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Abstract

I extend the static analysis of monopolistic competition under variable elasticity of sub-

stitution (VES) preferences proposed by Zhelobodko et al. (2012, "Monopolistic competition

in general equilibrium: beyond the CES", Econometrica) along two lines by (1) adding costly

product quality improvements - that is vertical innovation, and (2) nesting this market struc-

ture within the dynamic general equilibrium framework, that is the canonical two-sector-R&D

growth model proposed by Young (1998, JPE). Thereby, this study presents the first analysis of

Schumpeterian growth dynamics under VES preferences. I show that (a) The relation between

innovation size and markups may be non-monotonic (b) for suffi ciently low innovation cost there

is a balanced growth path of drastic innovation determined by the population growth rate. How-

ever, for suffi ciently high innovation cost, or non-positive population growth, the model economy

converges to the limit values of demand elasticity, and (c) the effi cient balanced-growth rate is

also defined by population growth rate but differ from the market equilibrium path in the ratio

between per-variety consumption level and product variety span.

JEL Classification: O-30, O-40
Key-words: VES, innovation size, Schumpeterian Growth, Population Growth and Tech-

nological Progress.

1 Introduction

This study provides first analysis of Schumpeterian growth under Variable Elasticity of Substitu-

tion (VES) preferences. In the Schumpeterian growth process with VES preferences, the ongoing

product-quality improvements drive corresponding changes in demand elasticity, which give rise to

a set of balanced-growth characteristics that are eliminated under the traditional Constant Elastic-

ity of Substitution (CES) specification. I introduce the VES preferences and the notion of Relative

Love for Variety (RLV), proposed by Zhelobodko et al. (2012) in their static analysis of monopolistic

competition, into Young’s (1998) Two-Sector-R&D model of vertical innovation with endogenous
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product-variety span. The analysis incorporates both drastic and non-drastic innovation, that are

usually studied separately in the literature.1

Within this framework I show that for suffi ciently low innovation cost, the size of drastic inno-

vations along the balanced-growth rate is determined by the population growth rate. However, for

a suffi ciently high innovation cost, or for constant or shrinking population, the economy converges

to the limit values of the VES preferences with non-drastic innovation. That is the model economy

converges to the CES benchmark. The ratio between innovation size and product variety span

along the steady growth path in the decentralized economy can be either higher or lower than the

welfare maximizing one. Furthermore, I show that equilibrium markups and innovation size may be

positively or negatively related and may not uniquely determined - a given innovation size may be

supported by more than one mark-up (that is uniform across varieties). By comparison, under CES

markup and innovation size change in opposite directions with exogenous change in the elasticity

parameter.

This study contributes to the ongoing effort to expand existing core analyses in Industrial

Organization, and their implications to the study of international trade and R&D-based growth,

beyond the CES specification of preferences or technology, which has been dominating the litera-

ture since introduced by Dixit and Stiglitz (1977). Although highly tractable and convenient, the

CES specification lacks flexibility and yields some results that are at odds with empirical finding2.

Consequently, over the last decade, a growing body of research proposed alternative VES specifi-

cations, in a static monopolistic-competition frameworks; see for example Zhelobodko et al. (2012)

and Bertoletti and Etro (2015, 2016, 2021), Matsuyama and Ushchev (2022).

A sequence of recent papers implemented proposed VES specifications in the Romer’s (1990)

framework of R&D-based growth with horizontal innovation (variety expansion); see Bucci and

Matveenko (2017), Boucekkine et al. (2017), and Etro (2018, 2019), Latzer Matsuyama and Parenti

(2019). To the best of my knowledge this study is the first to incorporates VES preferences into a

Schumpeterian growth model.

The pioneering Schumpeterian growth models of vertical innovation by Gorossman and Helpman

(1991) and Aghion Howitt (1992), had a fixed number of product lines, and abstracted from the

horizontal price competition across product lines.3 The current analysis is carried within a two-

sector R&D model with both horizontal and vertical innovation, as in Peretto (1998), Young (1998),

Dinopoulos and Thompson (1998), Howitt (1999), and Segrestrom (2000). This line of models was

designed to remove the scale-effect that presents in the aforementioned first-generation models,

1With drastic innovation the market leader can keep sellers of inferiror products out of the market while charging
a monopolistic price, based on demand elasticity. Under non-drastic innovation, prices are set through vertical
competition between the entrant and the incumbent of each product line.

2See Zhelobodko et al. (2012), page 2765.
3 In Grossman and Helpman (1991) there is a unit mass of different product lines the price of each product is

set through vertical price competition between the entrant that developed the highest- quality product, and the
incumbent. In Aghion and Howitt (1992) there is a single product line and the price is set by the market leader either
through vertical price competition, in case of non-drastic innovation, or as an unconstrained monopolistic price in
the case of drastic innovation.
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which did not align with empirical findings4. These two-sector R&D models rely on the CES

specification,5 and confine attention to drastic innovation, to conclude that (a) innovation size is

determined by the CES parameter and the innovation technology parameters (b) markups are also

pinned down by the CES, independently of innovation size (c) Innovation size falls below the socially

optimal rate, and (d) population size and population growth rate do not affect innovation size, but

only the size and growth rate of product-variety span, respectively. This work shows how all these

characteristics of Shcumpeterian growth change once departing from the CES specification.

Our results on the effect of population growth on innovation size relate to the debate over

the potential effectiveness of industrial-policy (e.g. R&D subsidies and the design of patents) in

promoting R&D based growth, that is known in the literature as the debate on whether R&D-

based growth is fully endogenous or semi-endogenous6. In a model where the exogenous population

growth rate determines the growth rate, growth is semi-endogenous and industrial-policy interven-

tions are futile. Our results imply that with the departure from the CES, growth may changes the

nature of growth in the model economy - from fully endogenous to semi endogenous7 - depending

on the population growth rate and the productivity of innovation technology. Finally, all aforemen-

tioned studies focus on growth dynamics under drastic innovation and horizontal price competition,

whereas the current analysis includes also the non-drastic innovation and vertical price competition,

as the innovation size and corresponding pricing regime are determined endogenously in the model

economy8.

In the working paper where he first presented his Two-sector R&D growth model, Young (1995)

considers the possibility of a variable elasticity of demand with respect to quality provision9. How-

ever, he does that based on different micro foundations - he builds on Salop’s circular market model

where the equilibrium prices (and markups) are independent of quality provision - and he confines

attention to changes in population size (scale effect) on innovation size abstracting from population

growth (strong scale effect)10. The current analysis provides a direct generalization of Young’s

(1998) CES model to the case of VES preferences or technology and shows that in this standard

framework, population growth is necessary to maintain VES specification viable.

The remainder of the paper is organized as follows. Section 2 presents the model and the static

equilibrium outcomes are derived. Section 3 characterizes the growth dynamics for the decentralized

4See Jones (1995a,b) and Jones (1999).
5Either CES preferences over a variety of consumption product varieties, or CES production technology of a final

good with variety of intermediate goods.
6 If long term growth is fully endogenous it can be affected by policy interventions and if it is semi-endogenous it

is determined by parameter that are usually taken as exogenous, such as the population growth rate.
See Cozzi (2017a,b) for recent concise summary of the topic and proposed synthesis based resolutions of this debate.
7Li (2000) already showed that growth endogeneity in this class of models relies on two Knife edge assumptions

regarding. Our results show that it derives also from the CES assumption.
8Sorek (2021) studied the difference between the drastic and non-drastic innovation regimes in Young’s (1998)

model with CES and their implications for industrial policy.
9See Section IV (p.18) there.
10When referring to the possibility of variable demand elasticity with respect to quality in the journal article, Young

(1998) still abstracts from the possibility that markups may depend on innovation size and that demand elasticity
may as well change with consumed quantity - see equations (11) and (25) and the following discussions, there.
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economy and the welfare maximizing growth paths. Section 4 summarizes and concludes this study.

2 The Model

To maintain consistency with Zhelobodko et al. (2012), we replace Young’s (1998) production

function of a single final good that uses intermediate goods with an instantaneous utility function

over variety of consumption goods. These two representations are equivalent for all the purposes of

the current analysis11. We then extend Young’s (1998) model by replacing the instantaneous CES

utility function with a more general specification, which allows demand elasticity and the elasticity

of substitution to vary with consumption level, that is a Variable Elasticity of Substitution - V ES.

All other specifications of Young’s (1998) model economy remain, and therefore all the results

presented below coincide with his once demand elasticity is re-assumed to be constant. Time

is discrete and, in each period t the economy is populated with Lt infinitely lived agents, and

population size grows at a constant rate n ≡ 4Lt+1
Lt

. Each worker supplies one unit of labor, so

within each period population size equals aggregate labor supply.

2.1 Preferences and consumer’s optimization

The lifetime utility of the representative consumer is given by

U =
∞∑
t=0

βt ln(ct) (1)

where β ∈ (0, 1) is the time preference parameter. The per-capita utilization level of consumption

in (1), denoted c, is derived from M differentiated products ("varieties"), subject to the VES

instantaneous utility presented in Zhelobodko et al. (2012)12:

ct =

Mt∫
0

u (ci,t) di (2)

The utility function u (•) is concave and at least thrice differentiable, and the consumption
stream derived from each, ci, is given by ci = qixi, where xi and qi designate the utilized quantity

and quality, respectively. For the instantaneous utility function (13), Zhelobodko et al. (2012)

defines the Relative Love for Variety, "RLV ", as

RLVi ≡ −
ciu
′′ (ci)

u′ (ci)
> 0 (3)

This measure of lover for variety, corresponds the Prath-Arrow measure of relative risk aversion,

and it is inverse to the demand elasticity
11Sorek (2021) present this equivalence for drastic innovation and add the analysis of non-drastic innovation in this

framework.
12 in utility function (2) is equivalently to a final good production function that take M intermediate goods as

inputs, use by perfectly competitive firms, as in Young’s (1998).
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si(ci) =
1

RLVi
(4)

For equal consumption levels from all product varieties, equation (14a) defines also the elasticity

of substitution for each pair of varieties. To sustain the monopolistic competition framework under

study, it is required to assume that demand elasticity is greater than one and finite si(ci) ∈ (1,∞)

⇐⇒ RLVi ∈ (0, 1). The static analysis of Zhelobodko et al. (2012) focuses on the relation between

changes in consumed quantities, RLV changes, and market equilibrium outcomes. Here, the focus

is on the relation between on-going quality changes, RLV changes, market outcomes, and market

dynamics.

2.2 Technologies

Labor is the sole input for production and innovation, and the wage rate is normalized to one. One

unit of labor produces one consumption good (regardless of its variety and quality). The two latter

assumptions imply a unit marginal cost of production. Innovation is certain and is subject to the

following cost function

f(qi,t+1, qt) = exp

(
φ
qi,t+1
qt

)
(5)

The innovation cost in sector i is increasing with the rate of quality improvement over the existing

quality frontier —denoted qt, which is the highest quality already attained in the economy. I denote

the rate of quality improvements κ ≡ qi,t+1
qt

to rewrite the innovation cost

fi,t+1 ≡ f(κi,t+1) = exp (φκi,t+1) (6)

Due to the assumed certain outcome of R&D investments, innovation takes exactly one period,

and therefore the effective market lifetime of each quality improvement is one period as well (as

each and every period improved products take over the market lead).

3 General Equilibrium

3.1 Consumers’optimization

Lifetime utility (1) is maximized under the standard inter-temporal budget constraint

at+1 =
1 + rt+1

1 + n
at + wt − et (7)

where a denotes the consumer’s assets in form of patents’ownership, 1 + rt+1 is the interest

rate earned between periods t and t+ 1, and w is labor income. The maximization of (1) under the

composite consumption stream specification (2) and the dynamic constraint (6), assuming cross-

variety symmetry, yields the following modified Euler condition over the consumer’s inter-temporal
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spending path13
et+1
et

σu,ct
σu,ct+1

=
β (1 + rt+1)

1 + n
(8)

where σu,ct ≡
ctu′(ct)
u(ct)

, is the elasticity of the instantaneous utility from each variety with respect

to the consumption level ci,t. Under the assumed consumers’homogeneity, condition (16) holds

also for the aggregate consumers’spending levels

Et+1
Et

σu,ct
σu,ct+1

= β (1 + rt+1) (9)

Within each period, consumers maximize the instantaneous utility function (2), by allocating

their spending subject to et ≤
Mt∫
0

(pi,t · ci,t)di, as to . Solving this standard static optimization

problem, applying the Largrangian L =

Mt∫
0

u (ci,t) di+λt

et − Mt∫
0

(pi,t · ci,t)di

, yields the per-variety
inverse demand function

pi =
qi,tu

′ (qi,t · xi,t)
λt

(10)

3.2 Profit maximization

Following Young (1998), the present analysis assumes complete lagging-breadth patent protection

and no leading breadth protection (minimal patentability requirement). Under these assumptions,

the price set by the entrant must not exceed its innovation size, that is pi,t ≤ κi,t, in order to push
the former product-line leader out of the market. If the profit maximizing price is strictly smaller

than the innovation price the innovation is drastic, as the potential vertical competition with the

previous product lines leader (the incumbent) is not binding. If the product price is set equal to

innovation size the innovation is non-drastic. With CES preferences the given value of demand

elasticity (relative to the innovation cost parameter), determines whether innovation size is drastic

or non-drastic. For suffi ciently high elasticity innovation is drastic. The size and price of non-drastic

innovation are set independently: the price is decreasing with demand elasticity and innovation

size is increasing with demand elasticity. Below a certain threshold value of demand elasticity,

innovation becomes non-drastic and its size is independent of demand elasticity (and the price is

equal to innovation size). The following analysis shows how the profit-maximizing innovation-size

and price are jointly determined under VES preferences, along with demand elasticity. It starts

with the case of Non-drastic innovation and proceeds to drastic innovation.

13An equivalent modified Euler condition was derived by Boucekkine et al. (2017), for continuous time. However,
in their analysis of the horizontal innovation model, the elasticity of utility with respect to the consumption level is
affected by the consumed quantities only, whereas in this analysis it is affected also by the quality of the consumed
products.
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3.2.1 Non-Drastic Innovation

With non-drastic innovation the product price is equal to the innovation size: pi,t = κi,t. Therefore,

each innovating firm maximizes the following present value profit:

Πi,t =
(κi,t+1 − 1)xi,t+1 (κi,t+1)Lt+1

1 + rt+1
− fi,t+1 (11)

Under symmetric equilibrium, aggregate demand for each variety is Xd
t = Et

pMt
,∀i. Substituting

the latter expression into (10), we write the free-entry (zero-profit) condition

(κi,t+1 − 1) Et+1
Mt+1κi,t+1

1 + rt+1
= fi,t+1 (10a)

The first order condition for maximizing (10) is14(
1

κ∗i,t+1−1
+

xi,t+1′(κ∗i,t+1)
xi,t+1(κ∗i,t+1)

)(
κ∗i,t+1 − 1

)
xi,t+1

(
κ∗i,t+1

)
Lt+1

1 + rt+1
= φfi,t+1 (12)

Imposing pi,t = κi,t in (4), we rewrite the inverse demand function as

qi,t−1κ
∗
i,tu
′ (qi,t−1κ∗i,t · xi,t)− λtκ∗i,t = 0 (13)

Applying the implicit function theorem to (12) yields

dxi,t
dκ∗i,t

= −qi,t−1u
′ (qi,t · xi,t) + qi,tqt−1xi,tu′′ (qi,t · xi,t)− λt

qi,tqi,tu′′ (qi,t · xi,t)
(12a)

Then, substituting λt =
qi,tu

′(qi,t·xi,t)
κ∗t

from (12) into (12a) yields

dxi,t
dκ∗i,t

xi,t
= − 1

κ∗i,t
(12b)

Plugging the latter result back into (11) and imposing the zero-profit (free-entry) condition,

reveals that the size of non-drastic innovation is independent of demand elasticity, and is time

invariant15:

∀t, i :
1

κe (κe − 1)
= φ (14)

14The asterisk superscript denotes maximizers of individual value functions. The superscript "e" denotes equilib-
rium values.

15The implicit expression of κv in (13) defines a quadratic function with the positive root: κv =
1+

√
1+ 4

φ

2
> 1. The

same result was derived in Sorek (2021) for the CES preferences.
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3.2.2 Drastic innovation

For drastic innovation the profit maximizing price is lower than innovation size. Given the inverse

demand function (4), each innovating firm maximizes the following present value profit

Πi,t =

(
qi,t+1u

′(qi,t+1·xi,t+1)
λt+1

− 1
)
xi,t+1Lt+1

1 + rt+1
− f(κt+1) (15)

The first order condition for maximizing (16) with respect to xi,t reads

qi,tu
′ (qi,t · xi,t) + xi,tq

2
i,tu
′′ (qi,t · xi,t) = λt (16)

Condition (17), which defines the surplus (and profit) maximizing quantity, can be also written

as

qi,tu
′ (ci,t) (1−RLVi)

λt
= 1 (15a)

The left side of (17a) is the marginal revenue associated with the sale of each product unit and

the right side is the marginal cost. Under the assumption RLVi < 1, the marginal revenue is positive

for any output level. For an increasing RLV the marginal revenue is guaranteed to decrease with

output level, and assuming ci,tu
′′′(ci,t)

u′′(ci,t)
> −2 guarantees that the marginal revenue is decreasing with

output level also for a decreasing RLV. This condition over the elasticity of the second derivative

of the utility function with respect to consumption was required also in Zhelobodko et al. (2012)

to ensure the existence of profit maximizing prices. As the RLV corresponds the RRA measure,

the expression ci,tu
′′′(ci,t)

u′′(ci,t)
also has a corresponding term in the literature on preference for risk, that

is the Relative Prudence ("RP") measure which was first defined by Kimball (1990). Combining

(17) with the price equation (4) yields the following profit-maximizing price

p∗i,t =
qi,tu

′ (qi,t · xi,t)
qi,tu′ (qi,t · xi,t) + qi,txqi,tu′′ (qi,t · xi,t)

=
1

1−RLVi,t
(17)

By equation (3a), the profit-maximizing price in (18) can be written also in the familiar form

p∗i,t =
s(ci,t)

s(ci,t)− 1
≡ εi,t (16a)

Equations (16)-(16a) are implicit expressions of the price as their right side changes with per-

variety consumption level, which, in turn, depends negatively on the price. In the case of increasing

(decreasing) RLV, the right side of (16) decreases (increases) with p∗i : The optimal price is higher

than the marginal cost, p∗i > 1. Therefore, the left side of (16) is bounded to 1
p∗i
∈ (0, 1). The right

side of (15) is smaller than one, and we assume RLV < 1 to ensure it is positive. Moreover, the

per-variety consumption level depends also on product quality (positively), and on product variety

span (negatively), implying that for increasing (decreasing) RLV, the profit maximizing price (and

markup) increases decreases with innovation size. Plugging the price from (18) back into (16), and
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maximizing the profit for κi,t under the free-entry condition, yields the following equilibrium rate

of drastic quality improvements

κei,t =
1

φ

ci,tu′′′ (ci,t)
u′′ (ci,t)

− ci,tu
′′ (ci,t)

u′ (ci,t)
−

u′(ci,t)
ci,tu′′(ci,t)

+ 1

2 +
ci,tu′′′(ci,t)
u′′(ci,t)

 (18)

The size of drastic innovation is determined by the innovation-cost parameter and curvature

of the consumption utility function that is defined by the RLV and the elasticity of its second

derivative ci,tu
′′′(ci,t)

u′′(ci,t)
(which was already discussed the analysis of the optimal price above). As

consumption level itself depends on innovation size, equation (17) is an implicit expression of κ∗i,t.

Apparently, it defines potential nontrivial relations between the size of drastic innovation and

consumption level16, as will be demonstrated in the next section.

3.3 Product variety span

For each and every period the aggregate resources-uses constraint, that is also the labor market

clearing condition), requires

Lt =
Et
pt

+Mt+1ft+1 (19)

Equation (18) implies that aggregate labor supply is fully employed in production (the first

addend) and R&D activity (the second addend). Applying the zero-profit condition along with the

Euler condition (9) to (18) yields

Lt =
Et
pe

+ (1− 1

pe
)βEt

σu,ct+1
σu,ct

(18a)

Then, solving (18a) for Et, and plugging it back into (18) - with the relevant price expression -

yields the following equilibrium variety span for non-drastic and drastic innovation, respectively17

M e
t+1 =

Lt

fe

[
1

(κe−1)β
σu,ct+1
σu,ct

+ 1

] (20)

M e
t+1 =

Lt

fet+1

[
1

εt(1− 1
εt+1

)β
σu,ct+1
σu,ct

+ 1

]
16Under the CES specification equation (17) boild down to κ∗i,t =

s−1
φ
, as in Young (1998).

17For constant utility elasticity condition (15) coincides with the one derived for the CES preferences presented in
Sorek (2021).
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4 Growth Dynamics

Combining all the results derived thus far, this section characterizes growth under VES preferences

in the model economy, which is then compared with the welfare maximizing balanced growth. This

section concludes with an example of concrete of VES preferences, that is used to illustrate some

implication of the results derived for the general VES preferences.

4.1 Endogenous and semi-endogenous growth

The growth dynamics combine vertical innovation - i.e. the quality improvements defined in equa-

tions (13) and (17), along with changes in product variety span at the rate mt ≡ 4Mt+1

Mt
. Recall

that under symmetric equilibrium per variety consumption is ci,t = etqt
ptMt

. With CES preferences,

the innovation size and the price are necessarily time invariant and determined independently by

the given demand elasticity, and the product variety span expands at the same rate as population

growth. Consequently, the growth of variety consumption is 1 + gci = κ∗

1+m∗ and total consumption

grows at the rate κ∗.

With VES preferences, there cannot be a steady growth that is not a balanced growth path

along which quality and variety span grow at equal rates, i.e. κ∗ = 1 +m∗. This is because if the

product variety span changes at a rate that is different than the rate of quality improvements, per

variety consumption and the RLV keep changing over time.18However, equations (19) imply that

under stationary variety consumption, the rate of product variety span expansion equals to the

population growth rate, that is m = n. Therefore, along a balanced growth path the innovation

size must be also equal to the population growth rate. In this case growth is semi endogenous.

However, the latter analysis implies that for a constant or shrinking population, there is no such

balanced growth path and as consumption per variety keeps increasing permanently while driving

the RLV and the different moments of the utility function to their limit CES values, which result

in fully endogenous growth.

Nonetheless, such fully endogenous growth would prevail also with a growing population, if

the relevant innovation size, κ = 1 + n, is not drastic: if demand elasticity that correspond this

innovation size implies a profit maximizing price that is to high to deter vertical competition. In

this case the innovation size defined by equation (13) sustains, while the product variety span grows

at the rate m = n, thereby decreasing per variety consumption and driving demand elasticity to its

limits CES value. As the size of drastic innovation decreases with the innovation cost parameter,

while the corresponding price depends only on demand elasticity, a higher innovation cost increases

the range of demand elasticity (and variety consumption level) for which innovation is drastic the

range of population growth rates that can support a balanced growth path of semi-endogenous

growth. The latter results are summarized in the following proposition that characterizing the

balanced growth.

18For 1 +m > κ (1 +m < κ) per-variety consumption is declining (increasing) over time.
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Proposition 1 For suffi ciently low (high) innovation cost growth is fully (semi) endogenous, and
the balanced growth rate is determined by population growth rate (by the limit CES values).

4.2 Welfare analysis

The allocation of labor over R&D and production activity that maximizes the lifetime utility

(1), under the VES preferences (2), defines the socially-optimal rate of quality improvements and

product variety span, where the optimal growth path is subject to the aggregate resources uses

constraint (18). Substituting (18) into (1) we write the welfare maximization objective function19:

U =
∞∑
t=0

βt ln[

∫ M

0
u (qi,txi,t)] =

∞∑
t=0

βt lnMtu

qt−1κt
Lt −Mt+1f (κt+1)

Mt︸ ︷︷ ︸
xt


) = (21)

=
∞∑
t=0

βt lnMt +
∞∑
t=0

βt lnu

qt−1κt
Lt −Mt+1f (κt+1)

Mt︸ ︷︷ ︸
xt




The first order conditions for maximizing the above expression, with respect to κt and Mt,

satisfy20

κ∗∗t =

σt +
∞∑
j=0

βj+1σt+j

φ (1− σt)
(22)

M∗∗t =
Lt

f (κ∗∗t )
[

σt−1
(1−σt)β + 1

]
The welfare maximizing innovation size and product variety presented in (21) and the ones

presented in equations (13),(17) and (19) for the market equilibrium outcomes depend on different

endogenous variables: the welfare maximizing expressions depend on the utility elasticity whereas

the market equilibrium ones depend on the on the RLV and the RP21. by comparison, under the

CES specification for which all the above moments of the utility function coincides, the welfare

maximizing innovation size is κ∗∗ = s−1
φ(1−β) , that is always larger than the equilibrium drastic inno-

vation size, given by κe = s−1
φ , but may be greater than the equilibrium non-drastic innovation size

(See Sorek 2021).Therefore, in general, the innovation size and variety span along any transitional

19 It is assumed that the transversality condition, Lim
t−→∞

βtu(ct) = 0, holds.
20The socially-optimal values are denoted with double asterisk super script.
21 In the CES case the welfare maximizing innovation size is κ∗∗ = s−1

φ(1−β) , that is larger than the equilibirum

drastic innovation size, given by κe = s−1
φ
. Sorek (2021) shows that small non-drastic innovations exceed the welfare

maximizing size.
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path may be greater or small than the welfare maximizing ones. For a balanced growth path the

above effi ciency conditions read

κ∗∗ =
σ∗∗

φ (1− σ∗∗) (1− β)
(21a)

M∗∗ =
Lt

f (κ∗∗)
[

σ∗∗
(1−σ∗∗)β + 1

] =
Lt

f (κ∗∗)
[
(1−β)φκ∗∗

β + 1
]

The welfare maximizing product variety span is decreasing with the welfare maximizing innova-

tion size. As in the decentralized economy, a balanced growth path requires a stationary VES, that

is a stationary variety consumption level, implying κss = m = n. For the two above conditions to

jointly hold, there variety span defined in (21a) needs to support the a variety consumption level ,

ci = e∗∗qt
p∗∗Mt

, that also satisfies κ∗∗ = 1 + n. The variable that should adjust along the transitional

dynamics to enable both conditions to be jointly satisfies is qt. The BGP under the market equi-

librium and the welfare maximizing BGP differ in their product variety span and in the stationary

variety consumption levels. If there is no variety consumption level to satisfy κ∗∗ss = n, the effi ciency

conditions in (21a) can be still satisfied for the limit levels of σ, that is at CES limit case.

Proposition 2 Innovation size along the welfare maximizing BGP may be larger or smaller than
the innovation size along the decentralized BGP, depending on the relative size of the utility-

elasticity and the RLV.

5 Example

#TO BE COMPLETED#

For the illustration of some possible properties of the general results derived thus far, consider

the following example instantaneous utility function

u (ci,t) =
(A+Bci,t)

B−1
B

B − 1
(23)

For B 6= 1 and A = 0, the utility function (22) boils down to the familiar CES specification.

With B 6= 1 and A 6= 0, we have

σu,ct ≡
ci,tu

′ (ci,t)

u (ci,t)
=

B − 1
A
ci,t

+B
, (22a)

RLVi ≡ −ci,tu
′′ (ci,t)

u′ (ci,t)
=

1
A
ci,t

+B

RPi = −ci,tu
′′′ (ci,t)

u′′ (ci,t)
=

1 +B
A
ci,t

+B

12



Notice that as consumption level approaches infinity all the measures presented above converge

to their CES specification value, defined by B. Applying (22a) to equations (16a) and (17) yields

the following expressions for the equilibrium price, drastic innovation size, and product variety

span22

pi,t =
1

1− 1
A
ci,t

+B

(24)

κi,t =
1

φ


(
A
ci,t

+B
)(

A
ci,t

+B − 1
)

2 A
ci,t

+B − 1
− B

A
ci,t

+B


M∗t+1 =

Lt

f∗t+1

( A
ci,t

+B−1
β + 1

)
Consider the case where B > 1 and A > 0, for which demand elasticity decreases with consump-

tion level (that is increasing RLV), ranging from B to infinity. In this case, if B
B−1 <

B−1
φ < 1 +n,

there exists a per variety consumption level that supports a balanced growth path for which

κ = 1 +m = 1 + n.

If the latter conditions do not hold, the steady state growth is defined by the limit (CES)

value of the utility function: for B
B−1 < 1 + n < B−1

φ innovation is drastic, κ = B−1
φ , and for

B−1
φ , 1 + n < B

B−1 innovation is non drastic,
1

κe(κe−1) = φ. In both case the product variety span

and population size expand at the same rate, m = n.

The welfare maximizing innovation size and product variety span are given by

κ∗∗t =
B − 1

φ
(
A
c∗∗i,t

+ 1
)

(1− β)
(25)

M∗∗t =
Lt

f∗∗

 B−1(
A
ci,t

+1

)
β

+ 1

 =
Lt

f∗∗
[
κ∗∗t φ(1−β)

β + 1
]

Recall that for the two effi ciency conditions in (25) to hold, the variety span needs

Differentiating the innovation size in (23) with respect to si yields

dκi,t
dsi,t

=
1

φ

2 A
ci,t

( A
ci,t

+B − 1)− (B − 1)(
2 A
ci,t

+B − 1
)2 +

B(
A
ci,t

+B
)2
 (26)

The derivative is decreasing with A
ci,t
. At the CES limit, where ci approaches infinity (i.e. A

ci

22The innovation size can be also written in terms of demand elasticity: κi,t = 1
φ

(
si(ci)−1
2− 1+B

si(ci)

− B
si(ci)

)
.
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approaches zero and si(ci) approaches B) the derivative is negative ( 1B −
1

B−1 < 0). However, for

ci = A it is positive ( 1+2B
(1+B)2

> 0). This implies a non-monotonic relation between the elasticity

of substitution and the profit maximizing innovation size. Such non-monotonic relation between

innovation size and demand elasticity, implies that there may be two RLV levels that supports the

same rate of balanced growth and differ only in the markup and variety span.

For B = −1 the utility function (22) takes the quadratic form u (ci,t) = − (A− ci,t)2, and
for B = 1 it converges to the logarithm form u (ci,t) = ln (A+ ci,t). The for the latter and get

similar dynamics, as for the CARA specification that yields the drastic innovation size κi,t =

1
φ

(
A
c
+1

2 −
1

A
c
+1

)
decreases or increases with c

σu,ct ≡
ci,tu

′ (ci,t)

u (ci,t)
=

1
A
cB
+1

ln (A+Bci,t)
,

RLVi ≡ −ci,tu
′′ (ci,t)

u′ (ci,t)
=

1
A
c + 1

RPi = −ci,tu
′′′ (ci,t)

u′′ (ci,t)
=

2
A
c + 1

#TO BE COMPLETED#

6 Discussion and Conclusion

#TBA#
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