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Abstract
In this paper, I study the impact of an expanding scientific and technological fron-

tier on team innovations. To do so, I present a novel framework that integrates inventor
teams and their patent texts. I model collaboration directly through a Bayesian model
of Natural Language Processing. Applied to patent text data, this model builds a map
of inventors, teams, and research fields, referred to as the knowledge space. Trained
on over 400,000 U.S. patents from the USPTO PatentsView database, this frame-
work allows me to tackle unanswered questions on how teams create new knowledge.
Specifically, I investigate the effect of prior work on a team’s ability to produce a
breakthrough—an innovation that sparks a new and successful research field. Lever-
aging high-dimensional patent text data, I back out two new measures: breakthrough
patents and a team’s knowledge field, the set of research fields accessible to the team.
I combine this with data on premature inventor deaths as a quasi-natural experiment.
This identifies how team innovations change as they pivot to more or less advanced
research fields. The framework unifies key elements of collaboration. Teams build on
existing knowledge, and prior work both supports and obstructs innovation. I show
that teams generate more breakthroughs when building on enough prior work to in-
corporate valuable knowledge, but not so much as to stifle novelty.
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1 Introduction

Organising inventors into effective teams is essential for growth but also for addressing so-
ciety’s greatest challenges. Literature suggests that the dominance of teamwork is partly
driven by an ever-increasing knowledge stock (Jones, 2009), as growing fields present in-
creasingly complex problems. However, this prior literature has largely measured innovation
value through citations, overlooking how teams contribute to the creation of new and suc-
cessful research fields.1

In this paper, I study the impact of an expanding scientific and technological frontier
on team innovations. To do so, I present a novel framework that integrates inventor teams
and their patent texts. I model collaboration directly through the lens of a Bayesian model
of Natural Language Processing (NLP). Applied to patent text data, this model builds a
map of inventors, teams, and research fields, referred to as the knowledge space. Leveraging
high-dimensional patent text data and a tractable model of collaboration, this framework
allows me to answer questions on which systematic data was missing from the literature.
Specifically, I study the impact of prior work on a team’s ability to produce a breakthrough—
an innovation that sparks a new and successful research field. Given this, I find that teams
produce more breakthroughs when building on enough prior work to incorporate valuable
prior knowledge; however, not too much that it becomes hard to be novel.

The analysis in this paper proceeds in two steps. I first develop a method to characterise
the latent knowledge held by inventors and their patents, disentangling the individual contri-
bution of each team member. I train the model on 408,774 U.S. patents from 214,535 teams
using the USPTO PatentsView database. Using the trained model, I fit an additional 2.2
million U.S. patent texts into the knowledge space. This novel space allows me to back out
two new empirical measures. First, a breakthrough patent is an innovation in a research field
with little prior work, which afterwards grew into a vibrant research area. Second, a team’s
knowledge field, defined as the set of all research fields accessible to the team. In the second
stage, I combine this with data on premature team member deaths (Kaltenberg, Jaffe, and
Lachman, 2021). This provides a quasi-random shock to a team’s knowledge field. Through
a continuous treatment model, I identify how team innovations change as they pivot to more
or less advanced research fields.

I document that research fields have become increasingly crowded over time, which has
meaningful consequences for whether teams achieve breakthroughs. I find that the likelihood
of a patent sparking a breakthrough follows an inverted-U shape with respect to prior work.

1Key references studying teamwork and knowledge production through citations include Pearce, 2022;
Bonhomme, 2022; Ahmadpoor and Jones, 2019, consult the literature review for a more detailed discussion.
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Building on some prior work boosts innovation impact, but too much stifles novelty. This
translates directly to team outcomes. For teams in advanced fields, removing a member from
more established areas and shifting focus to less-explored fields increases their breakthrough
potential by as much as 50%. The opposite occurs for teams in early-stage fields. Removing
members who provide access to more developed areas reduces the limited prior work they
can build on, lowering their innovation’s impact.

I contribute to the literature by constructing a unifying framework for studying teams.
To demonstrate its effectiveness, I replicate two well-known findings on team composition
and breakthroughs: small teams are the most disruptive, and flat teams drive radical science
(Xu, Wu, and Evans, 2013; Wu, Wang, and Evans, 2019). This framework not only con-
solidates existing insights but also broadens the scope of team research beyond traditional
metrics. Previous studies have largely focused on measuring team value through citations
and examined team composition using low-dimensional categories of inventor types. This
paper addresses these limitations. By combining high-dimensional patent data with a sta-
tistical model of teamwork, I develop a new method to disentangle each team member’s
contribution to a patent’s knowledge content. This allows me to precisely locate inventors,
teams and research fields in the knowledge space. This framework can then explain which
novel ideas become breakthrough research areas.

I develop and apply a two-part empirical strategy to demonstrate the results. First, I
represent the latent knowledge held by inventors and patent texts. I model a patent as a
combination of knowledge classes. Each class represents a specific domain of expertise. For
example, a car includes knowledge on engines, wheels, fuel, etc., and some on computing.
The first self-driving car then increased the amount of computing knowledge in order to
automate driving. The first patent to do so was novel, but what can explain why this
became a breakthrough research area? I define the knowledge space as a probability simplex
across a set of knowledge classes. Inventors are characterised by their position in this space.
Teams innovate by combining the knowledge profile of each member. A team’s knowledge
field is then defined by all possible combinations of its members. This corresponds to the
set of research fields available to the team. Through a simplex, this approach naturally
incorporates a spatial concept by embedding a notion of distance. I can then measure the
development stage of each research field available to the team by counting the amount of
prior work in each area of the knowledge space. I show in this paper that the quantity of
prior work a team builds on indeed explains which novel ideas become breakthroughs.

A premature death, defined as the death of an active collaborator, serves as a random
shock to a team’s local knowledge field. The use of premature deaths as a source of exogeneity
is well established (Azoulay, Fons-Rosen, and Graff Zivin, 2019; Azoulay, Graff Zivin, and
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Wang, 2010). The death of a collaborator changes the set of research fields available to the
team by removing potential combinations. I apply a continuous treatment model to show
that a team’s innovation output is determined by the prior work in this new set of research
fields. I start by showing that the premature death of a team member leads to changes in
the knowledge content of a team’s innovation, as revealed by the language in the patent text.

The impact of a death on a team’s research depends on which team member is lost and
their contribution to the team’s local knowledge field. The average treatment is the mean
decrease in the quantity of prior work in a team’s knowledge field after a premature death.
I predict how this change determines a team’s ability to achieve a breakthrough. Following
the death of a team member, the average treatment increases the likelihood of producing
a breakthrough by 21.27% relative to the baseline.2 However, this result hides significant
heterogeneity. When I split the sample over four quartiles of the quantity of prior work in a
team’s knowledge field, prior to the premature death, I find important heterogeneity in the
treatment effect. For teams building on advanced areas, reducing the quantity of prior work
by the average treatment increases their chances of a breakthrough by 49.7%. However, for
those already working in early-stage research fields, the same change reduces their chances
of a breakthrough by 61.4%.

The results can be understood through the lens of an endogenous growth paradigm. Prior
work exerts opposing effects on breakthroughs. On the one hand, prior work lowers the cost
of innovating by providing a solid foundation. This aligns with the idea that moving up the
quality ladder of development reduces implementation costs (Grossman and Helpman, 1991).
However, when the goal is to create a new research field, prior work becomes an obstacle. It
not only prevents teams from being the first to develop an idea but also establishes paradigms
that shape future work. This relates to the literature on the burden of knowledge (Jones,
2009), which suggests that as the frontier of knowledge expands, inventors must invest more
effort to develop on that frontier. At an aggregate level, as the knowledge space fills up,
breakthrough ideas become increasingly difficult to find (Bloom et al., 2020).

These findings provide guidance for policymakers. Research funding should be distributed
across fields, as concentrating it in one area may obstruct breakthroughs. Diversifying fund-
ing across new and advanced fields will help teams combine ideas in novel ways and foster
breakthroughs. In addition they promote the use of cross-field collaboration. For teams
working on advanced fields, by searching for new team members in up-and-coming fields
they can find the novelty they need to spark a new and successful field.

2This number is calculated using the predicted values from the regression model. The average number of
patents lost from the death of an inventor is 174.22, the baseline probability of a breakthrough is 0.44, given
the coefficient 0.0022.
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On a technical level, this paper makes a contribution to the use of NLP models in
economics. This is the first paper to model innovation and the patent writing as one unified
process. This provides an economic interpretation for the parameters inferred from the text
analysis. Patents have been a valuable proxy of innovation for decades, and this paper
forms part of a growing literature making use of the depth of knowledge contained in their
texts. Through a hierarchical Bayesian model, I infer who contributed which section of a
patent text. Over each inventor’s entire patenting history, the model learns their individual
knowledge profile. If an inventor has a long history of producing AI patents and appears
on a patent for a self-driving car with an inventor with a background in engineering, the
model can distinguish between their contributions. It identifies who provided the knowledge
on automation and who contributed to the engine structure.

As a novel method, I validate this space along various dimensions by comparing the
model to existing data. I validate the contribution share for each inventor with the following
reasoning. If one team member contributed significantly more to a patent, the technology
classes of their past patents should provide more information when predicting the technology
class of the current patent. When I find a large gap in contributions, the lead inventor’s past
patents provide, on average, 14% more predictive information. This difference disappears as
their contributions become more equal. In addition, the model develops a measure of break-
through patents as those that experience the largest growth in the number of patents within
their research field, following their publication. Patents that I identify as breakthroughs
introduce 8.67% more new words and 47.6% more new combinations of two existing words,
which are subsequently reused by future patents.3 This evidence reflects the paper’s central
premise: breakthrough innovations arise from the recombination of existing ideas.

Related Literature The first broad literature that this paper contributes to is on
the importance of teams within science and technology. It is now taken as standard that
teams are the principal producers of innovation (Wuchty, Jones, and Uzzi, 2007). A range
of reduced form papers have looked to describe team composition and its role in explaining
innovation outcomes (Uzzi et al., 2013; Xu, Wu, and Evans, 2013; Wu, Wang, and Evans,
2019). I contribute to this literature a unifying framework for teamwork that replicates a
selection of these results in one model. I do so by extending the concept of building a map
of innovation, developed in Fleming and Sorenson (2004), to the inventor, team and patent
level. I do so by making use of the high-dimensional patent text data. In doing so I build on

3Using the data kindly provided online by Arts, Hou, and Gomez, 2021. They provide a dataset which
identifies new words, and new n-grams in patents and which of these are later re-used. This allows them to
capture both novelty and impact.
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the forthcoming study from Teodoridis, Lu, and Furman (2022). They develop a Hierarchical
Dirichlet Process at the patent level to map the knowledge space over time. I extend this
literature to the team level to study the production of knowledge.

There is a growing literature using individual wage data to explain productivity differen-
tials and complementarities between team members’ knowledge and skills (Boerma, Tsyvin-
ski, and Zimin, 2021; Freund, 2022; Herkenhoff et al., 2024). Closest to this paper, Pearce
(2022) uses technology classifications and citations to study changes to the team knowledge
production function over time. However, this literature has largely been limited to studying
innovation value due to a lack of models and data capable of capturing the creation of new
research fields. This paper proposes an alternative knowledge production process. As the
first paper to take a model of collaboration to data on patent texts, I extend this literature
to study how teams produce breakthrough innovations.

Given the rising importance of teamwork, developing empirical methods to decode how
teams combine individual profiles is key to understanding their production process (Ahmad-
poor and Jones, 2019). I contribute specifically to the empirical literature which looks to
disentangle individual contributions to team projects (Mindruta et al., 2024; Bonhomme,
2022). There is a small but important literature using highly specific case studies in which
individual inputs are observed (Kahane, Longley, and Simmons, 2013; Devereux, 2018; Wei-
dmann and Deming, 2021). The method proposed in this paper extends this to disentangling
the knowledge contribution of each member. Within this literature, recent progress has been
made in identifying team leaders, as part of the division of scientific labour (Wu, Esposito,
and Evans, 2024; Haeussler and Sauermann, 2020). Xu, Wu, and Evans (2013) develop a
highly flexible method of classifying the leaders within teams, trained on contribution-ship
data. Akcigit et al. (2018) connect this to theory on how inventors build human capital and
innovate through interactions with high quality team leaders and collaborators.

Finally, the third literature I contribute to is the use of natural language processing
models to identify breakthrough innovations. Arts, Hou, and Gomez (2021) developed the
literature beyond using citation histories by identifying the new words created by patents
to measure novelty. They then capture which of these are re-used by future innovations to
measure impact. Kelly et al. (2021) develop a method of identifying breakthroughs by com-
paring the similarity of patent texts to patents which came before and after. The concept
of breakthrough in this paper builds directly on their foundation. The key contribution of
this paper is to extend this to the team level to connect the novelty and impact of their in-
novations to the development stages of their research fields. This paper employs a two-stage
approach to back out the required latent variables from text. There is a recent literature
on inference concerns when using two-stage methods (Bandiera et al., 2020; Battaglia et al.,
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2024). However, as discussed in the original paper, patent texts are highly dimensional and
these concerns are reduced in this context.

Paper Outline The rest of the paper is structured as follows: Section 2 defines the
theoretical framework; Section 3 outlines the process of inferring the knowledge space from
text; Section 4 describes the empirical reduced-form strategy; Section 5 provides descriptive
statistics and validation tests; Section 6 presents the main results; and Section 7 concludes.
A detailed explanation of the LDA method used can be found in the technical appendix.

2 A Framework for Team Innovation

Define K as a set of K knowledge classes.4 Each class represents a specialised area of un-
derstanding. Inventors innovate by combining their knowledge on these classes. I model the
innovation and writing of a patent as a single, unified process. There is a fixed vocabulary of
words which inventors can use, denoted by V . Inventors use different words when describing
different knowledge classes. This is captured by the probability distribution βk for topic k

across the vocabulary. βkv captures the probability of using word v ∈ V when discussing
class k.

A 3-dimensional example is given by

K = {Computing, Transport, Medicine}.

The words hospital, doctor and syringe are more likely to be used when describing a medical
innovation than one about transport. One patent though may combine multiple classes.
For instance, a drone to deliver prescriptions will likely use words correlated with both the
medical and transport classes.

Denote ∆(K) as the knowledge space which is defined as the (K − 1) probability simplex
over the set K. θ is a point in the simplex, such that it represents a combination of knowledge
classes. Let I be the set of all inventors. Each inventor is characterised by their knowledge
profile θi. Formally, this is drawn from the knowledge space ∆(K) according to a Dirichlet
distribution

θi ∼ Dir∆(K)(α),

where α ∈ RK is the non-symmetric Dirichlet prior such that αk 6= αj > 0. The support
4No two knowledge classes are more similar to each other. This is a simplification that can be addressed

with more complex models that allow for correlation between knowledge classes. Consult Blei and Lafferty,
2005 for further details.
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for a Dirichlet distribution is the set of K-dimensional vectors x where each xk ∈ [0, 1] and∑K
k=1 xk = 1. The value of the Dirichlet distribution is that each element in the support of a

Dirichlet distribution can be treated as a K-dimensional discrete probability distribution.5

If the average αk is low then the mass of the Dirichlet distribution lies in the corners
of ∆(K). This means that inventors are more likely to hold knowledge on a few classes as
opposed to being spread over many. In other words, inventors are more likely to be specialists
than generalists as the average αk tends to zero.6 I allow for a non-symmetric Bayesian prior,
so that on aggregate, certain knowledge classes will be more common.

A team τ ⊆ I is a set of m inventors who produce patent p together. When a team
τ collaborates, they first choose the share of the workload to be performed by each team
member. These shares are not constrained to be uniform across team members and some
may contribute more than others.7 I model this as a random draw where the team chooses a
vector ωp such that ∑i∈τ ωip = 1 and ωip ≥ 0. Each ωp is drawn uniformly at random. This
can be modelled as a draw from another Dirichlet. This time with a uniform prior α = 1.
Drawn from the set of all possible workload divisions for m team members, denoted as ∆m−1

ωp ∼ Dir∆m−1(1).

The team then produces a patent according to the following stochastic process. The
team first draws the number of words in the patent Np ∼ G(·).8 Then for each word
nip = 1, . . . , Np the team draws an inventor i ∈ τ ∼ ωp and from that inventor’s knowledge
distribution draws a class k ∈ K ∼ θi. Given the corresponding knowledge class to word
distribution, the inventor draws a word vip ∈ V ∼ βk. Each word in the patent is paired with
a knowledge class, which produces a patent knowledge class distribution. Since the number
of words in a patent is large, in expectation we can define the expected patent knowledge
distribution. I denote the expected patent distribution as θe

p to simplify notation throughout
the paper:

θe
p ≡ E[θp|τ, ωp] =

∑
i∈τ

ωipθi. (1)

5In fact the Dirichlet is the conjugate prior for the multinomial distribution, a feature that is utilised in
defining the estimation method.

6This matches the literature by modelling inventors as more likely to be specialists than generalists.
7Inventors are often modelled as agents with a high level of autonomy over project choice and team

participation (Akcigit et al., 2018) and allowing for these weights to be chosen optimally is an important
next step.

8This distribution G is irrelevant for the model. An appropriate approximation can be learnt from the
observed set of patent lengths. Potentially this could be interesting over time since patents have become
significantly longer throughout the period studied.
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Therefore, synonymously to inventors, a patent can either be on a very specific topic,
or a combination of many. Importantly, inventors, teams and patents now belong to one
consistent space. This enables the counting of how much innovation exists in each local
knowledge field.

The knowledge contained in the patent is a function of the inventors who produced
it. However, given the stochastic process, the final patent distribution will not equal its
expectation: θp 6= θe

p. Though it will likely be very close, since the probability that a given
team τ produces a patent distribution θp is decreasing in

d(θe
p, θp) = ||θe

p − θp||. (2)

The team first assigns roles within the team, which given the knowledge profile of each
team member defines the expected outcome of their collaboration. The stochastic process
by which the team generates the innovation is consistent with the idea of them pursuing a
method of trial and error, in which each inventor tries many ideas and the probability of
success is equal to their contribution weight.

Given the previous example of K = 3, the knowledge space is a 2-dimensional equilateral
triangle and can be represented as in Figure 1. Each of the corners represent perfectly
specialised profiles. An inventor or patent may split their knowledge over two of the classes,
and hold no knowledge on the third, as in point 4. Point 5 represents the centroid of the
simplex, and is a perfect generalist, sharing their knowledge equally over all classes.

If inventors 1 and 2 were to collaborate and contribute equally such that ω11 = ω21 = 1/2,
then in expectation they will produce θe

p at point 4 in Figure 1. Then given the random
innovation process, all patents along the line between points 1 and 2 are feasible outcomes,
however decreasingly likely as the distance from point 4 increases.

Within this space I define a local knowledge field for both teams and patents. I define a
local knowledge field for each patent as a closed ball of radius r centred at point θ given by

B(θ, r) = {θ′ ∈ ∆(K) | ‖θ′ − θ‖ ≤ r}. (3)

This field is fixed over time, however the number of other realised patents belonging to
the local knowledge field can vary over time.

I define S̃(τ) as the team span: the set of all linear combinations of the team members’
knowledge distributions. Given the assumption that the weights ωp are drawn from a uniform
distribution, the team is equally likely to draw any patent in this set as their expected output,
such that θe

p ∈ S̃(τ). Formally I define the team span as the convex hull across team member
distributions:
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Computing

TransportMedicine

[1, 0, 0]

[0, 1, 0][0, 0, 1]

[1/2, 1/2, 0]

[1/3, 1/3, 1/3]

The knowledge space
Figure 1

Notes: Example of a 2 dimensional knowledge space over 3 knowledge classes. Each point 1-5 represents
either an inventor or patent knowledge profile, since both are characterised in the same space. In the full
model I use K = 50 classes. This example is informative as can be plotted in 2-D, and while the number of
classes is small, there number of combinations remains infinite.

S̃(τ) =
{∑

i∈τ

ωipθi :
∑
i∈τ

ωip = 1, ωip ≥ 0
}

. (4)

To define the local knowledge field for a team consider the Minkowski sum of S̃(τ) and
B(θ, r). The resulting set is analogous to the local knowledge field at the patent level. In
fact the local knowledge field for a team of one is defined identically. This sum expands the
team span into the full K-dimensions of the knowledge space. The team knowledge field is
in fact the full set of patent research fields in which they will patent in expectation.

S(τ) = S̃(τ) ⊕ B(θ, r) = {x + y | x ∈ S̃(τ), y ∈ B(x, r)}. (5)

Continuing with the example outlined previously, Figure 2 demonstrates how inventors,
teams and patents lie in one consistent space. Panel (A) shows an example of a patent’s
local knowledge field. The plot is fixed at the year patent p (shown in black) was published
and there were five examples of prior work in that local knowledge field. Panel (B) shows an
example team of three members, the interior shaded area represents their span S̃(τ). Each
inventor lies in one of the vertices of the interior shaded triangle. The outer perimeter defines
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their local knowledge field S(τ).

Figure 2
Local knowledge fields

A) Patents
B) Teams

Notes: The example patents and inventors are generated from a Dirichlet distribution with α = [2, 1.5, 1],
which leads to the distribution across the knowledge space being weighted towards the bottom-left corner.
The left panel shows the research field for a target patent, shaded in black. The right panel shows the
knowledge field for a team of three inventors.

2.1 Characterising Patent and Team Fields

This method backs out a latent representation of both a patent’s research field, and a team’s
knowledge field: the set of all patent research fields on which they work in expectation. Once
learnt from data, the econometrician can apply any function they desire to these objects in
order to describe them and explain their role in innovation.

Define the set Pt as the set of all patents published across the global knowledge space up
to and including period t. Define the following count for the number of these patents which
belong to the local knowledge field of a focal patent at θp.9

npt =
∑
q∈Pt

1

(
θq ∈ B(θp; r)

)
(6)

9A detailed explanation of how I count these objects empirically is provided in Appendix D. In short, I
first slice the data by the maximum distance within the team field. I then check for the remaining patents
which belong to the team field by checking the distance from each patent θq and the exterior of the team
field.
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1 denotes an indicator function which is equal to one when the condition in parentheses is
met. I propose the following breakthrough measure at the patent level, which is an adjusted
percentage change to allow for zero patents either before, after or both.10

bp =
(

post-countp

1 + prior-countp + post-countp

)
× 100 (7)

For a patent produced in t, prior-countp aggregates each nps for s ≤ t and post-count for
all patents produced in s > t. Holding prior-countp constant, the breakthrough score of a
given patent p is increasing in the number of patents which came afterwards. It increases
non-linearly, with decreasing returns, such that early entrants contribute more than late
comers. Figure A1 gives an example that also demonstrates that the curve bp with respect
to post-countp flattens as the prior-countp increases.

I classify breakthrough patents as those that land in the top decile of residuals from a
regression of bp on a set of application year dummies. I use these residualised values for the
following reason. The measure presented in equation 7 is the raw breakthrough measure,
however as made clear in Hall, Trajtenberg, and Jaffe (2001), when working with patent
outcomes it is important to control for the fact that they are right-coded in time. Patents
produced recently have not had enough time to be revealed as breakthroughs, since the
patents that build on them have not yet arrived.

Patents produced in areas with few pre-existing works are novel, but only those which
post-publication see a significant increase in the number of patents belonging to their local
knowledge field are breakthroughs. This is similar in concept to the breakthrough measure
proposed by Kelly et al. (2021), however uses a spatial dimension that is potentially easier
to track and visualise over time. One key contribution of this paper is to extend this to the
teams which produce these patents.

Figure 3 provides two examples of patents, one classified as a breakthrough and the other
not. Both patents were applied for in the same year, however in different locations in the
knowledge space. Then the two research fields then developed along very different paths
over time. The Y-axis plots the total number of patents within each patent’s local research
field. Patent US6879998 titled Viewer Object Proxy scores very highly. They patented in a
space with a some prior work, and many patents joined its field after publication. Whereas
for patent US6166211 titled Manure-spreader they develop on an area showing slow growth,
and no further patents came after them.

At the team level you can define the synonymous count. The team knowledge field
10In section 5, I compare the patents identified as breakthroughs by equation 7 to the literature to demon-

strate the precision of this method.
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Figure 3
Evolution of local knowledge fields

Year

To
ta

lP
at

en
ts

Notes: Two cases of low and high breakthrough patents, using the estimated knowledge space. Patent
US6879998 is a breakthrough patent, where patent US6166211 is not. This is the raw count, and doesn’t
remove year fixed effects. The vertical line identifies the publication year of both patents. The Y-axis records
the total number of patents in each target patent’s research field. The number above each point counts the
number of patents which arrived to that research field in each year.

represents the set of patent research fields in which the team will patent in expectation. The
sum in equation 6 essentially counts the quantity of unique prior work which exists in each
of these knowledge fields. Unique in that it doesn’t double count for overlapping fields.

nτt =
∑
q∈Pt

1

(
θq ∈ S(τ ; r)

)
(8)

In addition measure the volume of their field. I approximate the volume of a team local
knowledge field using the following equation11

Volume
(
S(τ)

)
= vτ =

√
m × (µ · Dmax + (1 − µ) · Dmean)) (9)

Where m denotes team size and µ ∈ [0, 1].12 Here Dmax is the maximum distance between
any two team member distributions, and Dmean is the average across all pairwise combinations
of team members. This is not a function of r since that is constant across teams.

11Measuring the volume in high dimensional space is challenging, and there are alternative ways to do
this. For example, using a set of uniformly distributed points and sampling via MCMC to order team span
sizes.

12In the final model I set µ equal to 0.7, to emphasise the total breadth within the team span. However,
I have run the model for many alternative levels and the results don’t change.
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2.2 Testable Predictions

Using this framework I derive a set of testable hypotheses. In appendix section B, I present
a more rigorous derivation of these hypotheses which arise directly from the innovation
production process.

As a research field develops, it moves up the ladder of development, and this represents an
increase in the quality of existing knowledge. The cost of producing follow-on innovations is
then decreased as inventors build endogenously on the work that came before them (Gross-
man and Helpman, 1991). However, faced with an increasing knowledge stock, inventors
suffer from the “burden of knowledge”. As the innovation frontier expands, this represents
an increased cost to inventors of reaching and developing on this frontier (Jones, 2009). As
a team’s local knowledge field populates with patents, it becomes harder to produce a truly
innovative idea (Bloom et al., 2020). The compound definition of a breakthrough as both
novel and impactful leads me to the following hypothesis at the patent research field level.

Hypothesis 1. There is an inverted-U shaped relationship between the quantity of prior
work in a patent’s research field and the likelihood of the patent being a breakthrough.

This implies that as the number of existing patents within a research field increases, the
probability that a new patent is a breakthrough first increases due to knowledge accumula-
tion, then decreases after a certain point due to saturation.

In that case, how can a team produce a new breakthrough idea? For a team composed
of inventors covering a well-established research area, finding a novel idea is challenging.
Increasing the novelty of their work might require removing a member contributing knowl-
edge from the most developed fields. However, for a team in an under-explored area, this
same adjustment would weaken their chances. It would strip away the limited knowledge
they possess, setting them further back on the ladder of development. I propose to test this
with an additional hypothesis at the team level. Importantly, when teams remove (or add) a
member they also change the size of the team’s field, in doing so they change the quantity of
potential combinations. The effect of building on a few patents dispersed across a vast set of
possible combinations is likely different from building on the same number within a smaller,
more concentrated field. The following hypothesis includes this feature by using variation in
the density of prior work within a team’s field.

Hypothesis 2. The impact of reducing the density of patents in a team’s knowledge field on
the probability of their next patent being a breakthrough depends on the development stage of
their initial field:

• If the team spans an advanced research area, moving to areas with a lower density of
prior work increases their breakthrough probability.
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• If the team spans an early-stage research area, moving to areas with a lower density of
prior work decreases their breakthrough probability.

The rationale for why is as follows. Prior work enhances the impact of an innovation;
thus, when a team incorporates more related work, the quality of their innovations improves.
However, for a team to produce a truly innovative idea, the existence of prior work in the
same field is a barrier. Locally to the patent, this is intuitive since it is now not the first
to market. At the team level however this result is more subtle. By reducing the density of
prior work within their local knowledge field, the team will draw ideas from less populated
areas of the knowledge space. The idea being that by reducing the presence of prior work,
the team is freed from established paradigms, and are capable of producing a breakthrough
idea.

3 Inferring the Knowledge Space

I first outline the data and sample over which the model is approximated. I then introduce
the Bayesian model of Natural Language Processing used to infer the knowledge space. This
allows me to count the quantity of prior work within a team’s local knowledge field as to
test both hypotheses.

3.1 Data and Sample

I build the knowledge space from US patent data from patentsview, the online data base for
the United States Patent and Trademark Office (USPTO). I restrict the sample to teams
who applied for their first patent after 1990, and their last prior to 2011. I build the sample
around three types of teams, which I combine into a panel of team, patent observations.

The first team type are those teams which are treated by the premature death of a co-
inventor. The premature death of an inventor is determined using the dataset provided by
Kaltenberg, Jaffe, and Lachman (2021). I define a premature death using the following logic.
I take one unique death date per inventor13, and classify premature as an inventor who dies
within three years of patenting with the team. This defines a treated inventor, and treated
team. I then search for teams which return to patent within up to five years in two cases:
they return minus the deceased inventor, or having replaced that inventor with one other.
Teams which return with two or more new inventors are dropped from the sample. Given

13This data set was produce by scraping four well known US public record databases, for many inventors
they scraped multiple potential birth and death dates. They score each one according to their belief that it
is an accurate measure. I take the maximum observation with a maximum score. For more details see the
original paper.
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the delay in producing a patent, returning in less than five years is relatively fast to turn
around a new patent. I claim that the death was a quasi-natural experiment in changing
team composition, I discuss this strategy in more detail in section 4.2.

I add to this sample two additional types of teams which act as controls. The first are
pure controls: a team which never adds or removes a member. This group of teams never
appear again either without one or more members, or having added one or more new ones.
The second are those that first patent with m inventors, then that after that team publishes
their final patent the same inventors return, with one additional member, again within up
to five years. The set of controls provide a baseline comparison for whether teams change
their output dynamically. The second provide an endogenous team composition change that
allows me to study adding new members, as a robustness check. In total I find 353 teams
treated by a premature death who return without the deceased inventor, 2200 treated teams
that replace that inventor with one other. Then to find the controls from a random sample
of 300,000 teams I find 6400 pure control teams and 980 teams which add one new member.
However, since I am using a conditional logit model, I estimate the treatment effect on teams
which switch outcomes at least once. In other words they produce least one breakthrough.
The final sample includes the following split: 72 teams which don’t replace the prematurely
deceased inventor, 510 which do replace them and 1709 control teams.

This is the sample used to train the LDA. I extract the full patenting history of each
member of every team. I train the LDA on this sample of 408,774 patents written by 270,065
inventors. This sample contains patents and inventors for which I don’t track their entire
history, however they help provide a precise measure of knowledge for the target sample. To
measure on what fields do patents build I populate this space with a random draw from the
universe of USPTO patents. I extract just over 2.2 million USPTO patents, approximately
one third of the universe of USPTO patents grants over the period studied.14 I populate
the knowledge space with this random sample by treating each patent as if it were a new
author, who patented one solo paper. Then taking the trained model, I fit each patent into
the estimated knowledge space.

I combine additional data for the robustness check, and additional section demonstrating
the knowledge space. Firstly whether they are a breakthrough or achieve a certain direction.
Kelly et al. (2021) classify the universe of USPTO patents from 1976-2014 as whether they
are a breakthrough, or not. I measure three innovation directions exogenously. They are
three binary indicators for whether a given patent achieves that purpose, or not. The
first is whether that patent is a labour saving technology (Mann and Püttmann, 2023).

14This is a rough calculation. To determine the denominator in this calculation I use the fact that there
were 6,901,791 patent’s granted between 1976 and 2020
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Secondly does that patent mitigate climate change which is measured as whether that patent
is awarded the YO2 patent class (PatentsView, 2024 and finally does that patent target
improving cancer diagnosis or treatment (Cancer Moonshot: USPTO, 2024).

3.2 Latent Dirichlet Allocation

Patent texts are increasingly used to describe the knowledge content of innovation, and the
innovation literature has begun to borrow and develop models from the computer science
literature in order to answer new questions on science and technology. Patent number
US9939179 begins their detailed description with the following:

However, one of ordinary skill in the art will recognize that the invention is not
necessarily limited to refrigeration systems. Embodiments of the invention may
also find use in other systems where multiple compressors are used to supply a
flow of compressed gas.

This quote demonstrates that the patent texts are informative on the knowledge content
beyond a simple title or CPC classification. The text describes features of the innovation
that can be applied to other fields. In order to extract this information into a empirically
feasible dimension I use a model of Latent Dirichlet Allocation (LDA). LDA models were
first developed by Blei, Ng, and Jordan, 2003 and have become a popular method of NLP.
Consider this a brief and intuitive overview of how an LDA infers a set of parameters which
approximate the knowledge space. For a full description consult the accompanying technical
description in appendix section E.

The model is built upon the paradigm of observing the set of patent texts, and proposing
a hierarchical Bayesian model to infer a set of latent parameters which govern how that set
of texts was produced. The model identifies many parameters jointly, most importantly:
inventor and patent knowledge class distributions and each inventors’ contribution weight
to each patent.

I build on the gensim python package (Mortensen, 2017) which trains the unsupervised
machine learning model by implementing a method of Variational Bayes. The objective is to
infer from patenting histories which team member was most likely to have contributed each
word and with which knowledge class. In doing so, infer the inventor knowledge distributions
and their contribution shares to patents. An inventor with a long history of producing
transport patents will be more likely to have contributed the words vehicle, destination and
route. If a given patent includes many words highly correlated with the transport class, the
model will give a larger contribution share to that inventor.

16



Identification in a Bayesian context is not the same as in frequentist regression models,
though there are similarities. The model may converge to a solution and estimate parameters
which are not well-identified in the regression context. If two inventors work together and
produce many patents, but only ever working as a pair, it is impossible to disentangle who
did what on those patents. In this case the model defaults to an equal probability for each
team member across the knowledge classes contained within the patent. This is conceptually
equivalent to assigning patent technology classes evenly across all team members. Therefore
in this case the method presented here defaults to the standard method in the literature
(Jaffe, 1986). In addition, a topic model makes use of all documents fed into the model to
identify the knowledge classes distributions, therefore even if the inventor level parameters
are not well-identified, their patents still contribute to estimating other model parameters.

Table 1 provides the hyper-parameters which govern the estimation process.

Table 1
LDA parameters

K η Iterations Passes γ

50 1/K 350 100 0.001

Notes: K is the number of knowledge classes. η the Bayesian Dirichlet prior on the knowledge class to
word distribution. Iterations sets the number of cycles used to update the knowledge class distributions,
passes are full the number of times the model goes over the entire dataset, and the gamma threshold sets
the stopping point when the difference between topic updates is sufficiently small. The model has been run
various times changing these parameters, and the results remain similar. Both η and γ are set to the gensim
default values. For more details consult the atm package documentation online.

These are the parameters used in estimating the ATM-LDA. η is the prior for the knowl-
edge class to word distribution and is assumed to be symmetric. The number of passes
defines the number of times that the model sees the entire dataset, where the number of
iterations defines the number of times the model iterates within the EM stage over each
document. The model is trained using the online method where documents are loaded in
batches of 2000. The choice of η = 1/K = 0.02 is the gensim default option but also in line
with the literature as both Hansen, McMahon, and Prat (2018) and Griffiths and Steyvers
(2004) set η = 0.025. Prior to estimating, I preprocess the text in order to improve the
model inference, by stemming and removing stopwords Sarica and Luo (2020).

I estimate the Bayesian parameter flexibly instead of defining a fixed prior. This allows for
variation in the importance of a knowledge class on aggregate, which reflects a more natural
state of the world. The following results are robust to changing the model parameters.15

15The model has been run with K = 20, 30 and 40 as well as α and η chosen optimally and for a range of
iterations, 100, 200, 500.
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Figure A2 plots the log-likelihood and perplexity at each pass over the data which shows
that the model converges after approximately 100 passes. The model maximises over the
variational parameters to minimise the lower bound on the data, in this sense it converges
to an approximate solution.

The perplexity measure is the standard measure used within the topic modelling literature
to evaluate the quality of topics estimated. The perplexity score measures how well the
model predicts the words in the documents based on the learned topic distributions. In
other words, how well the model captures the underlying structure of a set of documents. A
lower perplexity score indicates that the model has a better ability to generalise to unseen
data, and convergence indicates that the LDA has effectively learned the topic structure of
the patents.

The words contained in a patent describe its design and use. The LDA model reduces
the dimension from over 250,000 words in the raw patent texts to infer a distribution for
each knowledge class across the set of unique words. The logic here is that certain knowledge
fields use specific words, jargon, more than others when describing objects or problems from
their field. For example, someone describing a medical patent is more likely to use the words
blood, cells and syringe than someone talking about vehicles, who is more likely to use car,
wheel and door.

The model uses the knowledge classes as a dimension reduction technique since a dis-
tribution for all inventors across all words is harder to manage both conceptually and com-
putationally. For the following example I set K = 50 prior to estimating the model. In
appendix section G, I show the word clouds for each of the 50 knowledge classes. The words
presented are stemmed as part of the text cleaning process, e.g. the word imag represents
image, images and imaging. The model does not attach labels to the knowledge classes,
though they can be approximated using GPT technologies which analyse the word weights.

Figure A4 plots the estimated Bayesian prior over the knowledge classes and the 5 words
with the largest weight within the distribution for that class. We see variation across classes,
which allows for some classes to be over-represented, which will reflect aggregate innovation
direction across the time period.

4 Empirical Strategy

I present a set of regression models to test both hypotheses derived in section 2. To tackle
the research question on how teams build on prior work I first start at the patent level. I
test the relationship between the quantity of prior work on which a patent develops and the
probability that patent produces a breakthrough.
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4.1 Hypothesis 1: Patent Level

Here the dependent variable varies at the patent level, where each patent maps into one
team τ and application year t. The regression is run as as a standard logit model to predict
whether patent p from team τ in year t is a breakthrough, or not. The full specification is
given by

Pr
(
Yτt(p) = 1 | X ′

τt(p)ψ
)

=
exp

(
X ′

τt(p)ψ
)

1 + exp
(
X ′

τt(p)ψ
) (10)

where
X ′

τt(p)ψ = β0 + δt + β1npt + β1n
2
pt + β2dp + β3mτ (11)

The main parameters of interest are β1 and β2. β1 > 0 and β2 < 0 are consistent with
an inverted-U shape. The model controls for the randomness in innovation by including the
distance between the realised patent distribution and the expected value in dp = d(θe

p, θp)
as defined in equation 2. I include the team size as a control with mτ . I include year fixed
effects for multiple reasons. They control for the fact that breakthroughs are right-coded in
time: patents published recently have not yet had chance to be realised as breakthroughs.

4.2 Identification strategy for Team Outcomes

The headline result is how team innovation outcomes change after moving into a new area
of the knowledge space and therefore building on a different set of prior work. I utilise two
types of changes to identify the effect of shifting the location of a team. Both follow the
premature death of a team member. I define premature as having died within three years of
patenting. The number three is chosen as in the USPTO raw data, teams on average patent
every three years. Therefore if an inventor dies within three, it is reasonable to assume that
on average this would change their next patent outcome. This definition is therefore based
around them being active, not age or health status, and is in line with the literature Azoulay,
Fons-Rosen, and Graff Zivin, 2019. Denote the initial team, prior to the premature death as
τ1. This team must return to patent within 5 years denoted as τ2 to entire the sample. This
is to define a cap on the number of years in which they must return. The identifier τ is now
a unique id for each pair (τ1, τ2). Either τ2 consists of the original team minus the deceased
inventor (τ2 = τ1 \ {i}), or they replace i with one other inventor j (τ2 = (τ1 \ {i}) ∪ {j}).

I define the measure Dτt = nτ1t −nτ2t to measure the change in the quantity of prior work
on which the team is building, following their shift in the knowledge space.16 The identifying

16To ensure the logit model converges, I winsorize the top 1% of both the total and direction counts, nτt

and nτt(z) respectively. This caps the maximum value at the 99% value, to reduce the effect of outliers.
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assumption here is that the death is an unexpected event, where the impact on the team’s
knowledge field is captured by Dτt.

Notice that the treatment is time dependent. If a team member prematurely dies in
period t then Dτt measures the contemporaneous change in the quantity of prior on which
the team builds. However for all future periods this variable captures the knowledge foregone
by the untimely death. The idea being that if the inventor had not passed away, the team
could have continued to patent in those research fields. I control in the regression for the
first teams count nτ1t, such that β1 captures the effect of removing existing patents from the
team span, conditional on the prior quantity.

4.3 Hypothesis 2: Team Level

This is model is run on a team patent panel. Each patent is a new period s, such that the
team τ is repeated over their 1st, 2nd, 3rd patents and so on. I then predict the probability
that Yτs, a team’s nth patent, is a breakthrough.

Pr
(
Yτs = 1 | X ′

τsψ
)

=
exp

(
X ′

τsψ
)

1 + exp
(
X ′

τsψ
) (12)

The full set of independent variables is given by,

X ′
τsψ = ατ + µs + δt + β1nτ1s + β2Dτs + β3vτ + Z ′

pδ (13)

Hypothesis 2 requires that the density of patents changes within the team local knowledge
field. Therefore I introduce a control for the volume denoted vτ , as defined in equation 9. nτ1s

controls for the quantity of prior work within the team field of the initial team, prior to the
inventors premature death. β2 then captures the treatment effect of removing patents from
the team’s knowledge field. In other words, the effect of moving them into a less explored
area of the knowledge space.

To test the compound hypothesis, I split the sample of teams into quartiles of prior work
nτ1s. I then run the same regression as specified in equation 12 for each quartile separately.
For those teams initially building on a lot of prior work (nτ1s high), β2 > 0 is consistent
with the gain from them moving into under-explored areas and drawing more novel ideas.
Conversely, for those teams initially building on a little prior work (nτ1s low), β2 < 0 is
consistent with them losing out by having fewer prior examples to incorporate, reducing the
impact of their work.
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5 Describing the Knowledge Space

In this section I present a set of new descriptive statistics which are feasible in the knowledge
space and provide important insights into team innovation. I also use this as a chance to
validate the space by comparing the results to data taken from the literature. Table 2 shows
two sets of descriptive statistics. The first panel describes the sample used to train the LDA
model. The second panel is a sub-sample of the first, and describes the teams and patents
used in the reduced-form regression model.

Table 2
Descriptive Statistics

LDA sample
Patents Obs Mean Min Max
Team size 408774 3.423 1 76
% Breakthrough 408774 0.260 0 1
Specialisation 408774 0.455 0.150 0.975
Hierarchy 408774 0.047 0 0.928

Inventors Obs Mean Min Max
Teams 270,065 3.078 1 767
Patents 270,065 5.181 1 4549
Specialisation 270,065 0.533 0.028 1
Contribution weight 270,065 0.263 0? 1

Treatment sample 1990-2010

No Replace Replace Control
Treatment Status 72 510 1709

Obs Mean Min Max
Team size 10,934 2.470 1 20
Team patents 10,934 7.399 2 51
% Breakthrough 10,934 0.449 0 1
Total Count 10,934 185.565 0 3198
Volume 10,934 0.637 0 4.69
Density 7,929 329.03 0 35327.19

Notes: Volume is defined by the square root of team size, multiplied by the weighted average of the maximum
and mean distance between team member knowledge profiles, as given in equation 9. Total count is defined
as the number of patents within a team’s or patent’s knowledge field, given by equations 6 and 8 respectively.
Density is defined as total count divided by the volume, and is set to missing as some teams of size 1 have
zero volume and zero count. ? since this is approximately zero in the data. The treatment sample split is
conditional on them being part of the final conditional logit sample- they have at least one breakthrough
patent.
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5.1 Aggregate Statistics

This paper examines how the maturity of a research field determines the innovation outcomes
for teams working in that area. While the knowledge profile and team span is constant over
time, innovation arrives dynamically to the knowledge space. Therefore the research area on
which a team works develops over time.

According to Bloom et al. (2020), innovative ideas are getting harder to find. This in
part can be explained by an increasingly populated knowledge space. Figure 4 plots the
average density of a team’s local knowledge field across the sample, for teams which patent
for the first time in each year. The density of prior work within a team’s local knowledge
field is defined as nτt/vτ .

As the innovation frontier expands, the number of patents within the knowledge space
increases. This doesn’t however mean that the number of patents within a team’s local
knowledge fields increases mechanically. Teams may endogenously respond and locate them-
selves in less populated areas. However, I find that when teams produce their first patent,
the number of prior work within their field on average is increasing, as is the density.

Figure 4
Average Knowledge Field Density

Notes: Density is defined at the team level, as the number of patents within their local knowledge field
normalised by their volume. Volume is defined by the square root of team size, multiplied by the weighted
average of the maximum and mean distance between team member knowledge profiles, as given in equation
9. I then find the average density for each year, of team’s which patented for the first time in that year. The
size of each marker is weighted by the total number of patents in the knowledge space in each year.

This is driven in part by the fact that the number of patents within team’s local fields

22



is increasing over time, while the volume of team fields is relatively constant. This is an
interesting result, given that team size is increasing. For the volume to remain constant
then, teams must be combining inventors who are closer together, such that the maximum
and mean distance between members is decreasing. I show that this is in fact the case and
the comparison across team statistics and the breakdown of the volume measure can be seen
in Figure A6.

5.2 Breakthrough Patents

This paper presents a novel empirical concept for breakthrough research fields. Table 3
provides a set of validation statistics to demonstrate the empirical power of the framework.

Table 3
Validation of breakthrough patents

Kelly et al. Correlation between breakthrough classifications 0.234???

(2021) Corr. between pre-countp and breakthrough score −0.121???

Corr. between post-countp and breakthrough score 0.226???

Arts et al. %∆ new re-used words in breakthrough patents 8.67???

(2021) %∆ new re-used bi-grams in breakthrough patents 47.6???

%∆ new re-used tri-grams in breakthrough patents 44.1???

Citations %∆ forward citations for + ∆1% in post countp 2.07%???

%∆ backward citations for + ∆1% in prior countp 1.09%???

∆% forward citations for breakthrough patents 16.2%???

Notes: Validation statistics using UPSTO citation data and existing patent novelty literature. The correla-
tion between the Arts, Hou, and Gomez (2021) and Kelly et al. (2021) is 0.28 for backward similarity and
0.29 for forward similarity. The average number of new words, bi-grams and tri-grams used is 1.53, 5.85 and
8.08 respectively. The first panel displays the pairwise correlation coefficient. The second and third panels
present log-log regression coefficients from a model which controls for application year and cluster dummies.

This paper develops on the work in Kelly et al. (2021) and using their data I find the
correlation between their binary breakthrough classification and the one produced in this
paper. I find a positive correlation of 0.221. I extend this and show that their continuous
breakthrough score is negatively correlated with the prior-count of patents belonging to that
local knowledge field, but positively correlated with the post-count.

In addition, using the Arts, Hou, and Gomez (2021) data I first show that patents which
I classify as breakthrough patents contribute 8.57% more new words which then go on to
be re-used by future patents. This is a straightforward example of creating a new research
field. They also introduce significantly more new combinations of existing words, 47.6% new
word pairs, and 44.1% new-three word tuples. This result speaks to the central premise on
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how innovation occurs, through recombining existing knowledge. This data is particularly
useful in that it allows for the comparison across simply being novel, and being novel and
later reused. This is because the data presents two counts for each patent, the number of
new n-grams, and the number of these n-grams what were later reused.

Finally, I find that for each additional 1% of patents to enter the local knowledge field of
a patent after its publication, the target patent receives 2.07% more citations. This elastic
response points to the existence of knowledge spillovers between local patent sub-fields.
This logic also holds for backwards citations where for each additional 1% of patents already
present in a local knowledge field when a patent is produced, the target patent makes 1.09%
more backward citations.

Figure 5
Breakthrough Innovations and Team Size

Notes: The Y-axis plots the percentage of patents classified as breakthroughs, produced by teams of each
discrete team size from 1-8. The breakthrough classification is based on equation 7, which defines it as the
post-count (patents produced in the field after the given patent) normalized by the sum of the post-count
and prior count (patents in the field before the given patent). Point size is weighted by the frequency of
team sizes, since they are discrete bins and not equally sized.

Having validated this measure I replicate the first result from the literature in this uni-
fying framework for teams. Wu, Wang, and Evans (2019) show that small teams disrupt
science, while large teams develop it.17 Figure 5 plots the probability of producing a break-
through by team size. I plot up to a team size of 8 as this corresponds to 99% of the data.

17This paper uses a measure of innovation disruption. Disruption is measured by examining the citation
patterns of future papers that reference a given paper. Specifically, they calculate a “disruption score” that
reflects the extent to which a paper makes prior work obsolete or shifts the research direction.
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The graph confirms that teams outperform working alone, as all team sizes above 1 out-
perform solo patents. Teams of 3 work best, and team size is negatively correlated with
breakthroughs beyond that. However the inverted-U shape is also foretelling the results on
the role of prior work.

5.3 Contribution Weights

This paper is the first to estimate the contribution of each team member to the knowledge
contained in a patent. To demonstrate the power of this method, I validate the inventor con-
tribution weights using a prediction model. I propose that if the weights capture information
on the true contribution share of each inventor, then the patenting history of inventors who
contribute significantly more should be a stronger determinant of the technology classifica-
tion awarded to a patent.

Table 4
Validation of the contribution weights
%∆ ≥ p90 %∆ ≥ p75 %∆ ≤ p25 %∆ ≤ p10

T-Test Mean SE Mean SE Mean SE Mean SE

Lead 57.126 0.019 56.806 0.015 50.244 0.045 50.030 0.031
Second 42.874 0.019 43.194 0.015 49.755 0.045 49.970 0.031

Difference 14.251 0.027 13.612 0.021 0.488 0.064 0.059 0.043

Notes: T-test to determine differences across lead and second inventor feature importance. Small and large
gaps are defined by the percentiles on the percentage difference %∆ between the lead and second inventor.
After each of the 50 runs of a random forest I calculate the total feature importance for the lead and second
inventor patent histories. The features are the top five most common CPC classes used by the lead, and the
second inventor. The target variable is the CPC class awarded to the patent. The final T-test is calculated
over N=50.

For each patent in the sample I define the lead and second inventor by ordering their
estimated contribution shares and calculate the percentage difference between them. With
a random forest, I predict the CPC classifcation awarded to a patent with two sets of
explanatory variables: the five most common CPC classes used by the lead inventor, prior to
the target patent, and the corresponding five for the second inventor. When using a random
forest you can then calculate the feature importance for each explanatory variable, similar
in concept to measuring how each variable contributes to the R2 of a regression.

I propose that if the gap between the contribution shares of the two inventors is large,
then the lead inventor’s patenting history will be a significantly stronger predictor of the
CPC class awarded to a patent. While if that difference is small (both inventors contributed
similarly to the patent), then I predict there to be no significant difference. This correspondes

25



to the total feature importance for the lead inventor’s patenting history being significantly
larger than that of the second inventor.

Table 4 shows a T-test over 50 runs of a random forest, where each run I draw a new
split of the training and testing data set. This is a form of cross-validation that removes the
dependency of the outcome on a random initial seed and allows me to estimate a standard
error. The null hypothesis for the T-test is that both the lead and second inventor con-
tributed equally. I find that for teams in which the lead inventor contributes substantially
than the second inventor (top 10 or 25%), their patenting history is around 14 percentage
points more informative about the CPC classification their joint patent is be awarded. When
conditioning on the difference between the first and second inventor being small, this differ-
ence disappears, which points to the contribution weights providing economically important
and precise information on who contributed to the knowledge contained.

Figure 6
Breakthrough Innovations and Hierarchy

Notes: Hierarchy is measured by taking the vector of contribution weights and finding the euclidean distance
from a vector of length m (team size) in which all inventor contribute 1/m. The Y-axis plots the average
breakthrough value for 10 equally sized bins of the hierarchy measure. The breakthrough classification is
based on Equation 7, which defines it as the post-count (patents produced in the field after the given patent)
normalized by the sum of the post-count and prior count (patents in the field before the given patent).

Having validated this measure I replicate a second well known result from the literature
on team composition and breakthrough innovations. Xu, Wu, and Evans (2013) show that
hierarchical teams produce fewer breakthroughs that teams in which members contribute
more equally. I replicate this result by taking the vector of contribution weights ωp and
finding the euclidean distance from the vector of length m in where all inventor contribute
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1/m. This measure is increasing in the hierarchy of the team, and is minimised at 0 when
all team members contribute equally. Clearly from Figure 6, the result replicates, and more
equally distributed teams produce more breakthroughs.

6 Main Results

I first present a set of results that demonstrate how team innovations change in response to
them pivoting to new research fields. This first sub-section can be skipped for those readers
interested in the main breakthrough results. I then present the main results on how teams
produce breakthrough innovations to test the hypotheses presented in section 2.

6.1 Knowledge Content of Team Innovations

In this section, I examine how the knowledge content of team innovations shifts as teams
move into new research fields. I introduce three binary classifiers for the knowledge content
of each innovation, which effectively segment the high-dimensional knowledge space into
binary categories. This partitioning allows us to fit these classifiers into a regression model
to show how team composition influences innovation outcomes. As team members are added
or removed, the team’s potential knowledge combinations change, and therefore the research
fields available to them. This directly affects their innovation output. This section illustrates
how the knowledge content of their patents also depends on the history of prior work in each
research field.

Each patent is classified by zp where zp = 1 if patent p achieves direction z. For this
paper I take three exogenous classifications of whether each patent in the knowledge space
achieves that purpose, or not. The directions are the following. Does the patent save labour?
Does the patent improve cancer treatment? Does the patent mitigate the negative effects
of climate change? These classifications are taken as exogenous (PatentsView, 2024; Mann
and Püttmann, 2023; Cancer Moonshot: USPTO, 2024). Further details are presented in
the data section 3.1. I combine the three directions in order to show how team innovations
respond to past work, without focusing on any specific technology or field.

I examine how variation in the words used in a patent reflect the technological direction of
that patent. For example, by comparing the most frequent knowledge classes across patents
that mitigate climate change, target cancer treatment or produce automated technologies,
we can see how each purposes is reflected in the patent vocabulary. Figure A5 shows the
average weight for all knowledge classes split over three patent types. In Figure 7, I present
three of the 50 estimated knowledge classes, and the average weight for patents of each type.
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Figure 7
Wordclouds and knowledge class distributions by patent type

Notes: The bar chart shows the mean weight on a select three of the fifty knowledge classes, averaged
across patents of each type. These types are not mutually exclusive. The word cloud is plotted using the
estimated knowledge class to word distributions. The word size reflects the probability of using that word
when describing that knowledge class. The full set of word clouds can be found in appendix section G.

Clearly patents which target cancer treatment use can be distinguished as using words such
as cell, antibody, gene, while automation patents use computer and information. This figure
supports the empirical concept of the knowledge space, that the patent text is informative
of the knowledge content of an innovation.

I first show that prior knowledge shapes future innovations. Take the patent level count
of prior work defined in equation 6 and include an additional condition to the indicator
function: that zp = 1. This will count the quantity of prior work in that field which achieves
direction z. In Figure 8, I show that the probability a patent targets direction z is increasing
in the quantity of prior work in that research field which also targets z. This is demonstrated
more rigorously in Table A1 where each additional patent increases the probability a patent
targets direction z for between 2 to 4 percentage points.18

Importantly, Figure 8 shows no non-linear effect. This demonstrates two important
features of endogenous growth. Prior work reduces the cost of future innovations, but also
leads to path dependence. Path dependence refers to how the direction and nature of future

18In this table, and the later treatment model I stack the three directions into one regression model and
include a period × direction fixed effect. This leads to an tripling of the sample size, and the effect is now
the average across each direction. This achieves the goal of presenting technologically neutral results.
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Figure 8
Patent direction

Notes: This figure plots the probability that a patent achieves a given direction z by the log count of
the number of prior patents existing in the local knowledge field of that patent, which also target z. The
three directions are 1) mitigate climate change (PatentsView, 2024), 2) improve cancer treatment (Cancer
Moonshot: USPTO, 2024) and 3) automate production (Mann and Püttmann, 2023). All three are stacked
into one model.

innovation is determined by past work. Where early stage advances establish a path that
is difficult to change. Aghion et al. (2016) show how changing the direction of a research
field, for example to go green, is a challenge since the relative cost of producing either green
or dirty patents is a function of what came before. This can be seen in Figure 8 as each
succesive patent targeting a given direction increases the chances of future work doing so
further.

At the team level, this linear effect leads to straightforward outcomes. Here I use the same
treatment as defined in section 4, however again adding the new condition that the patent
belongs to the team’s field, and targets direction z. Therefore the treatment now captures
how many prior patents the team loses following the premature death of a colleague. Again
using the stacked regression model, I find that the probability a team’s next patent targets
a given direction z decreases by around 1 percentage point, for each prior-patent targeting
the same direction removed. Naturally, following the premature death of an inventor, teams
that lose access to the required knowledge to produce a patent of a certain type, see a change
in the knowledge content of their innovations.
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Table 5
Team Treatment Estimates: Direction

Dependent variable: Pr(Direction)

1. 2. 3. 4.
Dτt | Direction -0.0081∗∗∗ -0.0174∗∗∗ -0.0097∗∗∗ -0.0108∗∗∗

(-5.64) (-7.43) (-4.64) (-4.97)

Prior workτ1t | Direction 0.0114∗∗∗ 0.0419∗∗∗ 0.0217∗∗∗ 0.0217∗∗∗

(11.09) (40.33) (29.33) (29.40)

Volume -0.8094∗∗

(-2.61)

N 32802 25287 25287 25287

Controls 3 3 3 3

Team FE 3 3 3

Period × Direction FE 3 3 3

Year × Direction FE 3 3

Notes: The first column uses a standard logit model. Columns 2-4 are conditional logit models with team
and patent order fixed effect models and standard errors are clustered at this level. The identifier τ is
unique for each pair (τ1, τ2). The dependent variable is a stacked indicator for whether a patent achieves
the given direction. The three directions are 1) mitigate climate change (PatentsView, 2024), 2) improve
cancer treatment (Cancer Moonshot: USPTO, 2024) and 3) automate production (Mann and Püttmann,
2023). Controls include d(θe

p, θp).

6.2 Breakthrough Innovations

I present the main results to test the hypotheses laid out in section 2 using the empirical
strategy detailed in section 4.19 I first show supporting evidence for Hypothesis 1. Figure 9
shows that the probability a patent becomes a breakthrough is an inverted-U shape in the
quantity of prior work on which it builds. Recall the definition of a breakthrough patent
using equation 7. Prior-count appears in the denominator, therefore a the derivative would
be negative. However, we see that for low levels of prior work, this function is increasing.
This is evidence that prior work increases the impact of an innovation, and in fact post-count
is determined in some part by what came before. However, the function later inflects and
prior work becomes a barrier for novelty. As prior work accumulates, teams find it harder
to be novel and this effect wins out, thus turning the slope back to the negative coefficient
expected from the breakthrough definition.

19I use the breakthrough measure defined endogenously by the knowledge space in equation 7. To remove
concerns that this may be driven by some mechanical feature of the model I replicate all results using the
Kelly et al. (2021) data in appendix section F.
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Figure 9
Patent breakthrough

Notes: This figure plots a binned scatter plot and fitted regression line. The log count of the number of
pre-existing patents in a patent’s research field is split into 10 equally sized bins and the Y-axis plots the
probability of a breakthrough within each bin. The breakthrough classification is based on equation 7, which
defines it as the post-count (patents produced in the field after the given patent) normalized by the sum of
the post-count and prior count (patents in the field before the given patent).

I test Hypothesis 2 at the team level. I first present the set of results averaging over all
teams. All variables are defined as in section 4. All regression tables show a set of regression
models that increase in rigour in each additional column. I interpret all results taken from
the final column. Table 6 shows that on average, the novelty component of a breakthrough
wins out, and teams benefit from moving to under explored areas. This frees them from
established paradigms, as they produce more breakthrough ideas.

To put these coefficients into tangible numbers consider the following comparison. Each
inventor contributes differently to the team. The justification for a continuous treatment
model is that it matters who is lost, and which knowledge they contributed to the team.
The average treatment measures the typical impact on a team’s local field when a team
member is lost. By estimating the average number of patents typically lost after such an
event, I can predict how this change influences a team’s ability to innovate.

For the sample of teams which return to patent without replacing the deceased inventor,
the average number of patents lost from a team’s local knowledge is 174. This change results
in a 9.55 percentage point increase in the probability of producing a breakthrough, this
represents a 21.28% increase on the baseline.20 For those that replaced the inventor though,

20The change in probability is calculated using the baseline probability of 0.449. The coefficient of 0.0022
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Table 6
Treatment Team Regression Estimates

Panel A: Breakthrough
Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.
Dτt 0.0007∗∗∗ 0.0066∗∗∗ 0.0028∗∗∗ 0.0022∗∗∗

(7.29) (10.96) (6.94) (5.51)

Prior workτ1t -0.0009∗∗∗ -0.0357∗∗∗ -0.0104∗∗∗ -0.0106∗∗∗

(-12.56) (-22.85) (-9.19) (-9.18)

Volumeτ -2.2554∗∗∗

(-7.76)
N 35991 10934 10934 10934

Controls 3 3 3 3

Team FE 3 3 3

Period FE 3 3 3

Year FE 3 3

Notes: The first column uses a standard logit model. Columns 2-4 are conditional logit models with team
and patent order fixed effect models and standard errors are clustered at this level. The identifier τ is unique
for each pair (τ1, τ2). The dependent variable is an indicator for whether the patent is a breakthrough. The
breakthrough classification is based on equation 7, which defines it as the post-count (patents produced in
the field after the given patent) normalized by the sum of the post-count and prior count (patents in the
field before the given patent). Controls include d(θe

p, θp).

the average treatment was to only lose 43 patents. This leads to only a 5.26% increase on
the baseline. By replacing the inventor, they produce fewer breakthroughs.

Given the inverted-U shape in Figure 9, I show how this translates into a heterogenous
treatment effect. Figure 10 plots the same regression results, however split over four samples.
I split the sample into quartiles of prior work in the initial teams knowledge field and run
the model for each sub-sample. We see that the inverted-U shape translates directly into
recommendations at the team level. For teams building on advanced areas, reducing the
quantity of prior work by the average treatment of 174 patents increases their chances of a
breakthrough by 49.73%. However, for those already working in early-stage research fields,
the same change reduces their chances of a breakthrough by 61.4%. Importantly, the teams
in early-stage areas which replace their inventor see a significantly smaller decrease in their
ability to produce breakthroughs. If the number of patents lost is reduced to the average by

and an average treatment of 174.222 yield a change in log-odds of 0.3833. Applying this to the baseline log-
odds of -0.204 results in new log-odds of 0.1793. Converting this back to probability gives 0.545, indicating
a change of approximately 9.6 percentage points, which is a 21.4% increase relative to the baseline.
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replacing the inventor, these results show a much smaller 8.1% decrease in the likelihood of
a breakthrough. This demonstrates the importance of the availability of knowledge within
inventor networks.21

Figure 10
Wordclouds and knowledge class distributions by patent type

Notes: This figure plots the heterogenous treatment effect for the continuous treatment variable outlined in
equation 13. The x-axis plots the coefficient on the treatment for each of the four quartiles of the quantity
of prior work in a team’s knowledge field, prior to the premature death of a collaborator. The dependent
variable is an indicator for whether the patent is a breakthrough. The breakthrough classification is based
on equation 7, which defines it as the post-count (patents produced in the field after the given patent)
normalized by the sum of the post-count and prior count (patents in the field before the given patent). Each
model is a conditional logit models with team and patent order fixed effect models and standard errors are
clustered at this level. Controls include d(θe

p, θp).

For teams in advanced areas, removing a team member who contributes the established
knowledge increases their chances of producing a breakthrough. For them, increasing the
novelty of their patents is key, and therefore moving into less-explored research fields improves
their ability to be novel and produce breakthroughs. However, for a team in the first quartile,
those that are already building on relatively little prior work, the same change is detrimental.
If they remove a member who contributes the little knowledge on which they are building,

21This result suggests a valuable follow-on research project which studies frictions in the market for
collaborators. If a team suffers the premature death of a collaborator who provided a certain type of required
knowledge, perhaps there is a deficit in the supply of this knowledge, and they cannot be easily replaced.
This variation in post-death team outcomes may be driven by their ability to find replacement inventors.
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their chances of producing a breakthrough reduce further. Their innovations may be novel,
however they move too far down the ladder of development and their innovations lose impact.

7 Concluding Remarks

In this paper I ask how the development stage of a research field determines a team’s abil-
ity to produce breakthrough innovations. A deeper understanding of the determinants of
breakthroughs is key to modelling how the innovation frontier moves forward over time.
Traditionally, the literature on knowledge production has focused on value. This paper
presents a contribution to the innovation literature by constructing a unifying framework for
teamwork capable of capturing the creation of new and successful research fields.

I model collaboration directly through the lens of a Bayesian model of Natural Language
Processing. This paper is the first to integrate a model of text analysis directly into a model
of research collaboration. I build a mapping of inventors, teams and patents in which to
study how teams innovate. I refer to this as the knowledge space. As the first to integrate
inventors and patents into one consistent space, the paper re-conceptualises how knowledge
is produced by recombining existing knowledge and standing on the shoulders of giants.
The paper contributes a greater understanding of the key latent variables behind knowledge
production and allows me to tackle a set of important hypotheses on which systematic
evidence was missing.

The framework developed in this paper is required to back out a latent representation
of a team’s local knowledge field. The combination of the high-dimensionality of patent
text data, and the computational Bayesian model allows me model teamwork in a tractable
approach. I use premature inventor deaths to identify the effect of pivoting to more or
less advanced research fields on a team’s ability to produce breakthrough innovations. I
find a non-linear relationship between prior work and breakthroughs. I find that teams
produce more breakthroughs when building on enough prior work to incorporate valuable
prior knowledge, but not so much that it stifles novelty.

The framework presented here marks the beginning of a rich future research agenda. The
knowledge space provides a rich environment in which to study teams, but can be integrated
with economic models to explain the broader innovation landscape. For example, modelling
public R&D financing or firm innovation choices. Another key avenue for future work is to
study the role of learning in this context and develop a dynamic version of the model. I hope
that others are encouraged to utilise this framework to continue deepening our understanding
of how we produce science and technology.
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A Additional Tables and Figures

Figure A1
Raw breakthrough measure
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Notes: Function for the raw breakthrough measure at the patent level plot over a generated range of post-
count values. This measure is bounded between 0 and 1, but importantly captures a concept of percentage
change even when the pre-count is equal to zero.

Figure A2
LDA convergence

Notes: Convergence results, taken at the end of each of the 100 passes. For each pass the model slices the
data into chunks of 2000 documents, and runs up to 350 iterations over these documents, or within-pass
convergence. Perplexity quantifies the model’s uncertainty; lower perplexity indicates better generalization
and model fit.
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Figure A3
Visualising the 50-Dimensional Patent Fields

Notes: Pre & Post Publication for US6879998 titled “ Viewer Object Proxy” from Google Inc. This figure
visualizes the t-SNE embeddings of patent topic distributions for a selected target patent, US6879998. The
50-dimensional patent embedding θp is reduced to two dimensions using t-SNE, a dimensionality reduction
technique optimized for capturing relative similarities between points in lower-dimensional space. In each
panel, the red marker highlights the target patent, while other blue markers represent additional patents.
The top panel shows only patents published prior to or in the same year as the target patent, while the
bottom panel includes the full sample. A dashed black circle, centered on the target patent, encompasses
the maximum distance to other patents in the sample.
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Figure A4
Inferred Bayesian prior α

Notes: Learnt α Dirichlet prior from the gensim package option auto. The Y-axis presents the 5 words
with the largest weight within the knowledge class to word distribution for that class. The height of the bar
represents the weight on that class in the Bayesian prior.
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Figure A5
Aggregate topic distribution by patent types

Notes: Plots the average knowledge class distribution by patent type. The data on Green, Automation
and Cancer patents provided by PatentsView (2024), Mann and Püttmann (2023), and Cancer Moonshot:
USPTO (2024). Again the top 5 words per class shown on the Y-axis.
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Figure A6
Team Statistics

A) Team Field Volume B) Patents in a Team’s Field

C) Team Size D) Team Breadth

Notes: Four binned scatter plots produced with binscatter. Each plot is taken for the average within one
year, across all teams who first patented in that year. The total number of patents is defined as in equation
?? however summing over the team field instead of a patents. Volume is defined in equation 9 as the square
root of team size multiplied by the weighted average of the maximum euclidean distance between team
member knowledge points, and the mean distance. I refer to this weighted average as the team breadth.
The bottom two panels spilt both parts of the volume measure.
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Table A1
Patent Regression Estimates: Direction

Dependent variable: Pr(Direction)

Prior work | Directionpt 0.0290∗∗∗ 0.0281∗∗∗ 0.0281∗∗∗ 0.0438∗∗∗

(41.51) (44.80) (44.88) (47.19)

Prior work | Directionpt Sq. -0.0001∗∗∗

(-24.85)

N 1218385 1218385 1218366 1218366

Controls 3 3 3 3

Direction FE 3 3 3 3

Year × Direction FE 3 3 3

Team size 3 3

Notes: Each column corresponds to a logistic regression of the probability a patent is one of three types (z),
where all three types are stacked into one regression model. The dependent variable is composed of three
binary indicators for whether that patent achieves each of the three directions: mitigates climate change,
reduces cancer risk or automates production. All standard errors are clustered at the knowledge cluster ×
year level. Controls include d(θe

p, θp).

Table A2
Patent Regression Estimates: Breakthrough

Dependent variable: Pr(Breakthrough)

Prior workpt -0.0019∗∗∗ -0.0014∗∗ -0.0014∗∗ 0.0008
(-3.76) (-2.88) (-2.89) (1.60)

Prior workpt Sq. -0.0000∗∗

(-2.97)

N 408772 408772 408753 408753

Controls 3 3 3 3

Year FE 3 3 3

Team size 3 3

Notes: Each column corresponds to a logistic regression of the probability a patent is either a breakthrough.
The dependent variable is the probability that patent is in the top 75% of the breakthrough score. The
breakthrough classification is based on equation 7, which defines it as the post-count (patents produced in
the field after the given patent) normalized by the sum of the post-count and prior count (patents in the field
before the given patent). All standard errors are clustered at the knowledge cluster × year level. Controls
include d(θe

p, θp).
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Table A3
Team Treatment Estimates: Heterogenous

I: Breakthrough
Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.
Dτt -0.0078∗ -0.0033∗ -0.0011 0.0053∗∗∗

(-2.19) (-2.58) (-1.06) (6.13)

nτt -0.1835∗∗ -0.0581∗∗∗ -0.0215∗∗ -0.0101∗∗∗

(-3.29) (-3.32) (-2.73) (-4.95)

Volumeτ -3.5505∗∗∗ -3.0948∗∗∗ -2.5336∗∗∗ 2.0023
(-4.69) (-4.85) (-4.54) (1.88)

N 2735 2509 1907 1659

Controls 3 3 3 3

Team FE 3 3 3 3

Period FE 3 3 3 3

Year FE 3 3 3 3

Notes: All regressions are team and patent order fixed effect models and standard errors are clustered at
this level. The identifier τ is unique for each team pair (τ1, τ2). The dependent variable for panel I) is an
indicator for whether the patent is a breakthrough. The breakthrough classification is based on equation
7, which defines it as the post-count (patents produced in the field after the given patent) normalized by
the sum of the post-count and prior count (patents in the field before the given patent). Controls include
d(θe

p, θp).

B Hypothesis Development

When a team τ draws contribution shares ωp to define their expected patent knowledge
distribution θe

p within local knowledge field B(θe
p, r). A local knowledge field and time define

a breakthrough score (bp) and innovation direction (zp) tuple

(bp, zp) | θe
p, t.

The breakthrough score measures the scientific impact of that innovation. Did it spark a
new and successful research field? The direction of an innovation measures the target use
of the patent. Does that innovation achieve a certain goal, for example to mitigate climate
change, reduce cancer risks or automate production?

The idea being that the impact of an idea is time dependent. The most straightforward
example is that there is a significant gain in being the first to invent a new object. If you are
working on an artificial intelligence innovations, the same idea has a different value today
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than it would have had fifty years ago, when many AI models were first theorised. In terms
of being a breakthrough, there are now plenty of AI patents which have come before. But the
direction—the ability of this combination to meet a specific objective—depends on whether
similar innovations have previously achieved that goal. If past efforts with similar knowledge
combinations have achieved certain outcomes, similar innovations may continue along that
path, shaping the future of innovation in that area. Timing plays a critical role, as the
same combination might be more or less effective depending on the state of knowledge and
technological demand at the time. To complete the prior example, inventors have a wealth
of prior AI knowledge to use when automating production today when compared to the past.

Both bp and zp are modelled as latent variables, such that for both yp ∈ {bp, zp}

yp(θe
p, t) =

1 if fy(θe
p, t) > 0

0 otherwise
(14)

Allowing for an abuse of notation, fy is a general function that maps a team’s location
in knowledge space to the real line. This function can be mapped into the probability that a
given patent achieves that outcome. I will now link this set-up to both hypotheses outlined
in section 2. These therefore target whether a patent is a breakthrough, or not. However
a similar argument can be easily derived for whether a patent targets a given direction, as
discussed in section 6.1.

Hypothesis 1 proposes that there exists an inverted-U shape relationship between the
probability a patent is a breakthrough and the quantity of prior work on which it builds.
Formally this is given by

∂fb

∂npt

> 0 and ∂2fb

∂n2
pt

< 0

.
This can be tested directly in the data through a logit model that captures the latent

variable structure. Given the definition of a team span in equation 4, we can define the
expected value for each outcome as the following.

E[yp|τ, t] = 1
vol(S(τ))

∫
S(τ)

yp(θe
p, t) dθe

p (15)

In other words, what proportion of all the teams potential ideas achieve outcome y?
Each potential project can be given a probability of being a breakthrough or not, through
the latent variable model outlined. Therefore since all projects are drawn with a uniform
probability, I can test the expected team patent outcome again using a logit model. Thanks
to the uniform distribution assumption, the expected value defined in equation 15 relies on
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the volume of a team span. Therefore hypothesis 2 utilises a change in the density of patents
within a team’s field to distinguish each case.

C Estimating the Knowledge Space: Intuition

Figure A7
Intuitive LDA Example

Notes: An intuitive example of how LDA works. The example used is a paraphrased version of USPTO
patent number US10839336B2 which expires 2036-06-12. The knowledge class and inventor parameters are
learnt by iterating over patent texts and allocating inventors and topics to words.

D Counting Objects in Knowledge Space

Recall that ni
j(st) denotes the count of j within i for s at t. To build count nA

p′(pt), the number
of patents p′ within the local knowledge field of a target patent p, it is straightforward to
find all patents such that ρ(θp, θp′) ≤ r. A patent p belongs to team span S(τ) if there exist
a set of weakly positive weights that sum to 1 across the team member distributions to form
a convex combination equal to the distribution for that patent.

To solve whether a patent p belongs to the local knowledge field of a team of nτ members,
I first find the closest point θ̃ ∈ S(τ) to that patent by finding the solution to the following
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problem.

min
ω∈Rn

τ

∥∥∥∥∥θp −
∑
i∈τ

ωiθi

∥∥∥∥∥∑
i∈τ

ωi = 1 and ωi ≥ 0

The objective is too choose the set of weights, such that they form a convex combination
of each team members knowledge distribution, to minimise the distance between that point
and the target patent distribution. If the distance between these two points is zero then this
patent belongs to the convex hull of the team. If this distance is below the defined radius
r, which remains constant across patents and teams, then this patent belongs to that teams
local knowledge field.

I need to solve this problem for all patents in the sample, for each team. This is a
huge number of problems to solve, in order to reduce the computational burden I take the
following mathematical shortcut. I first calculate the centroid of the team span S(τ) as

c = 1
nτ

∑
i∈τ

θi

Calculate the maximum distance from the centroid to any point within the team vector
using

dmax = max ‖θ − c‖

using the euclidean norm. For each patent θp calculate the distance between that patent
distribution and the centroid d = ‖θp − c‖

Notice that any point which is further form the centroid than the maximum distance
within the team span plus the radius r cannot form part of the local knowledge field. There-
fore only solve the problem specified for those patents which

di ≤ dmax + r

Since this calculation is computationally far less demanding and faster than solving the
problem, but ultimately gives the same solution.

E Technical Appendix: LDA

This technical appendix outlines the Latent Dirichlet Model (LDA) and the estiamtion pro-
cess used. Modelling documents as a mixture of topics, where each topic is a distribution
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over words was brought into mainstream computer science by the LDA model presented
in Blei, Ng, and Jordan, 2003. The Author-Topic-Model was first introduced by Rosen-Zvi
et al., 2012. This is replication of the model in Mortensen, 2017 where I have simply adapted
the notation from the original papers to the context of an Inventor-Knowledge Class-Model,
where inventors write patent texts collaboratively.

A patent p is a vector of Np words wp where each word wip is chosen from a vocabulary
of size V, and a vector of nτ inventors iτ . A collection of P patents is therefore defined as
P = {(w1, i1, · · · , (wP , iT )}.

A set of patents is produced with the following generative process where the baseline
assumption is that each inventor is drawn with uniform probability, such that from the law
of large numbers, over sufficiently long patents each inventor contributes equally.

• For each inventor i ∈ {1, . . . , I} draw θi ∼ Dir(α).

• For each knowledge class k ∈ {1, . . . , K} draw βk ∼ Dir(η).

• For each document p ∈ {1, . . . , P}:

– Given the team τ of patent p

– For each word in the patent n ∈ {1, . . . , Np}.

- Assign an inventor to the current word by drawing xpn ∼ Unif
(

1
nτ

)
.

- Conditioned on xpn, assign a knowledge class by drawing kpn ∼ Mult(θi).
- Conditioned on zpn, choose a word by drawing wpn ∼ Mult(βk).

This model is represented in the following plate diagram in figure (18).

Figure A8
Inventor-Knowledge Class Model

θi βk

xpn kpn wpniτ

α η

Np

P

I K

Notes: Plate notation for Bayesian Hierarchical model.

The posterior given the observed data and Dirichlet priors is given by
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P (k, i,β, Θ|w, α, η,T ) = P (w|k,β)P (k|i, Θ)P (i|T )P (β|η)P (Θ|α)
P (w|α, η,T ) (16)

As is typical in Bayesian analysis this posterior is intractable since we have no estimate
for the marginal probability of the observed data. Therefore topic models typically use an
inference method called Variational Bayes22. Define q(·) as an approximation to the posterior

q(k, i,β, Θ|λ, γ, φ) = q(Θ|γ)q(β|λ)q(k, i|φ) (17)

≈ P (k, i,β, Θ|w, α, η,T ) (18)

Equation (3) models the knowledge classes and inventors as dependent random variables
where P (k|i, Θ)P (i|T ) ≈ q(k, i|φ). This is known in the literature as a blocking estimator.
This means that the probability of choosing inventor i ∈ τp is a function of the knowledge
held by inventor i relative to their collaborators, and the knowledge contained in the patent
p. If a patent includes a lot of words discussing medicine, then if one of the inventors has
a larger weight in this knowledge class than others in the team, they are more likely to be
chosen to contribute. This allows for non-uniform contribution weights ωip 6= ωjp ∀ i, j ∈ τ

and for the knowledge profile of individual inventors to be over(under) represented in the
patent knowledge distribution.

Define the following parametrisation of q(·)

q(k, i,β, Θ|λ, γ, φ) = q(Θ|γ)q(β|λ)q(k, i|φ)

=
∏

i

q(θi|γi)
∏
k

q(βk|λk)
∏
p,n

q(ipn, kpn|φik)

=
∏

i

Dir(θi|γi)
∏
k

Dir(βk|λk)
∏
p,n

q(ipn, kpn|φik)

Which is the product of the probability of observing I individual knowledge class distri-
butions, K knowledge class to word distributions and a set of inventor and knowledge class
combinations for each word of every patent.

By changing the underlying assumption of how inventors and knowledge classes are
drawn, to more closely match reality, the plate diagram of parameter dependence changes.
Figure (19) presents the final model.

For a given patent p the matrix φik gives the discrete joint probability of choosing each
22A derivative of Expectation Maximisation. Gibbs Sampling is an alternative and popular model, which

can give good results and I have applied, however on large sample sizes can perform very slowly.
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Figure A9
Inventor-Knowledge Class Model: Blocked

θi βk

φpn kpn

xpn

λi γk

Np

P

I K

Notes: Plate notation for Bayesian Hierarchical model in a blocked model, given the assumption that the
draw of inventor and knowledge class are dependent, thus allowing for non-uniform contribution shares.

inventor i and knowledge class k combination for a given word n = v ∈ V . Formally, the
probability of inventor i choosing knowledge class k and word v for patent p is given by

φivk =

φivk i ∈ τp

0, otherwise

The full probability distribution is stored during the estimation as a four dimensional
matrix φpvik

23. Where ∑i∈τ

∑
k φpvik = 1.

The model iterates over every word of each patent and updates the estimates for the pa-
rameters using the expected values. The method is a derivation of Expectation Maximisation
and solves for the following condition using Jensen’s inequality24

log p(w|α, η,T ) ≥

log(Eq[P (k, i,β, Θ|α, η,T )]) − log(Eq[q(k, i,β, Θ|λ, γ, φ)])

= L(λ, γ, φ)

The right hand side is a lower bound on the marginal probability of the observed data.
Also known in the literature as the Evidence Lower Bound (ELBO). Given the functional
assumptions you can solve the right hand side by defining the expected values. The goal is

23In reality the Gensim package uses the exchangeability of the model to develop an online algorithm to
reduce the memory requirements of this matrix, I refer you again to Mortensen, 2017 for further details on
this great package.

24For a full derivation I refer the reader to the original paper by Blei, Ng, and Jordan, 2003
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then to maximise this right hand side as to approximate the log likelihood of the observed
data as closely as possible. This is done through coordinate ascent, which maximises a
multivariate function by iterating over each variable and optimising in that direction, holding
all others constant until convergence. To do so take the derivative of L(λ, γ, φ) with respect
to the arguments to define three update rules, one for each variational parameter.

On convergence, I back out the θi given γi and βk given λk. I do so using the process
outlined in the literature so again, leave the interested reader to consult Mortensen, 2017 for
further details. The model presented here though, in addition to estimating a set of θi and
βk, estimates a contribution share for each team member and a set of patent to knowledge
class distributions. To do so I sum across the relevant dimensions of φpvik as

φpvik = exp{Eq[log θik] + Eq[log βkv]}∑
k

∑
i∈τp

exp{Eq[log θik] + Eq[log βkv]}

On convergence, the matrix φpvik is then given as part of the optimal solution. I then
calculate the contribution shares and patent distributions in the following manner

ωip =
∑
vk

φpvik

θp =
∑
i∈τ

ωipθi
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F Robustness Tests

This paper designs the treatment model around the premature death of inventors. This
provides exogenous variation in team composition, and therefore the team’s position in
knowledge space. To demonstrate the robustness of the results in the paper I include a set
of teams which add a new inventor. This gives a weakly larger knowledge field for the team,
and potentially allows them to build on more or different types of prior work.

I confirm the robustness of these results by finding that teams which add a new member,
and increase the number of patents targetting a specific direction see a significant increase
in the probability they patent in that direction. The reverse holds for the breakthrough
patents, though the results are weaker.

Table A4
Team Treatment Estimates: Kelly et al., 2021

I: Breakthrough
Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.
Dτt 0.0013∗∗∗ 0.0025∗∗∗ 0.0014∗∗∗ 0.0014∗∗∗

(9.18) (6.60) (4.38) (4.37)

Prior workτ1t -0.0016∗∗∗ -0.0146∗∗∗ -0.0045∗∗∗ -0.0045∗∗∗

(-14.79) (-17.50) (-7.42) (-7.43)

Volumeτ 0.1264
(0.44)

N 30824 10553 10553 10553

Controls 3 3 3 3

Team FE 3 3 3

Period FE 3 3 3

Year FE 3 3

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models with
team and patent order fixed effect models and standard errors are clustered at this level. The identifier τ
is unique for each team pair (τ1, τ2). The dependent variable is an indicator for whether the patent is a
breakthrough using the Kelly et al., 2021 data. Controls include d(θe

p, θp).
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Table A5
Treatment Team Estimates: Adding an Inventor

I: Breakthrough
Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.
Dτt -0.0027∗∗ -0.0031∗ 0.0002 -0.0002

(-2.76) (-2.30) (0.26) (-0.24)

Prior workτ1t -0.0008∗∗∗ -0.0682∗∗∗ -0.0213∗∗∗ -0.0211∗∗∗

(-10.72) (-22.92) (-9.78) (-9.67)

Volumeτ 0.4732
(1.33)

N 33958 11069 11069 11069

Controls 3 3 3 3

Team FE 3 3 3

Period FE 3 3 3

Year FE 3 3

II: Direction
Dependent variable: Pr(Direction)

1. 2. 3. 4.
Dτt | Direction 0.0345∗∗∗ 0.0270∗∗∗ 0.0121∗∗ 0.0130∗

(8.23) (5.62) (2.58) (2.51)

Prior workτ1t | Direction 0.0122∗∗∗ 0.0525∗∗∗ 0.0254∗∗∗ 0.0254∗∗∗

(10.12) (38.70) (27.99) (27.94)

Volumeτ -0.1258
(-0.48)

N 33207 25734 25734 25734

Controls 3 3 3 3

Team FE 3 3 3

Period × Direction FE 3 3 3

Year × Direction FE 3 3

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models with
team and patent order fixed effect models and standard errors are clustered at this level. The identifier τ
is unique for each team pair (τ1, τ2). The dependent variable for panel I) is an indicator for whether the
patent is a breakthrough. The breakthrough classification is based on equation 7, which defines it as the
post-count (patents produced in the field after the given patent) normalized by the sum of the post-count
and prior count (patents in the field before the given patent). The dependent variable for panel II) is a
stacked indicator for whether a patent achieves the given direction: mitigates climate change, reduces cancer
risk or automates production. Controls include d(θe

p, θp).
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G Wordclouds

These are the fifty word clouds, one for each of the estimated knowledge classes, in addition
to figure 14, here the relative size of each word in each knowledge class is visible. There is
significant variation in the topics learnt. Since an LDA is an un-supervised machine learning
model, a typical method of analysing the results is the human intepretability of the topics.
These topics are easy to identify and distinguish. This suggests a good model fit.

Figure A10
Knowledge Class to Word Distributions: Wordclouds

1) 2) 3) 4) 5)

6) 7) 8) 9) 10)

11) 12) 13) 14) 15)
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16) 17) 18) 19) 20)

21) 22) 23) 24) 25)

26) 27) 28) 29) 30)

31) 32) 33) 34) 35)
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36) 37) 38) 39) 40)

41) 42) 43) 44) 45)

46) 47) 48) 49) 50)

Notes: Each of the 50 knowledge class to word distributions represented as word clouds. For each knowledge
class to word distribution this plots a wordcloud, where the word size is weighted by the corresponding
probability of using that word, when discussing that class. The model does not generate names for each
topic, these can be assigned by the econometrician.
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