
1− Fl

1− Fl + r + νh
(1− α′)∆g,

where

α =
1

1 + (1− Fh(y))
fl(y)
fh(y)

,

α′ =
1

2 + νh + (r − Fl(y))
.

For any y < 1, 1−Fl

1−Fl+r+νh
→ 1 as r → 0. To satisfy (17), we thus need either y → 1 as

r → 0 or α → α′ as r → 0 (or both).

30We suppress the arguments of fθ(y)’s, Fθ(y)’s and νθ(y, δ)’s to abbreviate the expressions.
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Setting α = α′ results in

(1− Fh(y))
fl(y)

fh(y)
= r + νh + (1− Fl(y))

(1− Fh(y))
fl(y)

fh(y)
− (1− Fl(y)) = r

2− Fh

1− Fh

1

2− Fh

[
(1− Fh(y))

2 fl(y)

fh(y)
− (1− Fh(y)) (1− Fl(y))

]
= r, (19)

where 1
2−Fh

> 1/2 whereas the function inside the square brackets is strictly positive by

MLRP for all y < 1. By L’Hopital’s rule, (1−Fl(y))/(1−Fh(y)) → fl(y)/fh(y) as y → 1,

which shows that the inside of the brackets approaches zero as y approaches one (but

generally not otherwise). Thus, α → α′ as r → 0 cannot hold unless y → 1 as r → 0.

For (weakly) reversed dynamics, notice that (18) can be written as

β∆h − (1− β)∆g = β′∆h −
1

1 + νh + νl
(1− β′)∆g,

where

β =
1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

,

β′ =
1

2 + νh + νl
.

For any y < 1, 1
1+νh+νl

→ 1 as r → 0. To satisfy (18), we thus need either y → 1 as r → 0

or β → β′ as r → 0 (or both).

Setting β = β′ results in

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
= 1 +

r

1− Fh(y)
+

r

1− Fl(y)

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
− 1 = r

(
1

1− Fh(y)
+

1

1− Fl(y)

)
1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
− 1

]
= r (20)

Note that 1−Fh(y)−Fl(y)−Fh(y)Fl(y)
2−Fh(y)−Fl(y)

> 0 whereas the function inside the square brackets is

strictly positive by MLRP for all y < 1.

By L’Hopital’s rule, (1 − Fl(y))/(1 − Fh(y)) → fl(y)/fh(y) as y → 1, which shows

that the function in the brackets approaches zero as y approaches one (but generally not

otherwise). Thus, β → β′ as r → 0 cannot hold unless y → 1 as r → 0.
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Proof of Lemma 7

We start by rewriting νl(r, s) as

r

1− Fl(s)︸ ︷︷ ︸
νl(s,r)

=
r

1− Fh(s)︸ ︷︷ ︸
νh(s,r)

1− Fh(s)

1− Fl(s)
,

and study the limit as s → 1. Because Fθ(s) → 1 as s → 1, we can use L’Hopital’s rule

to have
1− Fh(s)

1− Fl(s)
→ fh(s)

fl(s)
→ ∞,

as s → 1. This equals saying that for any M > 1 there exists a signal sl < 1 such that

νh(sl, r)M
2 < νl(sl, r) (21)

for any r and for s > sl. We then turn to

νθ(s0, r) =
r

1− Fθ(s0)
,

which clearly approach zero as r → 0 and infinity as r → ∞. For any M > 1 and for

sl < 1 we can thus find r0 ∈ (0,∞) and s0 ∈ (0, sl) such that

νh(sl, r0) =
r0

1− Fh(sl)
= 1/M, (22)

νl(s0, r0) =
r0

1− Fl(s0)
= 1/M. (23)

The result follows from (21), (22) and (23).

Lemma 8 For any large enough M > 1, 0 < y0(r) < yl(r) < 1 for all r = 1/M .

1. Under standard dynamics, y(r) ≥ yl(r) where y1l (r
1), y2l (r

2), ... → 1 as r1, r2, ... → 0

along a sequence for which νl(y
1
l (r

1)), νl(y
2
l (r

2)), ... → nl ≥ ∆g/∆l.

2. Under reversed dynamics, y(r) = y0(r) where y10(r
1), y20(r

2), ... → 1 as r1, r2, ... → 0

along a sequence for which νl(y
1
0(r

1)), νl(y
2
0(r

2)), ... → n0 = 0.

Proof of Lemma 8

To search for the lowest y0, we continue the analysis from (19) and (20), which gives

1

2− Fh

[
(1− Fh(y))

fl(y)

fh(y)
− (1− Fl(y))

]
=: ν ′

h, (24)

1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1

1− Fl(y)

fl(y)

fh(y)
− 1

1− Fh(y)

]
=: ν ′

h.. (25)
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We consider signal cutoffs y′ for which buyers would be indifferent between offering p0

and ph at s = y′.

Under (weakly) standard dynamics, we can employ (24) and express ν ′
l := νl(y

′) as

ν ′
l =

1− Fh(y
′)

1− Fl(y′)
ν ′
h

ν ′
l =

1− Fh(y
′)

1− Fl(y′)

1

2− Fh

[
(1− Fh(y))

fl(y)

fh(y)
− (1− Fl(y))

]
ν ′
l =

1− Fh(y
′)

2− Fh(y′)

[
1− Fh(y)

1− Fl(y′)

fl(y)

fh(y)
− 1

]
→ 0, as y → 1.

Under (weakly) reversed dynamics, we can apply (25) and rewrite ν ′
l := νl(y

′) as

ν ′
l =

1− Fh(y
′)

1− Fl(y′)
ν ′
h

ν ′
l =

1− Fh(y
′)

1− Fl(y′)

1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1

1− Fl(y)

fl(y)

fh(y)
− 1

1− Fh(y)

]
ν ′
l =

1− Fh(y)

(1− Fh(y)) + (1− Fl(y))

[
1− Fh(y

′)

1− Fl(y)

fl(y)

fh(y)
− 1

]
→ 0, as y → 1.

This shows that, irrespective of which trade dynamics prevail, y′ → 1 as r → 0 along a

sequence for which νl(y
′) stays close to zero.

Turning to incentive conditions, note that (Vl − Cl) ≤ ∆l is a necessary condition for

Vb + (Vl − Cl) ≤ ∆l.

(Vl − Cl) ≤ ∆l

1

1 + νl
(∆g +∆l) ≤ ∆l

∆g +∆l ≤ (1 + νl)∆l

∆g ≤ νl∆l

∆g

∆l

≤ νl (26)

Next, consider y′′ defined by (26) as

ν ′′
l := νl(y

′′) =
r

1− Fl(y′′)
=

∆g

∆l

.

We can see that y′′ → 1 as r → 0 along a sequence for which νl(y
′′) remains bounded

away from zero.31

Comparing ν ′
l to ν ′′

l we thus find that y0(r) < yl(r) for low r because y0 → y′ as r → 0

31The bound is not tight. Indeed, it is straightforward to show that νl(yl) → nl =
∆g+∆h

∆l−∆h
>

∆g

∆l
as

r → 0.
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and yl ≥ y′′.

To complete the proof, we also need to show that 0 < y0(r) and that yl(r) < 1. This

is easy. First, consider the incentives for offering p0 as opposed to pl, i.e., the roots of

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l.

We have shown above that Vl is decreasing in y and (Vl(0)− Cl) = ∆g +∆l, (Vl(1)−
Cl) = 0, and Vb + (Vl − Cl) → 0 as y → 1, which shows by continuity that yl ∈ (0, 1).

Second, consider the fixed point condition that defines the cutoff y,

∆h + (1− Fl(y))
fl(y)

fh(y)
(−∆g) = Vb + (1− Fl(y))

fl(y)

fh(y)
max {Ul − Vl, Vb} ≥ 0,

with standard dynamics and

∆h +
1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
(−∆g) = Vb +

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
max {Ul − Vl, Vb} ≥ 0,

with reversed dynamics.

Clearly, because fl(y)
fh(y)

→ ∞ as y → 0, the lhs is (strictly) negative and the rhs is

(weakly) positive in any sufficiently small neighborhood of y = 0. Similarly, as fl(y)
fh(y)

→ 0

as y → 1, and Vb(y) → 0, Vl(y) → Cl as y → 1, the lhs is positive and the rhs is negative

in a neighborhood of y = 1. Thus, the result y0 ∈ (0, 1) obtains by continuity.

Figure 4: Illustration of Lemma 8.

Figure 4 illustrates the effect of different tentative cutoffs y on incentives to offer

different prices p0, pl and ph. The green line depicts a function y 7→ FPh(y) (for “fixed

point condition”) which is positive for cutoffs for which a buyer prefers offering ph over

min {p0, pl}. FPh(y) will thus cross the s-axis at y0. The pink line defines a function
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y 7→ IC0l(y) (for “incentive condition”) which is positive for cutoffs for which a buyer

prefers offering p0 over pl for s < y. IC0l(y) therefore crosses the s-axis at yl. Both of

these lines are generally non-monotone.

For IC0l, this is because the effect of screening on a buyer’s payoff is first positive

and later negative whereas the effect on a low quality seller’s payoff is negative. IC0l =

Vb + Vl − ∆l can hence be first increasing (as Vb increases faster than Vl decreases) and

thereafter decreasing (when both Vb and Vl are decreasing). Indeed, we find that a single-

crossing property must hold for incentives of offering p0 over pl. Thereby, the pink IC0l

curve crosses the s-axis once from above and divides the cutoffs into (i) lower ones y < yl

for which dynamics would be reversed and (ii) higher ones y > yl for which dynamics

would be standard.

Instead, the green FPh curve is increasing for low screening, y < yl, crossing the s-axis

therefore at y0 < yl already for relatively low screening. As detailed in Proposition 1, this

low root of FPh may for suitable parameters correspond to an equilibrium with reversed

dynamics. However, as the benefit of trading low quality for a low price pl begins to affect

the payoff of a buyer Vb, FPh generally decreases for y ∈ (yl, sh) and ultimately increases

for y ∈ [sh, 1], possibly thus crossing the s-axis for a second and a third time. These

higher roots of FPh would then represent equilibria with standard dynamics, outlined in

Proposition 2.

We proceed by proving Proposition 2 first and then move to Propositions 1 and 3.

Proof of Proposition 2

Step I. Screening over different cutoff sequences (y(ri))ri→0

By Lemma 7, for any M > 1 there exist s0 < sl < sh and r < 1/M such that

νl(s0) = νh(sl) = 1/M < M ≤ νl(sl) = νh(sh).

By Lemma 8, for any M > ∆l/∆g and r < 1/M there exist y0 and yl such that

νh(y0) < νl(y0) < νh(yl) ≤ 1/M < ∆g/∆l ≤ νl(yl),

where the cutoffs are defined by Lemma 8 in such a way that, if y = y0, a buyer is

indifferent between p0 and ph and, if y = yl, a buyer is indifferent between p0 and pl.

For any sequence r1, r2, ... → 0 we thus obtain five related cutoff sequences

(s0(r
i), sl(r

i), sh(r
i), y0(r

i), yl(r
i))i=1,2,... with different associated screening intensities.
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Because s0 → 1 and y0 → 1 as r → 0, we also know that

fl
fh

(y(r)) < 1/Nf for all r < 1/M, y = y0, yl, s0, sl, sh,

1− Fθ(y(r)) < 1/NF for all r < 1/M, y = y0, yl, s0, sl, sh,

where Nf → ∞ and NF → ∞ as M → ∞.

Step II. Existence of fixed point sequences (y(ri))ri→0

According to (16), y satisfies the following fixed point condition under standard trade

dynamics

FPh : FPh =
∆h − (1− Fh)

fl
fh
∆g

1 + (1− Fh)
fl
fh

−
Vb + (1− Fh)

fl
fh

max {Ul − Vl, Vb}
1 + (1− Fh)

fl
fh

= 0, (27)

where Vb is defined by (13) for Vb + Vl ≤ Ul and by (14) for Vb + Vl > Ul and Vl is defined

by (12). Under these assumptions, FPh is continuous in y and in r.

We proceed by proving that (27) is satisfied at some y1(r) ∈ (yl(r), sl(r)) and at some

y2(r) ∈ (y1(r), sh(r)) for all low enough (fixed) values of r. As FPh is continuous in y, it

suffices to show that

FPh(y, δ) > 0, for all y ∈ (y0(r), yl(r)), (28)

FPh(y, δ) < 0, at y = sl(r), (29)

FPh(y, δ) > 0, at y = sh(r). (30)

Case 1. To show that (28) holds, we consider (17) satisfied by y0

α∆h − (1− α)∆g − α′∆h +
1− Fl

1− Fl + r + νh
(1− α′)∆g = 0, (31)

where

α(y) =
1

1 + (1− Fh(y))
fl(y)
fh(y)

,

α′(y) =
1

1 + (1− Fl(y)) + νh(y, δ) + r
.

Lemma 6 shows that y0(r) → 1 as r → 0. Lemma 8 proves that α(y0) → α′(y0) as

r → 0. Further, the terms multiplied by (1 − α) or (1 − α′) become negligible for low r

because fl/fh(y) → 0, 1 − Fl(y(r)) → 0, and νh(y(r)) → 0 as r → 0 for all y ∈ (y0, yl).

To sign the lhs of (31) for low values of r, we can hence focus on

α− α′,

47



or, equivalently, on the difference between the numerators

(1 + (1− Fh)
fl
fh

)− (1 + (1− Fl) + r + νh).

Differentiating this expression with respect to y results in

−fh
fl
fh

+ (1− Fh)
∂

∂y

fl
fh

+ fl −
∂

∂y
νh = (1− Fh)

∂

∂y

fl
fh︸ ︷︷ ︸

<0

− ∂

∂y
νh︸ ︷︷ ︸

>0

< 0,

which shows that α− α′ is increasing in y for y ∈ (y0, yl).

To show that (29) and (30) also hold true, we proceed by proving that

∆h − (1− Fh)
fl
fh

∆g < Vb + (1− Fh)
fl
fh

max {Ul − Vl, Vb} at y = sl (32)

∆h − (1− Fh)
fl
fh

∆g > Vb + (1− Fh)
fl
fh

max {Ul − Vl, Vb} at y = sh. (33)

Case 2. We can see from above that (32) is satisfied providing that

Vb(sl) =
∆h − (1− Fl(sl))∆g + Fl(s0)(Ul − Vl(sl))

2 + r + νh(sl)
> ∆h.

Given the assumptions in Step I, Vb(sl) is clearly larger than

V b(sl(M)) =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+M
)

2 + 1/M + 1/M
.

Taking the limit as M → ∞, we thus observe as required that

V b(sl(M)) → ∆h +∆l

2
> ∆h

and

V b(sl(M)) + (V l(sl(M))− Cl) →
∆h +∆l

2
< ∆l.

Case 3. Additionally, we can see that (33) is satisfied at y = sh for any high enough

values of M because the assumptions made in Step I imply here that

∆h − 1/(M2)∆g >
∆h − (1− Fl(sh))∆g + Fl(sh)∆l

2 +M +M
+ 1/(M2)(∆l −

∆g +∆l

1 +M
)

∆h >
∆h − (1− Fl(sh))∆g + Fl(sh)∆l

2 +M +M︸ ︷︷ ︸
→0, as M→∞

+
1

M(1 +M)
(∆l +∆g)︸ ︷︷ ︸

→0, as M→∞

.

Figure 5 shows the graph of FPh(y) for r = 0.05 (Figure 5a) and r = 0.005 (Figure

5a) illustrating how decreasing r affects the position of fixed points y1 and y2 (’red dots’)
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(a) r = 0.05

(b) r = 0.0005

Figure 5: FPh for (∆h,∆g,∆l) = (0.5, 1.5, 1).

with respect to y0 (’green line’) and yl (’pink line’). Especially, the gap between y0 and

yl > y0 remains whereas the gap between yl and y1 > yl vanishes as r → 0.

Details of equilibria with (∆h,∆g,∆l) = (0.5, 1.5, 1) and r = 0.05 (as in Figure 5a):

1st equilibrium at y1 ≈ 0.894: Vb(0.894) ≈ 0.450 and Vl(0.894) ≈ 0.466 such that

Vb + 0.5(Vl − Cl) ≈ 0.683 < 0.5(∆h +∆l) = 0.75,

2nd equilibrium at y2 ≈ 0.974: Vb(0.974) ≈ 0.498 and Vl(0.974) ≈ 0.034 such that

Vb + 0.5(Vl − Cl) ≈ 0.515 < 0.5(∆h +∆l) = 0.75.

Step III. Price offers at y1 and y2

One might still wonder whether the solutions to (27) that we have identified correspond

to equilibria with standard dynamics or whether the preference for offering pl over p0 (as

with standard dynamics) might change again to a preference for offering pl over p0 (as

with reversed dynamics). However, if that was the case, (32) and (33) imply a buyer is

indifferent between offering ph and p0 at y1 and at y2. This means that (31) holds at

y1 ∈ (yl, sl) and at y2 ∈ (y1, sh).

But then our assumption made in Step I will imply that νh(y
1) < 1/M and νh(y

1) <

1/M . As we can see following the proof of Lemma 7, νh(y
1) < 1/M and νh(y

1) < 1/M
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implies first α → α′ as M → ∞ which implies νl(y
1) → 0 and νl(y

2) → 0 as M → ∞.

This contradicts our assumptions in Step I. As a result, we can conclude that the cutoffs

y1 and y2 must be such that a buyer prefers to offer pl over p0 at each of them as required

by standard trade dynamics.

Step IV. Limit payoffs at y1 and y2

It remains to calculate the payoffs in the limit equilibria where y = y1 ∈ (yl, sh) and

y = y2 ∈ (y1, sh) satisfy (27). These limit payoffs depend on νl(y, δ) and νh(y, δ), which

assume different values for (y, δ) = (y1(r), r) and (y, δ) = (y2(r), r) for low r, although

both y1(r) → 1 and y2(r) → 1 as r → 0.

Case 1. The payoffs at y1(r) for r → 0.

We have shown that νh(y
1) < 1/M but νl(y

1) ∈ (∆g

∆l
,M). Applying (13) and (27), the

equation defining y1 thus becomes for high values of M , approximately,

∆h−
1

NfNF

∆g =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+νl(y1)
)

2 + 2/M
+

1

NfNF

(
∆l −

∆g +∆l

1 + νl(y1)

)
.

We are interested in the limiting payoffs as M → ∞, which gives us

∆h =
∆h +∆l − ∆g+∆l

1+νl(y1)

2

=⇒νl(y
1) =

∆g +∆h

∆l −∆h

> 0

=⇒Vl − Cl =
∆l +∆g

1 + νl(y1)
= ∆l −∆h

=⇒Vb =
∆h +∆l − (∆l −∆h)

2
= ∆h

=⇒Vb + Vl − Cl = ∆h +∆l −∆h = ∆l

=⇒W = Vb +
1

2
(Vl − Cl) = ∆h +

1

2
(∆l −∆h) =

∆h +∆l

2
.

Two results are notable. First, the limiting equilibrium payoffs will approach from below

the payoffs at which a buyer is indifferent between offering p0 and pl for s < y. Second,

the limiting equilibrium payoffs are efficient, equaling the payoffs from immediate trading.

Moreover, the limiting payoffs are also higher than the payoffs ∆l/2 in the static one-price

model.

Case 2. The payoffs at y2(r) for r → 0.

We first make a guess that y2 ∈ (sl, sh) such that νl(y
2) > M but νh(y

2) ∈ (1/M,M).32

32The other possibility would be νl(y
2) > M and νh(y

2) > M , which would result in lower limit
payoffs.
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The equation defining y2 thus becomes for high values of M , approximately,

∆h −
1

NfNF

∆g =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+M
)

2 + 1/M + νh(y2)
+

1

NfNF

(
∆l −

∆g +∆l

1 +M

)
We concentrate on the limiting payoffs as M → ∞, which here gives us

∆h =
∆h +∆l

2 + νh(y2)

=⇒νh(y
1) =

∆l −∆h

∆h

> 0

=⇒Vl − Cl = 0

=⇒Vb =
∆h +∆l

1 + ∆l

∆h

= ∆h

=⇒Vb + Vl − Cl = ∆h < ∆l

=⇒W = Vb +
1

2
(Vl − Cl) = ∆h <

∆h +∆l

2
.

Now, the limiting payoffs are inefficient, below the payoffs from immediate trading. How-

ever, the limiting equilibrium payoffs may still exceed the static one-price model payoffs

∆l/2.

r y1 Vb Vl y2 Vb Vl

0.01 0.953 0.488 0.468 0.995 0.526 0.009
0.001 0.985 0.487 0.510 0.999 0.599 0.003
0.0001 0.995 0.501 0.494 1.000 0.529 0.000

Table 1: Comparison of equilibria with (∆h,∆g,∆l) = (0.5, 1.5, 1).

Table 1 compares equilibrium payoffs for different r ≤ 0.01.

Proof of Proposition 1

Under reversed trade dynamics, the cutoff signal y satisfies the following fixed point

condition and incentive condition

FPh : FPh =
∆h − (1− Fh)

fl
fh
∆g

1 + (1− Fh)
fl
fh

− Vb = 0,

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l ≥ 0.

In this case, the existence of equilibrium follows directly from Lemma 8, which proves

that there exists y0 at which a buyer is indifferent between ph and p0 and prefers offering

p0 over pl.
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Equilibrium uniqueness is given by the proof of Proposition 2 (Step II, Case 1), which

shows that the fixed point y of F0h is unique because F0h is increasing when IC0l ≥ 0 is

satisfied.

We can derive payoff limits as before. We know from Lemma 8 that y0 → 1 along a

path such that νh < νl < 1/M , where M is a large value:

=⇒Vl − Cl =
∆l +∆g

1 + 1/M
→ ∆l +∆g

=⇒Vb =
∆h −∆g

2 + 1/M + 1/M
→ ∆h −∆g

2

=⇒W = Vb +
1

2
(Vl − Cl) =

∆h −∆g

2
+

∆l +∆g

2
=

∆h +∆l

2
.

The limiting payoffs are thereby efficient and equal the static one-price model payoffs.

Proof of Proposition 3

By Lemma 4, we know that an equilibrium cannot feature reversed dynamics if the static

lemons problem is severe. Because we assume in this case that ∆g > ∆h, an equilibrium

must thus feature standard dynamics. Under standard trade dynamics, the cutoff signal

y satisfies the following fixed point condition and incentive condition

FPh : FPh = ∆h −
1

NfNF

∆g − Vb −
1

NfNF

max {Ul − Vl, Vb} = 0, (34)

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l ≤ 0. (35)

However, satisfying both conditions at the same time is impossible for sufficiently low

r if ∆h > ∆l.

To see why, note that, by Lemma 8, satisfying the incentive condition IC0l ≤ 0 for

low enough r requires high enough y > yl(r) > y0(r), where y0(r) → 1 as r → 0.

As a result, applying the notation in the proof of Proposition 2 (Step I), the fixed

point condition FPh = 0 for y > y0 and r < 1/M can be approximated by

∆h −
(

1

NfNF

)
︸ ︷︷ ︸

→0

∆g − Vb −
(

1

NfNF

)
︸ ︷︷ ︸

→0

max {Ul − Vl, Vb} = 0,

where 1/Nf → 0, 1/NF → 0 as M → ∞.

We also show in the proof of Proposition 2 (Step II Case 1.) that FPh > 0 for

y ∈ (y0, yl) and r < 1/M . By the continuity of FPh(y), it is thus easy to see that

satisfying FPh(y) = 0 for y ∈ (y0, yl) and r < 1/M is impossible without assuming that

Vb ≥ ∆h, which would violate IC0l(y) ≤ 0.

This also covers the case of weak incentives IC0l = 0. However, Proposition 3 may
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mislead some readers into thinking that the above shows that we cannot obtain an equi-

librium where buyers offer two prices ph and pl but does not preclude the existence of an

equilibrium with three price offers ph, pl and p0.

To convince all readers, we thus show that offering three prices would result in a

contradiction as y0 and yl require different screening intensities νl(y, δ) for low r, as shown

in Lemma 8. So, let us try to construct an equilibrium where y = y0 = yl such that a

buyer would be willing to propose p0 or pl for s < y0 = yl (i.e., p0 for s ∈ (0, z) and pl for

s ∈ (z, y)) and ph for s > y0 = yl.

The probability of trading for low quality is given by 1− Fl(z), which we also use in

the following notation ν0 =
r

1−Fl(z)
< r

1−Fh(y)
= νh(y). We can thus express the valuation

of buyers as

Vb =
qu(y, z)(1− Fh(y))∆h − (1− qu(y, z))(1− Fl(y))∆g

1− qu(y, z)Fh(y)− (1− qu(y, z))Fl(y) + r

∆h − ν0(z)
νl(y)

∆g

1 + ν0(z)
νl(y)

+ r 1
qu(y,z)(1−Fh(y))

∆h − ν0(z)
νl(y)

∆g

1 + ν0(z)
νl(y)

+ r
(

1−Fl(z)
(1−Fl(z))(1−Fh(y))

+ 1−Fh(y)
(1−Fl(z))(1−Fh(y))

)
∆h − ν0(z)

νl(y)
∆g

1 + ν0(z)
νl(y)

+ ν0(z) + νh(y)
(36)

where

qu(y, z) =
1

1 + 1−Fh(y)
1−Fl(z)

.

By definition, yl satisfies the incentive condition IC0l(y) = 0, which can be written as

Vb =
∆l − 1

νl(y)
∆g

1 + 1
νl(y)

,

whereas y0 satisfies the fixed point condition FPh(y) = 0, which can be expressed as

Vb =
∆h − ν0(z)

νl(y)
m(y)∆g

1 + ν0(z)
νl(y)

m(y)
.

Above,

m(y) =
fl(y)

fh(y)

1− Fh(y)

1− Fl(y)
.

Note that m(y) is larger than unity by MLRP but approaches one as y → 1. As shown

by Lemma 8, satisfying the incentive condition requires that y → 1. Thus, there exists

no cutoff y = y0 = yl that satisfies all the conditions for low r.
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Documentation for Figures 1, 4 and 5

Figures 1, 4 and 5 are plotted using the function forms as follows:

fh(s) = 2s, Fh(s) = s2, fl(s) = 2− 2s, Fl(s) = 2s− s2,

νh(y, δ) =
r

1− Fh(y)
’blue line’

νl(y, δ) =
r

1− Fl(y)
’red line’

y = y0(r) ’green line’

y = yl(r) ’pink line’

Proof of Corollary 1

Propositions 1 and 2 demonstrate that any (sufficiently large) information bound B < ∞
is associated with y = s < 1 and δ < 1 on the path (y, δ) → (1, 0) to the efficient limit

equilibrium.

If ∆g > ∆h and ∆l ≥ ∆h, the payoffs in the static one-price model equal ∆l/2 and

those in the steady-state equilibrium with small frictions

Vb =
∆h − (1− Fl(y))∆g + Fl(y)(Ul − Vl)

2 + r + νh(y, δ)
+

(Vl − Cl)/2 =
∆g +∆l

2 + 2νl(y, δ)
.

Instead, if ∆g ≤ ∆h, the payoffs in the static one-price model equal ∆h/2 + ∆l/2 and

those in the steady-state equilibrium with small frictions

Vb = Vb(y) =
∆h −∆g

2 + νh(y, δ) + νl(y, δ)
+

(Vl − Cl)/2 =
∆g +∆l

2 + 2νl(y, δ)
.
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Knife-edge dynamics

An equilibrium with knife-edge dynamics for vanishing frictions r → 0 is given by y,

z < y, and (Vb, Vl) satisfying the following system

qc(s) =
1

1 + 1−Fh(y)
1−Fl(z)

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = Vb, (37)

Vb =
∆h

1 + νh(y, δ)
,

Vl = Cl +
∆g +∆l

1 + νl(y, δ)
,

Vb + (Vl − Cl) = ∆l. (38)

Note that we can set y → 1 because it otherwise becomes impossible to satisfy Eq.

(38). Eq. (38) further implies that ∆h

1+νh(y,δ)
+ ∆g+∆l

1+νl(y,δ)
= ∆l. Joining Eqs. (37) and (38),

we thus obtain that

qc(y)∆h + (1− qc(y)) (−∆g) =
∆h

1 + νh(y, δ)
= ∆l −

∆g +∆l

1 + νl(y, δ)
. (39)

As (y, δ) → (1, 0), market quality depends on the evolution of z(y, δ) as frictions

disappear. In principle, z(y, δ) could assume any values between 0 and y → 1. Depending

on z(y, δ), buyers’ beliefs

qc(y) =
1

1 + 1−Fh(y)
1−Fl(z)

fl(s)
fh(s)

thus span all the values from 1/2 (attained by letting z(y, δ) → y as (y, δ) → (1, 0)) to 1

(attained by letting z(y, δ) → 0 as (y, δ) → (1, 0)). This allows some leeway in equilibrium

construction because any triplet (qc, νh, νl) satisfying Eq. (39) for 1/2 ≤ qc ≤ 1 and

0 ≤ νh ≤ νl ≤ ∞ defines a steady-state limit equilibrium for (y, δ) → (1, 0).

∆h

1 + νh
= qc∆h + (1− qc)(−∆g)

∆h

1 + νh
= ∆l −

∆g +∆l

1 + νl
.

For example, by letting νl → ∞, we immediately find an equilibrium with knife-edge

dynamics given by

νh → ∆h

∆l

− 1, and qc →
∆l +∆g

∆h +∆g

, as (y, δ) → (1, 0),
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for cases ∆g > ∆h > ∆l where Proposition 3 shows that no equilibrium with standard or

reversed dynamics exists.

This equilibrium is inefficient as Vb +(Vl −Cl)/2 = ∆l <
∆l+∆h

2
. To derive an efficient

equilibrium, we thus require that

Vb =
∆l +∆h

2
− ∆g +∆l

(1 + νl)2

∆l +∆h

2
− ∆g +∆l

(1 + νl)2
= ∆l −

∆g +∆l

1 + νl
,

which gives 1
1+νl

as a solution to the second-order equation

− (∆g +∆l)

(
1

1 + νl

)2

+ (∆g +∆l)
1

1 + νl
+

∆h −∆l

2
= 0.

Presuming ∆h > ∆l, the equation has a positive solution

1

1 + νl
=

− (∆g +∆l) +
√
(∆g +∆l)

2 + 2 (∆g +∆l) (∆h −∆l)

2 (∆g +∆l)
=

−1 +
√

1 + 2∆h−∆l

∆g+∆l

2
,

Inserting this solution into Eqs. (39) gives

νl =

√
1 + 2∆h−∆l

∆g+∆l
+ 3√

1 + 2∆h−∆l

∆g+∆l
− 1

νh =
∆h −∆l +

∆g+∆l

2

(√
1 + 2∆h−∆l

∆g+∆l
− 1
)

∆l − ∆g+∆l

2

(√
1 + 2∆h−∆l

∆g+∆l
− 1
)

qc =
∆h

∆h +∆g

1

1 + νh
+

∆g

∆h +∆g

∈ (1/2, 1)

The existence of efficient knife-edge dynamics requires that νh < νh and qc ∈ (1/2, 1).

The latter condition is clearly satisfied for all νh ≥ 0 if ∆g > ∆h.

It is also easy to confirm that the former one is satisfied, e.g., if ∆g = 3 > ∆h = 2 >

∆l = 1 for which νl ≈ 19.2 > νh ≈ 2.6 and qc ≈ 0.71 ∈ (1/2, 1).

More general analysis demonstrates that νh < νl is equivalent to

y + 4

y
>

∆h −∆l +
∆g+∆l

2
y

∆l − ∆g+∆l

2
y

⇐⇒ − (∆g +∆l) y
2 − (2∆g +∆h) y + 4∆l > 0

where y =
(√

1 + 2∆h−∆l

∆g+∆l
− 1
)
. The lhs of the inequality represents a downward sloping
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parabola, with both a negative root and a positive root, which transforms our conditions
for νl < νh into

−

√(
∆g +∆h/2

∆g +∆l

)2

+ 4∆l −
∆g +∆h/2

∆g +∆l
<

√
1 + 2

∆h −∆l

∆g +∆l
− 1 <

√(
∆g +∆h/2

∆g +∆l

)2

+ 4∆l −
∆g +∆h/2

∆g +∆l
.
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