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Abstract

This paper introduces a time-series methodology to quantify heterogeneity in the evolution
of the unconditional temperature distribution and its association with climate drivers. By recog-
nizing that temperature quantiles correspond to different locations—or seasons—, I establish an
equivalence between a One-Dimensional Energy Balance Model and a Vector Error Correction
Model (VECM) for a range of distributional characteristics of temperature—mean and quan-
tiles—and total radiative forcing, including radiative forcing from anthropogenic greenhouse
gases. The VECM is estimated employing time series methods robust to the type of trends
in the data, and is utilized to produce the following outcomes of practical interest for eco-
nomic analyses: i) quantile-dependent climate sensitivities, ii) long-term temperature density
forecasts, iii) identification of distributional shocks and impulse-responses, and iv) projections
of temperature distribution under different scenarios of future greenhouse gas emissions. An
empirical analysis using station-level temperature records (1880–2021) reveals strong climate
heterogeneity at global, hemispheric, and continental scales, with important potential impli-
cations for damage analysis and integrated assessment modeling. A deeper understanding of
global warming dynamics is crucial for better informing adaptation and mitigation policies.
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1 Introduction

Climate observations and climate modeling provide compelling evidence of a global warming trend,

primarily attributed to anthropogenic emissions of greenhouse gases (GHGs) (AR6-IPCC, 2021).

It has also been well established that climate change dynamics are non-uniform across space and

time (Chapman et al., 2013; Ji et al., 2014; Gadea and Gonzalo, 2023). For instance, not all regions

on the globe warm at the same rate: surface air temperature over the Arctic Pole is warming at

a rate almost twice as fast as the global mean, a phenomenon referred to as Arctic Amplification

(AA)1 (Serreze et al., 2009; Bekryaev et al., 2010; Screen and Simmonds, 2010; Smith et al., 2019;

You et al., 2021). More generally, equatorial latitudes have on average experienced slower warming

than northern latitudes. Panel (a) in Figure 1, sourced from Desmet and Rossi-Hansberg (2024),

depicts the fitted linear trend change in local temperatures between 1970 and 2019. Some regions

in Alaska, northern Europe, and Siberia have experienced temperature changes above 3°C, while

in regions closer to the equator the change is negligible.

For a constant spatial dimension, evidence of heterogeneity in seasonal temperatures has been

also extensively documented (Balling et al., 1998; Vogelsang and Franses, 2005; Cohen et al., 2012;

Hillebrand and Proietti, 2017). Panel (b) in Figure 1, obtained from Hillebrand and Proietti (2017),

shows the monthly plots for the Central England temperature series between 1754 and 2020. Black

lines represent the least-squares fit of a constant and a linear trend to each annual month series

separately. From these plots, it is evident that the upward trends are steeper in winter months

than in the rest of the year, a regularity that is also observed in many other locations. A third type

of heterogeneity originates from the fact that night-time temperatures are increasing more rapidly

than daytime temperatures (Donat and Alexander, 2012; Davy et al., 2017).

This paper introduces a time series quantitative methodology to analyze different types of

heterogeneity in the dynamics of the temperature distribution and its association with climate

forcings. The proposed methodology consists of a Vector Autoregressive Model (VAR) for a range of

unconditional distributional characteristics of temperature, such as mean and quantiles, alongside

the radiative forcing2 of GHGs, including carbon dioxide (CO2), methane (CH4), and nitrous

1Several physical mechanisms are responsible for AA. Factors local to the Arctic include sea ice-albedo, cloud, and
water vapor feedbacks (You et al., 2021). In addition, poleward heat and moisture transport through the atmosphere
and ocean from lower latitudes influence the extent of AA (Lee et al., 2017; Luo et al., 2017).

2Radiative forcing is a concept used in climate science to quantify the energy imbalance in Earth’s atmosphere
caused by anthropogenic activities or natural events (Hansen et al., 2011; Andrews et al., 2021). Since the start of the
industrial era until the present day, anthropogenic forcing has typically been increasing and has been the dominant
component of the total forcing on the Earth system except for brief periods following large volcanic eruptions (Smith
et al., 2020).
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(a) Local Temperature Changes 1970-2019 (b) Monthly Temperature in Central England

Figure 1: Empirical Evidence of Climate Heterogeneity

oxide (N2O).3 At global and hemispheric scales, the methodology is motivated by the physical

mechanisms of a one-dimensional (1D) Energy Balance Model (EBM) (Held and Suarez, 1974). In

a 1D-EBM, temperature is modeled as a function of latitude, and heat transport between adjacent

latitudes in the direction from the Equator to the poles is permitted. Compared to the more basic

zero-dimensional (0D) EBM (Budyko, 1969), the 1D-EBM allows for geographical heterogeneity

in the climate sensitivity4 and enables the study of processes such as AA. By assuming that the

unconditional quantiles of temperature represent temperatures at different latitudes, it is possible

to establish an equivalence between the 1D-EBM and a restricted Vector Error Correction Model

(VECM) for the unconditional distributional characteristics of temperature and radiative forcing.

Using historical data, the model is estimated and tested employing time series methods that are

robust to the nature of trends in the variables.5

The empirical analysis uses station-level temperature observations for the period 1880-2021

obtained from the latest version of the HadCRUT5 dataset, developed jointly by the Climatic

Research Unit (CRU) at the University of East Anglia and the Hadley Centre at the UK Met

Office (Morice et al., 2021). Temperature unconditional distributional characteristics are derived

3This methodology can be implemented in other type of econometric applications where the interest is to analyze
the dynamic relationship between a p-variate vector of variables Xt and the distribution of another variable Yt,
provided that the distribution of Yt can be estimated each period t = 1, 2, ..., T . A simple example is the study of
the dynamic relationship between (shocks to) fiscal policy and the income distribution.

4The climate sensitivity is a physical concept defined as the long-term change in temperature in response to a
doubling in the CO2 concentrations.

5Following Stock et al. (1990), a VAR model in levels estimated by OLS is consistent whether or not the elements
contain trending components, as long as the innovations have sufficient moments and a zero mean, conditional on past
values of the variables. Although this is a valid approach, estimating the VECM structure is particularly relevant
in this application. First, it allows for more precise estimation with narrower confidence intervals, which is crucial
for a more credible uncertainty analysis when incorporating the methodology’s outcomes into climate science or
economic studies. Second, the coefficients of the long-run (level) relationships are of explicit interest, as they provide
information regarding the magnitude of amplification in the temperature distribution or are directly used to compute
physical quantities such as the climate sensitivity.
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from a balanced panel of stations with continuous observations from 1880 to 2021. Radiative

forcing series are gathered from the most recent version of the dataset developed by Hansen et al.

(2011). This dataset provides information on radiative forcing in units of watts per square meter

(W/m2) originating from various antrhopogenic and natural sources, including GHGs like CO2,

CH4, or N2O. Following Bennedsen et al. (2023), total radiative forcing (TRF) is decomposed into

natural forcing, from solar and volcanic activities, and anthropogenic forcing attributed to human

activities.

The methodology is implemented at three geographical scales: the Globe, the Northern Hemi-

sphere, and Europe.6 At these scales, the estimated quantiles represent temperatures at different

latitudes, and the results obtained are comparable to the predictions of the 1D-EBM. However,

the methodology is adaptable to more general settings with limited spatial variation. For instance,

if high-frequency data is available for a specific location, the unconditional distributional char-

acteristics of temperature can be estimated at a lower frequency, and the unconditional-quantile

VECM model remains a valid approach to quantify climate heterogeneity. In this scenario, the

results would characterize seasonal heterogeneity, as described by Balling et al. (1998), Vogelsang

and Franses (2005), Cohen et al. (2012), and Hillebrand and Proietti (2017). An example analysis

of Central England, using daily data, is provided to further illustrate the methodology’s flexibility.

A brief summary of the results is as follows. The evidence from a simple-parsimonious model

that incorporates temperature distributional characteristics solely, reveals significant interdepen-

dencies among different segments of the temperature distribution. The long-term unconditional

density forecasting exercise predicts that temperatures will continue to increase during the next

decades with the magnitude of the changes far from being homogeneous across the temperature

distribution. By integrating the radiative forcing variable into the analysis, I study how different

temperature quantiles respond to radiative forcing changes. For the Globe and the North Hemi-

sphere, empirical results suggest that the average temperature could rise by approximately 2.4◦C

with a doubling of CO2 concentrations. Substantial heterogeneity in the climate sensitivity across

the temperature distribution is found, with estimates exceeding 3.6◦C for the lower quantiles. Em-

pirical results are in line with both empirical evidence from the related literature and predictions

from large-scale climate models that consider climate heterogeneity.

The estimated models are used to produce several additional outcomes of practical inter-

6These scales of analysis are selected to ensure sufficient variation in latitude levels among the stations in the CRU
dataset. In principle, the analysis can be replicated at any continent, country, or city level, provided there is enough
cross-sectional or higher-frequency data to estimate the unconditional distributional characteristics over a reasonable
number of periods.
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est, including: i) unconditional long-term density forecasts of temperature based on the under-

lying dynamics of the data, ii) identification of distributional structural shocks and impulse-

response analysis, and iii) projections of the temperature distribution under hypothetical GHG

emissions/concentration scenarios derived from the Shared Socioeconomic Pathways (SSP) frame-

work. As discussed later in this introduction, an alternative to produce this type of results is

to use simulations from complex large-scale General Circulation Models. However, these mod-

els are highly non-linear, require large amounts of inputs data, are computationally expensive to

solve and heavily dependent on the initial conditions of the system. In contrast, the unconditional

quantile VECM achieves a desirable balance between a purely statistical multivariate approach

and the theoretical/structural model of the climate system, allowing the production of estimation

and forecasting/projection results and for the assessment of estimation uncertainty in a simpler

reduced-form procedure. Moreover, while most of the climate models produce projections for the

average temperature (considered as a sufficient statistic for the global climate), this proposal pro-

duces projections for the whole temperature distribution. It provides a wider understanding of

global warming dynamics, with significant implications for modeling and policy decisions. For ex-

ample, these outputs can be integrated into economic studies (e.g., damage analysis or Integrated

Assessment Modeling) to quantify the economic consequences of climate change, while explicitly

accounting for different forms of climate heterogeneity. This type of information is crucial to better

inform adaptation and mitigation policies at global and local scales.

Incorporating climate heterogeneity into economic/econometric modeling is crucial, given its

significant impact on the climate system dynamics and the implications for the economics of cli-

mate change. From a climate system perspective, climate heterogeneity triggers a series of global

responses with substantial environmental and ecological consequences. For instance, AA has led to

a considerable reduction in sea ice cover over the Arctic Pole (Simmonds, 2015; Kwok, 2018) and

has contributed to the continuous melting of the Greenland Ice Sheet that is responsible for approx-

imately 25% of the observed global sea level rise between 1993 and 2014 (Chen et al., 2017; You

et al., 2021). Furthermore, AA has accelerated permafrost7 degradation, which is expected to cause

widespread disturbances in terrestrial ecosystems, increase erosion, harm subsistence livelihoods,

and damage infrastructure (Vihma, 2014; Shepherd, 2016). Permafrost thawing will also release

GHGs, primarily CH4 and CO2 stored in organic frozen soils, leading to significant global feedback

effects (Kerr, 2010; Schaefer et al., 2014; Schuur et al., 2015). Beyond its environmental impacts for

the Arctic region, AA may also influence the frequency and duration of extreme climate events in

7Permafrost refers to the soil at or below the freezing point of water for two or more years. Permafrost regions
occupy about 24% of the exposed land surface of the Northern Hemisphere.
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mid-latitudes. A growing number of studies suggest that AA has contributed to an increase in the

frequency of severe cold winters, heatwaves, and precipitation/snowfall events (Tang et al., 2014;

Vihma, 2014; Francis and Vavrus, 2015; Wu et al., 2016; Zhang et al., 2020).

Apart from its importance for the climate system, understanding climate heterogeneity is also

crucial for the economics of climate change, and particularly, for the correct anticipation of local

damages and the optimality of climate policies. Regarding local damages, a growing number of

studies in Integrated Assessment Modeling propose climate heterogeneity as a potential cause of

the nowhere near uniform economic impacts of climate change (Krusell and Smith, 2022; Cruz

and Rossi-Hansberg, 2024; Desmet and Rossi-Hansberg, 2024). As the Globe warms with varying

warming trends across regions or seasons, some regions and industries suffer serious damages, while

others may benefit. Empirical evidence suggest that the regions that obtain potential benefits are

the cold ones (Dell et al., 2014; Burke et al., 2015; Hsiang et al., 2017; Acevedo et al., 2020; Nath

et al., 2024), precisely those that are warming at a faster rate.8 The consequences of non-uniform

seasonal local temperature changes are less studied in the empirical literature. A recent study by

Nguyen (2024) for the United States finds that higher winter temperature generates short lived

increases in the private sector employment growth, while higher summer temperature permanently

decreases it. These type of findings may extend to other outcomes such as natality/mortality, local

amenities, migration, or conflict.

Regarding climate policies, Brock and Xepapadeas (2017) introduces AA into an economic

model and explore its impact on the design of a carbon tax scheme. Using a two-box model,

where each box represents a region of the globe, Brock and Xepapadeas (2017) demonstrate that

ignoring AA in economic modeling may lead regulators to overestimate or underestimate the tax

on GHG emissions. The direction of the bias depends on the relationship between the marginal

damages from temperature increases in each box (region) and the parameters characterizing the

strength of AA. If marginal damages due to a temperature increase in the northern box exceed

marginal damages from a corresponding increase in the southern box, as is the case in practice,

then omitting the AA mechanism leads to underestimate the optimal tax. A related d’Autume

et al. (2016) discusses the optimal carbon taxation when there exists a local component to the

damage caused by global emissions.

The main message in this discussion is that climate heterogeneity is crucial for both climate

science and climate economics, and it must be incorporated into economic studies. Econometric

modeling of climate systems can contribute to this discussion by developing quantitative method-

8To provide a concrete example of the potential benefits of AA, Borgerson (2008) discusses that the loss of sea ice
may increase the access to Arctic fish, timber, and minerals, along with the opening of new sea routes in the North.
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ologies that effectively account for various forms of climate heterogeneity. This requires moving

beyond using the annual average temperature as a sufficient statistic for global climate change and

instead focusing on the entire temperature distribution (see Gadea and Gonzalo (2020) or Gadea

and Gonzalo (2023)). Combined with economic theory and data, this approach provides a better

understanding of climate dynamics and its consequences, enabling the production of more reliable

information to guide the design of efficient mitigation and adaptation strategies. This is precisely

what I aim to achieve in this paper with the proposal of the unconditional-quantile VECM as a

methodological alternative to empirically quantify different forms of climate heterogeneity.

This paper relates to several strands of literature. First, it complements and extends the

literature on the attribution and forecasting of climate change using observational data. In the last

decade, there has been a growing body of literature on the application of econometric time series

techniques to model the global climate system and the effects of human activity on climate change.

The choice of methodology often depends on how trends are modeled, specifically whether trends

are assumed to be stochastic (Kaufmann and Stern, 2002; Pretis, 2020; Bruns et al., 2020; Phillips

et al., 2020; Benati, 2023) or (possibly non-linear) deterministic (Gay-Garcia et al., 2009; Estrada

et al., 2013, 2021; Chen et al., 2023; McKitrick et al., 2023)—see Section 2 for a detailed review of

this group of literature. The methodology proposed in this paper is robust to the type of trends in

the data.

While most of the contributions in this area rely on 0D-EBMs and focus on the average tem-

perature response to changes in CO2 and other GHGs, recent studies like those by Gadea and

Gonzalo (2020), Estrada et al. (2021), Anderson et al. (2023), or Brock and Miller (2023) have

explored methodologies to study geographical heterogeneity in the climate dynamics. The current

paper aligns more closely with this latter group of contributions. Unlike Estrada et al. (2021) or

Anderson et al. (2023), which allow the climate sensitivity to be different across all units/locations,

my approach focusing on specific distributional characteristics of temperature is more aggregated

and provides a more robust forecasting framework. Compared to Brock and Miller (2023), the

unconditional-quantile VECM model allows dividing the Earth into more than two boxes (or re-

gions) offering a more detailed characterization of heterogeneity. The closest reference is Gadea and

Gonzalo (2020), who study the dynamics of the distributional characteristics of temperature using

individual linear trend models. In this paper I adopt a multivariate approach to jointly model the

dynamics of the whole temperature distribution in a VAR framework and include the effect of the

radiative forcing. Additionally, as previously discussed, the methodology extends its applicability

beyond traditional EBMs to contexts with seasonal rather than geographical variability.
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Second, this paper contributes to the literature on the estimation and testing of time-series

models with deterministic (and possibly stochastic) co-trending. Analogous to co-integration, co-

trending is a useful concept of co-movement in the presence of non-linear deterministic trends. Co-

trending study was initially motivated by the empirical evidence in Nelson and Plosser (1982), which

suggested that macroeconomic variables, initially perceived as unit root processes, are likely more

aligned with a non-linear trend-stationary hypothesis. Classical references analyzing common non-

linear deterministic time trends include Bierens (2000), Hatanaka (2000), Hatanaka and Yamada

(2003), and Guo and Shintani (2013). The methodology I propose uses the Guo and Shintani

(2013) procedure to determine the co-trending rank, defined as the number of co-trending vectors

when both stochastic and non-linear deterministic trends are present in a multivariate system. The

procedure selects the co-trending rank by minimizing the von Neumann criterion, exploiting the

fact that identifying the co-trending rank is equivalent to identifying three groups of eigenvalues of

the generalized von Neumann ratio.

Once the co-trending rank is established, and based on theory from climate models, the co-

trending vectors are estimated using the recent approach of Chen et al. (2022). Building on Phillips

(1998), Chen et al. (2022) propose a two-stage least squares (2SLS) procedure to estimate co-

trending slopes when both stochastic and deterministic trends are present. My contribution to this

literature is twofold. First, I demonstrate the existence of an error correction mechanism in the

presence of deterministic co-trending. Second, I propose the estimation of the VECM in a two-

step procedure (akin to the Engle-Granger approach in cointegration) and exploit the estimated

dynamics of model for complementary purposes such as computing physical parameters of interest,

producing conditional and unconditional forecasts, and identifying structural shocks.

Third, this paper is complementary to the climate science research that uses highly complex

climate models. In climate science, much research on the historical effects of anthropogenic GHGs

on global climate compares observed temperatures and other climatic variables with the outputs of

General Circulation Models (GCMs) (Barnett et al., 2005). GCMs are complex computer simula-

tion models based on mathematical equations representing various features of the Earth’s climate

system, including interactions between the atmosphere, oceans, land surface, and ice. These mod-

els are essential tools for studying the climate system and predicting future changes; their most

widely recognized application is the projection of future climate states under various scenarios of

increasing atmospheric CO2 (Lupo et al., 2013). Due to their complexity, GCMs are computation-

ally expensive to solve and heavily dependent on the initial conditions of the system. Moreover,

simulating these models require large amount of input data and a coupling of various submodels

(Taylor et al., 2012).
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Observational time-series studies and GCMs are complementary in a similar way to the comple-

mentarity in economics between Structural VAR (SVAR) methods and Dynamic Stochastic General

Equilibrium (DSGE) models. While DSGE models aim to provide a detailed description of all in-

teractions in the economy, SVAR models start with a plausible time-series representation of the

data and impose minimal restrictions to make meaningful inferences (Benati, 2023). Concretely, a

statistical multivariate approach entailing the estimation of a system capturing the dynamics and

the interaction of the relevant variables, often have a better forecasting record than theory-based

models (Coulombe and Göbel, 2021). In the context of the current research, the unconditional-

quantile VECM achieves a desirable balance between a purely statistical multivariate approach

and the theoretical/structural modeling of the climate system. The estimated model generates es-

timation and forecasting outputs by iterating a complete system of different equations in multiple

endogenous variables. These outputs are comparable to those from GCMs but are obtained in a

simpler, less time-consuming manner.

To illustrate this point, let’s consider the estimation of the climate sensitivity. In the GCMs

approach, the climate sensitivity is often determined by simulating a known radiative forcing change

(e.g., doubling CO2) and computing the resultant temperature change with respect to an initial

equilibrium (Knutti et al., 2017; Dong et al., 2021; Zhu et al., 2021). Recent estimates place

climate sensitivity likely between 2 and 5 ◦C, with the uncertainty reflecting a range of possible

outcomes depending on feedback strengths and interactions within the climate system. In a typical

observational study, the climate sensitivity is estimated from the long-run relationship between the

temperature distributional characteristics and the radiative forcing series. This involves estimating

a simple co-trending slope, with confidence intervals obtained from the asymptotic distribution of

the estimator.

For forecasts or scenario projections, climate scientists simulate GCMs assuming future paths

of emissions or concentration scenarios (e.g., Representative Concentration Pathways or Shared

Socioeconomic Pathways) and provide uncertainty measures by running the model multiple times

from slightly different initial conditions (Lupo et al., 2013; AR6-IPCC, 2021). With the proposed

unconditional-quantile VECM, I can perform a similar exercise using the estimated short- and

long-run dynamics of the data. The measure of uncertainty comes from the residual variance of

the model in the form of forecast uncertainty. An additional advantage of my methodology is that,

unlike most GCMs, it can provide climate sensitivity estimates and conditional projections for the

entire distribution of temperature, rather than just for the average.

Finally, this paper complements the literature on Integrated Assessment Models (IAMs), spe-

9



cially those models featuring certain level of geographical resolution. Two excellent recent reviews

on the practice and development of IAMs are provided by Hassler et al. (2024) and Fernández-

Villaverde et al. (2024). Beginning with Nordhaus (1993), IAMs combine standard economic theory

with key insights from climate science, and are essential tools for policymakers and researchers to

evaluate the economic impact of global warming and the optimality of different climate policies

(Fernández-Villaverde et al., 2024). The economy–climate interaction typically involves three in-

terdependent components: i) an economic module describing how production and consumption are

determined, ii) a climate module linking emissions from production to changes in global and/or

local temperatures, and iii) a damage module translating climate changes into output and produc-

tivity losses. The most recent IAMs feature a high level of spatial resolution, aiming to capture

the geographical heterogeneity observed in the physical and economic effects of climate change.

Relevant references from the neoclassical or the economic geography approach include Krusell and

Smith (2022), Cruz and Rossi-Hansberg (2024), and Desmet and Rossi-Hansberg (2024). IAMs are

predominantly quantitative, dynamic, non-statistical, with parameters set or calibrated to produce

plausible outputs.

The unconditional-quantile VECM connects to the practice of IAMs through the climate science

module. To model how atmospheric concentrations of CO2 and other GHGs influence the climate,

with global mean surface temperature as the primary variable of interest, IAM modelers typically

rely on climate emulators—simplified climate models that provide a realistic quantitative link be-

tween CO2 concentrations and global warming at low computational costs (Fernández-Villaverde

et al., 2024). These emulators need to be calibrated and evaluated to ensure that they reproduce

climate dynamics consistent with current climate science models (Folini et al., 2024). For exam-

ple, the global average temperature T̄t is determined by the stock of carbon in the atmosphere

St, T̄t = λ log(St/S̄)
log(2) , where S̄ is the pre-industrial stock of carbon and λ is the sensitivity of global

temperature to changes in the stock of atmospheric carbon. As discussed by Pindyck (2021), there

is considerable uncertainty over the true value of λ, but a typical calibrated value is 3. Rather than

relying on specific predetermined values, IAM practitioners can directly use the estimated climate

sensitivity for the average temperature obtained empirically through the unconditional-quantile

VECM. This estimate is accompanied by confidence bands constructed based on the residual vari-

ance of the model, which are useful for quantifying the effects of uncertainty. Similar to Hassler

et al. (2018), the upper and lower bounds of the confidence bands can be evaluated within the

structural model to assess changes in other quantities of interest, such as optimal taxes or welfare.

In the case of IAMs with spatial resolution, knowledge of regional temperatures is required

(Fernández-Villaverde et al., 2024; Desmet and Rossi-Hansberg, 2024). The regional temperatures
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at a specific location i, Tit, are inferred from the global average temperature without the need to

compute a local climate model, following a technique known as “statistical downscaling” (Tebaldi

and Arblaster, 2014). This technique assumes that the average temperature is a sufficient statistic

for local temperatures and proposes modeling Tit = f(T̄t)+ηit through statistical methods. A form

of ”statistical downscaling” is implicit in the unconditional-quantile VECM through co-trending

relationships between the global average temperature and the unconditional quantiles, which rep-

resent temperatures at different locations or latitudes. One of the outcomes of the methodology is

the estimation of that co-trending relationships, which provides information about amplification in

the temperature distribution, as well as quantile-dependent climate sensitivities. These estimates

can be integrated into the calibration of regional IAMs. Moreover, when the analysis is applied

on a specific location, the unconditional-quantile VECM can produce seasonal climate sensitivities,

which are generally difficult to obtain using traditional climate model emulators.

The remainder of the paper is organized as follows. Section 2 reviews the related literature on

the attribution and forecasting of global warming using historical data and discusses its key findings.

Section 3 introduces the basic physics of 0D and 1D EBMs. Section 4 establishes an equivalence

between a 1D-EBM and an unconditional-quantile restricted VECM. Section 5 outlines the Climate

Econometrics methodology, detailing estimation and testing methods used in this study. The results

of the empirical analysis, using CRU data for the Globe, Northern Hemisphere, and Europe, are

presented in Section 6. Section 7 discusses the main limitations of the methodology and proposes

several ideas for future research. Section 8 concludes.

2 Related Literature

This section presents a detailed revision of the literature on the attribution and forecasting of global

warming using historical data, the type of literature more closely related to this paper.

Existing studies in this domain typically implement time series methods to estimate the surface

temperature response to the radiative forcing from various climate drivers, including GHGs. A

critical aspect is the assumption about the nature of trends, that conditions the choice of models

suitable for this purpose.9 Starting with Kaufmann and Stern (2002) and Kaufmann et al. (2006),

a group of authors argue that global temperature and radiative forcing of GHGs contain stochastic

trends. These authors advocate for the use of cointegration procedures to test for basic hypotheses

regarding the relationship among the variables and to estimate physical parameters such as the cli-

9See McKitrick et al. (2023) and Gadea et al. (2024) for a discussion.
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mate sensitivity. Kaufmann and Stern (2002), for instance, obtain that doubling the pre-industrial

concentration of CO2 raises the long-run equilibrium temperature in the Northern Hemisphere be-

tween 2.3◦C and 3.5◦C, while for the Southern Hemisphere the estimated temperature sensitivity

vary from 1.7◦C to 2.2◦C. More recently, Pretis (2020) estimate a cointegrated VAR model of global

surface temperature anomalies, global ocean heat content anomalies, and global radiative forcing

from natural and anthropogenic forces. A set of restrictions on the cointegrating slopes and the

adjusting coefficients are imposed based on the underlying physics of the EBM. The resulting es-

timates indicate an equilibrium climate sensitivity ranging from 1.37◦C to 2.16◦C, and a transient

climate response varying from 1.24◦C to 1.38◦C.

Other contributions analyzing the relationship between average temperature and radiative forc-

ings using cointegration methods include Bruns et al. (2020), Phillips et al. (2020), and Benati

(2023). Bruns et al. (2020) shows that there exists a long-run equilibrium between surface tem-

perature and radiative forcing which represents the energy balance of the earth system. A further

long-run equilibrium exists between surface temperature and the accumulated deviations from the

energy balance, which represents the stock of heat of the earth system predominantly stored in the

ocean. It motivates the use of a multicointegrating I(2) model to account for the role of the ocean

in climate change dynamics. These authors find that the climate sensitivity is 2.8 °C and the rate

of adjustment to equilibrium is realistically slow in comparison to the I(1) cointegration models.

In the same direction, Benati (2023) argues that the I(1) cointegration models suffer from model

mis-specification and proposes a forecast exercise exploiting the cointegration between global tem-

perature anomalies for both the land and the ocean, and the radiative forcing assuming a common

I(2) component.

There are other authors who believe that temperatures are trend-stationary around a (possibly

non-linear) deterministic trend. Gao and Hawthorne (2006) and Gay-Garcia et al. (2009) argue

that temperature series are better characterized by a trend-stationary process with a smooth non-

linear time trend, or a linear trend with breaks. The assumption of deterministic trends is also

common in the climate analysis as inferred from the statistical procedures implemented by the

Intergovernmental Panel on Climate Change (IPCC) on its Sixth Assessment (AR6-IPCC, 2021)

and previous reports. The typical approach in this case is to apply co-trending statistical tests to

demonstrate that temperature and radiative forcing of GHGs in fact share a common deterministic

trend, as is the case of Estrada et al. (2013) or Estrada and Perron (2017). Alternatively, Chen

et al. (2023) consider the first differences of radiative forcing—that appear to be trend-stationary—

and establish its predictive association with the levels of temperature using Granger-causality tests.
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Methodological alternatives that are robust to the nature of trends have been implemented

recently, for example in Chen et al. (2022) and Bennedsen et al. (2023). Chen et al. (2022) introduces

a common features approach to test for common trends and to estimate long-run relationships

without conditioning on a particular type of trends. Building on Phillips (1998), these authors

propose an instrumental variable estimator for the co-trending slope between the radiative forcing of

GHGs and the average temperature, employing Legendre polynomials of time as instruments. Their

empirical analysis suggests a common trend between both series and estimates a climate sensitivity

of 1.41°C. Bennedsen et al. (2023), on the other hand, proposes a multivariate Gaussian state-space

representation of a two-component 0D-EBM, and estimate the model through maximum-likelihood

methods. The model is used to generate long-term global temperature projections under different

emissions/concentrations scenarios; the climate sensitivity is estimated at 3.63 °C.

The discussed literature implicitly relies on 0D-EBMs that establish a relationship between

global average temperature and the radiative forcing from GHGs. However, as previously dis-

cussed, an approach assuming global mean temperature as a sufficient statistic for climate change

is limited because it fails to account for the non-homogeneous nature of climate dynamics across

space and time. In fact, even though the phenomenon of AA is well established in climate science,

only few economic and econometric studies have incorporated its impacts. This paper complements

and extends the existing literature by introducing a time series methodology capable of accounting

for heterogeneity in climate dynamics, particularly in the association between the unconditional

distributional characteristics of temperature and radiative forcings. Building on a 1D-EBM and

assuming that the unconditional quantiles of temperature represent temperatures at different lat-

itudes (with the highest quantiles representing northern latitudes), the proposed approach is able

to capture climate heterogeneity in the form of non-homogeneous climate sensitivities across the

temperature distribution.

The link between a 1D-EBM and a VECM shares similarities with the contributions of Pretis

(2020) and Brock and Miller (2023). In Brock and Miller (2023), the authors approximate a

theoretical moist 1D-EBM with a two-box model and estimate in its VECM form. Although the two

studies are related, the econometric approach to modeling and estimation is completely different.

The proposal in the current paper allows for a more detailed characterization of the climate system

by including as many unconditional quantiles of temperature as desired; this can be seen as a

generalization of the two-box model to a model with more boxes. Moreover, the methodology can

be applied in contexts beyond the modeling of EBMs, as long as there is sufficient cross-sectional

or high-dimensional variability to estimate the distributional characteristics of temperature. For

example, it can be utilized for a specific region, such as Central England, using daily information.
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In this case, the quantiles of temperature no longer represent latitudes but rather temperatures at

different seasons.

Finally, some other recent contributions address geographical heterogeneity in the climate sen-

sitivity. Anderson et al. (2023) develops a dynamic varying-coefficient panel data model and uses it

to measure regional climate sensitivity. The average climate sensitivity is estimated to be around

3.7°C, but strong heterogeneity is found: in northern areas, the estimated sensitivity is above 5°C.

Estrada et al. (2021) study regional attribution of climate change by establishing the existence

of a common non-linear deterministic trend in regional temperatures and anthropogenic forcing.

The analysis is conducted by latitude belts, continents, and countries. Warming is found to be

widespread among different regions, with higher sensitivities being observed in high latitudes in

the Northern Hemisphere. These two papers conduct very detailed analyses of climate sensitivity,

providing estimates at the unit level. My approach focusing on the distributional characteristics of

temperature, although more aggregated, offers advantages for other purposes such as forecasting

and identification of structural shocks. The closest references to this paper are Gadea and Gonzalo

(2020) or Gadea and Gonzalo (2023), who study the dynamics of the distributional characteristics

of temperature using individual linear trend models. My contribution consists of adopting a mul-

tivariate approach to jointly model the dynamics of the whole temperature distribution in a VAR

framework and including the effect of the radiative forcing from GHGs, including CO2.

3 Energy Balance Models

EBMs are the simplest climate models used to understand and facilitate both analytical and numer-

ical studies of climate sensitivities. These models describe the change in temperatures as a function

of incoming and outgoing radiation, with the simplest models approximating climate through global

mean surface temperatures and aggregate radiative forcing.10 In the most elementary, 0D-EBM

(Budyko, 1969; Sellers, 1969), the average global temperature T̄t satisfies an ordinary differential

equation with dT̄t/dt determined by the balance between the incoming shortwave (solar) radiation

and the outgoing longwave (terrestrial) radiation emitted in response to the former. Net heat flux

is given by Zt = Ft−λT̄t, where the incoming heat radiation is represented by the effective radiative

forcing Ft, and the outgoing radiation is assumed to depend linearly on T̄t with slope λ. A 0D-EBM

is written as:

10EBMs are used within IAMs to model the climate response to different forcings from natural and anthropogenic
sources
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C
dT̄t

dt
= Ft − λT̄t, (1)

where C is a global thermal inertia or heat capacity coefficient.

The EBM in Equation (1) assumes that the entire Earth can be represented by a homogeneous

box and all of the energy balance predictions are based on global averages. Therefore, with this

type of models it is not possible to study geographical heterogeneity in the climate relationships.

1D-EBMs extend the framework by introducing spatial dependence in temperature equations. In a

simple 1D-EBM, temperature is modeled as a function of latitude, and heat is transported between

adjacent latitudes in the direction from the Equator to the poles. This allows for a more accurate

representation of climate dynamics and enables the study of processes like PA. Following Held and

Suarez (1974), at a given latitude θ, a 1D-EBM can be expressed as:

C(θ)
∂Tt(θ)

∂t
= [Ft − λ(θ)Tt(θ)] + γ(θ)[T̄t − Tt(θ)], (2)

where Tt(θ) is the surface temperature. The first term in the right-hand-side of Equation (2)

is the latitudinal net heat flux. The second term is the energy gained due to latitudinal transport,

which is assumed to be proportional to the difference between the temperature at latitude θ and

the average temperature. This transport term provides for interaction between latitudes in a very

simple way. γ is a measure of the efficiency of the model in transporting energy poleward.

The previous equation can be further generalized by assuming that deviations at a given latitude

predict the change of temperature in other latitudes in a diffusion process. The equation of interest

becomes:

C(θi)
∂Tt(θi)

∂t
= [Ft − λ(θi)Tt(θi)] + γ(θii)[T̄t − Tt(θi)] +

∑
j ̸=i

γ(θij)[T̄t − Tt(θj)], (3)

for i = 1, ..., I, where the energy balance at certain latitude θi depends on deviations in tem-

peratures at other latitudes—θj , i ̸= j—with respect to the average.

4 Equivalence Between a 1D-EBM and an Unconditional-Quantile

Vector Error Correction Model

Pretis (2020) demonstrates that a 0D-EBM with two layers is equivalent to an econometric coin-
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tegrated system and can be estimated in discrete time. More recently, Brock and Miller (2023)

shows that a moist 1D-EBM can be approximated by a two-box model, and relates it to a restricted

vector error correction model which can be estimated using well-known econometric methods. This

section follows a similar line of reasoning. The objective is to establish an equivalence between the

1D-EBM in Equation (3) and a VAR model in its error correction form, where the unconditional

distributional characteristics of temperature and the radiative forcing from GHGs are incorporated

into the multivariate system.

Lets start by assuming that at global or hemispheric scales, the temperature unconditional

distributional characteristics represent temperatures at different locations or latitudes. Colder

temperatures —at lower quantiles— are associated to northern locations whereas hotter tempera-

tures —at upper quantiles— correspond to locations closer to the Equator.11 Therefore, for a given

local temperature Tt(θi) it is possible to find an equivalent temperature quantile Qt(τi). If a set of

i = 1, 2, ..., I quantiles are observed, then the quantile version of system (3) is written as follows:

C(τi)
∂Qt(τi)

∂t
= [Ft − λ(τi)Qt(τi)] + γ(τii)[T̄t −Qt(τi)] +

∑
j ̸=i

γ(τij)[T̄t −Qt(τj)], (4)

for i, j = 1, ..., J and t = 1, ..., T . For illustration, when J = 2 the system is given by:

C(τ1)
∂Qt(τ1)

∂t
= [Ft − λ(τ1)Qt(τ1)] + γ(τ11)[T̄t −Qt(τ1)] + γ(τ12)[T̄t −Qt(τ2)], (5)

C(τ2)
∂Qt(τ2)

∂t
= [Ft − λ(τ2)Qt(τ2)] + γ(τ21)[T̄t −Qt(τ1)] + γ(τ22)[T̄t −Qt(τ2)]. (6)

Assuming stochastic processes and relying on a simple first-order Euler-Maruyama discrete time

approximation with ∂Qt(τi)
∂t ≈ ∆Qt(τi) = Qt(τi) −Qt−1(τi), the system describing the 1D-EBM in

discrete time can be expressed as:

∆Qt(τi) =
1

C(τi)
[Ft−1−λ(τi)Qt−1(τi)]+

γ(τii)

C(τi)
[T̄t−1−Qt−1(τi)]+

∑
j ̸=i

γ(τij)

C(τi)
[T̄t−1−Qt−1(τj)]+ut(τi),

(7)

for i, j = 1, ..., J and t = 1, ..., T , where ut(τi) denote stationary error terms for each τi .

Note that each equation has the form of a vector autorregresion model in its error correction

form with restrictions, where the changes in the unconditional quantiles of temperature adjusts to

two different types of long-run equilibrium relationships: the first, [Ft−λ(τi)Qt(τi)], correspond to

the latitudinal net heat flux, while relations of the form [T̄t −Qt(τi)] characterize latitudinal heat

11See Appendix A for related evidence.
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transport. The next section introduces a methodology to estimate the system using time series

methods.

5 Climate Econometrics Methodology

5.1 Temperature Distributional Characteristics

A time series analysis framework similar to that used in Gadea and Gonzalo (2020) and Gadea and

Gonzalo (2023) is adopted. Specifically, the temperature is treated as a functional stochastic process

denoted by T = (Tt(ω), t ∈ T ), where T is an interval in R, defined on a probability space (Ω,F , P ).

For each ω ∈ Ω, the function t → Tt(ω) belongs to some function space G. The function space

G is equipped with a scalar product, a norm, and a Borel σ-algebra denoted as BG. In modeling

the temperature process, one can either consider the entire sequence of functions in G, such as the

sequence of state densities (f1(ω), ...., fT (ω)), or focus on specific characteristics (Ct(ω)) such as the

mean, variance, and quantiles of the states. These characteristics can be considered as time series

objects and existing econometric tools for modeling, inference, or forecasting can be applied on

them. In this research, the latter approach is adopted. To estimate the unconditional quantiles of

temperature, it is assumed the availability of a sufficiently high number N of cross-sectional units

(temperature stations) or higher frequency observations (daily temperatures) at each time period

t. Under certain regularity conditions, it is possible to consistently estimate these unconditional

quantiles. From now on, Qt(τi) denotes the estimated unconditional distributional quantile which

is the object at hand in the empirical analysis.

5.2 Estimation and Testing of Co-trending Relationships

Let Zt denote a m-variate time series vector for t = 1, 2, ..., T . Elements in Zt are non-stationary

and both stochastic and non-linear deterministic trends are allowed. Guo and Shintani (2013)

propose a consistent selection procedure of two types of co-trending ranks: r1, the number of

linearly independent vectors that eliminate both stochastic and deterministic trends at the same

time; and r2, the number of linearly independent vectors that eliminate the deterministic but not

the stochastic trends. r = r1+ r2 is called the weak co-trending rank, while the number of common

non-linear deterministic trends corresponds to m− r.

The procedure selects the co-trending rank by minimizing a von Neumann criterion in a multi-

variate framework. Concretely, let λ̂1 ≥ ... ≥ λ̂m denote the eigenvalues of S−1
11 S00, where
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S11 = T−1
T∑
t=1

ZtZ
′
t, S00 = T−1

T∑
t=2

∆Zt∆Z ′
t. (8)

A “paired” procedure independently selects r and r1 by minimizing each of the folowing expres-

sions:

V N1(r1) = −
r1∑
i=1

λ̂i + f(r1)
CT

T
, V N2(r) = −

r∑
i=1

λ̂i + f(r)
C ′
T

T 2
, (9)

where f(s), CT , and C ′
T are elements of a penalty function analogous to the ones used in

the information criteria literature. A “joint” procedure simultaneously determines r and r1 by

minimising:

V N1(r1, r) = −Tα
r1∑
i=1

λ̂i −
r∑

i=r1+1

λ̂i + f(r1)
CT

T
+ f(r)

C ′
T

T 2
, (10)

where 0 < α < 1. Both procedures are consistent in selecting the co-trending rank without

specifying a parametric model for trends that belong to a certain class of non-linear function

including breaks in the trend function and smooth transitions. For large enough samples the two

methods yield similar results.

The knowledge of the co-trending rank offers useful prior information for the full estimation

of the multivariate system since it determines the reduced rank structure of the coefficient matrix

on non-linear trend functions. Once the co-trending rank is established, and based on insights

from the theoretical 1D-EBMs, the next step in the methodology is to estimate the co-trending

vectors using a methodology robust to the type of trends in the data. Consider a scenario where

the econometrician observes two trending series of the form:

yt = ft + ut, (11)

xt = gt + vt, (12)

for t = 1, 2, ...., T , where ft and gt are trending components, and ut and vt are ergodic stationary

disturbances. The trending components are not assumed to be of a particular nature, and therefore,

can be linear or a finite polynomial of time, integrated processes of order 1 or larger, piecewise linear,

or even combination of these forms. Two different definitions of co-trending are proposed. Strong

co-trending implies that the difference yt − xt is a non-trending process. For stochastic trends,
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it implies cointegration with a cointegrating vector (1,−1). For deterministic case, it implies that

both series share the same type of trend and that the slopes are equal for all t. This type of co-

trending was studied in Gadea and Gonzalo (2023) to test for PA.12 A weaker form of co-trending

assumes that if the trends in yt and xt are common, then there exists exactly one β0 such that

there is no trend in the linear combination yt − β0xt. If that is the case, then the series satisfy

the Weak co-trending condition. For stochastic trends, it implies cointegration with a general

cointegration vector (1,−β). For deterministic trends, it means that the trends in the series are of

the same type but differing rates of change are allowed. For example, if yt and xt both are linearly

trending but their slopes are different, then the weak co-trending condition is satisfied, but the

strong co-trending is not. The Guo and Shintani (2013) procedure allows for this second type of

co-trending.

Chen et al. (2022) propose a method to estimate and test for weak co-trending in bivariate

relationships. Consider the pseudo-structural model:

yt = α0 + β0xt + et, (13)

xt = gt + vt, (14)

where gt is a trend process. This is a pseudo-structural model because et and vt are correlated,

and hence the right-hand-side variable in the first equation is endogenous. The authors propose

an estimation procedure for β0 that use powers of (t/T ) as legitimate instruments to solve the

endogeneity issue in an instrumental variable (IV) framework. The idea is that polynomial functions

in time are relevant predictors of the trending variable yt but are uncorrelated with the non-trending

term et, regardless of whether the trend gt is deterministic or stochastic.13

Legendre Polynomials of (t/T ) are employed as instruments and the estimation of β0 is obtained

using two-stages least squares (2SLS). Let ϕj(τt) defined on [0, 1] for τt = t/T take the form:

ϕj(τt) =
√

2j + 1

j∑
s=0

(−1)j+s

(
j

s

)(
j + s

s

)
τ st , (15)

j = 0, 1, 2, .... In matrix form, y = (y1, ..., yT )
′, e = (e1, ..., eT )

′ with et = yt − α0 − β0xt,

γ0 = (α0, β0)
′, and

12To test for the co-trending vector (1,−1), Gadea and Gonzalo (2023) implemented a trend test on the series
wt = yt − xt. If a trend is detected in wt, then the two series do not satisfy the strong co-trending condition.

13The rationale of the procedure is based on Phillips (1998), who shows that any generic trending process can be
validly represented using trending regressors that are independent to the process.
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X =


1 x1

... ...

1 xT

 , Φ =


1 ϕ1(τ1) ... ϕp(τ1)

... ...

1 ϕ1(τT ) ... ϕp(τT )

 , (16)

where p is a integer greater than 2. The 2SLS estimator of γ0 is written as follows:

γ̂2SLS = (α̂2SLS , β̂2SLS)
′ = (X ′Φ(Φ′Φ)−1Φ′X)−1X ′Φ(Φ′Φ)−1Φ′y. (17)

Under certain regularity assumptions, the authors establish the asymptotic properties of the

2SLS estimator. Concretely, as T → ∞, the estimator satisfies:

(U ′U)1/2(γ̂2SLS − γ0) →D N(0, λ2
eI(2)), (18)

where U = W 1/2Φ′X, W = (Φ′Φ)−1 and λ2
e is the long-run variance of et. The rate of conver-

gence of the estimator depends on a deterministic matrix DT ensuring D−1
T U ′UD−1

T →D ξ, with the

assumption that such matrix exists and ∥DT ∥22 → ∞ as T → ∞, (D−1
T U ′UD−1

T , D−1
T U ′ε) →D (ξ, η),

where ξ is a matrix of positive random variables and η is a 2-dimensional mixture normal radon

variable N(0, ξλ2
e) with E∥ξ∥2 < ∞.

If the variables share a common trend, the residuals of the co-trending regression should contain

no trend and will be uncorrelated with the instruments. A natural test for the null of a common

trend among the variables is equivalent to an over-identification test on the residuals of the 2SLS

procedure. Alternatively, co-trending can be tested using the trend test of Gadea and Gonzalo

(2020) that is useful to detect any type of trend in the residuals of the co-trending regressions.

5.3 Estimation of the Unconditional-Quantile Vector Error Correction Model

The estimation of the restricted unconditional-quantile VECM model is conducted in two steps. In

the first step, the co-trending relationships implied by the model are estimated following the proce-

dure by Chen et al. (2022) described in the previous subsection. Specifically, the slope-coefficients

for each bivariate co-trending equation involving Ft and a given distributional characteristic of

temperature (Qt(τi), i = 1, ..., J and T̄t) are estimated, where Ft represents the radiative forcing.

For co-trending relationships involving T̄t and Qt(τi), i = 1, ..., J , note that Equation (7) implies a

strong co-trending condition. However, the data suggest that the differences between the average

temperature and the quantiles are trending processes, which is a consequence of heterogeneous
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warming rates along the temperature distribution. Therefore, this condition is relaxed and the

co-trending vector is allowed to be different from (1,−1). This ensures that the terms in the right-

hand-side of Equation (7) are all non-trending. In other words, co-trending coefficients β(τi) in

equations of the form Qt(τi) = β0(τi) + β(τi)T̄t + ut(τi) are also estimated. After estimating each

co-trending equation, the associated vector of residuals are computed.

In the second step, the short-run dynamics of the unconditional-quantile VECM in Equation

(7) are estimated.14 Let Zt = [Qt(τ1), ..., Qt(τi), T̄t, Ft]
′. The procedure involves regressing the first

difference of Zt, denoted as ∆Zt, on the lagged residuals of the co-trending equations and lags of

∆Zt. However, a normalization is necessary to avoid collinearity among the co-trending vectors.

Notice that in a system with i = 3 and 5 variables, 7 co-trending relationships are estimated and

tested. To maintain consistency with the maximum co-trending rank, only the lagged residuals of

the co-trending equations relating Qt(τi) and T̄t, along with the lagged co-trending residuals of the

relationship between Ft and T̄t, are included. In simpler terms (omitting the lags of ∆Xt from the

specification), equations of the following form are estimated individually through OLS:

∆Qt(τi) =
1

C(τi)
[Ft−1 − λ̄T̄t−1(τi)]−

γ(τii)

C(τi)
[Qt−1(τi)− β̂(τi)T̄t−1)]−∑

j ̸=i

γ(τij)

C(τi)
[Qt−1(τj)− β̂(τj)T̄t] + vt(τi),

(19)

for i = 1, ..., J and t = 1, ..., T . The parameters to be estimated are δ0i = 1
C(τi)

, δii = γ(τii)
C(τi)

,

and δij =
γ(τij)
C(τi)

, which represent the adjustment parameters. The terms λ̂(τi) and β̂(τi) are the

estimated parameters obtained from the first step. Similar equations are estimated for ∆T̄t and

∆Ft.

The analysis presented in this document focuses on three specific geographical units: the Globe,

the North Hemisphere, and Europe. Importantly, the methodology can be applied to other situa-

tions provided that there is a sufficient amount of cross-sectional or higher frequency data available

to estimate temperature unconditional quantiles. For example, one could choose a specific region

such as Central England and utilize daily temperature data to estimate the annual temperature

distribution. By applying Equation (19) to this dataset, it would be possible to analyze the dynamic

relationships within the temperature distribution and examine the co-movements and dependen-

cies among different quantiles. However, the interpretation of the results would need to be adapted

because there is no geographical dimension to exploit and heat transport across latitudes is not

longer a valid mechanism. Instead, the focus would be on capturing seasonal interdependencies or

14Section 5.4 below shows how an error correction mechanism is obtained in a model with deterministic co-trending.
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day-time heterogeneity. Appendix B illustrates this aspect by the application of the methodology

to daily mean-temperature observations at Central England.

5.4 Error Correction in a Co-trending Model

This section shows how an error correction mechanism emerges in a model with deterministic

co-trending. Consider an initial bivariate model similar to that in Chen et al. (2022). Define:

yt = βxt + ut, ut = ρut−1 + et, ∆yt = β∆xt +∆ut, (20)

xt = gt + ϵt, ϵt = αut + vt, ∆xt = [gt − gt−1] + ∆ϵt. (21)

where the endogeneity in this pseudo-structural model originates from the correlation between

ϵt and ut. Since ∆ut = (ρ − 1)ut−1 + et, ∆ϵt = α∆ut + ∆vt = α((ρ − 1)ut−1 + et) + ∆vt,

ut−1 = yt−1 − βxt−1, it is possible to write ∆yt and ∆xt as:

∆yt = β[gt − gt−1] + (ρ− 1)(1 + βα)(yt−1 − βxt−1) + (βα+ 1)et + β∆vt, (22)

∆xt = [gt − gt−1] + α(ρ− 1)(yt−1 − βxt−1) + αet +∆vt. (23)

Notice that under the assumed structure for ϵt, both equations adjust to the past deviations from

the long-run relationship between the two variables, (yt−1 − βxt−1) and the stochastic terms are

I(0). The first term, gt − gt−1, generally depends on t. If gt is a linear trend, then it becomes a

constant. In fact, for a linear-trend model with xt = γ0 + γ1t+ ϵt, it is possible to write:

∆yt = β(γ1) + (ρ− 1)(1 + βα)(yt−1 − βxt−1) + (βα+ 1)et + β∆vt, (24)

∆yt = C0 + C1(yt−1 − βxt−1) + [(βα+ 1)et + β∆vt], (25)

and similarly:

∆xt = γ1 + α(ρ− 1)(yt−1 − βxt−1) + αet +∆vt, (26)

∆xt = C2 + C3(yt−1 − βxt−1) + [αet +∆vt]. (27)

More generally, consider the parametric co-trending model in Hatanaka and Yamada (2003),

with a k-variate time series yt = (y1t, ..., ykt)
′ generated by:

yt = gt + ut, t = 1, ..., T, (28)
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where gt = (g1t, ..., gky)
′ is a non-stochastic trend component and ut = (u1t, ..., ukt)

′ is a stochastic

component with ∆ut = C(L)ϵt =
∑∞

j=0Cjϵt−j , C0 = Ik,
∑∞

j=0 j
2||Cj || < ∞, ϵt is iid with zero

mean and positive definite covariance matrix Σϵ,ϵ. This assumption implies that ut contains at

least one stochastic trend , unless C(1) = 0. To rule-out stochastic trends, I assume C(1) = 0 so

that all elements in ut are I(0) stationary random variables.

Assumption 2.1 in Guo and Shintani (2013) restricts the class of trends in gt and the co-

trending structure among its elements. A general class of trends in gt is allowed as long as the

trends do not diverge faster than a linear trend in the following sense: d = limT→∞ T−2
∑T

i=1 gt

and D = limT→∞ T−3
∑T

i=1 gtg
′
t exist, all elements in the main diagonal of D are non-zero, and

T−3
∑T

i=1 gtg
′
t−D = O(T−1/2). Linear trends, piecewise linear trends, or smooth transition trends

are allowed. Additionally, assume a co-trending structure with r co-trending vectors that eliminate

deterministic trends in the absence of stochastic trends. Define B as a k×r matrix collecting those

co-trending vectors and assume B′D = 0. Assume there exists a k × (k − r) matrix B⊥ such that

B′
⊥GB⊥ is of full rank.

Under these assumptions, and following Hatanaka and Yamada (2003), the first difference of

the trend component can be written as:

∆gt = AB′gt−1 +MhT,t, (29)

where A and B are k × r full column rank matrices, r being the co-trending rank, M is an k ×m

matrix satisfying m ≥ k − r, and hT,t = [1, I(t > [b1T ]), ..., I(t > [bm−1T ])]
′ with break functions

bj ’s satisfying 0 < b1 < ... < bm−1 < 1. Notice that an error correction form for the deterministic

component gt is established, with the the second part of Equation 29 representing non-linearities

in the form of breaks that may appear in the first difference of gt. The Guo and Shintani (2013)

approach allows for pinning-down the dimensions of A and B trough the selection of the co-trending

rank r, while the climate theory from 1D-EBMs combined with the methodology of Chen et al.

(2022) allows for inference regarding the structure of B. Non-linearities in hT,t can be properly

accounted for by adding a trend-component in the equation of the VECM or imposing a sufficient

number of lags to capture properly the underlying dynamics.
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6 Empirical Analysis

6.1 Data

Temperature. Station-level temperature data is obtained from the latest version of the Had-

CRUT5 dataset (Morice et al., 2021), jointly developed by the Climatic Research Unit (CRU)

at the University of East Anglia and the Hadley Centre at the UK Met Office.15 For land re-

gions across the globe, this dataset compiles monthly-mean temperatures from a network of 10,000

weather stations, spanning the period from 1850 to the present. Data coverage is denser over the

more populated regions, particularly, the United States, southern Canada, Europe, and Japan. In

contrast, coverage is more limited over the interior of South America and Africa, as well as the

Antarctica.

A limitation of this dataset is that the number of observed stations varies from year to year.

To address the potential statistical implications arising from this imbalance, the distributional

characteristics of interest are estimated using only those stations-month units that have complete

observations throughout the entire sample period. Concretely, a station-month unit is included

if the station has continuous observations for that month throughout the sample period.16 The

effective number of stations-month units used is 1.263. Utilizing the cross-sectional variation across

different locations, the annual unconditional distributional characteristics are estimated following

the procedure in Section 5.1. Figure 2 presents the estimated quantile series for the Globe, the

Northern Hemisphere, and Europe. Appendix A provides evidence suggesting that these uncondi-

tional quantiles, at the global scale, represent temperatures at different latitudes.

Radiative forcing. The latest version of the effective radiative forcing dataset developed by

Hansen et al. (2011) is used. This dataset provides information on radiative forcing in units of watts

per square meter (W/m2) originating from various sources, including greenhouse gases (CO2, CH4,

CFCs, N2O, O3), changes in land surface, solar irradiance, and volcanic activity. Following the

approach of Bennedsen et al. (2023), total radiative forcing (TRF) can be decomposed into natural

forcing, which arises from solar and volcanic influences, and anthropogenic forcing attributed to

human activities. By examining the corresponding graph in Figure 2, a clear upward trend in the

TRF is observed. Notably, this trend is predominantly driven by anthropogenic sources, particularly

atmospheric CO2 emissions.

15Dataset accessible at the following URL: https://crudata.uea.ac.uk/cru/data/temperature/.
16An alternative approach involves computing the annual temperature for each station by averaging its monthly

observations. Empirical results are robust to both methods.
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Figure 2: Temperature distributional characteristics (Globe, North Hemisphere, and Europe) and
radiative forcing from different sources
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Table 1: ADF tests for unit roots

Temperature

Characteristic
Globe North Hemisphere Europe

Test-statistic p-value Test-statistic p-value Test-statistic p-value

Qt(0.05) -10.3438 0.0000 -10.3936 0.0000 -9.8402 0.0000
Qt(0.10) -9.7128 0.0000 -9.6863 0.0000 -9.6418 0.0000
Qt(0.25) -10.3506 0.0000 -10.2948 0.0000 -10.6979 0.0000
Qt(0.50) -4.6258 0.0014 -4.3464 0.0036 -10.9592 0.0000
Qt(0.75) -2.1158 0.5321 -2.2124 0.4786 -6.3808 0.0000
Qt(0.90) -3.9051 0.0143 -3.9956 0.0109 -3.7950 0.0196
Qt(0.95) -8.8098 0.0000 -9.3037 0.0000 -3.6483 0.0294

Radiative Forcing

Source
Levels First differences Second differences

Test-statistic p-value Test-statistic p-value Test-statistic p-value

Total (TRF) -4.6950 0.0011 -11.6801 0.0000 -9.2650 0.0000
CO2 2.9746 1.0000 -3.5256 0.0406 -13.8463 0.0000

Anthropogenic -0.0589 0.9951 -2.9437 0.1523 -13.0928 0.0000
Natural -6.9410 0.0000 -11.6499 0.0000 -9.2705 0.0000

Notes: Test-statistics and p-values of the ADF-tests for unit roots. Intercept and trend included in the test-equation. Lags selected using the
BIC criterion.

6.2 Unit Roots

Augmented Dickey-Fuller (ADF) tests are implemented as an attempt to determine the nature of

the trends in the temperature and radiative forcing data. The results are presented in Table 1.

Based on the test-statistics and p-values, the evidence suggests that the unconditional quantiles of

temperature do not contain unit roots but instead follow trend-stationary processes. This evidence

aligns with the strand of literature arguing for the existence of deterministic trends, see Gay-Garcia

et al. (2009) and Gadea et al. (2024) for a discussion. The only exception is Qt(0.75) in the Globe

and North Hemisphere, where the null hypothesis of the test cannot be rejected perhaps due to the

existence of a more prominent structural break that bias the ADF test towards the non-rejection

area. Regarding the radiative forcing series, different orders of integration are detected. Results

indicate that the natural and total forcing variables in levels do not contain unit roots. In contrast,

anthropogenic and CO2 forcing appear to be integrated of order 2, I(2). Pretis and Hendry (2013)

discusses the challenges in establishing the order of integration of CO2 concentrations due to the

pooling of different measurement regimes. Before 1958, CO2 concentrations were inferred from ice

drilling, and it is only from 1959 onwards that this variable started to be measured with instruments.

This shift can potentially influence the conclusion of the ADF tests.
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Table 2: Testing for trends in distributional characteristics

Characteristic
Globe North Hemisphere Europe

Test-statistic p-value Test-statistic p-value Test-statistic p-value

Qt(0.05) 0.0172 0.0000 0.0173 0.0000 0.0175 0.0000
Qt(0.10) 0.0150 0.0000 0.0151 0.0000 0.0153 0.0000
Qt(0.25) 0.0122 0.0000 0.0121 0.0000 0.0129 0.0000
Qt(0.50) 0.0096 0.0000 0.0097 0.0000 0.0127 0.0000
Qt(0.75) 0.0118 0.0000 0.0114 0.0000 0.0103 0.0000
Qt(0.90) 0.0082 0.0000 0.0083 0.0000 0.0142 0.0000
Qt(0.95) 0.0074 0.0000 0.0074 0.0000 0.0148 0.0000
Mean 0.0112 0.0000 0.0112 0.0000 0.0129 0.0000

Notes: Annual distributional characteristics estimated using the cross-sectional temperature distribution at each year from 1880 to 2021. Test-
statistics and p-values correspond to a significance test for the trend-slope in a regression of the distributional characteristic on a constant
and a linear trend, using HAC standard-errors.

6.3 Testing for Trends in the Temperature Distribution

Gadea and Gonzalo (2020) propose a simple robust trend-test to detect the existence of an unknown

trend component (deterministic or stochastic) in the unconditional distributional characteristics of

global temperature. The test involves estimating an OLS regression of the corresponding distri-

butional characteristic on a linear trend, and testing the significance of the slope coefficient using

HAC standard errors. Table 2 reports the slope coefficients and corresponding p-values for the null

of no-trend. The test identifies an increasing trend in all distributional characteristics of interest.

Notably, for the Globe and North Hemisphere, the trend slopes (perceived as linear approximations

to the potentially non-linear trend component) are stronger in the lower quantiles compared to the

mean, median, and upper quantiles. This is consistent with the evidence in Serreze et al. (2009),

Screen and Simmonds (2010) or Smith et al. (2019) regarding trends in the Arctic being about

twice the global average as signal of AA. In the case of Europe, the global warming dynamics seem

more uniform, although the largest trend slope is estimated for Qt(0.05).

This section is descriptive and serves as a preliminary analysis of heterogeneity in the trend tem-

perature dynamics. For a more comprehensive “univariate” approach to characterizing, measuring,

and testing the existence of climate change heterogeneity, refer to Gadea and Gonzalo (2023).

6.4 A Model for the Unconditional Distributional Characteristics of Tempera-

ture

In this section, a multivariate model for the mean and the unconditional quantiles of temper-

ature is analyzed. Define the vector Zt = [Qt(τ1), ..., Qt(τk), T̄t]
′. This initial model aims to
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capture the interaction between different parts of the temperature distribution without condi-

tioning on the radiative forcing variable. From a 1D-EBM perspective, such type of interactions

may arise due to heat transport across latitudes. A parsimonious system comprising four series,

Zt = [Qt(0.05), Qt(0.50), Qt(0.95), T̄t]
′, is initially considered. The model can be trivially expanded

to include more unconditional quantile series, see Appendix D.

6.4.1 Testing for the co-trending rank

As described in Section 6.3, the elements of Zt exhibit an upward trend. ADF-tests indicates

that these trends are of deterministic nature. To establish co-trending in the sense of by Guo

and Shintani (2013), their model-free co-trending rank selection procedure is implemented. For all

geographical scales (Globe, North Hemisphere, and Europe), the procedure identifies a co-trending

rank of 3. In a vector of 4 variables, it implies the existence of 1 common (possibly non-linear)

deterministic trend. This information, together with the equations from the 1D-EBM, provides

useful guidance for the estimation of a restricted version of the VECM in Equation (19).

6.4.2 Estimation of co-trending vectors

From the 1D-EBM in Equation (2), the energy gained due to latitudinal transport is assumed to

be proportional to the difference between the temperature at a given latitude and the average tem-

perature. Due to the heterogeneity in individual trend-slopes across the temperature distribution

(see Table 2), these differences are trending processes and each pair of series do not satisfy the

strong co-trending condition.17 Thus, for relations of the form [T̄t − Qt(τi)], instead of enforcing

a co-trending vector (1,−1), the co-trending vector is allowed to be of the form (1,−β(τi)), where

β(τi) is estimated using the approach of Chen et al. (2022).

The estimated co-trending slopes are reported in Table 3. Across all geographical scales, the

estimated β̂(τi)-values are statistically significant at the 1% level. For both the Globe and the

North Hemisphere, β̂(0.05) exceeds 1, whereas β̂(0.95) falls below 1. This observation aligns with

the expected pattern of accelerated warming at northern latitudes with respect to the average, a

phenomenon consistent with the AA effect. In the case of Europe, the variability is comparatively

lower with the strongest co-trending coefficients estimated at the tails of the temperature distribu-

tion. In all cases, the null hypothesis of a common trend cannot be rejected at a 5% significance

level and it is concluded that each pair of series share a common —deterministic and/or stochastic—

17The trend-test of Gadea and Gonzalo (2020) is applied to the differences of each unconditional quantile with
respect to the mean and, in all cases, the null of no-trend is strongly rejected.
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Table 3: Co-trending slopes of relationships between unconditional quantiles and the average tem-
perature

Slope
Globe North Hemisphere Europe

Estimate Cot-test Estimate Cot-test Estimate Cot-test

β(0.05) 1.5310*** 0.9026 1.5283*** 0.8755 1.3975*** 0.9053
(0.1529) (0.1503) (0.2109)

β(0.50) 0.8353*** 0.4198 0.8496*** 0.4536 0.9253*** 0.1556
(0.0482) (0.0463) (0.0745)

β(0.95) 0.6677*** 0.0876 0.6536*** 0.2486 1.2137*** 0.1987
(0.0473) (0.0478) (0.0953)

Notes: Column Estimate correspond to the estimated co-trending slope—of the quantile with respect to the average temperature— and its
standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot − test reports the
p-value of the test for common-trends.

trend.

The estimation of the co-trending vectors presented in this subsection offers an alternative way

of quantifying the degree of amplification in the temperature distribution relative to the average.

In Gadea and Gonzalo (2023), the same objective is achieved by testing for the presence of trends

in the differences between the respective quantile and the mean temperature. Both approaches

are equivalent. The procedure presented here is also related to the “statistical downscaling” tech-

nique used in climate science to infer local temperatures, considering the average temperature as

a sufficient statistic for the global climate Tebaldi and Arblaster (2014). Estimated co-trending

vectors and confidence bands can be incorporated into IAM practice for an “empirically-guided”

calibration and uncertainty analysis.

6.4.3 Estimation of the error correction model

A version of the VECM in Equation (19) omitting the radiative forcing variable is estimated.

Specifically, the first difference of Zt, ∆Zt, is regressed on the lagged residuals derived from the

co-trending equations discussed in the previous section, alongside ∆Zt−1.
18 This two-step proce-

dure mirrors the approach of Engle and Granger (1987) for estimating VECM within cointegrated

systems. Table 4 reports the coefficients associated to the lagged co-trending residuals, which are

informative about the adjustment rate of each dependent variable to deviations from the long-run

equilibrium.19 Notice that for all geographical scales, the first differences of the unconditional

quantiles adjust to their own previous deviations from its long-run equilibrium with respect to the

18Lag-lenght selected using the BIC and a general to particular approach.
19The the sort-run dynamics coefficients are omitted to facilitate readability.
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average temperature. For the Globe and the North Hemisphere, the rate of adjustment is slower at

the tails of the temperature distribution and all equations adjust to the stationary (non-trending)

deviations of Qt(0.95) from the mean. In contrast, for Europe, the rate of adjustment decreases

with the quantile level, and there is less dependence on the stationary deviations of Qt(0.95) from

the average.

6.4.4 Long-term density forecasts

For forecasting purposes, the VAR form of the estimated VECM is conveniently used to generate

h-step unconditional density forecasts at origin t with minimal MSE, see chapters 6 and 7 in

Lütkepohl (2005). The forecast horizon extends up to 2100, a time-frame commonly used to

assess and project climate change dynamics. Prediction graphs, alongside their respective 95%

confidence bands, are presented in Figures 3, 4, and 5. The forecasted change in each distributional

characteristic reported in Table 5 is computed by comparing the average of the series during the

periods 1880-1900 and 1961-1990 to the unconditional point forecast at year 2100 (h = 79). The

analysis predicts that temperature will continue increasing during the next decades. The magnitude

of the change is far from being homogeneous across the temperature distribution. For the Globe

and North Hemisphere, Qt(0.05) is predicted to increase approximately 2.5°C (4.1°C) compared

to the 1961-1990 (1880-1900) average, nearly twice the 1.4°C (2.1°C) predicted rise in Qt(0.50).

In Europe, the forecasted change in Qt(0.05) is about 2.72°C (4.44°C), exceeding the predicted

changes in Qt(0.50) and Qt(0.95).
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Table 4: Adjustment coefficients of a vector error correction model of temperatures

Variables
Globe

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t

e1,t−1 -0.8348*** -0.0949 -0.1337*** -0.0904*
(0.2034) (0.0591) (0.0490) (0.0528)

e2,t−1 0.4690 -1.1397*** 0.0512 -0.0160
(0.4554) (0.1251) (0.1449) (0.1243)

e3,t−1 0.8155** 0.3068** -0.7226*** 0.3774***
(0.3855) (0.1265) (0.1111) (0.1060)

Variables
North Hemisphere

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t

e1,t−1 -0.8254*** -0.0681 -0.1046** -0.0673
(0.2077) (0.0620) (0.0492) (0.0571)

e2,t−1 0.6816 -1.0295*** 0.0946 0.0872
(0.4889) (0.1380) (0.1556) (0.1458)

e3,t−1 0.7972** 0.3499*** -0.6856*** 0.4054***
(0.4043) (0.1273) (0.1174) (0.1115)

Variables
Europe

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t

e1,t−1 -1.3480*** -0.2173** -0.0868 -0.1643**
(0.2472) (0.0907) (0.1144) (0.0728)

e2,t−1 -1.0438** -1.0881*** 0.1787 -0.1139
(0.4793) (0.1791) (0.2361) (0.1607)

e3,t−1 -0.4667 0.1817 -0.8352*** 0.0636
(0.3616) (0.1463) (0.1750) (0.1288)

Notes: Estimates obtained in a two-steps procedure. HAC Standard-errors in parenthesis. *, **,*** denote significance at the 10%, 5%,
and 1% levels, respectively. e1,t−1 denotes the lagged residuals of the co-trending equation between Qt(0.05) and T̄t. e2,t−1 denotes the

lagged residuals of the co-trending relation between Qt(0.50) and T̄t. e3,t−1 denotes the lagged residuals of the co-trending relation between

Qt(0.95) and T̄t. Short-run dynamics involving lags of ∆Zt omitted.
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Figure 3: Forecasts (Globe)

Figure 4: Forecasts (North Hemisphere)
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Figure 5: Forecasts (Europe)

Table 5: Changes in temperature characteristics predicted by a model including only temperatures

Characteristic
Globe North Hemisphere Europe

1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900

∆Qt(0.05) 2.51 4.12 2.46 4.08 2.72 4.44
∆Qt(0.50) 1.36 2.13 1.35 2.12 1.75 2.89
∆Qt(0.95) 1.06 1.64 1.01 1.61 2.39 3.45

T̄t 1.63 2.57 1.60 2.54 1.94 3.04
Notes: Predicted change in the distributional characteristics of temperature obtained in a model including temperature distributional char-
acteristics only. Changes computed as the difference between the observed mean in the periods 1880-1900 and 1961-1990 and the forecast at
year 2100.

6.4.5 Identification of distributional structural shocks

To further characterize the interactions in the temperature distribution, this section explores the

identification of structural shocks and conducts an impulse response analysis.

The reduced-form residuals are cross-correlated with the correlation matrix given in Table 6.

Notice that for all geographical scales, the residuals from the equation for T̄t are strongly cor-

related with the residuals associated with Qt(0.05) and Qt(0.50), and much less correlated with

the residuals from the Qt(0.95) equation. From climate science theory, there is no clear guid-

ance on how to orthogonalize these residuals and identify meaningful structural shocks. Here,
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I propose a Cholesky rotation imposing the following ordering of the variables in the system:

[T̄t, Qt(0.95), Qt(0.50), Qt(0.05)]
′. This ordering assumes that shocks to the quantiles are orthogo-

nal with respect to shocks at the mean. Moreover, shocks occurring at hotter temperatures may

generate non-zero impact responses at colder temperatures, while the responses of hotter temper-

atures to shocks at colder temperatures are zero on impact. The logic behind this ordering comes

from the heat transportation pattern from the Equator to the poles as postulated by the theo-

retical 1D-EBMs. In principle, any other identification assumptions are valid, provided there is a

meaningful interpretation of the identified shocks. Further research on this topic is worth doing.

Figures 6, 7, and 8 correspond to the impulse-response functions (IRFs) to the identified struc-

tural shocks (Cholesky-rotated residuals) for a horizon of 20 years. These IRFs are estimated

using the Local Projections (LPs) approach of Jordà (2005), including one lag of the endogenous

variables in the regression equations. Standard errors for inference are robust to auto-correlation.

Confidence bands are at the 95% level. The decision to use LPs is based on the recent contribution

by Montiel-Olea et al. (2024), who formally proved the claim made by Jordà (2005) regarding the

robustness of LPs to misspecification. Specifically, Montiel-Olea et al. (2024) demonstrate that the

conventional LP confidence interval has correct coverage even when the misspecification in the VAR

model is large. This is a result of a ”double robustness” property, which is analogous to the double

robustness of modern partially linear regression estimators in the literature on debiased machine

learning.

Results for the Globe, the Northern Hemisphere, and Europe are share some similarities. Notice

that in all cases, a one-standard-deviation shock to T̄t increases temperatures at all quantiles

on impact; the strongest response is observed at Qt(0.05), a finding that can be interpreted as

consequence of the distribution amplification patterns observed in the data. Regarding the shocks

to the unconditional quantiles, their interpretation is quite difficult given the assumptions imposed

on the impact responses. Remember that those shocks do not generate impact responses on the

mean temperature. Therefore, to maintain the balance in the temperature distribution, an increase

in a given quantile must be accompanied by an adjustment in the other quantiles so that the mean

does not change. According to the estimated IRFs, this adjustment occurs at Qt(0.05), where a

temperature reduction is observed after a shock in Qt(0.95) and Qt(0.50). Adjustments to shocks

at Qt(0.05) must occur in the tails of the distribution at quantiles that are not included in the

system.

The identified distributional structural shocks can be used to complement and extend the re-

cent literature that quantifies the macroeconomic impact of climate change by exploiting time-series
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Table 6: Correlation between reduced-form residuals

Variables
Globe

T̄t Qt(0.95) Qt(0.50) Qt(0.05)

T̄t 1.0000
Qt(0.95) 0.2563 1.0000
Qt(0.50) 0.6345 0.1892 1.0000
Qt(0.05) 0.7300 0.0216 0.2040 1.0000

Variables
North Hemisphere

T̄t Qt(0.95) Qt(0.50) Qt(0.05)

T̄t 1.0000
Qt(0.95) 0.2512 1.0000
Qt(0.50) 0.6456 0.1668 1.0000
Qt(0.05) 0.7236 0.0206 0.2161 1.0000

Variables
Europe

T̄t Qt(0.95) Qt(0.50) Qt(0.05)

T̄t 1.0000
Qt(0.95) 0.4695 1.0000
Qt(0.50) 0.6867 0.1901 1.0000
Qt(0.05) 0.6964 0.0396 0.2788 1.0000

Notes: This Table contains the correlation coefficients between the reduced form residuals of the estimated unconditional quantile VECM
discussed in this section. Sample period 1880-2021.
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variability in global temperature (see Neal (2023) and Bilal and Känzig (2024)). The unconditional-

quantile VECM produces shocks based on the physical climate theory underlying the relationships

among the variables. Furthermore, it leverages information from the entire temperature distribu-

tion, rather than just the average temperature, providing a wider amount of information. I develop

this idea in more detail in subsection 6.5.7.

(a) Shock to T̄t (b) Shock to Qt(0.95)

(c) Shock to Qt(0.50) (d) Shock to Qt(0.05)

Figure 6: IRFs to identified structural shocks (Globe)
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(a) Shock to T̄t (b) Shock to Qt(0.95)

(c) Shock to Qt(0.50) (d) Shock to Qt(0.05)

Figure 7: IRFs to identified structural shocks (North Hemisphere)
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(a) Shock to T̄t (b) Shock to Qt(0.95)

(c) Shock to Qt(0.50) (d) Shock to Qt(0.05)

Figure 8: IRFs to identified structural shocks (Europe)

6.5 A Model for the Unconditional Distributional Characteristics of Tempera-

ture and Radiative Forcing

The initial vector of unconditional distributional characteristics of temperature is now augmented

by the inclusion of the radiative forcing series, Ft. Let Zt = [Qt(0.05), Qt(0.50), Qt(0.95), T̄t, Ft]
′. In

the baseline analysis Ft is the total radiative forcing and includes both anthropogenic and natural
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sources, see blue line in Figure 2. Appendix C reproduces the analysis considering two alternative

versions of Ft that are commonly studied in the empirical literature: the radiative forcing from CO2

(F co2
t ) and the anthropogenic forcing (F ant

t ). Results are qualitatively similar. This application

is a generalization of the bi-variate VAR model for the average temperature and CO2 in Goulet-

Coulombe and Göbel (2021), to a expanded model including more unconditional distributional

characteristics of temperature into the system.

6.5.1 Testing for the co-trending rank

The Guo and Shintani (2013) test is applied to establish the presence of deterministic co-trending

among the variables in Zt. For the Globe, the North-Hemisphere, and Europe, the procedure

identifies a co-trending rank of 4, implying the existence of one common (possibly non-linear)

deterministic trend. Compared to the model in Section 6.4, this result suggests an additional co-

trending vector involving a relationship between one (or more) of the unconditional distributional

characteristics of temperature and Ft. Estrada et al. (2021) obtain a similar result: applying

the same test to a system including average regional temperature (latitude belts, continents, and

countries), radiative forcing of GHGs, and total radiative forcing, the authors obtain a single

common trend driven by the anthropogenic forcing. This information, together with the equations

from the 1D-EBM, provides useful guidance for estimating the VECM in Equation (19).

6.5.2 Estimation of co-trending vectors

This section discusses the estimation of co-trending slopes in relationships between the uncondi-

tional distributional characteristics of temperature and Ft. Compared to Chen et al. (2022), who

computed the co-trending vector for Ft and T̄t, λ̄, this analysis is more general and extends to

other characteristics of the temperature distribution. Table 7 reports the estimated coefficients and

their corresponding standard-errors. Some noteworthy patterns emerge from the results. Firstly,

across all geographical scales, the estimated coefficients are positive and statistically significant at

the 1% level. Furthermore, the null hypothesis of a common trend cannot be rejected at a 5%

significance level, indicating that each unconditional distributional characteristic share a common

trend with Ft. Secondly, for the Globe and the North Hemisphere, the estimated slopes decrease

with the quantile level. For example, at τi = 0.05, the estimated slope for the North Hemisphere

is 0.9887, while at τi = 0.95, the slope decreases to 0.4186. In contrast, in Europe, the variability

is less pronounced, with the extreme quantile levels yielding the higher estimates. These observed

regularities have significant implications for climate sensitivity analysis, as discussed next.
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Table 7: Co-trending slopes of relationships between the distributional characteristics of tempera-
ture and Ft

Slope
Globe North Hemisphere Europe

Estimate Cot-test Estimate Cot-test Estimate Cot-test

λ(0.05) 0.9897*** 0.8649 0.9887*** 0.9148 1.0323*** 0.7042
(0.1167) (0.1160) (0.1725)

λ(0.50) 0.5395*** 0.5753 0.5479*** 0.5145 0.6936*** 0.6303
(0.0504) (0.0494) (0.0699)

λ(0.95) 0.4255*** 0.2643 0.4186*** 0.0559 0.8860*** 0.1150
(0.0374) (0.0327) (0.1043)

λ̄ 0.6443*** 0.3721 0.6442*** 0.3964 0.7404*** 0.3380
(0.0428) (0.0431) (0.0507)

Notes: Column Estimate correspond to the estimated co-trending slope—of the distributional characteristic with respect to the radiative
forcing Ft— and its standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot−test
reports the p-value of the test for common-trends.

6.5.3 Distributional climate sensitivities

Following Pretis (2020), Chen et al. (2022), Bennedsen et al. (2023), and Brock and Miller (2023),

this section utilizes the co-trending slopes reported in Table 7 to derive the quantile-dependent

climate sensitivities with respect to the total radiative forcing series. Concretely, at each τi, the

climate sensitivity is obtained as CS(τi) = λ(τi)×5.35× ln(2), with standard errors derived via the

delta method based on the standard errors of λ(τi). This approach explodes the fact that long-term

relationships can be linearly and independently estimated across different regions or units (Leduc

et al., 2016; Brock and Miller, 2023).20

Focus first on the climate sensitivities for the Globe and the North Hemisphere, plotted in the

left and central panels of Figure 9. The estimates indicate that the average temperature in the

North Hemisphere would increase by approximately 2.39°C following doubling in total radiative

forcing. This value is slightly below the 2.5°C to 3.5°C range estimated using instrumental records

in the IPCC AR6 report (AR6-IPCC, 2021), and align with empirical estimates from related liter-

ature, such as Bennedsen et al. (2023) and Anderson et al. (2023). The analysis reveals substantial

heterogeneity in the climate sensitivity across the temperature distribution. For Qt(0.05) (repre-

senting the coldest temperatures), the confidence interval for the climate sensitivity ranges from

2.82°C to 4.51°C, while for Qt(0.95) (representing the warmest temperatures) the range of variation

is from 1.31°C to 1.79°C. The distinct, non-overlapping confidence intervals across quantile levels

20An alternative method involves adjusting the climate sensitivity for the average temperature based on λ̄ by the
co-trending slopes β(τi) of the unconditional quantiles relative to the mean. Even though both approaches lead to the
same results, the direct use of λ(τi) is preferred for its simplicity, requiring the estimation of only a single equation.
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Figure 9: Climate sensitivities

suggest significant differences and provide evidence of AA. Even though a climate sensitivity of

4.5°C may seem high, similar estimates have been estimated for northern locations by Anderson

et al. (2023) and Brock and Miller (2023). Regarding Europe, a distinct qualitative pattern of re-

sults emerges. The climate sensitivity for the average temperature is estimated at 2.74°C. Stronger

climate sensitivities are obtained for extreme temperatures compared to the median, with the point

estimates being higher at Qt(0.05). However, the overlap between the confidence intervals indicates

a less marked heterogeneity.

In climate science, climate sensitivities are typically obtained using simulations from large-scale

GCMs, for example, by simulating a known radiative forcing perturbation (such as a doubling of

CO2 concentrations) and computing the resultant temperature change with respect to an initial

equilibrium (Knutti et al., 2017; Zhu et al., 2021). However, GCMs are highly non-linear, require

large amounts of input data, are computationally expensive to solve, and are heavily dependent

on the system’s initial conditions. As an alternative, the unconditional quantile VECM provides

an estimation of the same physical quantity using a simpler, less time-consuming, reduced-form

approach, leveraging the information contained in historical data. Moreover, while most climate

models produce climate sensitivity estimates for the average temperature, the unconditional quan-

tile VECM yields a set of quantile-dependent climate sensitivities, which exhibit strong patterns

of heterogeneity. IAM practitioners can directly use the estimated climate sensitivities to guide
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the calibration of the climate module and utilize the confidence bands, which reflect estimation

uncertainty, to assess the effect of uncertainty on quantities of interest, such as optimal taxes or

welfare (Hassler et al., 2018).

6.5.4 Estimation of the error correction model

The VECM defined in Equation (19) is estimated using a two-step approach similar to the Engle

and Granger (1987) method. The first differences of the elements in Zt, ∆Zt, are regressed against

the lagged residuals of the corresponding co-trending equations. Remember that to maintain con-

sistency with the co-trending rank determined in the Guo and Shintani (2013) test, the lagged

residual series Ft−1 − λ̄T̄t−1 is included, while residuals of the form Ft−1 − λ̂(τi)Qt(τi) are omitted

to avoid collinearity. The adjustment coefficients for the Globe, the North Hemisphere, and Europe

are detailed in Table 8. Across all geographical scales, temperature unconditional quantiles adjust

to their own past deviations from the co-trending relationship with the average temperature, as

well as to past deviations from the equilibrium between the mean temperature and the radiative

forcing. Interactions across quantiles is observed, specially for the case of Europe. Regarding the

equation for ∆Ft, it adjusts only to its lagged long-run equilibrium deviations in relation to average

temperature.

Residual diagnosis.— Figures 10, 11, and 12 display the residuals, auto-correlation functions

(ACF), and partial auto-correlation functions (PACF) for each estimated model. The corresponding

p-values for the individual Ljung and Box (1978) (LB) modified portmanteau tests and the Epps

(1987) tests for normality are detailed in Table 9. These diagnostic tests reveal good properties

in the residuals. The null hypothesis of no auto-correlation is not rejected in all cases according

to the LB tests applied to each individual residual series. For the multivariate tests, the p-values

are 0.5536, 0.5473, and 0.7329 for the Globe, the North Hemisphere, and Europe, respectively.21

The assumption of normality in the residuals holds in all cases except for the forcing series. This

particular deviation is consistent with findings in Bruns et al. (2020) and Pretis (2020), and can be

explained by the presence of sudden volcanic forcings that likely introduces outliers and changes in

the series dynamics.

21Results from the Box and Pierce (1970) (BP) test are similar. Different values for the number of lags ranging
from 1 to 15 lead to the same conclusion of no-auto-correlation.
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Table 8: Adjustment coefficients of a vector error correction model of temperatures and total
radiative forcing

Variables
Globe

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -0.7729*** -0.0559 -0.1043** -0.0510 -0.1175
(0.2108) (0.0646) (0.0492) (0.0567) (0.0905)

e2,t−1 0.4228 -1.1234*** 0.0508 -0.0189 -0.1370
(0.4157) (0.1242) (0.1354) (0.1168) (0.1938)

e3,t−1 0.5865 0.1786 -0.8241*** 0.2407** 0.0588
(0.4173) (0.1256) (0.1101) (0.1185) (0.1566)

e4,t−1 -0.6043* -0.3124*** -0.2553* -0.3455*** 0.5703***
(0.3182) (0.0854) (0.1332) (0.0971) (0.1585)

Variables
North Hemisphere

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -0.7675*** -0.0306 -0.0766 -0.02968 -0.0845
(0.2123) (0.0655) (0.0480) (0.0586) (0.0844)

e2,t−1 0.5742 -1.0451*** 0.0691 0.0510 -0.0327
(0.4415) (0.1300) (0.1494) (0.1309) (0.2030)

e3,t−1 0.5277 0.1986 -0.8050*** 0.2444 0.1421
(0.4314) (0.1280) (0.1156) (0.1254) (0.1413)

e4,t−1 -0.6350** -0.3230*** -0.2647** -0.3583*** 0.5715***
(0.3181) (0.0909) (0.1299) (0.1014) (0.1584)

Variables
Europe

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -1.2654*** -0.1524* -0.0301 -0.0920 -0.0539
(0.2568) (0.0913) (0.1115) (0.0717) (0.0429)

e2,t−1 -1.0947*** -1.1492*** 0.0994 -0.1831 -0.0522
(0.4675) (0.1636) (0.2355) (0.1440) (0.0936)

e3,t−1 -0.5177 0.1373 -0.8793*** 0.0139 0.0899
(0.3617) (0.1356) (0.1567) (0.1165) (0.0863)

e4,t−1 -0.5356 -0.4503*** -0.4290** -0.5032*** 0.3876***
(0.3316) (0.1472) 0.1654 (0.1112) (0.1130)

Notes: Estimates obtained in a two-steps procedure. HAC Standard-errors in parenthesis. *, **,*** denote significance at the 10%, 5%, and
1% levels, respectively. e1,t−1, e2,t−1, and e3,t−1 as before. e4,t−1 denotes the lagged residuals of the co-trending relation between Ft and

T̄t. Short-run dynamics involving ∆Xt omitted.
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Figure 10: Residuals, ACF, and PACF (Globe)
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Figure 11: Residuals, ACF, and PACF (North Hemisphere)
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Figure 12: Residuals, ACF, and PACF (Europe)
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Table 9: Autocorrelation and normality tests for residual diagnosis

Characteristic
Globe North Hemisphere Europe

Auto-correlation Normality Auto-correlation Normality Auto-correlation Normality

∆Qt(0.05) 0.3958 0.3018 0.3275 0.3778 0.2430 0.1887
∆Qt(0.50) 0.9803 0.2462 0.9523 0.3914 0.3182 0.9680
∆Qt(0.95) 0.2565 0.8850 0.2028 0.6836 0.2668 0.5340

∆T̄t 0.1889 0.0797 0.2155 0.0621 0.4584 0.4744
∆Ft 0.3128 0.0088 0.2970 0.0100 0.2628 0.0095

Notes: Auto-correlation column reports the p-values of the Ljung and Box (1978) modified portmanteau tests applied to each individual
residual series. Lag set at 10. Normalilty column reports the p-values of the Epps (1987) test applied to each individual residual series.

6.5.5 Long-term density forecasts

Similar to Section 6.4.4, the VAR form of the estimated VECM is employed to generate h-step

unconditional density forecasts at origin t with minimal MSE, now incorporating the dynamics of

the radiative forcing series into the system. Predicted trajectories of the temperature distribution

for the Globe, North Hemisphere, and Europe, along with their respective 95% confidence bands,

are presented in Figures 13, 14, and 15, for a forecasting horizon up to 2100. Complementary, Table

10 reports the forecasted change in each distributional characteristic computed as the difference

between the observed mean of the series during the periods 1880-1900 or 1961-1990, and the point

forecast at year 2100. Results are similar to those obtained in the model of the previous section.

For both the Globe and North Hemisphere, the model predicts a substantial increase in Qt(0.05) of

approximately 2.6°C (4.2°C) compared to the 1961-1990 (1880-1900) average, the strongest change

compared to any other distributional characteristic. The magnitude of the temperature increases

are slightly higher in this model including the total radiative forcing than in the model of the

previous section. For Europe, the forecasted change in Qt(0.05) is around 2.67°C (4.38°C), higher

than the predicted changes in Qt(0.50) and Qt(0.95). Compared to the scenario analysis conditional

on the SSP trajectories discussed in the next subsection, the unconditional predictions of the model

produce an intermediate outcome between the SSP 1-2.6 and the SSP 2-4.5. The current analysis

can be interpreted as the long-term density forecasts in a “business-as-usual” scenario.
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Figure 13: Long-term density forecasts including forcing dynamics (Globe)

Figure 14: Long-term density forecasts including forcing dynamics (North Hemisphere)
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Table 10: Changes in temperature characteristics predicted by a model including temperatures and
radiative forcing

Characteristic
Globe North Hemisphere Europe

1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900

∆Qt(0.05) 2.64 4.25 2.56 4.18 2.67 4.38
∆Qt(0.50) 1.43 2.20 1.41 2.18 1.72 2.85
∆Qt(0.95) 1.12 1.69 1.06 1.65 2.34 3.40

T̄t 1.72 2.65 1.67 2.61 1.90 3.00
Notes: Predicted change in the distributional characteristics of temperature obtained in a model including temperature distributional charac-
teristics and radiative forcing. Changes computed as the difference between the observed mean in the periods 1880-1900 and 1961-1990 and
the forecast at year 2100.

Figure 15: Long-term density forecasts including forcing dynamics (Europe)

6.5.6 Scenario analysis

In this section, the estimated model is used to generate conditional point forecasts for the distri-

butional characteristics of temperature, conditional on a range of Shared Socioeconomic Pathways

(SSP) scenarios.22 A SSP scenario describes a potential future development path, grounded on a

coherent and internally consistent set of assumptions regarding driving forces like demography, eco-

22In macroeconomics, a similar conditional forecasting exercise might involve projecting variables such as GDP
growth or inflation based on assumed trajectories of monetary or fiscal policy variables. Relevant examples of this
practice include Baumeister and Kilian (2014) and Giannone et al. (2014).
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nomic processes, technological innovation, and their wide-ranging implications for energy use, land

utilization, and emissions (Riahi et al., 2017; AR6-IPCC, 2021).23 Originally, the SSP framework

outlined five broad narratives for future socioeconomic development (O’Neill et al., 2014): Sus-

tainability (SSP1), Middle of the Road (SSP2), Regional Rivalry (SSP3), Inequality (SSP4), and

Fossil-fueled Development (SSP5). The AR6 report by the IPCC (AR6-IPCC, 2021) utilized the

SSP framework to construct a suite of future scenarios implying different trajectories of emissions

and warming. A single SSP “family” might encompass several emissions trajectories, leading to

varied levels of radiative forcing. This variation originates from different mitigation ambition lev-

els, which can cause divergent emissions outcomes even within the same socioeconomic narrative.

For instance, SSP1-1.9 and SSP1-2.6 both originate from the Sustainability narrative, yet they

project different emissions and radiative forcing levels targets in 2100 (1.9 W/m2 vs 2.6 W/m2)

attributable to distinct mitigation efforts implemented in each scenario. For further details on how

SSP scenarios are developed and used by the scientific community, refer to Chapters 1, 3, and 4 of

the AR6 report (AR6-IPCC, 2021) and the references cited therein.

The conditional projection exercise considers five illustrative SSP scenarios, which are also

considered in the AR6-IPCC (2021) report: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-

8.5. These scenarios cover a broad spectrum of plausible societal and climatic futures for the

upcoming decades. Figure 16 shows the SSP radiative forcing projections for the period 2022-

2100. Conditional long-term projections for the three geographical scales of analysis (Globe, North

Hemisphere, and Europe) are plotted in Figures 17, 18, and 19, respectively. These projections are

obtained by evaluating the estimated model, in its VAR form, on the external SSP data. For each

SSP scenario and each distributional characteristic, the projected change, reported in Table 11, is

calculated as the difference between the observed mean in the periods 1880-1900 or 1961-1990 with

respect to the the conditional prediction at year 2100. The projected change is informative about

the expected impact of each SSP trajectory on the temperature distribution.

Observe that under all SSP scenarios, the distributional characteristics of temperature are pro-

jected to increase, with the magnitude of the change depending on the level of radiative forcing

targeted at each scenario. When focusing on a specific scenario, the projected increase in tem-

perature is not uniform across the temperature distribution. Specifically, for the Globe and the

North Hemisphere, across all scenarios, the change in Qt(0.05) is approximately twice the change

in Qt(0.50), and this proportion is even more pronounced when comparisons are made with respect

to Qt(0.95). In the extreme scenario of SSP5-8.5, the average temperature is projected to be about

23SSP scenarios refine the previously used Representative Concentration Pathways (RCPs) scenarios and allow for
a standardized comparison of society’s choices and their resulting levels of climate change.
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Figure 16: Annual radiative forcing under five different SSP-based scenarios

4.79°C above the observed average in the period 1961-1990, while that increase in Qt(0.05) is ex-

pected to exceed 7.3°C. For Europe, the variability in temperature changes across the distribution

is less heterogeneous, yet the most significant changes are still projected for Qt(0.05). Compared

to the Globe or the North Hemisphere, the projected changes for Europe are uniformly stronger.

Bennedsen et al. (2023) and Chen et al. (2022) conduct a similar analysis but using the previ-

ous RCP scenarios to produce conditional projections of global average temperature. This analysis

extends and complements the above mentioned references by considering a more actual version

of the scenarios and projecting not only the mean but also other distributional characteristics of

temperature. The projected heterogeneous trajectories of the temperature distribution can have

significant environmental and societal implications. Further research in this direction within the

domains of climate modeling and climate economics is required for a better understanding of this

phenomenon and its implications. It is important to note that the projections are conditional on

SSPs scenarios and also conditional on all else remaining constant (i.e. remaining as they were dur-

ing the estimation sample). This means that they are conditional on the feedback from temperature

to GHGs concentrations remaining insignificant and assuming no additional mechanisms starting

to operate as temperatures rise. This ceteris paribus assumption may not be a good approximation

if there are climate tipping points or new mechanisms that amplify the temperature appear.
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Projection outcomes are alternatively produced in climate science using simulations from large-

scale GCMs. In this case, temperature paths are obtained by simulating the whole climate system,

conditional on the specific emissions or concentration scenarios. Uncertainty measures are obtained

by running the model multiple times from slightly different initial conditions (Lupo et al., 2013).

As mentioned several times in this paper, GCMs are highly complex and computationally expensive

to solve. The unconditional-quantile VECM offers a simpler, reduced-form alternative to obtain

comparable outcomes, not only for the average, as is often the case in GCMs, but also for other

characteristics of the temperature distribution. It also provides a different measure of uncertainty

through forecast confidence bands.

These outcomes serve as useful inputs for analyzing the economic damages of climate change.

Typically, researchers rely on long-term average temperature projections to quantify the expected

local or global impacts of climate change on economic variables such as GDP growth, agricultural

and labor productivity, mortality, and more. Instead of using projections from climate models,

researchers can rely on projections from the unconditional-quantile VECM to provide a more com-

prehensive characterization of the consequences of climate change, accounting for heterogeneity

in temperature dynamics. This type of analysis opens the door to a new class of research that

explicitly incorporates heterogeneity into economic studies. Such analyses can be applied at any

geographical scale and offer valuable insights to better inform both local and global adaptation and

mitigation policies. A similar argument is valid for the long-term density forecasts of the previous

section, but in that case the future implies a “business-as-usual” scenario.
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Figure 17: Long-term projections under RCP scenarios (Globe)

Figure 18: Long-term projections under RCP scenarios (North Hemisphere)
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Table 11: Changes in temperature characteristics predicted conditional on RCP scenarios

Characteristic
Globe

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900

∆Qt(0.05) 1.78 3.40 2.08 3.70 3.22 4.84 5.85 7.45 7.35 8.97
∆Qt(0.50) 0.96 1.73 1.12 1.90 1.75 2.52 3.18 3.95 3.99 4.77
∆Qt(0.95) 0.74 1.31 0.87 1.45 1.37 1.94 2.52 3.09 3.17 3.74

T̄t 1.16 2.09 1.35 2.29 2.10 3.04 3.81 4.75 4.79 5.72

Characteristic
North Hemisphere

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900

∆Qt(0.05) 1.78 3.41 2.08 3.70 3.22 4.84 5.85 7.45 7.35 8.97
∆Qt(0.50) 0.98 1.75 1.14 1.91 1.78 2.55 3.24 4.01 4.07 4.84
∆Qt(0.95) 0.72 1.32 0.58 1.45 1.34 1.94 2.47 3.06 3.11 3.70

T̄t 1.16 2.10 1.35 2.29 2.10 3.04 3.82 4.76 4.80 5.73

Characteristic
Europe

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900 1961-1990 1880-1900

∆Qt(0.05) 1.87 3.59 2.17 3.89 3.37 5.09 6.16 7.88 7.73 9.45
∆Qt(0.50) 1.18 2.32 1.39 2.52 2.18 3.31 4.04 5.17 5.08 6.22
∆Qt(0.95) 1.64 2.70 1.91 2.96 2.95 4.01 5.38 6.44 6.75 7.80

T̄t 1.32 2.42 1.54 2.64 2.40 3.50 4.41 5.51 5.54 6.64

Notes: Projected change in the distributional characteristics of temperature under different SSPs scenarios. Changes computed as the
difference between the observed mean in the periods 1880-1900 and 1961-1990 and the forecast at year 2100.

Figure 19: Long-term projections under RCP scenarios (Europe)

6.5.7 Identification of distributional structural shocks

Similar to Section 6.4.5, this section explores the identification of distributional structural shocks

and conducts an impulse-response analysis within a system of variables that now includes the total
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radiative forcing, Ft. For the Globe and the Northern Hemisphere, the correlation patterns in the

reduced-form residuals of the temperature equations are similar to those described in Section 6.4.5.

Concerning Ft, the strongest correlation is observed with the Qt(0.95) residuals. It is important to

note that the inclusion of the forcing variable significantly modifies the correlation structure within

the model for Europe.

The reduced-form residuals are rotated using a Cholesky decomposition with the following

ordering: [Ft, T̄t, Qt(0.95), Qt(0.50), Qt(0.05)]
′. This specific ordering, with Ft as the first variable

and T̄t as the second, is also supported by Bruns et al. (2020), and implies that the reduced-form

residuals of T̄t are decomposed into a component associated with shocks to Ft and an orthogonal

component that does not instantaneously affect Ft. The latter component is what I interpret as

the structural shock at the mean. The ordering of the distributional characteristics of temperature

remains the same as before. This analysis extends the framework presented in Goulet-Coulombe and

Göbel (2021) by incorporating the entire distribution of temperature into the vector of variables,

rather than focusing solely on the average, thereby providing a richer set of information.

The impulse-response functions to the identified shocks, computed using LPs (Jordà, 2005), and

their respective 95% confidence bands, are presented in Figures 20, 21, and 22, for the Globe, the

Northern Hemisphere, and Europe, respectively. For the Globe and the Northern Hemisphere, an

increase in radiative forcing of around 0.4 W/m2 induces a rise in all distributional characteristics in

the medium run. The peak response for the average temperature is about 0.1 ◦C and occurs between

five to six years after the shock. As expected, the strongest peak response is observed for the lower

quantile Qt(0.05), with a magnitude of about 0.2 ◦C. Even 20 years after the shock, some responses

remain significant, suggesting long-lasting effects of a forcing shock. The responses to the shocks

for each distributional characteristic are similar to those described in Section 6.4.5. For Europe, the

temperature distribution responds in a similar manner; however, the figures corresponding to the

responses to other shocks are completely different compared to those obtained in a model without

radiative forcing.

The identification of structural shocks to the temperature distribution complements the most

recent literature on the macroeconomic impacts of climate change, which exploits variations in

global rather than local temperatures to estimate economic damages. In a panel data context, Neal

(2023) extends the standard linear and non-linear regression models of economic growth on local

weather conditions considered in Dell et al. (2012) and Burke et al. (2015) to incorporate external

weather effects through a cross-sectional weighted average of global temperature (and rainfall). The

main identifying assumption is the conditional exogeneity of local and global temperatures with
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respect to economic variables. Bilal and Känzig (2024) propose a similar idea within a time series

framework. Global “temperature shocks” are identified as potentially persistent deviations from the

long-run trend in global mean temperature, following the method proposed by Hamilton (2018). In

both cases, the estimated impacts of climate change on economic activity are significantly stronger

than those from previous literature using only local weather/climate variation.

My contribution to this framework is to propose an alternative identification strategy that i)

integrates elements from climate theory within a multivariate statistical model and identifies shocks

based on the unexplained variability in the dynamic system, and ii) produces information for the

entire temperature distribution, rather than just for the average, thus offering a wider amount of

data for damage and subsequent policy analysis. Appendix F presents an analysis of this nature and

estimates the World GDP per-capita responses when the identified shocks are used in a time-series

framework similar to Bilal and Känzig (2024). The results for the period 1960-2022 suggest that

the main negative GDP effects are produced by shocks at the mean and Qt(0.95), while shocks at

Qt(0.50) and, to some extent, Qt(0.05), generate positive responses. This finding aligns well with

the literature on the geographical and seasonal heterogeneity in the impacts of climate change.
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Table 12: Correlation between reduced-form residuals

Variables
Globe

Ft T̄t Qt(0.95) Qt(0.50) Qt(0.05)

F̄t 1.0000
T̄t 0.1203 1.0000

Qt(0.95) 0.2746 0.1920 1.0000
Qt(0.50) 0.0225 0.6000 0.1275 1.0000
Qt(0.05) -0.0098 0.7326 -0.0136 0.1812 1.0000

Variables
North Hemisphere

Ft T̄t Qt(0.95) Qt(0.50) Qt(0.05)

F̄t 1.0000
T̄t 0.1168 1.0000

Qt(0.95) 0.2936 0.1846 1.0000
Qt(0.50) 0.0515 0.6109 0.1000 1.0000
Qt(0.05) -0.0329 0.7246 -0.0173 0.1927 1.0000

Variables
Europe

Ft T̄t Qt(0.95) Qt(0.50) Qt(0.05)

F̄t 1.0000
T̄t 0.3516 1.0000

Qt(0.95) 0.1640 0.4343 1.0000
Qt(0.50) -0.0340 0.1992 0.6878 1.0000
Qt(0.05) 0.0106 0.2128 0.6312 0.8935 1.0000

Notes: This Table contains the correlation coefficients between the reduced form residuals of the estimated unconditional quantile VECM
discussed in this section. Sample period 1880-2021.
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(a) Shock to Ft (b) Shock to T̄t (c) Shock to Qt(0.95)

(d) Shock to Qt(0.50) (e) Shock to Qt(0.05)

Figure 20: IRFs to identified structural shocks (Globe)
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(a) Shock to Ft (b) Shock to T̄t (c) Shock to Qt(0.95)

(d) Shock to Qt(0.50) (e) Shock to Qt(0.05)

Figure 21: IRFs to identified structural shocks (North Hemisphere)
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(a) Shock to Ft (b) Shock to T̄t (c) Shock to Qt(0.95)

(d) Shock to Qt(0.50) (e) Shock to Qt(0.05)

Figure 22: IRFs to identified structural shocks (Europe)

6.5.8 Additional analyses

A set of complementary analysis are conducted within this research. Appendix B presents the appli-

cation of the methodology to the case of Central England, where the availability of high-frequency

(daily) temperature data enables the estimation of temperature distributional characteristics at

lower frequencies. In this application, the unconditional quantiles represent seasonal temperatures
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and the interpretations of the results need to be adapted in that direction. In Appendix D, the

information set is enlarged by the inclusion of more quantile series into the vector Zt. The main

conclusions of the baseline analysis remain robust. Appendix E zooms the analysis to the reduced

sample from 1958 to 2021 in order to avoid the criticism raised by Pretis and Hendry (2013) about

the combination of proxy-based and observed historical forcing series constructed with changing

methodologies. Even though the qualitative patterns of heterogeneity are preserved, the magni-

tudes of the estimated distributional climate sensitivities and the long-term density forecasted and

projected changes are stronger. Finally, Appendix G expands the information set by including

ice extent and sea surface temperature. In the context of Arctic sea ice, this exercise extends the

existing literature on ice coverage forecasting (see Coulombe and Göbel (2021), Diebold and Rude-

busch (2022), Diebold et al. (2023), Diebold and Rudebusch (2023), or Blazsek et al. (2024)) by

introducing more complex dynamics between temperature distribution, GHG concentrations, and

the ongoing reduction of Arctic ice.

Next section discusses possible extensions and complementary applications that are motivated

by the outcomes in this research.

7 Limitations and Future Research

The proposed methodology is subject to certain limitations that warrant further investigation.

First, as exposed by Folini et al. (2024), in 150 years of historical data, the anthropogenic signal

due to CO2 and other GHGs emissions comes in combination with a range of other relevant effects.

Reliably disentangling the different contributions is a challenging task. This is a limitation com-

mon to all studies using observed climate data. Consequently, it is important to complement and

compare the results obtained from observational data with those derived from climate model sim-

ulations. Exploring the use of paleoclimate data over past centuries to millennia offers a promising

avenue for future research, extending the study of climate heterogeneity across a broader historical

canvas.

Second, unconditional quantiles imperfectly represent temperatures at different latitudes (or

seasons) and the obtained results must be interpreted with caution. An alternative approach in-

volves estimating average temperatures for different latitude belts, like in Brock and Miller (2023)

and Estrada et al. (2021), and subsequently estimating a VAR model with these average tempera-

ture series instead of the unconditional quantiles. This approach also faces challenges, particularly

in capturing the heterogeneous dynamics in locations situated at similar latitudes. For instance,
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New York and Madrid share approximate latitudes yet exhibit distinct climate characteristics, es-

pecially in their responses to increasing GHG concentrations. The use of unconditional quantiles

relies on the strength of the concept of order-statistics and provides a robust statistical framework

that aligns with that of the functional analysis. Furthermore, when the methodology is applied to

characterize seasonal heterogeneity, as in the Central England case, the correspondence between un-

conditional quantiles and seasons is more justifiable, thereby enhancing the method’s applicability

and interpretative value.

Third, the empirical analysis conducted within this study assumes uniformity in radiative forc-

ing across all geographical units and seasons. This assumption overlooks potential variations in

radiative forcing that can arise from diverse factors, including changes in land use, cloud cover

variability, and the localized concentrations of aerosols with either cooling or warming effects.

Incorporating heterogeneity in radiative forcing into the analysis significantly increases the com-

plexity of the problem and is left as a subject for future research. The main difficulty in conducting

this type of analysis lies in the availability of long-term, high-resolution data necessary for reliable

inference and forecasting. An alternative approach might involve a more agnostic view regarding

local forcing, opting instead to infer forcing signals directly from the temperature series. This could

be achieved through the use of flexible analytical frameworks, such as State-Space modeling, see

Durbin and Koopman (2012).

Several ideas for future research are derived from this paper. First, the methodology can be

employed to conduct more granular regional analyses of climate heterogeneity at various levels,

such as continental, latitude-belts, country, or sub-regional. Research outcomes from this type

of applications can be integrated in to economic studies to forecast and project local damages

from climate change. This would provide policymakers with more precise, localized information

on climate heterogeneity, aiding in the formulation of targeted mitigation/adaptation policy inter-

ventions that account not only for variations in the average temperature, but also in the whole

temperature distribution.

Second, the model’s flexibility allows for the inclusion of socioeconomic factors such as GDP,

poverty, and inequality to explore the interplay between climate dynamics and economic variables.

A recent example of this type of analysis is provided by Nguyen (2024), who investigates the impact

of seasonal temperature variations within U.S. counties on economic outcomes.This paper finds that

higher winter temperatures potentially boost private sector employment growth, whereas the rise in

summer temperatures may have the opposite effect, and highlights the importance of accounting for

seasonal variability in accounting for economic damages. Seasonal heterogeneity and its influence
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on economic indicators can be further explored using the proposed unconditional-quantile VECM

not only for the US counties but also for other regions, for instance, Europe at the NUTS-2 level.

Finally, the identification of structural shocks to the temperature distribution showed a promis-

ing complementarity to the the most recent literature on the macroeconomic impacts of climate

change, which exploits variations in global rather than local temperatures (Neal, 2023; Bilal and

Känzig, 2024). Concretely, this type of studies can be enhanced by considering not only shocks

to the average temperature, but also shocks to the whole temperature distribution with potential

heterogeneous effects on economic variables, as obtained in the preliminary analysis in Appendix

F. A related idea involves using the unconditional-quantile VECM to obtain country-specific dis-

tributional temperature shocks. For example, Nath et al. (2024) identify temperature shocks as

the innovations from an AR(p) model of temperature, where the parameters depend on the coun-

try’s mean temperature. Implementing the unconditional-quantile VECM at local or regional levels

would allow the estimation of distributional temperature shocks for each unit, which could then

be used in damage analysis. This type of study enables the examination of how shocks in differ-

ent parts of the distribution (representing, in this case, seasons) heterogeneously affect economic

variables. More research in this direction is required.

8 Conclusion

Climate heterogeneity holds important implications not only for the climate system equilibrium

but also for the economic analysis of climate change. This paper introduced a time series method-

ology capable of accounting for different forms of heterogeneity in the dynamics of the tempera-

ture distribution and its association with various climate drivers, including CO2. The proposed

unconditional-quantile VECM combines elements of physics theory from 1D-EBMs with recent

advances in time series econometrics regarding the estimation of models with deterministic (and

possibly stochastic) co-trending. The methodology produces estimation, forecasting, and projec-

tion outcomes that can be integrated as inputs in other types of economic studies. For example,

the estimates of global or hemispheric climate sensitivities at different parts of the temperature

distribution can be used for calibration and uncertainty analysis in IAMs featuring geographical

heterogeneity (for example Krusell and Smith (2022) or Cruz and Rossi-Hansberg (2024)), as an

alternative to statistical downscaling. Additionally, unconditional long-term density forecasts and

projections under different scenarios provide valuable inputs for estimating the global and local ex-

pected damages from climate change accounting for heterogeneity. An alternative to produce this

type of inputs is to use simulations from complex large-scale General Circulation Models. How-
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ever, these models are highly non-linear, require large amounts of input data, are computationally

expensive to solve and heavily dependent on the initial conditions of the system. In contrast, the

unconditional quantile VECM achieves a desirable balance between a purely statistical multivari-

ate approach and the theoretical/structural model of the climate system, allowing the production

of estimation and forecasting/projection results and for the assessment of estimation uncertainty

in a simpler statistical reduced-form procedure. The potential application of this methodology at

different geographical levels opens the door to a new type of research focused on the evolution

of the entire temperature distribution and its economic implications. This approach enables the

production of research outcomes that can better inform adaptation and mitigation policies.
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Goulet-Coulombe, P. and M. Göbel (2021). On Spurious Causality, CO2, and Global Temperature.
Econometrics 99 (3), 33.

Guo, Z.-F. and M. Shintani (2013). Consistent Co-trending Rank Selection when Both Stochastic
and Non-linear Deterministic Trends are Present. The Econometrics Journal 16 (3), 473–484.

67



Hamilton, J. D. (2018, 12). Why You Should Never Use the Hodrick-Prescott Filter. The Review
of Economics and Statistics 100 (5), 831–843.

Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann (2011). Earth’s Energy Imbalance and
Implications. Atmospheric Chemistry and Physics 11, 13421–13449.

Hassler, J., P. Krusell, and C. Olovsson (2018). The Consequences of Uncertainty: Climate Sensi-
tivity and Economic Sensitivity to the Climate. Annual Review of Economics 10, 189–205.

Hassler, J., P. Krusell, and C. Olovsson (2024). The Macroeconomics of Climate Change: Starting
Points, Tentative Results, and a Way Forward. Working Paper 24-8, Peterson Institute for
International Economics.

Hatanaka, M. (2000). How to Determine the Number of Relations Among Deterministic Trends.
The Japanese Economic Review 51 (3), 349–374.

Hatanaka, M. and H. Yamada (2003). Co-trending: A Statistical System Analysis of Economic
Trends. Springer Tokyo.

Held, I. M. and M. J. Suarez (1974). Simple Albedo Feedback Models of the Icecaps. Tellus 26 (6),
613–629.

Hillebrand, E. and T. Proietti (2017). Phase Changes and Seasonal Warming in Early Instrumental
Temperature Records. Journal of Climate 30 (17), 6795 – 6821.

Hsiang, S., R. Kopp, A. Jina, J. Rising, M. Delgado, S. Mohan, D. J. Rasmussen, R. Muir-Wood,
P. Wilson, M. Oppenheimer, K. Larsen, and T. Houser (2017). Estimating Economic Damage
from Climate Change in the United States. Science 356 (6345), 1362–1369.

Ji, F., Z. Wu, J. Huang, and E. Chassignet (2014). Evolution of Land Surface Air Temperature
Trend. Nature Climate Change 4, 462–466.
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A Quantiles and Latitudes

At global and hemispheric scales, the proposed methodology is motivated by the physics of a simple

1D-EBM (Held and Suarez, 1974), assuming that temperature unconditional quantiles represent

temperatures at different latitudes. Figure A1 shows the geographical locations of temperature

stations around the 5%, 50%, and 95% quantiles. It is clear from this figure that colder stations are

situated in northern latitudes above 45 °N, whereas stations recording the higher temperatures are

located closer to the Equator, with a notable concentration in India. Supporting this observation,

Table A1 reports the average latitude associated with each quantile level, revealing that an increase

in the quantile level corresponds to a decrease in the average latitude.

Figure A1: Stations by quantile levels

Table A1: Average latitude by quantile level

Characteristic Avg. Latitude

Qt(0.05) 60.39

Qt(0.10) 57.94

Qt(0.25) 54.21

Qt(0.50) 47.65

Qt(0.75) 26.96

Qt(0.90) 21.41

Qt(0.95) 20.30
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B Application to Central England

The Hadley Centre Central England Temperature (HadCET) dataset is the longest instrumental

record of temperature in the world.24 These data are measured monthly and annually since 1659 for

a roughly triangular area of UK enclosed by Lancashire, London and Bristol. There are also daily

mean-temperature observations starting from 1772 (Parker et al., 1992) and updated continuously

until the present. The availability of high-frequency (daily) temperature data enables the estima-

tion of temperature distributional characteristics at lower frequencies and the application of the

unconditional-quantile VAR methodology under no-geographical variation. Using the daily obser-

vations from 1772 to 2021, the distributional characteristics of interest are estimated and converted

into the series objects depicted in Figure B1. The analysis is limited to the period post-1880, due

to the availability of radiative forcing data. Trend-tests reported in Table B1 indicate an increasing

trend in the mean and the unconditional quantiles of temperature, with steeper trends observed at

the lower and central quantiles. Moreover, ADF tests strongly reject the hypothesis of unit roots

in all instances.

Figure B1: Temperature distributional characteristics (Central England)

The methodology is applied to a multivariate system whereXt contains more than three quantile

series. Specifically,Xt = [Qt(0.05), Qt(0.10), Qt(0.25), Qt(0.50), Qt(0.75), Qt(0.90), Qt(0.95), T̄t, Ft]
′,

where Ft denotes the radiative forcing. The Guo and Shintani (2013) test reveals 7 co-trending

vectors. Table B2 reports the estimates of the co-trending slopes used to compute the climate

24The dataset is accessible at the following URL: https://www.metoffice.gov.uk/hadobs/hadcet/.
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Table B1: Testing for trends in distributional characteristics (Central England)

Characteristic
Trend-test ADF-test

Test-statistic p-value Test-statistic p-value

Qt(0.05) 0.0086 0.0015 -14.3868 0.0000
Qt(0.10) 0.0092 0.0001 -14.3614 0.0000
Qt(0.25) 0.0097 0.0000 -14.4393 0.0000
Qt(0.50) 0.0100 0.0000 -14.3042 0.0000
Qt(0.75) 0.0077 0.0000 -14.1496 0.0000
Qt(0.90) 0.0077 0.0000 -14.4480 0.0000
Qt(0.95) 0.0074 0.0003 -15.0577 0.0000
Mean 0.0091 0.0000 -14.3491 0.0000

Notes: Annual distributional characteristics estimated using daily observations from 1880 to 2021. Test-statistics and p-values in column
Trend− test correspond to a significance test for the trend-slope in a regression of the distributional characteristic on a constant and a linear
trend, using HAC standard-errors. Column ADF − test report the test-statistics and p-values of the ADF-tests for unit roots. Intercept and
trend included in the test-equation. Lags selected using the BIC criterion.

sensitivities plotted in Figure B2. When comparing these findings with CRU data, the local data

from Central England displays less heterogeneity. Although the climate sensitivity estimates for the

lower and central part of the temperature distribution are higher, the confidence intervals largely

overlap. Notably, these climate sensitivities are lower than those derived for the Globe, the North-

ern Hemisphere, and Europe. The estimated model is used to produce the forecasts and projections

under hypothetical SSP scenarios plotted in Figure B3 and Figure B4 respectively.

The application to Central England data illustrates the adaptability of the proposed method-

ology for its use in contexts with no geographical variation, but having sufficient high-frequency

observations for the estimation of temperature distributional characteristics. Here, unconditional

quantiles reflect temperatures at various seasons or times of the year —rather than across different

latitudes—, allowing an investigation of seasonal sensitivities in the sense of Balling et al. (1998),

Vogelsang and Franses (2005), Cohen et al. (2012), and Hillebrand and Proietti (2017). This ap-

proach yields interesting insights into climate heterogeneity for specific locations and allows the

extension of the methodology to include economic variables as GDP or inequality to study the

impact of seasonal temperatures on the economy as in Nguyen (2024).
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Table B2: Co-trending slopes of relationships between the distributional characteristics of temper-
ature and Ft (Central England)

Slope
Central England
Estimate Cot-test

λ(0.05) 0.5449*** 0.4505
(0.1402)

λ(0.10) 0.5596*** 0.5913
(0.1122)

λ(0.25) 0.5417*** 0.9495
(0.0559)

λ(0.50) 0.5016*** 0.0616
(0.0708)

λ(0.75) 0.4301*** 0.8743
(0.0549)

λ(0.90) 0.4247*** 0.9391
(0.0816)

λ(0.95) 0.4141*** 0.9925
(0.0980)

λ̄ 0.5090*** 0.8890
(0.0463)

Notes: Column Estimate correspond to the estimated co-trending slope—of the distributional characteristic with respect to the radiative
forcing Ft— and its standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot−test
reports the p-value of the test for common-trends.
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Figure B2: Climate sensitivities (Central England)

Table B3: Autocorrelation and normality tests for residual diagnosis (Central England)

Characteristic
Central England

Auto-correlation Normality

∆Qt(0.05) 0.9459 0.0827
∆Qt(0.10) 0.8373 0.0847
∆Qt(0.25) 0.6080 0.8232
∆Qt(0.50) 0.7867 0.5099
∆Qt(0.75) 0.9640 0.1284
∆Qt(0.90) 0.3346 0.0547
∆Qt(0.95) 0.0546 0.0171

∆T̄t 0.2538 0.7733
∆Ft 0.3458 0.0170

Notes: Auto-correlation column reports the p-values of the Ljung and Box (1978) modified portmanteau tests applied to each individual
residual series. Lag set at 10. Normalilty column reports the p-values of the Epps (1987) test applied to each individual residual series.
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Figure B3: Forecasts including forcing dynamics (Central England)
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Figure B4: Long-term projections under RCP scenarios (Central England)
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C Alternative Radiative Forcing Series

As an attempt to replicate the analysis in Estrada et al. (2021), this section explores specific ra-

diative forcing sources and computes the corresponding temperature sensitivity. Specifically, two

alternative versions of Ft are considered: F co2
t , representing the radiative forcing associated with

CO2, and F ant
t , which encompasses anthropogenic forcing from additional GHGs. Observe in Table

C1 that the point estimates of the co-trending slopes for the long-rum relationships between tem-

perature distributional characteristics and F co2
t are uniformly larger compared to the other versions

of radiative forcing. Similar to the baseline analysis, for the Globe and the North Hemisphere, the

estimated slopes decrease with the quantile level. For example, at τi = 0.05 and focusing on F co2
t ,

the estimated slope is 1.3505 (0.1769), while at τi = 0.95, the slope decreases to 0.6056 (0.0484).

In contrast, in Europe, the variability in estimates is less pronounced, with extreme quantile levels

yielding the higher estimates.

Co-trending slopes in Table C1 are used to compute the climate sensitivities in Figure C1.

Climate sensitivities for F co2
t are consistently higher than those for F ant

t and F tot
t . This finding

is not surprising considering that the anthropogenic and total forcing series include forcings from

additional sources, some of which have global cooling effects. A similar result is obtained by

Estrada et al. (2021). Finally, the VECM is estimated. The main difference with respect to the

baseline model is obtained in the equation for ∆Ft. Note that when anthropogenic forcing or the

radiative forcing of CO2 are analyzed, all adjustment coefficients are statically zero. The non-

response of ∆Ft to the equilibrium errors is a necessary condition for its exogeneity and indicate

no significant feedback from the temperature distribution to the radiative forcing of greenhouse

gases. This observation aligns with the evidence in Chen et al. (2022) and the model restrictions

in Pretis (2020). When total forcing is examined in the baseline, ∆Ft does adjust to its lagged

long-run equilibrium deviations in relation to average temperature. This suggests that any feedback

between temperature and radiative forcing primarily occurs through natural forcing dynamics.
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Table C1: Co-trending slopes of relationships between the distributional characteristics of temper-
ature and Ft (additional forcing sources)

Ft Slope
Globe North Hemisphere Europe

Estimate Cot-test Estimate Cot-test Estimate Cot-test

F co2
t

λ(0.05) 1.3505*** 0.2637 1.3472*** 0.2601 1.4120*** 0.3774
(0.1769) (0.1777) (0.2408)

λ(0.50) 0.7497*** 0.5493 0.7617*** 0.5287 0.9568*** 0.2496
(0.0801) (0.0803) (0.0971)

λ(0.95) 0.6056*** 0.4118 0.5909*** 0.5304 1.2395*** 0.1776
(0.0484) (0.0453) (0.1490)

λ̄ 0.8874*** 0.0971 0.8858*** 0.0923 1.0207*** 0.0946
(0.0725) (0.0747) (0.0821)

F ant
t

λ(0.05) 1.1026*** 0.1644 1.0993*** 0.1607 1.1547*** 0.2894
(0.1503) (0.1513) (0.2003)

λ(0.50) 0.6143*** 0.3718 0.6242*** 0.3631 0.7815*** 0.1541
(0.0721) (0.0721) (0.0890)

λ(0.95) 0.4994*** 0.4263 0.4863*** 0.3916 1.0200*** 0.1615
(0.0406) (0.0389) (0.1251)

λ̄ 0.7262*** 0.0579 0.7246*** 0.0556 0.8356*** 0.0547
(0.0661) (0.0679) (0.0743)

Notes: Column Estimate correspond to the estimated co-trending slope—of the distributional characteristic with respect to the radiative
forcing Ft— and its standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot−test
reports the p-value of the test for common-trends.
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Figure C1: Climate sensitivities
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Table C2: Adjustment coefficients of a vector error correction model of temperatures and radiative
forcing (Globe, additional forcing sources)

Variables
CO2

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -0.7957*** -0.0649 -0.0829 -0.0500 0.0000
(0.1964) (0.0679) (0.0536) (0.0571) (0.0010)

e2,t−1 0.5146 -1.1107*** 0.0995 0.0228 0.0011
(0.5509) (0.1280) (0.1400) (0.1202) (0.0024)

e3,t−1 0.5926 0.1716 -0.9463*** 0.1968 -0.0050*
(0.4531) (0.1317) (0.1095) (0.1218) (0.0027)

e4,t−1 -0.5185 -0.3479** -0.5821*** -0.4670*** -0.0043
(0.4336) (0.1476) (0.1302 (0.1212) (0.0026)

Anthropogenic

e1,t−1 -0.7975*** -0.0691 -0.0885* -0.0554 -0.0003
(0.2100) (0.0665) (0.0529) (0.0564) (0.0011)

e2,t−1 0.5272 -1.1095*** 0.1095 0.0285 -0.0003
(0.4507) (0.1303) (0.1387) (0.1200) (0.0030)

e3,t−1 0.5842 0.1838 -0.9578*** 0.1977 -0.0042
(0.4420) (0.1302) (0.1100) (0.1209) (0.0031)

e4,t−1 -0.5137 -0.3098** -0.5670*** -0.4361*** -0.0048
(0.4665) (0.1447) (0.1260) (0.1182) (0.0032)

Notes: Estimates obtained in a two-steps procedure. HAC Standard-errors in parenthesis. *, **,*** denote significance at the 10%, 5%, and
1% levels, respectively. e1,t−1, e2,t−1, and e3,t−1 as before. e4,t−1 denotes the lagged residuals of the co-trending relation between Ft and

T̄t. Short-run dynamics involving ∆Xt omitted.

82



Table C3: Adjustment coefficients of a vector error correction model of temperatures and radiative
forcing (North Hemisphere, additional forcing sources)

Variables
CO2

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -0.7972*** -0.0435 -0.0636 -0.0351 0.0002
(0.2119) (0.0670) (0.0500) (0.0579) (0.0010)

e2,t−1 0.6824 -1.0320*** 0.0893 0.0834 0.0013
(0.4759) (0.1352) (0.1462) (0.1284) (0.0026)

e3,t−1 0.5550 0.1828 -0.9450*** 0.1959 -0.0047*
(0.4662) (0.1386) (0.1133) (0.1327) (0.0027)

e4,t−1 -0.4917 -0.3699*** -0.5910*** -0.4716*** -0.0042
(0.4780) (0.1403) (0.1259) (0.1249) (0.0026)

Anthropogenic

e1,t−1 -0.7981*** -0.0459 -0.0693 -0.0393 0.0001
(0.2122) (0.0663) (0.0494) (0.0573) (0.0011)

e2,t−1 0.6947 -1.0309*** 0.0982 0.0889* 0.0008
(0.4689) (0.1345) (0.1437) (0.1266) (0.0031)

e3,t−1 0.5482 0.2013 -0.9478*** 0.2028 -0.0035
(0.4622) (0.1391) (0.1145) (0.1325) (0.0030)

e4,t−1 -0.4901 -0.3361** -0.5648*** -0.4416*** -0.0046
(0.4533) (0.1374) (0.1227) (0.1211) (0.0032)

Notes: Estimates obtained in a two-steps procedure. HAC Standard-errors in parenthesis. *, **,*** denote significance at the 10%, 5%, and
1% levels, respectively. e1,t−1, e2,t−1, and e3,t−1 as before. e4,t−1 denotes the lagged residuals of the co-trending relation between Ft and

T̄t. Short-run dynamics involving ∆Xt omitted.

83



Table C4: Adjustment coefficients of a vector error correction model of temperatures and radiative
forcing (Europe, additional forcing sources)

Variables
CO2

∆Qt(0.05) ∆Qt(0.50) ∆Qt(0.95) ∆T̄t ∆Ft

e1,t−1 -1.3238*** -0.1882* -0.0480 -0.1358* 0.0002
(0.2537) (0.0964) (0.0944) (0.0766) (0.0008)

e2,t−1 -1.2384*** -1.2546*** -0.0018 -0.2769* 0.0014
(0.4637) (0.1770) (0.2195) (0.1482) (0.0021)

e3,t−1 -0.6721* -0.0099 -1.0561*** -0.1237 -0.0002
(0.3699) (0.1548) (0.1724) (0.1380) (0.0011)

e4,t−1 -0.8239* -0.7336*** -0.8186*** -0.7175*** 0.0006
(0.4533) (0.1485) (0.1779) (0.1279) (0.0014)

Anthropogenic

e1,t−1 -1.3251*** -0.1947** -0.0515 -0.1401* -0.0002
(0.2530) (0.0975) (0.0928) (0.0779) (0.0009)

e2,t−1 -1.2307*** -1.2336*** 0.0134 -0.2612* 0.0016
(0.4626) (0.1812) (0.2192) (0.1475) (0.0023)

e3,t−1 -0.6734* -0.0055 -1.0994*** -0.1326 -0.0016
(0.3823) (0.1562) (0.1786) (0.1436) (0.0013)

e4,t−1 -0.8122* -0.6750*** -0.8507*** -0.6943*** -0.0008
(0.4465) (0.1423) (0.1723) (0.1224) (0.0016)

Notes: Estimates obtained in a two-steps procedure. HAC Standard-errors in parenthesis. *, **,*** denote significance at the 10%, 5%, and
1% levels, respectively. e1,t−1, e2,t−1, and e3,t−1 as before. e4,t−1 denotes the lagged residuals of the co-trending relation between Ft and

T̄t. Short-run dynamics involving ∆Xt omitted.
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D Including More Quantiles

The baseline models in the paper include three unconditional quantile series. The methodol-

ogy, however, allows for straightforward extension to include additional quantile series based

on research requirements. In this section, I extend the analysis to include an enhanced vector

Xt = [Qt(0.05), Qt(0.10), Qt(0.25), Qt(0.50), Qt(0.75), Qt(0.90), , Qt(0.95), T̄t, Ft]
′. The main find-

ings obtained in the baseline analysis are upheld in this expanded framework. For instance, as

demonstrated in Figure D1, the observed pattern of heterogeneity in the climate sensitivity remains,

with a stronger climate sensitivity at lower quantiles for the Globe and the North Hemisphere, and

at the tails of the distribution in Europe. Once the residual properties are checked as in D3, the

model is also used to produce both unconditional and conditional long-term forecasts/projections

for each variable within the system, with similar insights as in the baseline analysis.
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Table D1: Co-trending slopes of relationships between unconditional quantiles and the average
temperature (expanded model)

Slope
Globe North Hemisphere Europe

Estimate Cot-test Estimate Cot-test Estimate Cot-test

β(0.05) 1.5310*** 0.9026 1.5283*** 0.8755 1.3975*** 0.9053

(0.1529) (0.1503) (0.2109)

β(0.10) 1.3861*** 0.6336 1.3990*** 0.6990 1.2647*** 0.5743

(0.1339) (0.1356) (0.1774)

β(0.25) 1.0613*** 0.2325 1.0616*** 0.3646 0.9980*** 0.7210

(0.0463) (0.0476) (0.0527)

β(0.50) 0.8353*** 0.4198 0.8496*** 0.4536 0.9253*** 0.1556

(0.0482) (0.0463) (0.0745)

β(0.75) 1.0866*** 0.1763 1.0613*** 0.0689 0.7793*** 0.7223

(0.0575) (0.0604) (0.0625)

β(0.90) 0.7549*** 0.5523 0.7634 0.7174 1.1548*** 0.1624

(0.0561) (0.0551) (0.0812)

β(0.95) 0.6677*** 0.0876 0.6536*** 0.2486 1.2137*** 0.1987

(0.0473) (0.0478) (0.0953)

Notes: Column Estimate correspond to the estimated co-trending slope—of the quantile with respect to the average temperature— and its

standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot − test reports the

p-value of the test for common-trends.
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Table D2: Co-trending slopes of relationships between the distributional characteristics of temper-
ature and Ft (expanded model)

Slope
Globe North Hemisphere Europe

Estimate Cot-test Estimate Cot-test Estimate Cot-test

λ(0.05) 0.9897*** 0.8649 0.9887*** 0.9148 1.0323*** 0.7042
(0.1167) (0.1160) (0.1725)

λ(0.10) 0.8907*** 0.3671 0.8985*** 0.4013 0.9312*** 0.3977
(0.0950) (0.0968) (0.1433)

λ(0.25) 0.6885*** 0.9537 0.6878*** 0.8956 0.7414*** 0.5895
(0.0419) (0.0432) (0.0526)

λ(0.50) 0.5395*** 0.5753 0.5479*** 0.5145 0.6936*** 0.6303
(0.0504) (0.0494) (0.0699)

λ(0.75) 0.6937*** 0.1501 0.6755*** 0.0964 0.5780*** 0.6005
(0.0689) (0.0702) (0.0597)

λ(0.90) 0.4831*** 0.3138 0.4893*** 0.4054 0.8435*** 0.1094
(0.0542) (0.0537) (0.0954)

λ(0.95) 0.4255*** 0.2643 0.4186*** 0.0559 0.8860*** 0.1150
(0.0374) (0.0327) (0.1043)

λ̄ 0.6443*** 0.3721 0.6442*** 0.3964 0.7404*** 0.3380
(0.0428) (0.0431) (0.0507)

Notes: Column Estimate correspond to the estimated co-trending slope—of the distributional characteristic with respect to the radiative
forcing Ft— and its standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot−test
reports the p-value of the test for common-trends.

Table D3: Autocorrelation and normality tests for residual diagnosis (expanded model)

Characteristic
Globe North Hemisphere Europe

Auto-correlation Normality Auto-correlation Normality Auto-correlation Normality

∆Qt(0.05) 0.6420 0.4172 0.6316 0.7814 0.3892 0.2186
∆Qt(0.10) 0.7301 0.2910 0.7254 0.2705 0.4103 0.1980
∆Qt(0.25) 0.0417 0.8006 0.0212 0.7622 0.2741 0.9422
∆Qt(0.50) 0.9892 0.3068 0.9790 0.4382 0.5736 0.9282
∆Qt(0.75) 0.3637 0.0734 0.4566 0.0607 0.9038 0.2237
∆Qt(0.90) 0.6314 0.2574 0.5691 0.3322 0.4366 0.5856
∆Qt(0.95) 0.6183 0.6504 0.3083 0.2365 0.3816 0.6887

∆T̄t 0.1108 0.5376 0.1046 0.3316 0.4749 0.6443
∆Ft 0.2841 0.0146 0.2444 0.0184 0.5785 0.0138

Notes: Auto-correlation column reports the p-values of the Ljung and Box (1978) modified portmanteau tests applied to each individual
residual series. Lag set at 10. Normalilty column reports the p-values of the Epps (1987) test applied to each individual residual series.
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Figure D1: Climate sensitivities (expanded model)
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Figure D2: Forecasts including forcing dynamics (Globe, expanded model)
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Figure D3: Forecasts including forcing dynamics (North Hemisphere, expanded model)
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Figure D4: Forecasts including forcing dynamics (Europe, expanded model)
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Figure D5: Long-term projections under RCP scenarios (Globe, expanded model)
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Figure D6: Long-term projections under RCP scenarios (North Hemisphere, expanded model)
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Figure D7: Long-term projections under RCP scenarios (Europe, expanded model)
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Table E1: Testing for trends in distributional characteristics (1958-2021)

Characteristic
Globe North Hemisphere Europe Central England

Test-statistic p-value Test-statistic p-value Test-statistic p-value Test-statistic p-value

Qt(0.05) 0.0429 0.0000 0.0439 0.0000 0.0411 0.0000 0.0269 0.0000
Qt(0.10) 0.0443 0.0000 0.0467 0.0000 0.0393 0.0000 0.0266 0.0000
Qt(0.25) 0.0323 0.0000 0.0341 0.0000 0.0311 0.0000 0.0218 0.0000
Qt(0.50) 0.0220 0.0000 0.0238 0.0000 0.0227 0.0000 0.0124 0.0000
Qt(0.75) 0.0266 0.0000 0.0289 0.0000 0.0260 0.0000 0.0154 0.0000
Qt(0.90) 0.0222 0.0000 0.0237 0.0000 0.0384 0.0000 0.0193 0.0000
Qt(0.95) 0.0201 0.0000 0.0220 0.0000 0.0389 0.0000 0.0222 0.0000
Mean 0.0279 0.0000 0.0296 0.0000 0.0305 0.0000 0.0195 0.0000

Notes: Annual distributional characteristics estimated using the cross-sectional temperature distribution at each year from 1959-2021. Test-
statistics and p-values correspond to a significance test for the trend-slope in a regression of the distributional characteristic on a constant
and a linear trend, using HAC standard-errors.

E Reduced Sample 1958 - 2021

The analysis is zoomed to the post-1958 period in order to avoid the criticism raised by Pretis

and Hendry (2013) about the combination of proxy-based and observed historical forcing series

constructed with changing methodologies. This focus on a more recent and methodologically ho-

mogeneous dataset offers the advantage of increasing the number of cross-sectional units available

for computing the annual distributional characteristics of temperature. However, this comes at the

expense of a reduced temporal dimension, which increases uncertainty in the estimation and testing

procedures within the VECM methodology. This period is characterized by steeper trends in the

temperature characteristics, as inferred from Table E1 and its comparison with the baseline anal-

ysis. The origin of this empirical fact is the detected structural breaks in aggregate and individual

temperature series ocurred around 1965 as explained in Estrada et al. (2013), Estrada and Perron

(2017), or Gadea et al. (2024). he break date is consistent with the ”onset of a sustained global

warming” process, a period characterized by rapid increases in temperatures and radiative forcing

as a consequence of the post-World War II economic expansion and the consequent acceleration in

GHGs emissions.

The qualitative patterns observed in the analysis of the full sample are preserved in the reduced

sample. However, important differences emerge in the magnitudes of the estimated quantities.

For instance, the co-trending slopes between the distributional characteristics of temperature and

Ft as shown in Table E3, are uniformly higher in the reduced sample, implying stronger climate

sensitivity (CS) values. Both unconditional forecasts and conditional projections under various SSP

scenarios are produced in the same way as before. The quantitative results reveal a heterogeneous

response of the temperature distribution, with the magnitude of changes being more pronounced

in this exercise.
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Table E2: Co-trending slopes of relationships between unconditional quantiles and the average
temperature (1958-2021)

Slope
Globe North Hemisphere Europe Central England

Estimate Cot-test Estimate Cot-test Estimate Cot-test Estimate Cot-test

β(0.05) 1.4903*** 0.5224 1.4558*** 0.5854 1.2965*** 0.6705 1.2470*** 0.4278

(0.2104) (0.2268) (0.2079) (0.3196)

β(0.10) 1.5618*** 0.4223 1.5462*** 0.3507 1.2403*** 0.2776 1.2306*** 0.2012

(0.0892) (0.0966) (0.1826) (0.2306)

β(0.25) 1.1381*** 0.3930 1.1260*** 0.2107 0.9921*** 0.2854 1.1130*** 0.9611

(0.0518) (0.0636) (0.0583) (0.0773)

β(0.50) 0.8035*** 0.3634 0.8242*** 0.2346 0.7940*** 0.3223 0.7402*** 0.0646

(0.0450) (0.0518) (0.0969) (0.1424)

β(0.75) 0.9754*** 0.2602 0.9956*** 0.3478 0.8649*** 0.7285 0.8309*** 0.1498

(0.0539) (0.0512) (0.0559) (0.0967)

β(0.90) 0.8069*** 0.5307 0.8225*** 0.2802 1.2630*** 0.6259 0.9269*** 0.2916

(0.0387) (0.0472) (0.0686) (0.1572)

β(0.95) 0.7102*** 0.6301 0.7354*** 0.6658 1.2940*** 0.3530 1.0465*** 0.1032

(0.0403) (0.0397) (0.1039) (0.2199)

Notes: Column Estimate correspond to the estimated co-trending slope—of the quantile with respect to the average temperature— and its

standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot − test reports the

p-value of the test for common-trends.
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Table E3: Co-trending slopes of relationships between the distributional characteristics of temper-
ature and Ft (1958-2021)

Slope
Globe North Hemisphere Europe Central England

Estimate Cot-test Estimate Cot-test Estimate Cot-test Estimate Cot-test

λ(0.05) 1.1042*** 0.9188 1.1391*** 0.8602 1.0607*** 0.7922 0.6739*** 0.8846

(0.2046) (0.2299) (0.2076) (0.2267)

λ(0.10) 1.1479*** 0.9292 1.2064*** 0.9821 1.0086*** 0.3538 0.6609*** 0.7440

(0.1381) (0.1477) (0.1791) (0.1754)

λ(0.25) 0.8342*** 0.7447 0.8768*** 0.7507 0.8082*** 0.4678 0.5689*** 0.5009

(0.0823) (0.0925) (0.0787) (0.0892)

λ(0.50) 0.5821*** 0.2659 0.6321*** 0.2604 0.6206*** 0.1775 0.3473*** 0.0298

(0.0641) (0.0761) (0.1201) (0.0903)

λ(0.75) 0.7043*** 0.2571 0.7627*** 0.2508 0.6900*** 0.2090 0.4185*** 0.2627

(0.0863) (0.0861) (0.0886) (0.0885)

λ(0.90) 0.5850*** 0.3058 0.6292*** 0.2283 1.0167*** 0.3884 0.4843*** 0.5932

(0.0625) (0.0739) (0.1343) (0.1155)

λ(0.95) 0.5209*** 0.8337 0.5711*** 0.7846 1.0393*** 0.3318 0.5424*** 0.2452

(0.0504) (0.0534) (0.1544) (0.1472)

λ̄ 0.7293*** 0.5452 0.7725*** 0.5448 0.8043*** 0.3097 0.5108*** 0.5033

(0.0724) (0.0781) (0.0938) (0.0817)

Notes: Column Estimate correspond to the estimated co-trending slope—of the distributional characteristic with respect to the radiative

forcing Ft— and its standard-error in parenthesis. *, **,*** denote significance at the 10%, 5%, and 1% levels, respectively. Column Cot−test

reports the p-value of the test for common-trends.

97



Figure E1: Forecasts including forcing dynamics (Globe, 1958-2021)
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Figure E2: Forecasts including forcing dynamics (North Hemisphere, 1958-2021)
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Figure E3: Forecasts including forcing dynamics (Europe, 1958-2021)
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Figure E4: Forecasts including forcing dynamics (Central England, 1958-2021)
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Figure E5: Long-term projections under RCP scenarios (Globe, 1958-2021)
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Figure E6: Long-term projections under RCP scenarios (North Hemisphere, 1958-2021)
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Figure E7: Long-term projections under RCP scenarios (Europe, 1958-2021)
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Figure E8: Long-term projections under RCP scenarios (Central England, 1958-2021)
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F Macroeconomic Impact of Climate Change

This Appendix explores the use of the identified structural shocks, obtained through a Cholesky

rotation of the reduced-form residuals of the unconditional-quantile VECM, to estimate the macroe-

conomic impact of climate change. This approach is alternative to Bilal and Känzig (2024). Data

on constant GDP per capita for the world is sourced from the FRED database, covering the period

from 1960 to 202225. I begin by considering a model for the unconditional distributional char-

acteristics only and restricts the analysis to the Globe. Figure F1 presents the impulse-response

functions of the four variables in the system, along with their respective 95% confidence bands,

estimated using LPs à la (Jordà, 2005). The results are qualitatively similar to those described in

Section 6.4.5, indicating the robustness of the analysis to the sample period.

I estimate the dynamic causal effects of temperature shocks using LPs. To account for serial

correlation in GDP growth and temperature shocks, I include two lags of real GDP per capita and

the respective shocks in the respective regression. Figure F2 shows the impulse response of world

real GDP per capita to each of the identified distributional temperature shocks. The solid black

lines represent the point estimates, and the shaded areas correspond to the 90% confidence bands.

A shock that increases the average temperature by 0.25°C generates a permanent fall in world GDP

per capita, with the peak response observed around nine years after the shock, reaching a negative

value close to 1%. This value, when linearly scaled, is lower than the damage estimated by Bilal and

Känzig (2024). The responses to other shocks are heterogeneous. While a shock to Qt(0.95) (that

also increases the other distributional characteristics) reduces world GDP in the long run, a shock

to Qt(0.50) actually increases it. This finding aligns well with the literature on the geographical

and seasonal heterogeneity in the impacts of climate change already mentioned in this paper.

25Available at https://fred.stlouisfed.org/series/NYGDPPCAPKDWLD
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(a) Shock to T̄t (b) Shock to Qt(0.95)

(c) Shock to Qt(0.50) (d) Shock to Qt(0.05)

Figure F1: IRFs to identified structural shocks (Globe, 1959-2022)
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Figure F2: World GDP responses to identified structural shocks (Alternative 1)

The information set is enhanced by including radiative forcing variable in the system. Figure

F3 presents the impulse responses of the endogenous variables, with radiative forcing ordered first

for the Cholesky rotation of the reduced-form residuals. The results are qualitatively similar to

those described in Section 6.5.7. The responses of world GDP per capita to the identified shocks are

depicted in Figure F4. In this exercise, the negative effects on GDP are generated by the shocks to

radiative forcing, while positive responses continue to be associated with shocks to Qt(0.50) and, to

some extent, Qt(0.05). To interpret this result, it is neccesary to consider that when Ft is ordered

first in the vector, it implies that the reduced-form residuals of T̄t (and the other distributional

characteristics) are decomposed into a common component associated with shocks to radiative

forcing and an orthogonal component that does not instantaneously affect radiative forcing (Bruns

et al., 2020): the responses to the forcing shocks are equivalent to the responses to the common

component. An equivalent exercise, which produces the same responses, involves regressing the T̄t

residuals on the Ft residuals, and then replacing the fitted values and the residuals of the previous

regression in the matrix to be Cholesky-rotated. This approach clarifies the interpretation of the

shocks.

The analysis of the macroeconomic impacts of climate change using the identification of struc-
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tural shocks in an unconditional-quantile VECM provides promising insights that justify further

research. As an alternative to Bilal and Känzig (2024), who identify shocks as persistent devia-

tions from the long-run trend in global average temperature, the approach in this paper integrates

elements from climate theory within a multivariate statistical model and identifies shocks based

on the unexplained variability in the climate system. Moreover, this approach uses information on

the entire distribution of temperature, rather than just the average, thus offering a wider amount

of information for policy analysis. Other identification alternatives can be explored within this

framework, including long-run or sign restrictions, statistical identification, and more. This is part

of the research agenda.
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(a) Shock to Ft (b) Shock to T̄t (c) Shock to Qt(0.95)

(d) Shock to Qt(0.50) (e) Shock to Qt(0.05)

Figure F3: IRFs to identified structural shocks including forcing (Globe, 1959-2022)
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Figure F4: World GDP responses to identified structural shocks (Alternative 2)
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G Including More Climate Variables

In order to obtain a more complete representation of the climate system, the information set is

expanded by including additional climate variables beyond land temperature and radiative forcing.

Specifically, I include ice extent, ICEt, and sea surface temperature, SSTt. Gridded Monthly Sea

Ice Extent data (in millions of Km2) for the period 1850 to 2017 is obtained from the National

Snow and Ice Data Center (NSIDC)26. This dataset combines historical measurements from ship

observations, compilations by naval oceanographers, or analyses by national ice services, with

measurements from satellite passive microwave data available from 1979 onward. Global Sea Surface

Temperature Anomaly (relative to the 1961-90 average) is obtained from Our World in Data27 and

covers the period from 1850 to the present. The analysis is restricted to the sample from 1958 to

2017, which is the time window with the most reliable data for all variables.

In a multivariate system for Zt = [Qt(0.05), Qt(0.50), Qt(0.95), T̄t, Ft, ICEt, SSTt]
′, the Guo

and Shintani (2013) procedure selects a co-trending rank of 6, implying 2 additional co-trending

relationships compared to the baseline model. According to climate science theory and following

Pretis (2020), one co-trending equation must relate the average land temperature, T̄t, and the global

sea surface temperature, SSTt. The second co-trending equation must derive from the long-run

relationship between the radiative forcing, Ft, and the ice extent, ICEt, as argued by Diebold et al.

(2023) and Diebold and Rudebusch (2023). Another references on the econometric forecasting of

sea ice include Coulombe and Göbel (2021) and Blazsek et al. (2024). With this information, the

co-trending relationships are estimated and tested following the Chen et al. (2022) method. The

short-run dynamics of the VECM are then obtained using the two-step OLS approach.

Figures G1 and G2 present the unconditional forecasts and the long-term projections based on

the SSP scenarios produced with the estimated model. In this case, I am able to obtain outputs for

ICEt and SSTt. Focusing on the results for ICEt, notice that the negative trend is predicted to

continue during the next decades, but it never reaches a zero value. Similarly, for all SSP scenarios,

the long-term projections and their confidence bands are positive. As an alternative, instead of

considering the annual average over the monthly observations, I include in the vector of variables the

ice-extent for September, the month with the least value of ice over the year. Figure G3 shows that

the ice-extent forecast only reaches a value of zero at the end of the horizon, close to the year 2100.

For the SSP projections, negative values are observed only for the extreme scenarios SSP3-7.0 and

SSP5-8.5 and the first negative value is obtained around 2050. This result contrast with the findings

26Available at https://nsidc.org/data/g10010/versions/2.
27Available at https://ourworldindata.org/grapher/sea-surface-temperature-anomaly.

112

https://nsidc.org/data/g10010/versions/2
https://ourworldindata.org/grapher/sea-surface-temperature-anomaly


in Diebold and Rudebusch (2022), Diebold et al. (2023), and Diebold and Rudebusch (2023), who

predict a zero ice-extent value quicker in time. My results align more with the projections from

climate models.

I recognize that predicting ice-extent can be a difficult task. This is a first attempt using the

proposed unconditional-quantile VECM. However, more research is needed. Using my approach to

complement and extend the work of Coulombe and Göbel (2021) is a promising avenue.

Figure G1: Forecasts including Ice extent and Sea Surface Temperature (Globe)
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Figure G2: Long-term projections under RCP scenarios in a model icluding Ice extent and Sea
Surface Temperature (Globe)

Figure G3: Forecast (left) and long-term projections under RCP scenarios (right) in a model
including Ice extent in September
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