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Abstract

This paper proposes a novel framework that integrates inventor teams and
the patents they produce together, building a spatial mapping called the knowl-
edge space. I use this framework to study how the depth of prior work in a
research field determines two innovation outcomes. These are the ability of a
team to spark new and successful research fields, and their capacity to target
innovation at specific objectives. For targeted innovations, I examine three
directions: automating production, mitigating climate change and reducing
cancer risks. I infer the knowledge space from patent texts using a Bayesian
Natural Language Processing model. I then combine this with data on prema-
ture inventor deaths to provide quasi-random variation in team composition.
A team boosts their likelihood of producing a breakthrough by reducing their
size and moving into less populated areas of the knowledge space. However,
when targeting a specific outcome, they benefit from adding a new member who
moves them into established fields with many prior examples to build upon.
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1 Introduction
Research teams are the driving force behind advances in science and technology.
Organising inventors into effective teams is essential for creating new research fields
and solving society’s biggest challenges. Endogenous growth theory states that teams
produce new technologies by recombining the existing knowledge of team members.
This remains the central paradigm for innovation in economics. Yet, the collaborative
knowledge production process remains a black box.

I propose an innovation production process that integrates inventor teams and
the patents they produce together, building a spatial mapping referred to as the
knowledge space. I use this framework to examine how prior work determines team
output. Are teams more or less likely to produce breakthrough innovations when
they have a substantial body of prior research to build on? Similarly, does extensive
knowledge on a specific type of innovation increase the likelihood of a team patenting
toward that objective? Gaining insights into this process can inform both public and
private sector R&D policies. However, to do so, we require a model of teamwork
that can measure how much and what type of prior work a team builds on. By
locating inventor teams and patents in a unified space, I can evaluate the depth and
characteristics of work in a team’s research field.

This knowledge space is inferred from patent text data provided by the USPTO
(PatentsView 2024) using a Bayesian Natural Language Processing model. This pro-
cess uncovers important latent features, such as the distribution of knowledge among
inventors and the contribution each individual makes to their team’s innovations.
I integrate this framework with data on premature inventor deaths provided by
Kaltenberg, A. Jaffe, and M. E. Lachman 2021 to provide quasi-random variation
in team composition. I examine two outcome variables: (1) whether a team’s patent
sparks a new research field (Kelly et al. 2021), and (2) whether their patents are
aimed at a specific direction. For the second category, I focus on three key areas: au-
tomation, climate change mitigation, and cancer risk reduction (Mann and Püttmann
2023; USPTO 2024). I develop an empirical strategy around a set of continuous treat-
ment TWFE models. The treatment captures the change in the quantity and type of
prior work a team builds on following the premature death of a team member.

I find opposing effects for each of the two innovation outcomes. I show that
teams produce fewer breakthrough patents as their local knowledge field becomes
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more densely populated. Notably, a team’s first patent is the most likely to be
a breakthrough. This suggests a hit-or-miss innovation environment where team
impact hinges on the success of their initial idea. For a group of inventors to produce
a new scientific breakthrough, they often need to change research fields. I find that,
following the premature death of a team member, the probability of the remaining
inventors producing a breakthrough increases if the team shifts into a sparser area of
the knowledge space.

In contrast to breakthrough innovation, I find that the likelihood of producing a
patent targeting a specific direction increases with the number of local prior examples.
Given this, teams that lose a member and subsequently move away from the relevant
area of the knowledge space experience a significant decrease in the probability of
patenting in that direction. I validate the robustness of this result by demonstrating
that the effect reverses when a team adds a member instead of losing one.

This paper contributes a flexible but holistic model of teamwork to the literature.
Prior literature relied on citation networks to track knowledge over time (Adam B
Jaffe 1986; Hall, Trajtenberg, and Adam B. Jaffe 2001). While this provides a good
representation of features of the patents, citations develop endogenously and captur-
ing the emergence of a new field is challenging. A key contribution of this paper is
the ability to disentangle who contributed which section of a patent. Previously, all
citations or technology classes were allocated to each team member. The model pre-
sented here allows for far richer set of potential outcomes by allowing for the division
of labour.

I begin by defining the knowledge space theoretically. This space consists of a
fixed set of knowledge classes. Each class represents a specific domain of expertise,
such as computer science, biology, or graphic design. Different combinations of these
knowledge classes lead to different innovations. The knowledge space is modelled as
a probability simplex across these classes, meaning each point in the space represents
a unique combination of knowledge classes. Both inventors and patents are charac-
terised by their position in this space. By using a simplex, this approach naturally
incorporates a spatial concept by embedding a notion of distance.

I define a local knowledge field for each patent as the area within a fixed radius,
where patents in this field share similar knowledge content. The spatial dimension
of this model offers a significant contribution by intuitively capture when and where
important fields emerge. I extend this concept to teams, where the area of the knowl-
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edge space they cover shapes the type of innovation they produce. By co-locating
inventors, teams and patents in one space I can examine how the quantity of prior
work determines team innovation outcomes.

Innovation is modelled as a random process in which team members collaborate
to create a new patent. Each inventor contributes knowledge according to their role
within the team. Consequently, the team’s output is determined probabilistically by
the composition of its members, and the model derives a measure for an expected
patent outcome. Allowing inventors to contribute differently to team output is fun-
damental to defining the team local knowledge field. This allows me to measure how
much and what type of prior work does a team build upon.

I build on a method of Natural Language Processing (NLP) to empirically approx-
imate the knowledge space using patent texts. Patents have been a valuable proxy of
innovation for decades, and this paper forms part of a growing literature making use
of the depth of knowledge contained in their texts. Through a hierarchical Bayesian
model I infer who contributed which section of a patent text. Over each inventor’s
entire patenting history the model learns their individual knowledge distribution. If
an inventor has a long history of producing AI patents and appears on a patent for
a self-driving car with an inventor with a background in transport, the model can
distinguish between their contributions. It identifies who provided the knowledge on
automation and who contributed to the engine structure.

I validate this novel space along various dimensions. I classify breakthrough
patents as those that experience the largest growth in the number of patents within
their local knowledge field, following their publication. Patents that I identify as
breakthroughs introduce 8.67% more new words and 47.6% more new combinations
of two existing words, which are subsequently reused by future patents1. This evi-
dence supports the central claim of this paper: breakthrough innovations are indeed
driven by the recombination of existing ideas. I validate the contribution weights
with the following reasoning. If one team member contributed significantly more to a
patent, the technology classes of their past patents should provide more information
when predicting the technology class of the current patent. When the gap between
their contributions is large, the lead inventor’s patenting history provides, on aver-
age, 14% more information. This difference disappears as their contributions become
more equal.

1Using data kindly provided online by Arts, Hou, and Gomez 2021.
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I leverage the mathematical foundations of the knowledge space, combined with
economic theory, to develop two hypotheses. Endogenous growth is the central
paradigm behind innovation, and this paper takes the recombinant growth model
of Weitzman 1998 as a conceptual foundation. Specifically, I predict that prior work
has opposing effects on team output. The impact depends on whether the team’s
objective is to create entirely new research fields or to redirect existing ones.

Prior work lowers the cost of innovation when a team focuses on ensuring their
innovation meets a specific purpose (Grossman and Helpman 1991). If you are the first
to design a smart version of a household object, it is challenging to transfer knowledge
from computer science into your field. Following on from prior work reduces your costs
of combining those knowledge fields, and thus increases the probability of you doing
so.

When looking to produce a new research field, the existence of prior work is a
barrier. Both mechanically by not being the first to develop the object, but also
by defining paradigms that guide future work. This speaks to the literature on the
burden of knowledge (B. Jones 2009). As the frontier expands endogenously, inventors
now must invest more to reach that frontier. At the aggregate level, as the knowledge
space fills up, breakthrough ideas get harder to find (Bloom et al. 2020).

These findings have key policy implications. To promote growth, policymakers
should spread research funding across a wider range of fields. Concentrating resources
in established areas often limits breakthroughs. However, policymakers are increas-
ingly focused on guiding innovation. The results suggest encouraging collaboration
across different fields. Firms looking to shift their focus can hire inventors from in-
dustries that have achieved similar goals. This brings valuable knowledge into their
teams and facilitates cross-field learning.

Related Literature The first literature that this paper contributes to is on
the importance of teams within science and technology. It is now taken as standard
that teams are the principal producers of innovation (Wuchty, B. F. Jones, and Uzzi
2007). A range of reduced form papers have looked to describe team composition and
its role in explaining innovation outcomes, where team size, hierarchy and diversity
are key determinants (Xu, Wu, and Evans 2013; Wu, D. Wang, and Evans 2019;
Uzzi et al. 2013). I contribute to this literature a holistic but parsimonious model of
teamwork by extending the concept of mapping innovation (Fleming and Sorenson
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2004) to the inventor, team and patent level. The spatial dimension allows me to
measure various dimensions of team composition consistently, and understand their
effect on the impact and direction of team innovations.

There has been significant interest in explaining complementarities between team
members’ knowledge and skills, where sorting into teams can explain aggregate inno-
vation rates (Herkenhoff et al. 2024; Freund 2022; Pearce 2022; Boerma, Tsyvinski,
and Zimin 2021). This literature has made important contributions to understand
how teams create value, however to study how teams create new research fields and
re-direct existing ones, a new framework was required. This paper proposes an al-
ternative knowledge production process to the dominant CES production function
which remains in keeping with the long literature on endogenous growth. This paper
presents a model of how team members share their knowledge to innovate collabora-
tively, which is taken to the data on patent texts.

I contribute specifically to a smaller empirical literature which looks to disentangle
individual contributions to team projects. A key development of the team production
process presented here is allowing for inventors to contribute non-uniform shares to
the knowledge contained in the innovation. Given the rising importance of teamwork,
developing empirical methods to decode how teams combine individuals is key to
understanding their production process (Ahmadpoor and B. F. Jones 2019). There is
a small but important literature using highly specific case studies in which individual
inputs are observed such as sports and experiments (Devereux 2018; Kahane, Longley,
and Simmons 2013; Weidmann and Deming 2021). Alternatively, to identify the
marginal contribution of a team member to the quality of team output Bonhomme
2022 employs a fixed effect model, but again is limited to relatively small team sizes.

Finally, the third literature I contribute to is the use of natural langauge pro-
cessing models within social sceince studies. The ability to decode individual output
lies in using high dimensional text data. Text analysis as a whole is booming, and
following the seminal paper of Hansen, McMahon, and Prat 2018, LDAs have grown
in popularity within economics. The closest paper to mine is the forthcoming study
from Teodoridis, Lu, and Furman 2022. They develop a version of an LDA, a Hierar-
chical Dirichlet Process (HDP) at the patent level to map the knowledge space over
time. I extend this literature using text to describe patent level innovations to the
team level.

Arts, Hou, and Gomez 2021 developed the literature beyond using citations his-
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tories by emphasising the use of patents texts to identify novel contributions. Kelly
et al. 2021 produced a key development in identifying breakthroughs by comparing
the similarity of patent texts to that which came before and after. The concept of
breakthrough in this paper builds directly on this foundation. The key contribution
of this paper is to extend this to the team level, which given that they are the leading
producers of innovation, is key to determining future innovation.

Paper Outline The rest of the paper is structured as follows. Section 2 defines
the theoretical framework. Section 3 builds and validates an empirical approximation
of the space. The full treatment of the method used can be found in the technical
appendix. Section 4 presents a set of descriptive statistics and section 5 presents a
conceptual framework to derive a set of hypotheses, the empirical strategy and results.
Section 6 concludes.

2 Theoretical Framework
Define K as a set of K knowledge classes.2 Each class represents a specialised area
of understanding. Inventors produce innovations by combining their knowledge on
these classes. I model the innovation and writing of a patent as a single, unified
process. There is a fixed vocabulary of words which inventors can use, denoted by
V . Inventors use different words when describing different knowledge classes. This
is captured by the probability distribution βk for topic k across the vocabulary. βkv

captures the probability of using word v ∈ V when discussing class k.
A 3-dimensional example is given by

K = {Computing, Transport, Medicine}.

The words hospital, doctor and syringe are more likely to be used when describing
a medical innovation than one about transport. One patent though may combine
multiple classes. For instance, a drone to deliver prescriptions will likely use words
correlated with both the medical and transport classes.

Denote ∆(K) as the knowledge space which is defined as the (K − 1) probability
2No two knowledge classes are more similar to each other. This is a simplification that can be

addressed with more complex models that allow for correlation between knowledge classes. Consult
David M Blei and Lafferty 2005 for further details.
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simplex over the set K. θ is a point in the simplex, such that it represents a com-
bination of knowledge classes. Let I be the set of all inventors. Each inventor is
characterised by their knowledge profile θi. This is drawn from the knowledge space
∆(K) according to a Dirichlet distribution.

θi ∼ Dir∆(K)(α)

Where α ∈ RK is the non-symmetric Dirichlet prior such that αk ̸= αj > 0. The
support for a Dirichlet distribution is the set of K-dimensional vectors x where each
xk ∈ [0, 1] and ∑K

k=1 xk = 1. The value of the Dirichlet distribution is that each
element in the support of a Dirichlet distribution can be treated as a K-dimensional
discrete probability distribution.3

If the average αk is low then the mass of the Dirichlet distribution lies in the
corners of ∆(K). This means that inventors are more likely to hold knowledge on a
few classes as opposed to being spread over many. In other words, inventors are more
likely to be specialists than generalists as the average αk tends to zero.4 I allow for
a non-symmetric Bayesian prior, so that on aggregate, certain knowledge classes will
be more common.

A team τ ⊆ I is a set of m inventors who produce patent p together. When a team
τ collaborates, they first choose the share of the workload to be performed by each
team member. These shares are not constrained to be uniform across team members
and some may contribute more than others.5 I model this as a random draw where
the team chooses a vector ωp such that ∑i∈τ ωip = 1 and ωip ≥ 0. Each ωp is drawn
uniformly at random. This can be modelled as a draw from another Dirichlet from
the set of all possible workload divisions for m team members, denoted as ∆m−1

ωp ∼ Dir∆m−1(1).

The team then produces a patent according to the following stochastic process.
3In fact the Dirichlet is the conjugate prior for the multinomial distribution, a feature that is

utilised in defining the estimation method.
4This matches the literature by modelling inventors as more likely to be specialists than gener-

alists.
5Inventors are often modelled as agents with a high level of autonomy over project choice and

team participation (Akcigit et al. 2018) and allowing for these weights to be chosen optimally is an
important next step.
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The team first draws the number of words in the patent Np ∼ G(·).6 Then for
each word wip = 1, . . . , Np the team chooses an inventor i ∈ τ ∼ ωp and from that
inventor’s knowledge distribution chooses a class k ∈ K ∼ θi. Given the corresponding
knowledge class to word distribution, the inventor chooses a word vip ∈ V ∼ βk.
Each word in the patent is paired with a knowledge class, which produces a patent
knowledge class distribution. Since the number of words in a patent is large, in
expectation we can define the expected patent knowledge distribution. I denote the
expected patent distribution as θe

p to simplify notation throughout the paper.

E[θp|τ, ωp] =
∑
i∈τ

ωipθi = θe
p (1)

Therefore, synonymously to inventors, a patent can either be on a very specific
topic, or a combination of many. Importantly, inventors, teams and patents now
belong to one consistent space. This enables the counting of how much and which
type of innovation exists in each local knowledge field.

The knowledge contained in the patent is a function of the inventors who produced
it. However, given the stochastic process, the final patent distribution will not equal
its expectation: θp ̸= θe

p. Though it will likely be very close, since the probability
that a given team τ produces a patent distribution θp is decreasing in

d(θe
p, θp) = ||θe

p − θp||2 (2)

The team first assigns roles within the team, which given the knowledge profile of
each teammember defines the expected outcome of their collaboration. The stochastic
process by which the team generates the innovation is consistent with the idea of them
pursuing a method of trial and error, in which each inventor tries many ideas and the
probability of success is equal to their contribution weight.

Given the previous example of K = 3, the knowledge space is a 2-dimensional
equilateral triangle and can be represented as in Figure 1. Each of the corners rep-
resent perfectly specialised profiles. An inventor or patent may split their knowledge
over two of the classes, and hold no knowledge on the third, as in point 4. Point
5 represents the centroid of the simplex, and is a perfect generalist, sharing their

6This distribution G is irrelevant for the model. An appropriate approximation can be learnt
from the observed set of patent lengths. Potentially this could be interesting over time since patents
have become significantly longer throughout the period studied.
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knowledge equally over all classes.
If inventors 1 and 2 were to collaborate and contribute equally such that ω11 =

ω21 = 1/2 then in expectation they will produce θe
p at point 4 in Figure 1. Then given

the random innovation process, all patents along the line between points 1 and 2 are
feasible outcomes, however decreasingly likely as the distance from point 4 increases.

1

4

23

5

Computing

TransportMedicine

[1, 0, 0]

[0, 1, 0][0, 0, 1]

[1/2, 1/2, 0]

[1/3, 1/3, 1/3]

The knowledge space
Figure 1

Notes: An example 2 dimensional knowledge space over 3 knowledge classes. In the full model I
use K = 50 classes.

Within this space I define a local knowledge field for both teams and patents. I
define a local knowledge field for each patent as a closed ball of radius r centred at
point θ given by

B(θ, r) = {θ′ ∈ ∆(K) | ∥θ′ − θ∥ ≤ r} (3)

This field is fixed over time, however the number of other realised patents belonging
to the local knowledge field can vary over time.

I define S(τ) as the team span: the set of all linear combinations of each team
member’s knowledge distribution. Given the assumption that the weights ωp are
drawn from a uniform distribution, the team is equally likely to draw any patent in
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this set as their expected output, such that θe
p ∈ S(τ). Formally I define the team

span as the convex hull across team member distributions.

S(τ) =
{∑

i∈τ

ωipθi :
∑
i∈τ

ωip = 1, ωip ≥ 0
}

(4)

To define the local knowledge field for a team consider the Minkowski sum of S(τ)
and B(θ, r). The resulting set is analogous to the local knowledge field at the patent
level. In fact the local knowledge field for a team of one is defined identically. This
expands the team span into the full K-dimensions of the knowledge space.

S̃(τ) = S(τ) ⊕ B(θ, r) = {x + y | x ∈ S(τ), y ∈ B(x, r)} (5)

Continuing with the example outlined previously, Figure 2 demonstrates how in-
ventors, teams and patents lie in one consistent space. Panel (A) shows an example
of a patent’s local knowledge field. The plot is fixed at the year patent p (shown in
black) was published and there were five examples of prior work in that local knowl-
edge field. Panel (B) shows an example team of three members, the blue shaded
area represents their span S(τ). Each inventor lies in one of the vertices of the blue
triangle. The red perimeter defines their local knowledge field S̃(τ).

When a team τ draws contribution shares ωp to define their expected patent
knowledge distribution θe

p within local knowledge field B(θe
p, r). A local knowledge

field and time define a breakthrough score (bp) and innovation direction (zp) tuple

(bp, zp) | θe
p, t.

The breakthrough score measures the scientific impact of that innovation. Did it
spark a new and successful research field? The direction of an innovation measures
the target use of the patent. Does that innovation achieve a certain goal, for example
to mitigate climate change, reduce cancer risks or automate production?

The idea being that the impact of an idea is time dependent. The most straight-
forward example is that there is a significant gain in being the first to invent a new
object. If you are working on an artificial intelligence innovations, the same idea has
a different value today than it would have had fifty years ago, when many AI models
were first theorised. In terms of being a breakthrough, there are now plenty of AI
patents which have come before. But the direction—the ability of this combination
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Figure 2
Local knowledge fields

A) Patents B) Teams

Notes: The example patents and inventors are generated from a Dirichlet distribution with α =
[2, 1.5, 1], which leads to the distribution across the knowledge space being weighted towards the
bottom-left corner.

to meet a specific objective—depends on whether similar innovations have previously
achieved that goal. If past efforts with similar knowledge combinations have achieved
certain outcomes, similar innovations may continue along that path, shaping the fu-
ture of innovation in that area. Timing plays a critical role, as the same combination
might be more or less effective depending on the state of knowledge and technological
demand at the time. To complete the prior example, inventors have a wealth of prior
AI knowledge to use when automating production today when compared to the past.

Both bp and zp are modelled as latent variables, such that for both yp ∈ {bp, zp}

yp(θe
p, t) =

1 if fy(θe
p, t) > 0

0 otherwise
(6)

Allowing for an abuse of notation, fy is a general function that maps a team’s
location in knowledge space to the real line. This function can be mapped into the
probability that a given patent achieves that outcome. Given the definition of a
team span in equation 4, we can define the expected value for each outcome as the
following.
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E[yp|τ, t] = 1
vol(S(τ))

∫
S(τ)

yp(θe
p, t) dθe

p (7)

In other words, what proportion of all the teams potential ideas achieve outcome
y?

Define the set Pt as the set of all patents published across the global knowledge
space up to and including period t. Define the following count for the number of these
patents which belong to the local knowledge field of a focal patent.7

npt =
∑
q∈Pt

1

(
θq ∈ B(θe

p, r)
)

(8)

1 denotes an indicator function which is equal to one when the condition in paren-
theses is met. It is a natural assumption that for a patent to be a breakthrough, it
must be one of the first movers. Formally this is given by ∂fb/∂npt < 0 and can be
tested in the data. Using the expected breakthrough measure for a patent given in
equation 7 we can draw the following hypothesis.

Hypothesis 1. If ∂fb/∂npt < 0, a team increases the probability their next patent
sparks a breakthrough by reducing the density of patents within their local knowledge
field.

I ask first, how does a team’s innovation output develop over time without chang-
ing their composition? By fixing the team’s position in knowledge space, the volume
of their team span remains constant. As teams draw ideas θe

p uniformly at random,
by increasing the number of other patents within their span, the function fb decreases
over some partition of their potential patents, thus decreasing the expected value.

Part of this result is driven by the team’s own innovation. Teams develop on their
own patents, potentially transforming their first patent into an established field. But
this result also speaks to the literature on the burden of knowledge within the study
of endogenous growth (B. Jones 2009). As your local knowledge field populates with
patents, it becomes harder to produce a truly innovative idea (Bloom et al. 2020).

In that case, how can a team produce a new breakthrough idea? By altering its
composition. This can be achieved either by removing a team member to shift into a
sparser region or by adding inventors from less dense areas of the knowledge space.
The logic remains the same. Altering the team to collaborate in a sparser, potentially

7A detailed explanation of how I count these objects empirically is provided in Appendix B.
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smaller area of the knowledge space increases the probability of producing a radical
patent.

The rationale for why is as follows. For a team to produce a truly innovative
idea, the existence of prior work in the same field is a barrier. Locally to the patent,
this is intuitive since it is now not the first to market. At the team level however
this result is more subtle. By reducing the density of prior work within their local
knowledge field, the team will draw ideas from less populated areas of the knowledge
space. The idea being that by reducing the presence of prior work, the team is freed
from established paradigms, and are capable of producing a breakthrough idea.

I now move from creating new research fields to the direction of innovation. Define
the following count, again over the set Pt, this time including a check for the direction
of each patent within a target patent’s local knowledge field.

npt(z) =
∑
q∈Pt

1

(
θq ∈ B(θe

p, r) ∩ zq = 1
)

(9)

To extend this logic to the direction of innovation I apply the argument behind
the ladder of development Grossman and Helpman 1991 from the endogenous growth
theory literature. ∂fz/∂npt(z) > 0 represents innovation costs decreasing. It becomes
less costly for a team to produce a patent of a given type since they develop on prior
work. I therefore posit the following hypothesis.

Hypothesis 2. If ∂fz/∂npt(z) > 0, a team increases the probability of producing a
patent of type z if they increase the density of patents of type z within their local
knowledge field.

As the field moves up the ladder of development, each step is marginally less costly
and teams produce more patents targeting that direction. This speaks to an important
literature on pivoting. The arrival of the first patent to their field targetting direction
z may cause that team to pivot to also producing patents of that type. Its arrival
reduces the pivot penalty by providing a link between the two fields (Hill et al. 2022).
Analogous to the hypothesis on producing a breakthrough, a team can proactively
change the direction of its patents by altering its composition. By bringing in new
members who increase their ability to focus on direction z, this reduces the cost of
this type of innovation. This then increases the likelihood of them patenting towards
that purpose.
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Each result demonstrates how the quantity of prior work determines team out-
put. The effect of prior work depends on the outcome you are measuring. When a
team is concerned with whether their innovation achieves a given purpose then prior
work reduces the cost of innovating. If you design a particular household object, it
is complex to first transfer the knowledge from computer science into your field to
produce a smart version. Following on from prior work reduces your costs of combin-
ing those knowledge fields, and thus increases the probability of you doing so. When
looking to produce a new field however, the existence of prior work is a barrier, both
mechanically by not being the first to develop a given product, but also by defining
paradigms that guide all future work in that local area.

3 Estimating the Knowledge Space
I first outline the data and sample over which the model is approximated. I then in-
troduce the Bayesian model of Natural Language Processing used to approximate the
knowledge space. This allows me to count the quantity and type of prior work within
a team’s local knowledge field, and combine this with data to test both hypotheses.

3.1 Data and Sample

I estimate the knowledge space on US patent data from patentsview, the online data
base for the United States Patent and Trademark Office (USPTO). I track teams
dynamically and define a panel of team, patent observations. I restrict the sample
to teams who applied for their first patent after 1990, and their last prior to 2011. I
then stack over various team types which each play a role in the empirical analysis.
The first are those teams which are treated by the premature death of a co-inventor.
The premature death of an inventor is determined using the dataset provided by
Kaltenberg, Adam B Jaffe, and M. Lachman 2021. I define a premature death using
the following logic. I take one unique death date per inventor, and classify premature
as an inventor who dies within three years of patenting with the team. This defines
a treated inventor, and treated team. I then search for teams which return to patent
within up to five years in two cases: they return minus the deceased inventor, or
having replaced that inventor with one other. Teams which return with two or more
new inventors are dropped. Given the delay in producing a patent, less than five
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years is relatively fast to turn around a new patent and by controlling for the time I
claim that the death was a quasi-natural experiment in changing team composition.

I add to this sample two additional types of teams which act as controls. The
first are pure controls: a team which never adds or removes a member. This group
of teams never never appear again either without one or more members, or having
added one or more new ones. The second are those that first patent with nτ inventors,
then that after that team publishes their final patent the same inventors return, with
one additional member, again within up to five years. The set of controls provide
a baseline comparison for whether teams change their output dynamically, and the
second an endogenous team composition change that allows me to study adding new
members. In total I find 353 teams treated by a premature death who return without
the deceased inventor, 2200 treated teams that replace that inventor with one other.
Then to find the controls from a random sample of 300,000 teams I find 6400 pure
control teams and 980 teams which add one new member.

This is the sample used to train the LDA. I define the knowledge space over these
teams and patents, but then to measure on what fields do patents build I populate
this space with a random draw from the universe of USPTO patents. I extract just
over 2.2 million USPTO patents, approximately one third of the universe of USPTO
patents grants over the period studied.8 I populate the knowledge space with this
random sample by treating each patent as if it were a new author, who patented one
solo paper. Then taking the estimated knowledge class to word distributions I fit
each patent into the estimated knowledge space.

I combine additional data for the two patent outcomes, whether they are a break-
through or achieve a certain direction. Kelly et al. 2021 classify the universe of
USPTO patents from 1976-2014 as whether they are a breakthrough, or not. I mea-
sure three innovation directions exogenously. They are three binary indicators for
whether a given patent achieves that purpose, or not. The first is whether that
patent is a labour saving technology (Mann and Püttmann 2023). Secondly does
that patent mitigate climate change which is measured as whether that patent is
awarded the YO2 patent class (PatentsView 2024 and finally does that patent target
improving cancer diagnosis or treatment (USPTO 2024).

8This is a rough calculation. To determine the denominator in this calculation I use the fact that
there were 6,901,791 patent’s granted between 1976 and 2020
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3.2 Latent Dirichlet Allocation

Patent texts are increasingly used to describe the knowledge content of innovation,
and the innovation literature has begun to borrow and develop models from the com-
puter science literature in order to answer new questions on science and technology.
Patent number US9939179 begins their detailed description with the following:

However, one of ordinary skill in the art will recognize that the invention
is not necessarily limited to refrigeration systems. Embodiments of the
invention may also find use in other systems where multiple compressors
are used to supply a flow of compressed gas.

This quote demonstrates that the patent texts are informative on the knowledge
content beyond a simple title or CPC classification. In order to extract this informa-
tion into a empirically feasible dimension I use a model of Latent Dirichlet Allocation
(LDA). LDA models were first developed by David M. Blei, Ng, and Jordan 2003 and
have become a popular method of NLP. Consider this a brief and intuitive overview
of how an LDA infers a set of parameters which approximate the knowledge space.
For a full description consult the accompanying technical appendix in C.

The model is built upon the paradigm of observing the set of patent texts, and
proposing a hierarchical Bayesian model to infer a set of latent parameters which
govern how that set of texts was produced. The model identifies many parameters
jointly: The inventor and patent knowledge class distributions and each inventors’
contribution weight to each patent.

I build on the gensim python package (Mortensen 2017) which trains the unsu-
pervised ML model by implementing a method of Variational Bayes. The objective
is to infer from patenting histories which team member was most likely to have con-
tributed each word and with which knowledge class. In doing so, infer the inventor
knowledge distributions and their contribution shares to patents. An inventor with a
long history of producing transport patents will be more likely to have contributed the
words vehicle, destination and route. If a given patent includes many words highly
correlated with the transport class, the model will give a larger contribution share to
that inventor.

Identification in a Bayesian context is not the same as in frequentist regression
models, though there are similarities. The model may converge to a solution and
estimate parameters which are not well-identified in the regression context. If two
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inventors work together and produce many patents, but only ever working as a pair,
it is impossible to disentangle who did what on those patents. In this case the
model defaults to an equal probability for each team member across the knowledge
classes contained within the patent. This is conceptually equivalent to assigning CPC
classes evenly across all team members, therefore in this case the method presented
here defaults to the standard method in the literature (Adam B Jaffe 1986). In
addition, a topic model makes use of all documents fed into the model to identify the
knowledge classes distributions, therefore even if the inventor level parameters are not
well-identified, their patents still contribute to estimating other model parameters.

Table 1 provides the hyper-parameters which govern the estimation process.

Table 1
LDA parameters

K η Iterations Passes γ

50 1/K 350 100 0.001

Notes: The model has been run various times changing these parameters, and the results are
qualitatively similar. Both η and γ are set to the gensim default values.

These are the parameters used in estimating the ATM-LDA. η is the prior for the
knowledge class to word distribution and is assumed to be symmetric. The number
of passes defines the number of times that the model sees the entire dataset, where
the number of iterations defines the number of times the model iterates within the
EM stage over each document. The model is trained using the online method where
documents are loaded in batches of 2000. The choice of η = 1/K = 0.02 is the gensim
default option but also in line with the literature as both Hansen, McMahon, and Prat
2018; Griffiths and Steyvers 2004 set η = 0.025. Prior to estimating, I preprocess the
text in order to improve the model inference, by stemming and removing stopwords
Sarica and Luo 2020.

I estimate the Bayesian parameter flexibly instead of defining a fixed prior. This
allows for variation in the importance of a knowledge class on aggregate, which reflects
a more natural state of the world. The following results are robust to changing the
model parameters.9 Figure S2 plots the log-likelihood and perplexity at each pass
over the data which shows that the model converges after approximately 100 passes.

9The model has been run with K = 20, 30 and 40 as well as α and η chosen optimally and for a
range of iterations, 100, 200, 500.
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The model maximises over the variational parameters to minimise the lower bound
on the data, in this sense it converges to an approximate solution.

The perplexity measure is the standard measure used within the topic modelling
literature to evaluate the quality of topics estimated. The perplexity score measures
how well the model predicts the words in the documents based on the learned topic
distributions. In other words, how well the model captures the underlying structure
of a set of documents. A lower perplexity score indicates that the model has a better
ability to generalise to unseen data, and convergence indicates that the LDA has
effectively learned the topic structure of the patents.

3.3 Clustering Knowledge Space

The knowledge space is a high dimensional object, which describes the knowledge
contained in patents. These patents are objects which are used in a range of industries
and markets. In order to control for a range of unobserved heterogeneity I cluster the
estimated knowledge space into a set of N clusters, by splitting the knowledge space
using K-means clustering. The idea here is that the model is blind to a number of
patent characteristics which potentially correlate broadly with the type of knowledge
it contains. If there is a correlation between certain classes, or combinations of classes,
and high value industries, any regression model studying movements in this space may
be biased.

For example, a number of the knowledge classes use words related to information
and communication technologies. These industries have seen a number of periods of
explosive growth, but also significant changes in regulation and economic outlook. In
Figure S3 I provide an example output for the same three dimensional space shown
in 2 where the clusters form four broad groups of patents. If patents that are heavily
computational patents have on average more citations or a larger market value due
to market shocks or time-invariant consumer preferences, this set of cluster controls
will account for that.

3.4 Empirical Strategy

I present a set of regression models to test both hypotheses derived in section 2. For
the following analysis I use the term breakthrough model to refer to modelling the
probability that a patent is a breakthrough. The second version models the probabil-
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ity that a patent targets one of three directions: automating production, mitigating
climate change or reducing cancer risks. This is referred to as the innovation model.
To analyse the direction of innovation, I stack the three innovation directions into a
single regression model to ensure the results remain technologically neutral.

To tackle the research question on how teams build on prior work I first start
at the patent level. I test the relationship between the quantity of prior work on
which a patent develops and the two innovation outcomes. This is an important
step since the hypotheses derived in section 2 make assumptions on the shape of this
relationship. Here the dependent variable varies at the patent level, where each patent
maps into one team τ and application year t. For both models I use a variation of the
regression model specified in equation 10. The regression is run as a logit to model
the probability of each outcome ytτ(p) ∈ {bp, zp}

Pr
(
ytτ(p) = 1 | X ′

tτ(p)ψ
)

=
exp

(
X ′

tτ(p)ψ
)

1 + exp
(
X ′

tτ(p)ψ
)

where

X ′
tτ(p)ψ = β0 + β1xt(p) + β2dp + β3 · t + X ′

τtµ + δc + δz (10)

For xpt ∈ {npt, npt(z)}, either the count of all patents belonging to the local
knowledge field of patent p, as defined in equation 8, or over patents of direction z

as defined in equation 9. The main parameter of interest is β1. Where to match the
assumptions made in each hypothesis, I require the following sign for β1. For the
breakthrough model I assume that fn/∂npt < 0, which corresponds to β1 < 0. Vice
versa for the direction model I assume that fz/∂npt(z) > 0, which requires β1 > 0.

The model controls for the randomness in innovation by including the distance
between the realised patent distribution and the expected value in dp = d(θe

p, θp) as
defined in equation 2. I include a set of team controls in Xτt, which include a measure
of volume for the team span. I then include a set of fixed effects for knowledge
cluster (c) as defined in section 3.3 and, when required, direction (z). Introducing
a time trend through β3 achieves multiple purposes. It controls for the fact that
breakthroughs are right-coded in time: patents published recently have not yet had
chance to be realised as breakthroughs. Also for the fact that patents increasingly
tend to achieve all three directions more over time.
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I then test hypothesis 1 and 2 for two cases. In the first team composition is
held constant. For the second team composition is changed following the premature
death of a team member using the data provided by Kaltenberg, Adam B Jaffe, and M.
Lachman 2021. I define a premature inventor death as someone who dies within three
years of having applied for a patent. Treated teams are those that return to patent
within 5 years of the inventors death, either without replacing the inventor (strong
exogeneity) or replacing them with one new inventor (weak exogeneity). Both provide
a plausibly, though varying in strength, exogenous change in team composition. I
don’t condition on age at death, instead focusing on them being recently active. Using
the premature death of scientists has become a well established source of exogeneity in
collaboration (Azoulay, Fons-Rosen, and Graff Zivin 2019; Azoulay, Graff Zivin, and
J. Wang 2010). I drawn upon the arguments presented by this important literature
on the validity of this method.

All variables are defined analogously as in equation 10, except nτt and nτt(z) now
count the number of patents within the team’s local knowledge field. To be clear, I
define nτt as the sum over all patents published in the knowledge space prior to t (Pt)
and count those that belong to the local knowledge field of team τ (S̃(τ)).

Equation (11) measures changes in team output, holding team composition fixed.

X ′
sτ(p)ψ = ατ + δsz + β1nτt + β2dp + X ′

τtµ + β3 · t + δc (11)

This is run as a TWFE regression, conditional on the team identifier τ . Each
period in this model refers to a new patent, not the year it is produced. Such that
δpz corresponds to the patent order (1,2,3 etc.) in each direction. I include the time
trend to control for the systematic changes over time, as previously discussed. When
running the breakthrough model there is no direction dimension and δsz = δs. The
idea here is to test the response of team output to changes in their composition,
controlling for the year in which they patent. The patent order is an important
control, especially when considering breakthrough innovations since teams build on
their own prior work. Again in this model, to support hypothesis 1 and 2, I predict
that β1 > 0 for the direction model and β1 < 0 for the breakthrough model.

The headline result is how team innovation outcomes change after moving into
a new area of the knowledge space and therefore building on a different set of prior
work. I utilise two types of changes to identify the effect of shifting the location
of a team. Both follow the premature death of a team member, in which the team
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returns to patent within 5 years, denoted as the new team τ ′. Either τ ′ consists of
the original team minus the deceased inventor (τ ′ = τ/{i}), or they replace i with
one other inventor j (τ ′ = τ/{i} ∪ {j}).

I define the measure Dτ ′t = nτt − nτ ′t to measure the change in the quantity
of prior work on which the team is building, following their shift in the knowledge
space. Dτ ′t(z) is analogous but only counts those patents targeting direction z. I
control in the regression for the first teams count nτt, such that β1 captures the effect
of removing existing patents from the team span, conditional on the prior quantity.
The hypothesis requires that the density of patents changes within the team span.
Therefore I introduce a control for the volume denoted vτ . I approximate the volume
of a team span using the following

vτ =
√

m × (α · Dmax + (1 − α) · Dmean)) = vol
(
S(τ)

)
Where m denotes team size and Dmax is the maximum distance between any two team
member distributions, and Dmean is the average across all pairwise combinations of
team members.

X ′
sτ(p)ψ = ατ ′ + δsz + β1Dτ ′t · 1post + β2vτ ′ + β3nτt + β4dp + β5 · t + X ′

τtµ+ δc (12)

β1 captures how team output changes in response to reducing the quantity of prior
work on which a team develops, holding the volume constant across teams. This
therefore reduces the density. Dτ ′t is defined such that for both the breakthrough
and direction hypotheses, the coefficient β1 is predicted to be positive.

4 Describing the Knowledge Space
In this section I present a set of new descriptive statistics which are feasible in the
knowledge space and provide important insights into team innovation. I also use this
as a chance to validate the space by comparing results from the estimated model to
data taken from the literature.
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4.1 Breakthrough Patents

In Section 2 I define a local knowledge field spatially as the area around the knowledge
distribution of a target patent, defined by a radius r. For any patent, define the time t

as the year in which that patent was applied for. I propose the following breakthrough
measure at the patent level, which is an adjusted percentage change to allow for zero
patents either before, after or both.

bp =
(

post-countp

1 + prior-countp + post-countp

)
× 100 (13)

Prior-countp counts the number of patents which already existed in the space
B(θp, r) prior to this patent’s publication in t, and post-countp the number which
came after. Holding prior-countp constant, the breakthrough score of a given patent
p is increasing in the number of patents which came afterwards. It increases non-
linearly, with decreasing returns, such that early entrants contribute more than late
comers. Figure S1 gives an example that also demonstrates that the curve bp with
respect to post-countp flattens as the prior-countp increases.

The measure presented in equation 13 is the raw breakthrough measure, however
as made clear in Hall, Trajtenberg, and Adam B. Jaffe 2001, when working with
patent outcomes it is important to control for the fact that they are right-coded
in time. Patents produced recently have not had enough time to be revealed as
breakthroughs, since the patents that build on them have not yet arrived. Therefore,
unless where stated, instead of the raw measure I use the residuals from a regression
of the breakthrough measure bp on a set of patent application year dummies.

This spatial definition of a local knowledge field is static over time, however, it
leads to a natural concept for a breakthrough patent. I compare the number of
patents which existed in the local field prior to p being produced, to those that
came after. Patents produced in areas with few pre-existing works are novel, but
only those which post-publication see a significant increase in the number of patents
belonging to their local knowledge field are breakthroughs. This is similar in concept
to the breakthrough measure proposed by Kelly et al. 2021, however uses a spatial
dimension that is easier to track over time.

The concept is similar to the previous literature which defines a pre- and post-
patent period to capture patent importance. One key contribution of this paper is
to extend this to the teams which produce these patents. Figure (3) provides two
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examples as the patents corresponding to the minimum and maximum bp values. The
vertical line correpsondes to the year in which each patent was produced. The Y-axis
plots the total number of patents within each patent’s local knowledge field. Patent
US6496872 titled Computer system for automatically instantiating tasks designated by
a user which scores very highly given it was one the four first movers in an area with
no pre-existing patents, and many patents joined its field after publication. Whereas
for patent US6166211 titled Manure-spreader they develop on an area showing slow
growth, and no futher patents came after them.

I lean on the existing literature using NLP to produce similarity measures between
patents by calculating the backward and forward similarity of patents to validate my
method. I classify breakthrough patents as those that land in the top decile, where I
use the residuals from a regression of bp on a set of application year dummies to clean
out the issue of right-coding of patent data over time.

Figure 3
Evolution of local knowledge fields

Year

To
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lP
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Notes: Examples of low and high breakthrough patents. Patent US6496872 is a breakthrough
patent, where patent US6166211 is not. This is the raw data, and doesn’t remove year effects by
normalising over time. The vertical line identifies the publication year for each patent.

Table 2 provides a set of validation statistics to demonstrate the empirical power
of the framework. This paper develops on the work in Kelly et al. 2021 and using their
data I find the correlation between their binary breakthrough classification and the
one produced in this paper. I find a positive correlation of 0.221. I extend this and
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show that their continuous breakthrough score is negatively correlated with the prior-
count of patents belonging to that local knowledge field, but positively correlated with
the post-count.

In addition, using the Arts, Hou, and Gomez 2021 data I first show that patents
which I classify as breakthrough patents contribute 5.47% more new words which then
go on to be re-used by future patents. This is a straightforward example of creating
a new research field. They also introduce significantly more new combinations of
existing words, 26.1% new word pairs, and 26% new-three word tuples.

Table 3
Validation of breakthrough patents

Kelly et al. Correlation between breakthrough measures 0.234⋆⋆⋆

(2021) Corr. between pre-countp and breakthrough score −0.121⋆⋆⋆

Corr. between post-countp and breakthrough score 0.226⋆⋆⋆

Arts et al. %∆ new re-used words in breakthrough patents 8.67⋆⋆⋆

(2021) %∆ new re-used bi-grams in breakthrough patents 47.6⋆⋆⋆

%∆ new re-used tri-grams in breakthrough patents 44.1⋆⋆⋆

Citations %∆ forward citations for + ∆1% in post countp 2.07%⋆⋆⋆

%∆ backward citations for + ∆1% in prior countp 1.09%⋆⋆⋆

∆% forward citations for breakthrough patents 16.2%⋆⋆⋆

Notes: Validation statistics using UPSTO citation data and existing patent novelty literature.
The correlation between the Arts, Hou, and Gomez 2021 and Kelly et al. 2021 is 0.28 for backward
similarity and 0.29 for forward similarity. The average number of new words, bi-grams and tri-grams
used is 1.53, 5.85 and 8.08 respectively. The first panel displays the pairwise correlation coefficient.
The second and third panels present log-log regression coefficients from a model which controls for
application year and cluster dummies.

Finally, I find that for each additional 1% of patents to enter the local knowledge
field of a patent after its publication, the target patent receives 2.49% more cita-
tions. This elastic response points to the existence of knowledge spillovers between
local patent sub-fields. This logic also holds for backwards citations where for each
additional 1% of patents already present in a local knowledge field when a patent is
produced, the target patent makes 1.59% more backward citations.
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4.2 Innovation Direction

The words contained in a patent describe its design and use. The method reduces the
dimension from over 250,000 words to infer a distribution for each knowledge class
across the set of unique words. The logic here is that certain knowledge fields use
specific words, jargon, more than others when describing objects or problems from
their field. For example, someone describing a medical patent is more likely to use
the words blood, cells and syringe than someone talking about vehicles, who is more
likely to use car, wheel and door.

The model uses the knowledge classes as a dimension reduction technique since a
distribution for all inventors across all words is harder to manage both conceptually
and computationally. For the following example I set K = 50 prior to estimating the
model. In appendix section E I show the word clouds for each of the 50 knowledge
classes. The words presented are stemmed as part of the text cleaning process, e.g. the
word imag represents image, images and imaging. The model does not attach labels
to the knowledge classes, though they can be approximated using GPT technologies
which analyse the word weights.

Innovation is used to solve some of societies greatest challenges. For this paper
I take three exogenous classifications of whether each patent in the knowledge space
is classified as whether that patent achieves that purpose, or not. The directions
are the following. Does the patent save labour? Does the patent reduce cancer
risks or improve treatment? Does the patent mitigate the negative effects of climate
change? These classifications are designed to be industry and technology neutral, in
that patents using a broad range of underlying knowledge can target any of these
(non-mutually exclusive) directions.

Figure S5 plots the estimated Bayesian prior over the knowledge classes and the 5
words with the largest weight within the distribution for that class. We see variation
across classes, which allows for some classes to be over-represented, which will reflect
aggregate innovation direction across the time period.

Given that each patent is classified by whether that patent achieves that purpose,
I can examine how variation in the words used determined the purpose of the patent.
For example, by comparing the most frequent topics across patents that mitigate
climate change, target cancer treatment or produce artificial intelligence, we can
see how these purposes are achieved. Figure S6 shows the average weight for three
knowledge classes (realised) split over three patent types.
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Figure 4
Wordclouds and knowledge class distributions by patent type

Notes: The bar chart shows the mean weight on a select three of the fifty knowledge classes,
averaged across patents of each type. These types are not mutually exclusive. The word cloud is
plotted using the estimated knowledge class to word distributions.

Previously the literature has modelled knowledge over time through citations.
This Figure demonstrates the power of the model proposed by this paper compared to
using citations. By estimating a fixed space, I can plot the evolution of a knowledge
field over time. Using citations there is no fixed distance measure and knowledge
fields are defined endogenously by which patents cite each other. This also applies
to alternative text analysis methods that use the similarity between patent texts to
measure local knowledge fields.

4.3 Contribution Weights

This paper is the first to estimate the contribution of each team member to the
knowledge contained in a patent. To demonstrate the power of this method, I validate
the inventor contribution weights using a prediction model. I propose that if the
weights capture information on the true contribution share of each inventor, then the
patenting history of inventors who contribute significantly more should be a stronger
determinant of the technology classification awarded to a patent.

For each patent in the sample I define the lead and second inventor by ordering
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their estimated contribution shares and calculate the percentage difference between
them. With a random forest, I predict the CPC classifcation awarded to a patent
with two sets of explanatory variables: the five most common CPC classes used by
the lead inventor, prior to the target patent, and the corresponding five for the second
inventor. When using a random forest you can then calculate the feature importance
for each explanatory variable, similar in concept to measuring how each variable
contributes to the R2 of a regression.

I propose that if the gap between the contribution shares of the two inventors
is large, then the lead inventor’s patenting history will be a significantly stronger
predictor of the CPC class awarded to a patent. While if that difference is small
(both inventors contributed similarly to the patent), then I predict there to be no
significant difference. This correspondes to the total feature importance for the lead
inventor’s patenting history being significantly larger than that of the second inventor.

Table 2
Validation of the contribution weights
%∆ ≥ p90 %∆ ≥ p75 %∆ ≤ p25 %∆ ≤ p10

T-Test Mean SE Mean SE Mean SE Mean SE
Lead 57.126 0.019 56.806 0.015 50.244 0.045 50.030 0.031
Second 42.874 0.019 43.194 0.015 49.755 0.045 49.970 0.031
Difference 14.251 0.027 13.612 0.021 0.488 0.064 0.059 0.043

Notes: T-test to determine differences across lead and second inventor feature importance. Small
and large gaps are defined by the percentiles on the percentage difference %∆ between the lead and
second inventor. After each run of the random forest I calculate the total feature importance for the
lead and second inventor patent histories such that the final T-test is calculated over N=50.

Table 3 shows a T-test over 50 runs of a random forest, where each run I draw a
new split of the training and testing data set. This is a form of cross-validation that
removes the dependency of the outcome on a random initial seed and allows me to
estimate a standard error. The null hypothesis for the T-test is that both the lead
and second inventor contributed equally.

I find that for teams in which the lead inventor contributes substantially than the
second inventor (top 10 or 25%), their patenting history is around 14 percentage points
more informative about the CPC classification their joint patent is be awarded. When
conditioning on the difference between the first and second inventor being small, this
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difference disappears, which points to the contribution weights providing economically
important and precise information on who contributed to the knowledge contained.

5 Main Results
I present the main results to test the hypotheses laid out previously.

5.1 Teams that Spark New Research Fields

In these regressions the outcome variable is taken from the Kelly et al. 2021 data.10 I
take their breakthrough measure instead of the one developed in this paper to remove
concerns that the effect is mechanically driven by the definition in equation 13.

10I use their breakthrough measure calculated on the 90 percentile, based on the previous 5 years.
When using the other variations they calculate, results remain similar.
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Table 4
Patent Regression Estimates

I: Breakthrough
Dependent variable: Pr(Breakthrough)

Prior workpt -0.003*** -0.005*** -0.002*** -0.002***
(-5.64) (-10.20) (-6.44) (-6.42)

N 321140 321140 321140 321140
Controls 3 3 3 3

Cluster FE 3 3 3

Time Trend 3 3

Team size 3

II: Direction
Dependent variable: Pr(Direction)

Prior work | Directionpt 0.022*** 0.022*** 0.022*** 0.022***
(15.41) (18.11) (17.94) (17.97)

N 1218385 1218385 1218385 1218366
Controls 3 3 3 3

Direction FE 3 3 3 3

Cluster FE 3 3 3

Time Trend 3 3

Team size 3

Notes: Each column corresponds to a logistic regression of the probability a patent is either a
breakthrough (b) or one of three types (z), where all three types are stacked into one regression
model. In panel I) the dependent variable is the probability that patent is in the top 90% in the
Kelly et al. 2021, for 5 years. In panel II) the dependent variable is composed of three binary
indicators for whether that patent achieves each of the three directions: mitigates climate change,
reduces cancer risk or automates production. All standard errors are clustered at the knowledge
cluster × year level. Controls include d(θe

p, θp). If you use the full count, instead of splitting by
direction, then the coefficient is negative.

All variables are defined as in section 3.4. All regression tables show a set of
regression models that increase in rigour in each additional column, I interpret all
results taken from the final column. From Table 4 panel I) I confirm that at the
patent level, the probability a patent is a breakthrough is a decreasing function of
the number of pre-existing patents within its local field. Each additional pre-existing
local patent is associated with a 0.002% decrease in the odds that patent becomes a
breakthrough.
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Table 5
Within Team Regression Estimates

I: Breakthrough
Dependent variable: Pr(Breakthrough)

Prior workτt -0.025*** -0.024*** -0.053*** -0.018
(-4.50) (-4.24) (-4.94) (-1.63)

N 442 442 442 442
Team FE 3 3 3 3

Period FE 3 3 3 3

Controls 3 3 3

Cluster FE 3 3

Time trend 3

II: Direction
Dependent variable: Pr(Breakthrough)

Prior work | Directionτt 0.056*** 0.056*** 0.057*** 0.057***
(20.51) (20.51) (20.53) (20.53)

N 6078 6075 6075 6075
Team FE 3 3 3 3

Period × Direction FE 3 3 3 3

Controls 3 3 3

Cluster FE 3 3

Time trend 3

Notes: All regressions are fixed effect regression models run with xtlogit. The dependent varaible
for panel I) is a binary indicator for whether the that patent is a breakthrough, or not. The
dependent variable for panel II) is again a stacked binary indicator for whether a patent achieves
the given direction: mitigates climate change, reduces cancer risk or saves labour. All regressions
include team and patent order fixed effects and standard errors are clustered at this level. Controls
include d(θe

p, θp).

In table 5 I first present supporting evidence for hypothesis 1. Holding the team
fixed, as more patents arrive, the probability they produce a breakthrough decreases.
Each additional patent which arrives to the team local knowledge field is associated
with a decrease in the odds that the patent becomes a breakthrough of 0.05%, however
importantly this effect disappears when controlling for the time trend.
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Table 6
Treatment Team Regression Estimates

I: Breakthrough
Dependent variable: Pr(Breakthrough)

Dτ ′t · 1 0.004* 0.006** 0.004* 0.002
(2.27) (3.06) (2.19) (1.42)

Prior workτt -0.017*** -0.031*** -0.013* -0.012*
(-4.21) (-5.17) (-2.37) (-2.12)

Volumeτ -2.312**
(-2.78)

N 601 601 601 601
Team FE 3 3 3 3

Period FE 3 3 3 3

Controls 3 3 3 3

Cluster FE 3 3 3

Time trend 3 3

II: Direction
Dependent variable: Pr(Direction)

Dτ ′t(Direction) · 1 -0.009*** -0.009*** -0.008*** -0.009***
(-4.68) (-4.66) (-4.53) (-4.53)

Prior work | Directionτt 0.042*** 0.043*** 0.043*** 0.043***
(22.28) (22.30) (22.36) (22.37)

Volumeτ -0.212
(-0.93)

N 6666 6666 6666 6666
Team FE 3 3 3 3

Period × Direction FE 3 3 3 3

Controls 3 3 3 3

Cluster FE 3 3 3

Time trend 3 3

Notes: All regressions are team and patent order fixed effect models and standard errors are
clustered at this level. The dependent variable for panel I) is an indicator for whether the patent is
a breakthrough using the Kelly et al. 2021 data. The dependent variable for panel II) is a stacked
indicator for whether a patent achieves the given direction: mitigates climate change, reduces cancer
risk or automates production. Controls include d(θe

p, θp).
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Finally, Table 6 reports the coefficient of interest on the response of a team’s
patents to changing the team composition. Here the results in column 4 are weaker
than expected, however all coefficient signs support hypothesis 1. When a team
moves into a sparser section of the knowledge space, they increase their probability of
producing a breakthrough idea. The coefficient on the team span volume is negative
and highly significant. This is of interest since this matches the literature on how
small teams are more likely to produce breakthrough ideas Wu, D. Wang, and Evans
2019.

5.2 The Direction of Team Innovation

For these results the outcome variable is the classification of patents according to
the three types. Do they save labour, mitigate climate change or reduce the risks of
cancer. These three are not mutually exclusive. Recall that this corresponds to a
stacked regression, controlling for each direction through a direction fixed effect.

From Table 4 panel II) I confirm that at the patent level, the probability a patent
achieves a given direction is an increasing function of the pre-existing number of
patents of that type in its local field. Each additional pre-existing and local patent
of that type is associated with a 0.02% increase in the odds that patent achieves
direction z.

Given this result, in Table 5 I first present supporting evidence for hypothesis 2
without changing team composition, therefore holding the volume of the team span
constant. Each additional patent which arrives to the team local knowledge field is
associated with an increase in the odds that the patent targets direction z of 0.05%.

Finally, Table 6 reports the coefficient of interest on the response of a team’s
patents to changing the team composition. For each additional patent lost from the
team knowledge field, the probability their next patent targets direction z decreases
by 0.008%. While this may seem small, the average number of patents lost when a
team doesn’t replace the inventor is 24.63, which leads to decrease in the expectation
of Yp(τt) of 1.14% 11. When they do replace the inventor, they on average gain 3.06
patents, which essentially closes the loss.

11(24.63 × 0.008)/ 0.172 = 1.14
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5.3 Extensions and Robustness

I present an extension that opens the door to a dynamic model, and a discussion of
the robustness tests run. The tables for the robustness tests can be found in D.

5.3.1 Learning Effects

Table 7
Learning Effects

I: Breakthrough II: Direction
Pr(Breakthrough) Pr(Direction)

Dτ ′t · 1 0.015* Dτ ′t(z) · 1 -0.013***
(2.39) (-4.55)

Dτ ′t · 1 · pτ -0.006* Dτ ′t(z) · 1 · pτ 0.002*
(-2.05) (2.18)

Prior workτt -0.018** Prior work | Directionτt 0.043***
(-2.72) (22.32)

Volumeτ -2.307** Volumeτ -0.180
(-2.65) (-0.79)

N 601 N 6666
Team FE 3 Team FE 3

Period FE 3 Period × Direction FE 3

Controls 3 Controls 3

Cluster FE 3 Cluster FE 3

Time Trend 3 Time Trend 3

Notes: All regressions are fixed effect regression models run with xtlogit. The dependent varaible
for panel I) is a binary indicator for whether the that patent is a breakthrough, or not. The
dependent variable for panel II) is again a stacked binary indicator for whether a patent achieves
the given direction: mitigates climate change, reduces cancer risk or saves labour. All regressions
include team and patent order fixed effects and standard errors are clustered at this level. Controls
include d(θe

p, θp). The treatment Dτ ′t counts the difference in quantity of prior work between the
local knowledge field of a team before (τ) and after (τ ′) the premature death of a member. pτ counts
the number of patents the team produced before the prematur death as team τ .
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The model presented in this paper does not allow inventor knowledge profiles to
update dynamically. An important avenue for future work is to develop a dynamic
version of the model, that allows for inventors to learn new knowledge over time.
The literature on LDAs has developed a dynamic version of the standard topic model
which allows for knowledge classes to update over time (David M Blei and Lafferty
2006). This demonstrates the potential for developing a dynamic author-topic model.

For now, I present a simple test to open the door to future research. I intro-
duce into equation 12 an interaction between the continuous treatment Dτ ′t and the
number of patents that the first team, including the inventor who dies prematurely,
produced together. Denote this patent count as pτ . I propose that teams which lose
an inventor, with whom they have a long patenting history, suffer a reduced impact of
their premature death. Importantly this is in terms of the knowledge contributed by
that team member. Jaravel, Petkova, and Bell 2018 show that research teams suffer
a significant loss of accumulated research capital when a team breaks up. I propose
however that conditional on the team returning to patent, the loss of an inventor is
mitigated if the team has had time to learn from one another. Therefore the loss of
patents from their local knowledge field is less severe. Technically, this corresponds in
a positive coefficient for the direction model, and a negative one for the breakthrough,
mitigating the impact of the premature death.

Table 7 indicates that team members potentially learn from each other as both the
coefficient on the three-way interactions match the proposed sign. The coefficient on
the probability of producing a breakthrough is negative. This result should be taken
cautiously. As one of many examples of the potential for future work, a dynamic
version of the model would allow for a much more rigorous treatment.

6 Concluding Remarks
This paper presents a novel framework for modelling knowledge production. The pa-
per builds a mapping of inventors, teams and patents in which to study how teams
innovate. I approximate this mapping by developing a model of Bayesian Natural
Language Processing. As the first to integrate inventors and patents into one consis-
tent space, the paper re-conceptualises how knowledge is produced by recombining
existing knowledge and standing on the shoulders of giants. The paper contributes a
greater understanding of the key latent variables behind knowledge production and al-
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lows me to tackle a set of important hypotheses on how team composition determines
innovation outcomes.

The position of a team within knowledge space is a key determinant of their
innovation output. Teams which occupy dense areas, in which there exists a wealth
of prior knowledge, naturally find it harder to produce a breakthrough idea. However
if that prior work targets a specific purpose, they are more likely to target that
same direction, given that they have stronger foundation on which to build. By
adding and removing members, the team can increase their probability of producing
a breakthrough or innovations targeted at certain direction.The framework presented
here opens a world of future research. I hope that others are encouraged to utilise
this framework to continue deepening our understanding of how and why we produce
science and technology.
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Additional Tables and Figures

Figure S1
Raw breakthrough measure
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Notes: Function for the raw breakthrough measure at the patent level. This measure is bounded
between 0 and 1, but importantly captures a concept of percentage change even when the pre-count
is equal to zero.

Figure S2
LDA convergence

Notes: Convergence results, taken at the end of each of the 100 passes. For each pass the model
slices the data into chunks of 2000 documents, and runs up to 350 iterations over these documents,
or within-pass convergence.

39



Figure S3
K means clustering example

Notes: An example of how the k means clustering algorithm groups patents into broad knowledge
groups. K-means clustering computed using the sklearn KMeans package.

Figure S4
Expected versus realised patent distribution distances

Notes: This plots a histogram of the distances between the 2.2 million estimated patent distri-
butions for the LDA sample and the realised patent distribution. and another draw uniformly at
random.
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Figure S5
Inferred Bayesian prior α

Notes: Learnt α Dirichlet prior. The Y axis presents the 5 words with the largest weight within
the distribution for that class.
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Figure S6
Aggregate topic distribution by patent types

Notes: Patent knowledge distribution by type of patent. This is figure finds the average knowledge
class weight, conditional on patent type.
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Appendix
A. Estimating the Knowledge Space: Intuitive example

B. Counting Objects in Knowledge Space

C. Technical Appendix: LDA

D. Robustness Tests

A1. Adding a team member

A2. Changing the radius

E. Wordclouds

A Estimating the Knowledge Space: Intuitive ex-
ample

Figure A1
Intuitive LDA Example

Notes: An intuitive example of how LDA works. The example used is a paraphrased
version of USPTO patent number US10839336B2 which expires 2036-06-12.
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B Counting Objects in Knowledge Space
Recall that ni

j(st) denotes the count of j within i for s at t. To build count nA
p′(pt),

the number of patents p′ within the local knowledge field of a target patent p, it is
straightforward to find all patents such that ρ(θp, θp′) ≤ r. A patent p belongs to
team span S(τ) if there exist a set of weakly positive weights that sum to 1 across the
team member distributions to form a convex combination equal to the distribution
for that patent.

To solve whether a patent p belongs to the local knowledge field of a team of nτ

members, I first find the closest point θ̃ ∈ S(τ) to that patent by finding the solution
to the following problem.

min
ω∈Rn

τ

∥∥∥∥∥θp −
∑
i∈τ

ωiθi

∥∥∥∥∥∑
i∈τ

ωi = 1 and ωi ≥ 0

The objective is too choose the set of weights, such that they form a convex
combination of each team members knowledge distribution, to minimise the distance
between that point and the target patent distribution. If the distance between these
two points is zero then this patent belongs to the convex hull of the team. If this
distance is below the defined radius r, which remains constant across patents and
teams, then this patent belongs to that teams local knowledge field.

I need to solve this problem for all patents in the sample, for each team. This is
a huge number of problems to solve, in order to reduce the computational burden I
take the following mathematical shortcut. I first calculate the centroid of the team
span S(τ) as

c = 1
nτ

∑
i∈τ

θi

Calculate the maximum distance from the centroid to any point within the team
vector using

dmax = max ∥θ − c∥

using the euclidean norm. For each patent θp calculate the distance between that
patent distribution and the centroid d = ∥θp − c∥

Notice that any point which is further form the centroid than the maximum dis-
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tance within the team span plus the radius r cannot form part of the local knowledge
field. Therefore only solve the problem specified for those patents which

di ≤ dmax + r

Since this calculation is computationally far less demanding and faster than solving
the problem, but ultimately gives the same solution.

C Technical Appendix: LDA
This technical appendix outlines the Latent Dirichlet Model (LDA) and the estiamtion
process used. Modelling documents as a mixture of topics, where each topic is a
distribution over words was brought into mainstream computer science by the LDA
model presented in David M. Blei, Ng, and Jordan 2003. The Author-Topic-Model
was first introduced by Rosen-Zvi et al. 2012. This is replication of the model in
Mortensen 2017 where I have simply adapted the notation from the original papers
to the context of an Inventor-Knowledge Class-Model, where inventors write patent
texts collaboratively.

A patent p is a vector of Np words wp where each word wip is chosen from a
vocabulary of size V, and a vector of nτ inventors iτ . A collection of P patents is
therefore defined as P = {(w1, i1, · · · , (wP , iT )}.

A set of patents is produced with the following generative process where the
baseline assumption is that each inventor is drawn with uniform probability, such that
from the law of large numbers, over sufficiently long patents each inventor contributes
equally.

• For each inventor i ∈ {1, . . . , I} draw θi ∼ Dir(α).

• For each knowledge class k ∈ {1, . . . , K} draw βk ∼ Dir(η).

• For each document p ∈ {1, . . . , P}:

– Given the team τ of patent p

– For each word in the patent n ∈ {1, . . . , Np}.

- Assign an inventor to the current word by drawing xpn ∼ Unif
(

1
nτ

)
.
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- Conditioned on xpn, assign a knowledge class by drawing kpn ∼ Mult(θi).
- Conditioned on zpn, choose a word by drawing wpn ∼ Mult(βk).

This model is represented in the following plate diagram in figure (12).

Figure A2
Inventor-Knowledge Class Model

θi βk

xpn kpn wpniτ

α η

Np

P

I K

Notes: Plate notation for Bayesian Hierarchical model.

The posterior given the observed data and Dirichlet priors is given by

P (k, i,β, Θ|w, α, η,T ) = P (w|k,β)P (k|i, Θ)P (i|T )P (β|η)P (Θ|α)
P (w|α, η,T )

(14)

As is typical in Bayesian analysis this posterior is intractable since we have no
estimate for the marginal probability of the observed data. Therefore topic mod-
els typically use an inference method called Variational Bayes12. Define q(·) as an
approximation to the posterior

q(k, i,β, Θ|λ, γ, ϕ) = q(Θ|γ)q(β|λ)q(k, i|ϕ) (15)
≈ P (k, i,β, Θ|w, α, η,T ) (16)

Equation (3) models the knowledge classes and inventors as dependent random
variables where P (k|i, Θ)P (i|T ) ≈ q(k, i|ϕ). This is known in the literature as a
blocking estimator. This means that the probability of choosing inventor i ∈ τp is a
function of the knowledge held by inventor i relative to their collaborators, and the

12A derivative of Expectation Maximisation. Gibbs Sampling is an alternative and popular model,
which can give good results and I have applied, however on large sample sizes can perform very slowly.
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knowledge contained in the patent p. If a patent includes a lot of words discussing
medicine, then if one of the inventors has a larger weight in this knowledge class
than others in the team, they are more likely to be chosen to contribute. This allows
for non-uniform contribution weights ωip ̸= ωjp ∀ i, j ∈ τ and for the knowledge
profile of individual inventors to be over(under) represented in the patent knowledge
distribution.

Define the following parametrisation of q(·)

q(k, i,β, Θ|λ, γ, ϕ) = q(Θ|γ)q(β|λ)q(k, i|ϕ)

=
∏

i

q(θi|γi)
∏
k

q(βk|λk)
∏
p,n

q(ipn, kpn|ϕik)

=
∏

i

Dir(θi|γi)
∏
k

Dir(βk|λk)
∏
p,n

q(ipn, kpn|ϕik)

Which is the product of the probability of observing I individual knowledge class
distributions, K knowledge class to word distributions and a set of inventor and
knowledge class combinations for each word of every patent.

By changing the underlying assumption of how inventors and knowledge classes
are drawn, to more closely match reality, the plate diagram of parameter dependence
changes. Figure (13) presents the final model.

Figure A3
Inventor-Knowledge Class Model: Blocked

θi βk

ϕpn kpn

xpn

λi γk

Np

P

I K

Notes: Plate notation for Bayesian Hierarchical model in a blocked model, given
the assumption that the draw of inventor and knowledge class are dependent, thus
allowing for non-uniform contribution shares.
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For a given patent p the matrix ϕik gives the discrete joint probability of choosing
each inventor i and knowledge class k combination for a given word n = v ∈ V .
Formally, the probability of inventor i choosing knowledge class k and word v for
patent p is given by

ϕivk =

ϕivk i ∈ τp

0, otherwise

The full probability distribution is stored during the estimation as a four dimen-
sional matrix ϕpvik

13. Where ∑i∈τ

∑
k ϕpvik = 1.

The model iterates over every word of each patent and updates the estimates for
the parameters using the expected values. The method is a derivation of Expectation
Maximisation and solves for the following condition using Jensen’s inequality14

log p(w|α, η,T ) ≥

log(Eq[P (k, i,β, Θ|α, η,T )]) − log(Eq[q(k, i,β, Θ|λ, γ, ϕ)])

= L(λ, γ, ϕ)

The right hand side is a lower bound on the marginal probability of the observed
data. Also known in the literature as the Evidence Lower Bound (ELBO). Given the
functional assumptions you can solve the right hand side by defining the expected
values. The goal is then to maximise this right hand side as to approximate the log
likelihood of the observed data as closely as possible. This is done through coordinate
ascent, which maximises a multivariate function by iterating over each variable and
optimising in that direction, holding all others constant until convergence. To do so
take the derivative of L(λ, γ, ϕ) with respect to the arguments to define three update
rules, one for each variational parameter.

On convergence, I back out the θi given γi and βk given λk. I do so using the
process outlined in the literature so again, leave the interested reader to consult
Mortensen 2017 for further details. The model presented here though, in addition to

13In reality the Gensim package uses the exchangeability of the model to develop an online algo-
rithm to reduce the memory requirements of this matrix, I refer you again to Mortensen 2017 for
further details on this great package.

14For a full derivation I refer the reader to the original paper by David M. Blei, Ng, and Jordan
2003
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estimating a set of θi and βk, estimates a contribution share for each team member
and a set of patent to knowledge class distributions. To do so I sum across the relevant
dimensions of ϕpvik as

ϕpvik = exp{Eq[log θik] + Eq[log βkv]}∑
k

∑
i∈τp

exp{Eq[log θik] + Eq[log βkv]}

On convergence, the matrix ϕpvik is then given as part of the optimal solution.
I then calculate the contribution shares and patent distributions in the following
manner

ωip =
∑
vk

ϕpvik

θp =
∑
i∈τ

ωipθi
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D Robustness Tests

Table A1
Treatment Team Regression Estimates: Adding

I: Breakthrough
Dependent variable: Pr(Breakthrough)

Dτ ′ · 1 -0.0133 -0.0161 -0.0020 -0.0039
(-1.55) (-1.70) (-0.27) (-0.42)

nτt -0.0320*** -0.0407*** -0.0116* -0.0111
(-5.27) (-5.09) (-1.97) (-1.91)

Volumeτ 0.4377
(0.42)

N 940 940 940 940
Team FE 3 3 3 3

Period FE 3 3 3 3

Controls 3 3 3 3

Cluster FE 3 3 3

Time trend 3 3

II: Direction
Dependent variable: Pr(Direction)

Dτ ′t(Direction) · 1 0.0066* 0.0066* 0.0086** 0.0105***
(2.50) (2.48) (2.98) (3.33)

Prior work | Direction 0.0852*** 0.0864*** 0.0871*** 0.0868***
(22.72) (22.83) (22.79) (22.72)

Volumeτ -0.3870
(-1.84)

N 7875 7875 7875 7875
Team FE 3 3 3 3

Period × Direction FE 3 3 3 3

Controls 3 3 3 3

Cluster FE 3 3 3

Time trend 3 3

Notes: All regressions are team and patent order fixed effects models and standard errors
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are clustered at this level. The dependent variable for panel I) is an indicator for whether
the patent is a breakthrough using the Kelly et al. 2021 data. The dependent variable for
panel II) is a stacked indicator for whether a patent achieves the given direction: mitigates
climate change, reduces cancer risk or automates production. Controls include d(θe

p, θp).

E Wordclouds
These are the fifty wordclouds, one for each of the estimated knowlegde classes, in addition
to figure 9, here the relative size of each word in each knowledge class is visable.

1) 2) 3) 4) 5)

6) 7) 8) 9) 10)

11) 12) 13) 14) 15)
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16) 17) 18) 19) 20)

21) 22) 23) 24) 25)

26) 27) 28) 29) 30)

31) 32) 33) 34) 35)
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36) 37) 38) 39) 40)

41) 42) 43) 44) 45)

46) 47) 48) 49) 50)
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