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Leifu Zhang for helpful discussions, and various seminar participants for their comments. Earlier versions of this paper were circulated
under the title “Media Capture: A Bayesian Persuasion Approach” and “Polarization andMedia Bias.”

†Department of Economics, Bilkent University. E-mail: arda.gitmez@bilkent.edu.tr.
‡Northwestern University. E-mail: pmolavi@kellogg.northwestern.edu.

mailto:arda.gitmez@bilkent.edu.tr
mailto:pmolavi@kellogg.northwestern.edu


1 Introduction

Over the past two decades, many democracies have devolved into hybrid regimes and outright
autocracies. From Venezuela’s Hugo Chávez to Hungary’s Victor Orbán and Russia’s Vladimir
Putin, politicians who came to power through democraticmeans have consolidated their control
and undermined democratic institutions. Unlike the dictators of the 20th century, this new breed
of autocrat does not resort to overt violence. Instead, they maintain power by building support
among themasses andwinning elections that appear tobedemocratic. To cultivate their image as
competent leaders, theymanipulate information by controlling statemedia (Rozenas and Stukal,
2019), co-opting or pressuring independentmedia outlets (McMillan and Zoido, 2004; Szeidl and
Szucs, 2021), and covertly censoring unfavorable news (Lorentzen, 2014).1 They are, as Guriev
and Treisman (2019, 2020) put it, informational autocrats.

But not all autocracies are alike. In addition to those that still adhere to the 20th-century play-
book and completely control the media (such as North Korea), there is a wide variation in me-
dia freedom across informational autocracies. As Egorov and Sonin (2022) note, “media freedom
varies a lot across nondemocratic regimes, from levels comparable tomaturedemocracies, to that
of totalitarian regimes.”2 There is also substantialwithin-country variation in informationmanip-
ulation over time. For instance, Tai (2014) shows that from2007 to 2013, theChinese “propaganda
apparatus has banned fewer reports and guided more of them.” As Guriev and Treisman (2019)
observe, “in Taiwan, an overt dictatorship under Chiang Kai-Shek evolved into an informational
autocracy under his son, Chiang Ching-Kuo, in his later years, before transitioning to full democ-
racy in the 1990s.”3 This raises the question of why some societies are capable of preserving a
degree ofmedia freedomunder autocratic rule while others are totally dominated by information
manipulation.

This paper establishes a theoretical link between the distribution of attitudes and opinions in
a society and its vulnerability to information manipulation. It posits that autocrats find it harder
to manipulate information in their favor in more diverse societies. This is because the optimal
manipulation strategy has to be fine-tuned to the attitudes and opinions of the citizens, and an
increase in diversitymakes thismore challenging for autocrats. As attitudes andopinions become
more dispersed, it becomes harder for autocrats to convince their opponents without alienating

1Attempts to control media andmanipulate information extend beyond autocracies. Examples in democracies abound, from Argentina
(Di Tella and Franceschelli, 2011) to Italy (Durante and Knight, 2012), and from Mexico (Stanig, 2015) to the United States (Qian and
Yanagizawa-Drott, 2017; Gentzkow and Shapiro, 2008).

2A close look at the Global Media Freedom Dataset (GMFD) of Whitten-Woodring and Van Belle (2017) reveals the extent of variation.
Among the 196 countries from 1948 to 2010 included in GMFD, 5275 observations are labeled as “non-democracies” based on their Polity
Score. Interestingly, 4456 of such observations are classified as having “Not FreeMedia” by the authors, whereas the remaining observations
have “Imperfectly Free/FreeMedia” (Whitten-Woodring and Van Belle, 2017, Fig.1, p.184).

3Yet another example is the immense pressure on media outlets during Rafael Correa’s regime in Ecuador from 2007 to 2017, and the
backtracking of these policies by his vice-president and successor, LenínMoreno: https://www.cjr.org/analysis/ecuador-moreno-corr
ea-supercom-press-freedom.php.
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their supporters. They respond optimally by manipulating information less and allowing for a
more freemedia landscape.

Wepresent this insight using a Bayesian persuasionmodel à la Kamenica andGentzkow (2011)
with a population of heterogeneous citizens. The autocrat commits to a public communication
policy. The citizens observe the message drawn according to the policy and decide whether to
support the autocrat or not. The extent to which the autocrat manipulates information depends
on the distribution of the citizens’ attitudes and opinions. We analyze the autocrat’s decision and
characterize the optimal informationmanipulation policy.

At the model’s core is the trade-off faced by an informational autocrat. To gain support, the
autocrat must convince citizens of his competence through manipulation. He would do so by
sending the message that things are “good” as frequently as possible. However, the citizens un-
derstand that information is manipulated and only act based on the autocrat’s communication
when they find it informative. As the autocrat manipulates information more, fewer people act
based on the autocrat’smessages but thosewhodo lend himahigher support. The optimal policy
balances these two effects.

Thepaper’smain result establishes thatwhen the citizens’ attitudes andopinions aremoredis-
persed, the autocrat finds it optimal to engage in less informationmanipulation. The intuition for
this result is best understoodby introducing a small amount heterogeneity to a standardBayesian
persuasion model, in which citizens all have identical attitudes and opinions. In the model with
identical citizens, the optimal strategy entails sending the “bad” message just frequently enough
that citizensare indifferentbetweensupporting theautocrat andnotwhen they receive the “good”
message. Compare thiswith a societywhere the citizens’ attitudes and opinions are dispersed but
centered around those in the homogeneous society. If the autocrat were to follow the communi-
cation policy that was optimal in the homogeneous case, he would only get the support of about
half of the citizens by sending the “good” message. To receive more support, the autocrat needs
to reach out to citizens who aremore skeptical than themedian citizen. This can only be done by
reducing the extent of informationmanipulation.

Our main contribution is to illustrate how this reasoning generalizes under a novel partial or-
der on distributions, which captures the idea of dispersion in attitudes and opinions. We start
with a model in which citizens are heterogeneous along two dimensions: preferences and ini-
tial beliefs about the autocrat. We collapse these two dimensions of heterogeneity into a one-
dimensionaldistribution,whichwecall thevirtualdensity. Thevirtualdensity is a sufficient statis-
tic for the distribution of opinions and attitudes when it comes to the citizens’ support for the
autocrat. When the virtual density is single-peaked, the opinions and attitudes in the society are
similar to each other, i.e., the society ismonolithic. Conversely, when the virtual density is single-
dipped, there are two large groups with opposing attitudes toward the autocrat, i.e., the society
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is divided. We characterize the optimal persuasion policy in the cases where the virtual density
is single-peaked and single-dipped. This allows us to consistently define what it means for the
autocrat to engage inmore/less informationmanipulation. It also allows us to introduce a partial
order on one-dimensional distributions that captures the idea of dispersion. Our comparative
statics results establish that when the virtual density is more dispersed, the autocrat engages in
less informationmanipulation under the optimal policy. This result holds in bothmonolithic and
divided societies.

Related Literature. First and foremost, our model contributes to the growing literature on infor-
mational autocrats (Guriev and Treisman, 2019, 2020, 2022; Egorov and Sonin, 2022; Gehlbach,
Luo, Shirikov and Vorobyev, 2022).4 A closely related literature studies media capture, the idea
that politicians exert control over media by co-opting privatemedia (Besley and Prat, 2006), con-
trolling statemedia (Gehlbach andSonin, 2014), censoringnews (Shadmehr andBernhardt, 2015;
Boleslavsky, Shadmehr and Sonin, 2021), or controlling media’s access to information (Ozerturk,
2022); see Prat (2015) and Enikolopov and Petrova (2015) for two comprehensive reviews.5 We
contribute to this literature by establishing that the vulnerability of a society to media capture
depends not only on the opinion of the median citizen but also on the dispersion of opinions in
the society.

A stream of papers focus on understanding the variation in information manipulation and
studying its limits. As a source of variation, Egorov, Guriev and Sonin (2009) study the natural
resource endowment, VonDoepp and Young (2013) study the threats that governments face,
while McGreevy-Stafford (2020) study protests. Another literature identifies factors that limit
information manipulation. Di Tella, Galiani and Schargrodsky (2012) emphasize first-hand ex-
periences, Durante and Knight (2012), Gläßel and Paula (2020), Knight and Tribin (2022), and
Enikolopov, Rochlitz, Schoors and Zakharov (2023) emphasize the existence of alternative media
outlets, Qin, Strömberg and Wu (2018) emphasize market competition, and Knight and Tribin
(2019) emphasize the citizens’ ability to “tune out.” Our findings contribute to this literature by
highlighting that the diversity of citizens’ attitudes and opinions can a put a limit on the extent of
informationmanipulation.

Our model is a Bayesian persuasion model à la Kamenica and Gentzkow (2011) with a het-
erogeneous audience. We incorporate both heterogeneous preferences (Wang, 2015; Alonso
and Câmara, 2016a; Kolotilin, Mylovanov, Zapechelnyuk and Li, 2017; Bardhi and Guo, 2018;
Chan, Gupta, Li andWang, 2019; Arieli and Babichenko, 2019; Kerman, Herings and Karos, 2022;
Sun, Schram and Sloof, 2022) and heterogeneous priors (Alonso and Câmara, 2016b; Laclau

4Also related is the literature on democratic authoritarianism (Brancati, 2014) and competitive authoritarianism (Levitsky and Way,
2002) in political science. However, those works are less focused on information manipulation andmore on the dismantling of democratic
institutions.

5Corneo (2006), Petrova (2008), Petrova (2012), and Alonso and Padró iMiquel (2022) presentmodels ofmedia capture by special interest
groups.

3



and Renou, 2017; Kosterina, 2022).6 To collapse our two-dimensional primitives onto a single
dimension, we introduce an object that we call virtual density. Our comparative statics results
rely on the partial order we introduce on the virtual density. Kolotilin (2015), Kolotilin,Mylovanov
and Zapechelnyuk (2022), Sun, Schram and Sloof (2022), and Curello and Sinander (2022) also
conduct comparative statics exercises in Bayesian persuasion settings. Whereas Kolotilin (2015)
focuses on changes in welfare, we analyze how the optimal policy changes with parameters of
the model. Sun, Schram and Sloof (2022) derive comparative statics results with respect to the
sender’s preferences. Our comparative statics result complement theirs by focusing on changes
with respect to the receivers’ characteristics. Kolotilin, Mylovanov and Zapechelnyuk (2022)’s
comparative statics are with respect to the receivers’ inclination to be persuaded, whereas ours is
with respect to the receivers’ heterogeneity. Finally, Curello andSinander (2022) study the effect of
changes in the sender’s value function on the sender’s optimal policy. Our focus on how changes
in the heterogeneity of receivers affect the optimal persuasion policy sets this paper apart from
thosementioned above.

A crucial assumption in the Bayesian persuasion literature is commitment by the sender. In
ourmodel, the sender can commit to a public communication policy, which is observed by all re-
ceivers. This assumption canbedefendedon several grounds. First of all, in our setup, persuasion
satisfies thecredibility assumptionofLinandLiu (2022).7 Second, theautocrat’spolicy canviewed
as an “editorial policy,” which describes the general attitude of media sources, with the details
of the coverage to be decided by reporters and editors (Gehlbach and Sonin, 2014). Finally, the
outcome under commitment can be seen as a benchmark that describes the best-case scenario
for the sender. Under this interpretation, our results characterize an “ideal media landscape” for
a politician in a diverse society.

2 Setup

2.1 TheModel

There are two types of agents: an autocrat and a unit measure of citizens, indexed by @ ∈ [0, 1].
Each citizen takes an action 0@ ∈ {0, 1}, the action being whether she supports the autocrat.

There is an underlying state of the world: \ ∈ {0, 1}. We call the \ = 1 state the “good” state.
When the state is good, supporting the autocrat is in the citizens’ best interest. The \ = 0 state is
the “bad” state where it is optimal for citizens not to support the autocrat. Citizen @ ’s payoffwhen

6Also related is the literature on information design, which studies the optimal information structure in a game to be played among
multiple players (Bergemann andMorris, 2019; Taneva, 2019; Mathevet, Perego and Taneva, 2020; Inostroza and Pavan, 2022).

7In particular, we can allow for undetectable deviations by the sender. Since the sender’s payoff in our model is additively separable,
there is no profitable deviation that gives the samemessage distribution as the optimal policy. It should be noted that, with heterogeneous
priors, the set of undetectable deviations is different for each agent. In such a case, one has to require deviations to be undetectable given
the sender’s prior.
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she chooses action 0@ and the state is \ is given by

C@ (0@ , \ ) = 0@ (\ − 2@ ), (1)

where 2@ ∈ [0, 1] is citizen @ ’s cost of supporting the autocrat. If citizen @ knew the state, shewould
support the autocrat (i.e., 0@ = 1) in the good state and not support her (i.e., 0@ = 0) in the bad
state. Hence, the good statemay be interpreted as the state where the autocrat is competent, and
the bad state is where the autocrat is incompetent.

The autocrat wants to persuade the citizens to support him regardless of the state of theworld.
His payoff when citizen @ provides support 0@ and the state is \ is given by

CA ({0@ }@ ) =
∫ 1

0
0@3@ . (2)

When the state is good, the autocrat and citizens have common interests, whereas when the state
is bad, their interests are opposed. We denote the autocrat’s prior that the state is good by>A ∈ (0,
1).

The citizens do not learn the state of the world until after they have decided on whether to
support the autocrat. Since the citizens do not observe the state, they can only act based on their
beliefs. Theautocrat can influence thosebeliefs (and the resultingactions)by sending informative
messages. To simplify the analysis, we assume that the autocrat can commit to a public commu-
nication strategy f : {0, 1} → Δ(" ), where f (\ ) [;] is the probability that public message; ∈ "
is generated when the state is \ . The communication strategy represents the policies followed by
media controlled by the autocrat and used by him to influence the views of the citizens.

The citizens are heterogeneous both in their preferences and their prior beliefs. The hetero-
geneity of priors captures the idea that even people with identical payoffsmay have different per-
spectives about the likelihood that the autocrat is competent. We let >@ denote citizen @ ’s prior
that the state is good and, let 5 (2 ,>) denote the joint density of costs and priors in the population.
We take 5 as a primitive of the model and study how changing the distribution affects the auto-
crat’s optimal policy. We assume that 5 is common knowledge and continuously differentiable
and bounded over its support.

The heterogeneity of perspectives poses a challenge for an autocrat whowants to garner broad
support. Convincing different citizens with different preferences and beliefs requires different
communication strategies. Yet, communication is public, so the autocrat cannot tailor his mes-
saging strategy to the citizens’ diverse perspectives. Themain characterization result of the paper
concerns the optimal way of resolving the inherent tension in convincing different segments of
the population.

Timing. The timing of the communication game is as follows:
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1. The prior and cost of each citizen is drawn, and citizen @ observes (>@ , 2@ ).

2. The autocrat commits to a strategy f , which is observed by all citizens.

3. The state is realized, and the autocrat sends themessage drawn according to f .

4. Each citizen @ updates her prior and chooses an action 0@ .

5. Payoffs are realized.

The solution concept we adopt is the Perfect Bayesian Equilibrium.

2.2 An Equivalent Representative-Citizen Problem

The fact that the autocrat is communicating with a population of heterogeneous citizens com-
plicates her problem. However, the autocrat’s optimal strategy can be found by solving a related
persuasion problemwith a representative citizenwhose prior coincides with the autocrat’s prior.

The key simplification comes fromProposition 1 of Alonso andCâmara (2016b). Consider citi-
zens @ and @ ′with priors>@ and>@ ′ = >A . Since the two citizens observe the same (public)message,
their posteriors are related through the following expression:

`@ =
`@ ′

>@
>@ ′

`@ ′
>@
>@ ′
+ (1 − `@ ′) 1−>@1−>@ ′

, (3)

where `@ and `@ ′ denote the posteriors of @ and @ ′, respectively.8 This coupling of posteriors holds
regardless of the communication strategy employed by the autocrat. It uniquely pins down the
posterior `@ of every citizen @ as a function of the posterior of citizen @ ′—who will be our repre-
sentative citizen.

Citizen @ supports the autocrat if and only if her posterior that the state is good is at least as
large as his cost of action; that is, 0@ = 1 if and only if

2@ ≤ 2 (`A , >@ ) ≡
`A

>@
>A

`A
>@
>A
+ (1 − `A ) 1−>@1−>A

, (4)

where `A denotes the posterior of the representative citizen (who has the same prior as the auto-
crat). The payoff to the autocrat is the fraction of the population who supports the autocrat:

D (`A ) =
∫ 1

0

∫ 2 (`A ,>)

0
5 (>, 2 )323>. (5)

The autocrat’s problem is thus equivalent to a standard Bayesian persuasion problem with a
representative citizen. The autocrat and the citizen share the common prior >A that the state is
good. The payoff to the autocrat when he induces a posterior of `A for the representative citi-
zen is given by D (`A ), defined in equation (5). Following Kamenica and Gentzkow (2011), we refer

8Throughout the paper, we use posterior to mean subjective posterior probability of state \ = 1 given an agent’s information.
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to D (`A ) as the autocrat’s value function. Whenever there is no risk of confusion, we drop the A
subscript and simply write D (`) for the value to the autocrat of inducing posterior ` for the repre-
sentative citizen.

Thevalue functionhas several useful properties. First,D (`) is increasing in`. Inducingahigher
posterior for the representative citizen results in a higher posterior for every citizen, thus increas-
ing the share of citizens who support the autocrat. Second, D (0) = 0 and D (1) = 1. When the
representative citizen is certain that the state is bad, so is every other citizen. Therefore, no citizen
supports the autocrat. Likewise, when the representative citizen is certain that the state is good,
every other citizen is also certain that the state is good and supports the autocrat. Finally, D (`) is
differentiable in ` due to the differentiability of 5 .

The value function can thus be seen as a differentiable cumulative distribution function. We
let ℎ (`) ≡ D ′(`) denote the corresponding density and refer to it as the virtual density of the per-
suasion problemwith heterogeneous citizens. The virtual density has an intuitive interpretation:
ℎ (`) is the density of citizens who are indifferent between taking the two actions whenever the
representative citizen’s posterior is equal to `. Importantly, construction of ℎ allows us to reduce
a two-dimensional object into a one-dimensional one. That is, it defines abelief threshold to every
citizen, so that the citizen supports the autocrat if and only if the autocrat’s beliefs are above her
threshold. Note that the virtual density is a primitive of the problem: characteristics of 5 translate
into characteristics of ℎ. For example, when the citizens have common prior, the virtual density
reduces to the distribution of costs in the population.

3 InformationManipulation inMonolithic Societies

3.1 Single-Peaked Distributions

The solution to the autocrat’s persuasion problem takes a particularly simple form when the dis-
tribution of citizen types satisfies the following condition:

Definition 1. The virtual density ℎ (`) is single-peaked if there exists some ˜̀ ∈ [0, 1] such that
ℎ ′(`) > 0 for all ` < ˜̀ and ℎ ′(`) < 0 for all ` > ˜̀.

Single-peakedness is anassumptionon the joint distributionof citizens’ costs andprior beliefs.
It requires a large share of citizens to havemoderate preferences and beliefs, with fewer and fewer
people having extreme preferences or beliefs. We thus consider single-peaked virtual densities to
be representative ofmonolithic societies.

The significance of Definition 1 rests on the following observation: When the virtual density is
single-peaked, the autocrat’s value function is first convex and then concave. Figure 1 illustrates
the value function in this case. Corollary 2ofKamenica andGentzkow (2011) implies the following
characterization of the optimal strategy when the virtual density is single-peaked:
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`

𝑣 (`)1

1ˆ̀

Figure 1. The value function under the assumption that the virtual density is single-peaked.

Proposition 1. If the virtual density is single-peaked, the optimal strategy uses only twomessages,
and one of the messages fully reveals the bad state.

Wemaintain the assumptionof single-peakedness throughout this section. Wedo so inpart for
tractability. However, single-peaked distributions also constitute a natural and widely used class
of distribution functions. In Section 4, we show that optimal strategy in the case where the virtual
density is instead single-dipped is the mirror image of the optimal strategy in the single-peaked
case.

Whether the virtual density is single-peaked only depends on the distribution of types, 5 , and
the autocrat’s prior, >A . In the remainder of this subsection, we find a set of easy-to-check suffi-
cient conditions for the virtual density to the single-peaked. If citizens have a common prior that
coincides with the autocrat’s prior, then the single-peakedness of the virtual density is equivalent
to the single-peakedness of the density of costs:

Proposition 2. Suppose >@ = >A for all @ . The virtual density ℎ (`) is single-peaked in ` if and only
if the density of costs 5 (2 ) is single-peaked in 2 .

If citizens have a common cost, on the other hand, then the single-peakedness of the virtual
density is implied by a condition that is weaker than the log-concavity of the density of priors:

Proposition 3. Suppose 2@ = 2 ∈ (0, 1) for all @ . The virtual density ℎ (`) is single-peaked if the
density of priors 5 (>) is strictly positive for all > ∈ (0, 1) and satisfies

32

3>2
log 5 (>) < 2 (W − 1)2min

{
1, 1
W 2

}
for all > ∈ (0, 1), (6)

whereW ≡ 1−2
2

1−>A
>A
≥ 0.

The following corollary of Proposition 3 is a straightforward consequence of the facts that the
left-hand side of equation (6) is negative if 5 (>) is log-concave, while its right-hand side is always
non-negative:9

9See Bagnoli and Bergstrom (2005) for a list of well-known distributions satisfying log-concavity.
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Corollary 1. Suppose 2@ = 2 for all @ . The virtual density ℎ (`) is single-peaked in ` if the density of
priors 5 (>) is strictly log-concave in > .

3.2 AMeasure of InformationManipulation

In light of Proposition 1, we can assume without loss that the autocrat uses only two messages.
We label the messages ; ∈ " = {0, 1}, with ; = 1 the “good” message, which is suggestive of
\ = 1, and; = 0 the “bad” message, which is suggestive of \ = 0. The autocrat’s strategy can be
represented by a pair of numbers:

f = (f0, f1) ∈ [0, 1]2,

where f \ ≡ f (\ ) [; = 1] is the probability of sending the good message in state \ ∈ {0, 1}.
Throughout, we assume without loss of generality that f1 ≥ f0.

The autocratmanipulates information if he sends the good message when the state is bad or
sends the badmessagewhen the state is good. By Proposition 1, when the virtual density is single-
peaked, the badmessage fully reveals the bad state; this entails sending the goodmessage when-
ever the state is good. Therefore, manipulation of information is conveniently summarized in the
single-peaked case by the probability f0 of sending the good message when the state is bad. We
use the following notion of informationmanipulation in this case:

Definition 2. Consider single-peaked virtual densities ℎ1 and ℎ2 with the corresponding optimal
strategies f1 = (f01 , f

1
1 ) and f2 = (f02 , f

1
2 ) for the autocrat. The autocratmanipulates information

less given ℎ1 than given ℎ2 if f01 ≤ f02 .

3.3 AMeasure of Dispersion

As ourmainmotivation is studying how dispersion affects informationmanipulation, we need to
introduce a measure of dispersion. Our measure of dispersion is a novel partial order on proba-
bility distributions:

Definition 3. Consider single-peaked densities 51 and 52 supported on a common compact set
and satisfying

52(F) =
( 51(F))U

^
for all F, (7)

some U > 0, and a normalization constant ^ > 0. If 0 < U ≤ 1, then 52 ismore dispersed than 51. If
U ≥ 1, then 52 is less dispersed than 51.

The partial order has an intuitive interpretation. Consider densities 51 and 52 satisfying (7) for
some U > 1. Going from 51 to 52 moves mass from parts of the distribution that initially have
smallermass to partswith larger initialmass. In otherwords, 52 looks like 51, butwith higher peaks
and deeper troughs. On the other hand, since 51 is single-peaked,most of itsmass is concentrated
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less dispersed

more dispersed

Figure 2. The dispersion order on single-peaked densities.

around its peak. Therefore, 52 has evenmoremass in the center and even lessmass in the periph-
ery than 51; that is, 52 is less dispersed than 51. Figure 2 illustrates the probability density functions
for a set of single-peaked Beta distributions that are ranked in the dispersion order.

It is instructive to consider the extremes of equation (7). In the U →∞ limit, 52 becomes a point
mass at the mode of 51. Therefore, for any distribution 51 with a unique mode, the degenerate
distribution 52with a pointmass on themodeof 51 is less dispersed than 51. Conversely, in theU →
0 limit, 52 becomes the uniform distribution on the support of 51. Thus, the uniform distribution
is more dispersed than any single-peaked distribution with the same support.

Members of many parametric families of distributions can be ordered in the dispersion order.
Two examples follow:

Example 1. Consider two single-peaked Beta distributions:

51 = Beta(U1, V1),
52 = Beta(U2, V2),

where U2−1
U1−1 =

V2−1
V1−1 = U for someU ≥ 0. IfU ≤ 1, then 52 ismoredispersed than 51, while ifU ≥ 1, then

52 is less dispersed than 51. In particular, any two symmetric and single-peaked Beta distributions
are ranked according to the dispersion partial order.

Example 2. Consider the following truncated normal distributions on [0, 1]:

51 = TruncatedNormal(`, f21 ),
52 = TruncatedNormal(`, f22 ).

If f22 ≥ f21 , then 52 is more dispersed than 51, while if f22 ≤ f21 , then 52 is less dispersed than 51.
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3.4 Dispersion and InformationManipulation inMonolithic Societies

We are now ready to examine how dispersion affects information manipulation. Our main result
establishes that informationmanipulation is less severe inmore diverse societies:

Theorem 1. Let ℎ1 and ℎ2 be two single-peaked virtual densities. If ℎ1 is more dispersed than ℎ2,
then the autocrat manipulates information less given ℎ1 than ℎ2.

Why does more dispersion lead to less information manipulation? The mechanical answer to
this question lies in the shape of the value function in Figure 1: in a more dispersed society, the
value function is less rapidly increasing around the modal citizen, which means ˆ̀ shifts to the
right. To gain some intuition, recall that our construction of virtual density assigns a belief thresh-
old to every citizen. This allows us to rank the citizens in terms of their willingness to support the
autocrat: a citizen with a lower threshold ismore inclined to support. Under the optimal strategy,
the autocrat targets a marginal citizen (a citizen with a threshold of ˆ̀). Citizens with thresholds
below the marginal citizen find it optimal to take the action aligned with the message; in other
words, they comply with the message. Citizens with thresholds above ˆ̀ find it optimal to never
support the autocrat. The optimal strategy chooses ˆ̀ such that there are a sufficient number of
citizens who comply and the good message is produced sufficiently frequently (so that the com-
pliers support the autocrat with high probability).

In a less dispersed society, all citizens are alike, so the thresholds are tightly concentrated
around the modal citizen. Therefore, targeting a citizen whose threshold is slightly above the
mode ensures the support of almost all citizens. On the other hand, when society is more dis-
persed, the citizens’ thresholds are more dispersed, which means targeting the same citizen
generates too few compliers. To address this, the autocrat increases the informativeness of the
news, so that ˆ̀ is higher and there are more compliers.

Theorem1describes the impact of dispersionon informationmanipulationwhilemaintaining
the assumption that the society is monolithic, and so, the virtual density is single-peaked. In the
next section, we study persuasion in highly divided societies in which there are more people in
the extremes of preference and belief distribution than are at its center.

4 Divided Societies

Throughout this section, we study the properties of the optimal persuasion strategy when the vir-
tual density is the polar opposite of single-peaked:

Definition 4. The virtual density ℎ (`) is single-dipped if there exists some ˜̀ ∈ [0, 1] such that
ℎ ′(`) < 0 for all ` < ˜̀ and ℎ ′(`) > 0 for all ` > ˜̀.

In a society with a single-dipped virtual density, there are fewer moderates than those with

11



extreme preferences or beliefs. We therefore consider single-dipped virtual densities to be repre-
sentative of divided societies.10

When thevirtual density is single-dipped, theautocrat’s value function isfirst concaveand then
convex. Our next result characterizes the optimal persuasion strategy in this case.

Proposition 4. If the virtual density is single-dipped, the optimal strategy uses only two messages,
and the goodmessage perfectly reveals the good state.

`

𝑣 (`)1

1ˆ̀

Figure 3. The value function under the assumption that the virtual density is single-dipped.

The argument for the proposition is easiest to see by examining the autocrat’s value function.
Figure 3 illustrates the value function in this case. When the distribution is single-dipped, the
optimal policy induces only two values for theposterior of the representative citizen, oneofwhich
is ` = 1.11 For the good message to induce the ` = 1 posterior, it must perfectly reveal the good
state.

Most notably, a comparison of Proposition 1 and 4 reveal that the optimal persuasion strat-
egy is qualitatively different in a divided society compared to a monolithic one. Intuitively, in a
divided society, there are many extreme supporters (i.e., those with belief thresholds close to 0)
andmany extreme skeptics (i.e., thosewith belief thresholds close to 1). The autocrat faces a chal-
lenge: he wants to convince extreme skeptics without losing the support of extreme supporters.
The optimal persuasion strategy turns out to be creating amedia source that frequently sends the
bad message, so that the rare but credible occurrence of good messages is sufficient to convince
the extreme skeptics.12 Moreover, under such a persuasion strategy, extreme supporters are in-
centivized not to comply with the news, because they support the autocrat even when the bad
message is sent.
10Following Fiorina and Abrams (2008, Figure 1), one may also call such a society polarized. We refrain from adopting this terminology,

because polarization is typically visualized as the society having a small number of groups, with high homogeneity within groups and high
heterogeneity across groups (Esteban and Ray, 1994).
11When the autocrat’s prior is low enough that >A < ˆ̀ in Figure 3, the optimal policy reveals no information, and any policy that satisfies

f0 = f1 is optimal. In that case, we choose the policy according to which f0 = f1 = 0 and set the citizens’ posterior following the (zero
probability) goodmessage to ` = 1.
12Baum and Groeling (2009), Ladd and Lenz (2009), and Chiang and Knight (2011) document evidence of the persuasive power of

communication whenmessages are sent by actors least expected to send them.
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One may interpret the optimal persuasion strategy as the existence of an independent media
source that may occasionally support the autocrat, and in such times, the autocrat may enjoy the
credible message sent by the usually-opposing source. Such strategies are indeed employed by
informational autocrats from time to time. For instance, following the anti-government protests
and riots in Zhanaozen inDecember 2011, Kazakhstan’s PresidentNursultanNazarbayev suffered
from the lack of credibility of state broadcasting outlets. When all else failed to calm the mass
public, the government invited six well-known bloggers, most labeling themselves as “indepen-
dent,” to make a two-day visit to Zhanaozen. The bloggers carried a sense of credibility that the
government sources lacked, and they were “quite effective at reassuring readers that the city was
outwardly calm, that rumours of morgues or hospitals full of corpses were unfounded and that
shops were well-stocked and inhabitants able to buy food and drink” (Lewis, 2016, p.267, also see
Guriev and Treisman, 2022, p.79). In a similar episode, Vladimir Putin utilized the liberal Russian
radio station Echo of Moscow to cover a credible account of a large pro-government demonstra-
tion in the capital in early 2012, thereby discouraging participation in opposition rallies elsewhere
(Sobolev, 2023).

We continue with introducing a set of sufficient conditions for the virtual density to be single-
dipped. If citizens have a common prior which coincides with the autocrat’s prior, the single-
dippedness of the virtual density is equivalent to the single-dippedness of the density of costs:

Proposition 5. Suppose >@ = >A for all @ . The virtual density ℎ (`) is single-dipped in ` if and only
if the density of costs 5 (2 ) is single-dipped in 2 .

If citizens have a common cost, the single-dippedness of the virtual density is implied by a
condition that is slightly stronger than the log-convexity of the density of priors:

Proposition 6. Suppose 2@ = 2 for all @ . The virtual density ℎ (`) is single-dipped if

m2

m>2
log 5 (>) > 2 (W − 1)2max

{
1, 1
W 2

}
for all > ∈ [0, 1], (8)

whereW ≡ 1−2
2

1−>A
>A
≥ 0.

Note that the right-hand side of equation (8) is positive, and the left-hand side is positive if 5 (>)
is log-convex. Therefore, condition (8) can be interpreted as “5 (>) being sufficiently log-convex.”
If>A +2 = 1, thenW = 1, and condition (8) reduces to the log-convexity of the distribution of priors.

When the virtual density is single-dipped, the autocrat’s optimal strategy entails sending the
badmessage whenever the state is bad. Then, the extent of informationmanipulation is summa-
rized by the probability f1 of sending the goodmessage when the state is good:

Definition 5. Consider single-dipped virtual densities ℎ1 and ℎ2 with the corresponding optimal
strategies f1 = (f01 , f

1
1 ) and f2 = (f02 , f

1
2 ) for the autocrat. The autocratmanipulates information

less given ℎ1 than given ℎ2 if f11 ≥ f12 .
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We now examine the impact of increased dispersion on information manipulation. The fol-
lowing partial order is the appropriate adaptation of the partial order defined in Section 3.3 for
single-peaked densities to the set of single-dipped virtual densities:

Definition 6. Consider single-dipped densities 51 and 52 supported on a common compact set
and satisfying

52(F) =
( 51(F))U

^
for all F, (9)

some U > 0, and a normalization constant ^ > 0. If U ≥ 1, then 52 ismore dispersed than 51. If
0 < U ≤ 1, then 52 is less dispersed than 51.

Figure 4 illustrates the dispersion partial order on a set of a single-dipped Beta distributions.
As the distribution becomesmore dispersed,mass ismoved from the center of the distribution to
its extremes.

0.0 0.2 0.4 0.6 0.8 1.0

less dispersed

more dispersed

Figure 4. The dispersion order on single-dipped densities.

It is, once again, instructive to consider the limits of equation (9). In the U → ∞ limit, 52 be-
comes two point masses at the bounds of the support. Our measure identifies such distributions
as extremelydispersed. Conversely, in theU → 0 limit, 52 becomes theuniformdistribution. Thus,
the uniform distribution is less dispersed than any single-dipped distribution with the same sup-
port.

Our next result establishes that, as in the single-peaked case, dispersion reduces information
manipulation in the single-dipped case:

Theorem 2. Let ℎ1 and ℎ2 be two single-dipped virtual densities. If ℎ1 is more dispersed than ℎ2,
then the autocrat manipulates information less given ℎ1 than ℎ2.

Theorem 2 shows that the main message of Theorem 1 continues to apply for single-dipped
virtual densities: Dispersion of attitudes and opinions tends to reduce the extent of information
manipulation.
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5 Dispersion and InformationManipulation

Theorems 1 and 2 paint a consistent picture across the board: dispersion reduces information
manipulation. This observation can be succinctly summarized in a single figure by extending the
dispersion partial order.

0

0.25

0.5

0.75

1

manipulation

manipulation

single-dipped single-peaked

more dispersed

f1

f0

Figure 5. Autocrat’s informationmanipulation as a function of dispersion in society.

Take a single-peaked virtual densityℎ1 supported on [0, 1], and consider the parametric family
of distributions {ℎU}U parameterized by the scalar U ∈ ℝ:

ℎU (F) =
(ℎ1(F))U
^ (U) for all F,

where^ (U) is anormalization constant. Forpositive values ofU,ℎU is a single-peakeddistribution.
It becomes more dispersed as U decreases to zero. As U → 0, ℎU converges to the uniform distri-
bution, which is more dispersed than any single-peaked distribution. For negative values of U,
ℎU is a single-dipped density, which is more dispersed than the uniform distribution. It becomes
more dispersed as U becomesmore negative. The upshot is that a lower value of U—be it positive
or negative—corresponds to amore dispersed society.

Figure 5 illustrates the effect of dispersion on information manipulation. The virtual density
is a (symmetric) Beta(1 + U, 1 + U) distribution, and the autocrat’s prior is given by >A = 0.4. The
figure plots how the autocrat’s optimal strategy changes as U ranges from −1 to +1. In the right
half of the figure, U > 0, the distribution is single-peaked, and so, by Proposition 1, the optimal
policy has the form (f0U , f1U ) = (f0U , 1). As the society becomes more dispersed, by Theorem 1, f0U
decreases and the autocrat manipulates information less. On the left half of the figure, U < 0, the
distribution is single-dipped, the optimal policy has the form (f0U , f1U ) = (0, f1U ) (by Proposition 4),
and f1U increases and informationmanipulation decreases with dispersion (by Theorem 2).
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Transitioning froma single-peaked to a single-dipped virtual density changes the nature of au-
tocrat’s optimal policy. This makes it hard to compare the extent of information manipulation in
the single-peaked and single-dipped cases. We continue using our simple measure of informa-
tion manipulation while acknowledging that any such measure will be imperfect. The change in
the nature of informationmanipulation as we transition from a single-peaked to a single-dipped
densitymanifests itself in a possibly discontinuous change in ourmeasure of informationmanip-
ulation, as can be seen in Figure 5.

Regardless of the discontinuity at uniform distributions, the overall message is clear: in more
diverse societies, one would expect to observe less informationmanipulation andmore free me-
dia. To provide empirical support for this prediction, one needs to find variables that capture
heterogeneity of attitudes and opinions in a society. One such measure is the Gini coefficient,
as income inequality is considered to be related to social conflict (Rodrik, 1999) and lack of social
cohesion (Easterly, Woolcock and Ritzen, 2006). The supporting evidence for the link between in-
come inequality andmedia freedom in autocracies comes fromFigure 2 of Petrova (2008). Within
autocracies (classified as countries with Democracy score ≤ 1 in Polity IV dataset), there is a posi-
tive association betweenGini coefficient and FreedomHousemedia freedom index in 1994-2003.
Reassuringly, thecorrespondingassociation isnegative for coutries classifiedasdemocracies (Fig-
ure 1 of Petrova, 2008), which suggests that the lack of functioning democratic institutions is an
essential part of this story.

6 Conclusion

The growing literature on the rise of informational autocrats (Guriev and Treisman, 2022) dis-
cusses the modern autocrats’ tendency to manipulate information. A natural question that
follows from this research is about the conditions that make a society more susceptible to infor-
mation manipulation. In this paper, we show that the dispersion of opinions puts an inherent
limit on an informational autocrat’s ability to manipulate information.

Throughout our analysis, we considered the distribution of opinions and attitudes to be ex-
ogenous, and we remained agnostic about the forces that may increase its dispersion. Two chan-
nels that may lead to increased dispersion are independent media and online media. In a recent
working paper, Enikolopov, Rochlitz, Schoors and Zakharov (2023) demonstrate that access to in-
dependent online TV in Russia before the 2016 elections increased polarization among thosewho
rely on news from social media. Motivated by their findings, and in light of the discussion here,
one can argue that online media not only affect the attitudes of citizens but also have an impact
on the effectiveness of traditional state-controlledmedia. In particular, onlinemedia do not have
to convince every citizen; even if they convince some citizens, they would make it harder for the
informational autocrat to engage in informationmanipulation.
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In this paper, we focusedon informationmanipulation as theonly tool available to anautocrat.
In reality,many autocrats have other tools at their disposal, such as repression and indoctrination
(Gitmez and Sonin, 2022; Gehlbach, Luo, Shirikov and Vorobyev, 2022), even if they do not always
use them. The question of how themix of tools used by autocrats is affected by the distribution of
opinions is a fruitful avenue for future research.
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Appendices

A Proofs for Section 3

Because 5 is continuously differentiable over its support and bounded, ℎ ′(`) exists and is con-
tinuous. We begin by noting that the virtual density is single-peaked if and only if ℎ ′(`) satisfies
the strict single-crossing-from-above property. The strict single-crossing property is adapted from
(Milgrom and Shannon, 1994, p.160) and is as follows:

If ℎ ′(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′( ˜̀) > 0 for all ˜̀ < `.

In our proofs, we rely on the equivalence of this condition with single-peakedness of ℎ.

Proof of Proposition 1. If ℎ ′(`) satisfies the strict single-crossing-from-above condition, by defi-
nition, so does D ′′(`). Therefore, whenever D (`) is convex at `, it is strictly convex at any ˆ̀ < `.
Thismeans that D (`) is first strictly convex and then strictly concave. Therefore, the set where the
concave closure of D (`)—call it+ (`)—coincides with D (`) has the following form:

{` ∈ [0, 1] :+ (`) = D (`)} = {0} ∪ [ ˆ̀, 1],

for some ˆ̀ ∈ [0, 1].
When >A < ˆ̀, by Corollary 2 of Kamenica and Gentzkow (2011), the optimal policy generates

two posteriors: ` ∈ {0, ˆ̀}. This is achieved by twomessages, with one perfectly revealing the bad
state.

When>A ≥ ˆ̀, the optimal policy is not revealing any information. This can also be achieved by
twomessages,; ∈ {0, 1}, and an information structure where Pr(; = 1|\ = 0) = Pr(; = 1|\ = 1).
Message; = 0 will occur with probability zero, and the posterior beliefs following; = 0 will be
free in a Perfect Bayesian Equilibrium. One can assign the posterior Pr@ (\ = 0|; = 0) = 1 assign
; = 0 as themessage that perfectly reveals the bad state. �

Proof of Proposition 2. Since >@ = >A for all @ , equation (5) simplifies to

D (`) =
∫ 2 (`,>A )

0
5 (2 )32.

Ontheotherhand, bydefinition, 2 (`,>A ) = ` for all`. Therefore,ℎ (`) = D ′(`) = 5 (2 (`,>A )) = 5 (`),
and so, ℎ is single-peaked if and only if 5 is single-peaked. �

Proof of Proposition 3. When 2@ = 2 for all @ , equation (5) simplifies to

D (`) =
∫ 1

> (`,2 )
5 (>)3>, (10)
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where

> (`, 2 ) ≡ 1 − `
(1 − `) + ` 1−2

2
1−>A
>A

. (11)

The virtual density ℎ (`) is then given by

ℎ (`) = D ′(`) = −5 (> (`, 2 )) · m
m`

> (`, 2 ),

and so,

ℎ ′(`) = −5 ′(> (`, 2 ))
(
m

m`
> (`, 2 )

)2
− 5 (> (`, 2 )) · m

2

m`2
> (`, 2 ).

Therefore, the sign of ℎ ′(`) is the same as the sign of

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 ,
where 5 (> (`, 2 )) > 0 by assumption and m> (`, 2 )/m` > 0 followsW > 0. Using (11) and substituting
W = 1−2

2
1−>A
>A

, we get

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 = − m

m>
log 5 (> (`, 2 )) − 2W − 1

W
(1 + (W − 1)`). (12)

Substituting the value ofW into equation (11) gives: > (`, 2 ) = 1−`
1+(W−1)` . Solving for `,

` =
1 − > (`, 2 )

1 + (W − 1)> (`, 2 ) . (13)

Substituting for ` in equation (12), we get

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 = − m

m>
log 5 (> (`, 2 )) − 2 W − 1

1 + (W − 1)> (`, 2 )

= − m

m>
log 5 (> (`, 2 )) + 6 (> (`, 2 )) ,

where 6 (>) ≡ −2 W−1
1+(W−1)> . Note that 6 (>) is increasing in > , is convex in > if W ≤ 1, and is concave

in > ifW ≥ 1. Therefore,

min
> ∈[0,1]

6 ′(>) =
{
6 ′(0) if W ≤ 1,
6 ′(1) if W ≥ 1

=

{
2(W − 1)2 if W ≤ 1,
2 (W−1)2

W 2 if W ≥ 1

= 2(W − 1)2min
{
1, 1
W 2

}
. (14)
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If condition (6) holds, then
m2

m>2
log 5 (>) < min

> ∈[0,1]
6 ′(>),

which implies

m2

m>2
log 5 (>) < 6 ′(>) ∀> ∈ [0, 1]. (15)

Our claim is that, under condition (6),ℎ ′(`) satisfies the strict single-crossing-from-above condi-
tion. To see this, take any two `, ˆ̀ with ˆ̀ < ` and ℎ ′(`) ≥ 0. Because > (`, 2 ) is strictly decreasing
in `, > (`, 2 ) < > ( ˆ̀, 2 ). Since ℎ ′(`) ≥ 0, m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0. Then,

m

m>
log 5 (> ( ˆ̀, 2 )) − 6 (> ( ˆ̀, 2 ))

=
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) +

∫ > ( ˆ̀,2 )

> (`,2 )

(
m2

m>2
log 5 (>) − 6 ′ (>)

)
︸                          ︷︷                          ︸

<0 by (15)

3>

<
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0.

Therefore, ℎ ′( ˆ̀) > 0. The result follows. �

We continue with some notation and preliminary results for the proof of Theorem 1.

Lemma 1. The value function D (`) satisfies

lim
`→0

`D ′(`) = lim
`→1
(1 − `)D ′(`) = 0.

Proof. First, note that

D ′(`) =
∫ 1

0
5 (>, 2 (`,>)). m

m`
2 (`,>)3>

=

∫ 1

0
5 (>, 2 (`,>)) > (1 − >)>A (1 − >A )

(>A (1 − >) + `(> − >A ))2
3>,

But since 5 is bounded, there exist some� > 0 such that

|D ′(`) | ≤ �
∫ 1

0

> (1 − >)>A (1 − >A )
(>A (1 − >) + `(> − >A ))2

3>

= �
>A (1 − >A )
(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
.

On the other hand,

lim
`→0

` · >A (1 − >A )
(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
= lim
`→0
−(1 − >A )

>A
` log(`) = 0,
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and

lim
`→1
(1 − `) · >A (1 − >A )

(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
= lim
`→1

−>A
1 − >A

(1 − `) log(1 − `) = 0.

Therefore,
lim
`→0

`D ′(`) = lim
`→1
(1 − `)D ′(`) = 0.

This completes the proof of the Lemma. �

Consider a single-peaked virtual density ℎ (`). As discussed in the proof of Proposition 1, {` ∈
[0, 1] :+ (`) = D (`)} = {0} ∪ [ ˆ̀, 1] for some ˆ̀ ∈ [0, 1]. Note that:

• D ′(`)` < D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 0.

• D ′(`)` > D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 1.

• When ˆ̀ ∈ (0, 1), it satisfies:

D ′( ˆ̀) ˆ̀ = D ( ˆ̀). (16)

Let

G (`) ≡ D ′(`)` − D (`) = ℎ (`)` −
∫ `

0
ℎ ( ˜̀) ˜̀, ∀` ∈ [0, 1]. (17)

Then, ˆ̀ ∈ (0, 1) is characterized by the equation: G ( ˆ̀) = 0. We start with some remarks that will
be used in the proof of Theorem 1.

Remark 1. lim`→0 G (`) = 0. This follows Lemma 1 and the fact that D (0) = 0.

Remark 2. G (`) is continuous in ` over (0, 1). This is because 5 is continuous over its support.

Remark 3. G (`) is first strictly increasing and then strictly decreasing. This is because G ′(`) =

D ′′(`)` + D ′(`) − D ′(`) = D ′′(`)` = ℎ ′(`)`. Since ℎ ′(`) satisfies strict single crossing from above,
so does G ′(`), and the remark follows.

Remark 4. If ℎ1(`) is a single-peaked distribution, then any distribution with density

ℎ2(`) =
(ℎ1(`))U

^
for all ` ∈ [0, 1],where U ≥ 1, ^ > 0

is single-peaked. To see this, supposeℎ1(`) is single-peaked. Then,ℎ ′1(`) satisfies the strict single-
crossing-from-above condition:

If ℎ ′1(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′1( ˆ̀) > 0 for all ˆ̀ < `.
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Note that

ℎ ′2(`) = U
(ℎ1(`))U−1

^
ℎ ′1(`),

which implies that the sign of ℎ ′2(`) is the same as the sign of ℎ ′1(`). The remark follows.

Remark 5. If ℎ (`) is a single-peaked distribution, then ℎ (`) > 0 for all ` ∈ (0, 1). This is a simple
consequence of the fact that, for any single-peaked distribution, there exists some ˆ̀ such that
ℎ ′(`) > 0 for all ` ∈ [0, ˆ̀) and ℎ ′(`) < 0 for all ` ∈ ( ˆ̀, 1].

Proof of Theorem 1. Take a single-peaked distribution ℎ (`). Consider a family of distributions
{ℎU}U≥1 characterized by

ℎU (`) =
(ℎ (`))U
^ (U) , for all ` ∈ [0, 1], U ≥ 1,

where^ (U) is the normalization constant given by

^ (U) ≡
∫ 1

0
(ℎ (B ))U3B .

The corresponding cdf’s are given by:

�U (`) ≡
∫ `

0
ℎU (F)3F =

∫ `

0 (ℎ (F))
U3B

^ (U) .

By Remark 4, any distribution in this family is single-peaked. Take any such distribution ℎU , and
let

GU (`) ≡ ℎU (`)` −�U (`).

Based on Remarks 1, 2 and 3, the setUGU ≡ {` ∈ [0, 1] : GU (`) ≥ 0} has the following form:

UGU = [0, ˆ̀U].

The proof goes through showing that ˆ̀U is decreasing in U. We continue with two important re-
marks.

Remark 6. G ′U ( ˆ̀U) < 0. This follows from the fact thatUGU = [0, ˆ̀U]. Then, GU (`) crosses zero from
above at ˆ̀U . Since GU (`) is differentiable, the remark follows.

Remark 7. If ˆ̀U ∈ (0, 1), then GU ( ˆ̀U) = 0, or equivalently,

ℎU ( ˆ̀U) ˆ̀U =

∫ ˆ̀U

0
ℎU (F)3F. (18)

By Remark 7, ˆ̀U ∈ (0, 1) satisfies

GU ( ˆ̀U) = 0.
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Implicitly differentiate with respect to U to get
m

mU
GU ( ˆ̀U) + G ′U ( ˆ̀U)

m ˆ̀U
mU

= 0.

By Remark 6, G ′U ( ˆ̀U) < 0. Then, m ˆ̀U
mU
≤ 0 if and only if

m

mU
GU (`)

����
`= ˆ̀U

≤ 0.

Note that, for any ` ∈ [0, 1],
m

mU
GU (`) ≤ 0 ⇐⇒

m

mU
ℎU (`)` ≤

∫ `

0

m

mU
ℎU (F)3F.

Recall that ℎU (`) = (ℎ (`))U
^ (U) . Therefore, for any F ∈ (0, 1), m

mU
ℎU (F) = ℎU (F)

(
logℎ (F) − ^ ′ (U)

^ (U)

)
, and

so,

m

mU
GU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ ℎU ( ˆ̀U) logℎ ( ˆ̀U) ˆ̀U ≤
∫ ˆ̀U

0
ℎU (F) logℎ (F)3F.

Using (18) to substitute ℎU ( ˆ̀U) ˆ̀U =
∫ ˆ̀U
0 ℎU (F)3F on the left hand side of the above inequality, we

have
m

mU
GU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ logℎ ( ˆ̀U)
∫ ˆ̀U

0
ℎU (F)3F ≤

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) logℎ ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒ U

∫ ˆ̀U

0
ℎU (F) logℎ ( ˆ̀U)3F ≤ U

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) log(ℎ ( ˆ̀U))U3F ≤

∫ ˆ̀U

0
ℎU (F) log(ℎ (F))U3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) log

(
(ℎ ( ˆ̀U))U
(ℎ (F))U

)
3F ≤ 0

⇐⇒
∫ ˆ̀U

0
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤ 0.

For any real number H > 0, log(H) ≤ H − 1, with a strict inequality for any H ≠ 1. Therefore,∫ ˆ̀U

0
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤

∫ ˆ̀U

0
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F.

Therefore, m
mU
GU (`)

���
`= ˆ̀U

≤ 0 as long as∫ ˆ̀U

0
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F ≤ 0 ⇐⇒

∫ ˆ̀U

0
(ℎU ( ˆ̀U) − ℎU (F)) 3F ≤ 0

⇐⇒
∫ ˆ̀U

0
ℎU ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F)3F
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⇐⇒ ℎU ( ˆ̀U) ˆ̀U ≤
∫ ˆ̀U

0
ℎU (F)3F,

which is guaranteed by (18). We conclude that for any ˆ̀U ∈ (0, 1), m ˆ̀UmU
≤ 0.

Since ℎ1 and ℎ2 are within the family we considered (with ℎ1 corresponding to U = 1 and ℎ2
corresponding to some U ≥ 1), ˆ̀2 ≤ ˆ̀1. To conclude the proof, consider three cases:

1. If >A ≥ ˆ̀1, the optimal policy does not reveal any information in either case, and we pick
f01 = f02 = 1.

2. If ˆ̀1 > >A ≥ ˆ̀2, the optimal policy under ℎ2(`) does not reveal any information. In this case,
we pick f02 = 1 and f01 < 1.

3. If >A < ˆ̀2, the optimal policies f01 and f02 satisfy:
>A

>A + (1 − >A )f01
= ˆ̀1,

>A

>A + (1 − >A )f02
= ˆ̀2.

Then, ˆ̀1 ≥ ˆ̀2 implies f01 ≤ f02 .

In any case, f01 ≤ f02 , and the result follows. �

B Proofs for Section 4

Note that single-dippedness of the virtual density is equivalent to the following strict single-
crossing-from-below property for ℎ ′(`):

If ℎ ′(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′( ˜̀) > 0 for all ˜̀ > `.

Proof of Proposition 4. If ℎ ′(`) satisfies the strict single-crossing-from-below condition, by defi-
nition, so does D ′′(`). Therefore, whenever D (`) is convex at `, it is strictly convex at any ˆ̀ ≥ `.
Thismeans that D (`) is first strictly concave and then strictly convex. Therefore, the set where the
concave closure of D (`) coincides with D (`) has the following form:

{` ∈ [0, 1] :+ (`) = D (`)} = [0, ˆ̀] ∪ {1}.

When >A < ˆ̀, the optimal policy is not revealing any information. This can be achieved by two
messages,; ∈ {0, 1}, and an information structure where Pr(; = 1|\ = 0) = Pr(; = 1|\ = 1) = 0.
Message; = 1 will occur with probability zero, and the posterior beliefs following; = 1 will be
free in a Perfect Bayesian Equilibrium. One can assign posteriors Pr@ (\ = 1|; = 1) = 1 to make
; = 1 as themessage that perfectly reveals the good state.

When >A ≥ ˆ̀, by Corollary 2 of Kamenica and Gentzkow (2011), the optimal policy generates
two posteriors: ` ∈ { ˆ̀, 1}. This is achieved by two messages, ; ∈ {0, 1}, where message; = 1
perfectly reveals the good state.

�
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Proof of Proposition 5. The proof of Proposition 5 is identical to the proof of Proposition 2. �

Proof of Proposition 6. The proof follows identical steps to that of Proposition 3 until equation
(14). The rest of the argument is provided below.

Recall that 6 (>) ≡ −2 W−1
1+(W−1)> and 6 (>) is increasing in > , convex in > ifW ≤ 1, and concave in >

ifW ≥ 1. Therefore,

max
> ∈[0,1]

6 ′(>) =
{
6 ′(1) ifW ≤ 1
6 ′(0) ifW ≥ 1 =

{
2 (W−1)2

W 2 ifW ≤ 1
2(W − 1)2 ifW ≥ 1

= 2(W − 1)2max
{
1, 1
W 2

}
. (19)

If condition (8) holds,
m2

m>2
log 5 (>) > max

> ∈[0,1]
6 ′(>),

and so
m2

m>2
log 5 (>) > 6 ′(>) ∀> ∈ [0, 1]. (20)

Our claim is that, under condition (8),ℎ ′(`) satisfies the strict single-crossing-from-below condi-
tion. To see this, take any two `, ˆ̀ with ˆ̀ > ` and ℎ ′(`) ≥ 0. Because > (`, 2 ) is strictly decreasing
in `, > ( ˆ̀, 2 ) < > (`, 2 ). Since ℎ ′(`) ≥ 0, m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0. Then,

m

m>
log 5 (> ( ˆ̀, 2 )) − 6 (> ( ˆ̀, 2 ))

=
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) −

∫ > (`,2 )

> ( ˆ̀,2 )

(
m2

m>2
log 5 (>) − 6 ′ (>)

)
︸                          ︷︷                          ︸

>0 by (20)

3>

<
m

m>
log 5 (> (`, 2 ∗)) − 6 (> (`, 2 )) ≤ 0.

Therefore, ℎ ′( ˆ̀) > 0. The result follows. �

We continue by introducing some notation and preliminary results for the remaining proofs.
Consider a single-dipped virtual density ℎ (`). As discussed in the proof of Proposition 4, {` ∈

[0, 1] :+ (`) = D (`)} = [0, ˆ̀] ∪ {1} for some ˆ̀ ∈ [0, 1]. Note that:

• D ′(`) (1 − `) > 1 − D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 1.

• D ′(`) (1 − `) < 1 − D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 0.

• When ˆ̀ ∈ (0, 1), it satisfies:

D ′( ˆ̀) (1 − ˆ̀) = 1 − D ( ˆ̀). (21)

Let

H (`) ≡ D ′(`) (1 − `) − (1 − D (`)) = ℎ (`) (1 − `) −
∫ 1

`

ℎ ( ˜̀) ˜̀, ∀` ∈ [0, 1]. (22)

Then, ˆ̀ ∈ (0, 1) is characterized by the equation: H ( ˆ̀) = 0. We start with some remarks.
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Remark 8. lim`→1 H (`) = 0. This follows Lemma 1 and the fact that 1 − D (1) = 0.

Remark 9. H (`) is continuous in ` over (0, 1). This is because 5 is continuous over its support.

Remark 10. H (`) is first strictly decreasing and then increasing. This is because H ′(`) = D ′′(`) (1 −
`) − D ′(`) + D ′(`) = D ′′(`) (1 − `) = ℎ ′(`) (1 − `). Since ℎ ′(`) satisfies strict single crossing from
below, so does H ′(`), and the remark follows.

Remark 11. If ℎ1(`) is a single-dipped distribution, then any distribution with density

ℎ2(`) =
(ℎ1(`))U

^
for all ` ∈ [0, 1],where U ≥ 1, ^ > 0

is single-dipped. To see this, supposeℎ1(`) is single-dipped. Then,ℎ ′1(`) satisfies the strict single-
crossing-from-below condition:

If ℎ ′1(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′1( ˆ̀) > 0 for all ˆ̀ > `.

Note that

ℎ ′2(`) = U
(ℎ1(`))U−1

^
ℎ ′1(`),

which implies that the sign of ℎ ′2(`) is the same as the sign of ℎ ′1(`). The remark follows.

Remark 12. If ℎ (`) is a single-dipped distribution, then ℎ (`) > 0 for almost all `. This is a sim-
ple consequence of the fact that for any single-dipped distribution, there exists some ˆ̀ such that
ℎ ′(`) < 0 for all ` ∈ [0, ˆ̀) and ℎ ′(`) > 0 for all ` ∈ ( ˆ̀, 1]. The only point ` at which ℎ (`) could be
zero is ˆ̀.

Proof of Theorem 2. Take a single-dipped distribution ℎ (`). Consider a family of distributions
{ℎU}U≥1 characterized by

ℎU (`) =
(ℎ (`))U
^ (U) , for all ` ∈ [0, 1], U ≥ 1,

where^ (U) is the normalization constant given by

^ (U) ≡
∫ 1

0
(ℎ (B ))U3B .

The corresponding cdf’s are given by:

�U (`) ≡
∫ `

0
ℎU (F)3F =

∫ `

0 (ℎ (F))
U3B

^ (U) .

By Remark 11, any distribution in this family is single-dipped. Take any such distribution ℎU , and
let

HU (`) ≡ ℎU (`) (1 − `) − (1 −�U (`)).
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Based on Remarks 8, 9 and 10, the set LHU ≡ {` ∈ [0, 1] : HU (`) ≤ 0} has the following form:

LHU = [ ˆ̀U , 1].

The proof goes through showing that ˆ̀U is decreasing in U. We continue with two important re-
marks.

Remark 13. H ′U ( ˆ̀U) < 0. This follows from the fact that LHU = [ ˆ̀U , 1]. Then, HU (`) crosses zero
from above at ˆ̀U . Since HU (`) is differentiable, the remark follows.

Remark 14. If ˆ̀U ∈ (0, 1), then HU ( ˆ̀U) = 0, or equivalently,

ℎU ( ˆ̀U) (1 − ˆ̀U) =
∫ 1

ˆ̀U
ℎU (F)3F. (23)

By Remark 14, ˆ̀U ∈ (0, 1) satisfies

HU ( ˆ̀U) = 0.

Implicitly differentiate with respect to U to get
m

mU
HU ( ˆ̀U) + H ′U ( ˆ̀U)

m ˆ̀U
mU

= 0.

By Remark 13, H ′U ( ˆ̀U) < 0. Then, m ˆ̀U
mU
≤ 0 if and only if

m

mU
HU (`)

����
`= ˆ̀U

≤ 0.

Note that, for any ` ∈ [0, 1],

m

mU
HU (`) ≤ 0 ⇐⇒

m

mU
ℎU (`) (1 − `) ≤

∫ 1

`

m

mU
ℎU (F)3F.

Recall that ℎU (`) =
(ℎ (`))U
^ (U) . Therefore, for any F for which ℎU (F) > 0, we have m

mU
ℎU (F) =

ℎU (F)
(
logℎ (F) − ^ ′ (U)

^ (U)

)
, and so,

m

mU
HU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ ℎU ( ˆ̀U) logℎ ( ˆ̀U) (1 − ˆ̀U)) ≤
∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F,

where we are using the fact that, by Remark 12, ℎU (F) > 0 almost everywhere. Using (23) to sub-
stitute ℎU ( ˆ̀U) (1 − ˆ̀U) =

∫ 1
ˆ̀U ℎU (F)3F on the left hand side of the above inequality, we have

m

mU
HU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ logℎ ( ˆ̀U)
∫ 1

ˆ̀U
ℎU (F)3F ≤

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F

⇐⇒
∫ 1

ˆ̀U
ℎU (F) logℎ ( ˆ̀U)3F ≤

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F

⇐⇒ U

∫ 1

ˆ̀U
ℎU (F) logℎ ( ˆ̀U)3F ≤ U

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F
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⇐⇒
∫ 1

ˆ̀U
ℎU (F) log(ℎ ( ˆ̀U))U3F ≤

∫ 1

ˆ̀U
ℎU (F) log(ℎ (F))U3F

⇐⇒
∫ 1

ˆ̀U
ℎU (F) log

(
(ℎ ( ˆ̀U))U
(ℎ (F))U

)
3F ≤ 0

⇐⇒
∫ 1

ˆ̀U
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤ 0.

For any real number H > 0, log(H) ≤ H − 1, with a strict inequality for any H ≠ 1. Therefore,∫ 1

ˆ̀U
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤

∫ 1

ˆ̀U
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F.

Therefore, m
mU
HU (`)

���
`= ˆ̀U

≤ 0 as long as∫ 1

ˆ̀U
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F ≤ 0 ⇐⇒

∫ 1

ˆ̀U
(ℎU ( ˆ̀U) − ℎU (F)) 3F ≤ 0

⇐⇒
∫ 1

ˆ̀U
ℎU ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F)3F

⇐⇒ ℎU ( ˆ̀U) (1 − ˆ̀U) ≤
∫ 1

ˆ̀U
ℎU (F)3F,

which is guaranteed by (23). We conclude that for any ˆ̀U ∈ (0, 1), m ˆ̀UmU
≤ 0.

Since ℎ1 and ℎ2 are within the family we considered (with ℎ2 corresponding to U = 1 and ℎ1
corresponding to some U ≥ 1), ˆ̀1 ≤ ˆ̀2. Repeating the same argument in the proof of Theorem 1,
we conclude that f12 ≤ f11 . �
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