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Abstract

Different technologies allow firms to choose over different mix of inputs in production and

inputs to vary in their efficiency. One important instance of this choice is over fuels used to

provide energy. This poses challenges to the estimation of firms’ production function and ham-

pers our ability to evaluate the impact of policies that can induce firms to change their input

mix. I propose a dynamic production model with multidimensional energy input (fuel) choices

and heterogeneity in fuel productivity. I exploit recent development in the production function

estimation literature to identify fuel productivity in the presence of inter-temporal switching be-

tween fuel sets, and I estimate the model with a panel of manufacturing establishment from the

Indian Survey of Industries between 2009 and 2016. I use my estimates to assess firms’ responses

to carbon taxation implemented through fuel-specific tax rates, which distort their input choices.

I then explore alternative tax designs on fossil fuels that balance public and private trade-offs

from dynamic fuel selection. I show that they outperform standard implementation of carbon

taxes at mitigating environmental externalities.
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1 Introduction

Firms’ production functions, which dictate how inputs such as labor, capital, and intermediate

materials are combined with technology to produce output, play a crucial role in determining how

firms respond to input price variation and taxes on inputs. While there is a significant body of

literature on the estimation of production functions (Olley and Pakes, 1996; Levinsohn and Petrin,

2003; Ackerberg, Caves and Frazer, 2015; Gandhi, Navarro and Rivers, 2020), these studies often

rely on aggregated inputs and may not fully capture the impact of policies on firms’ demand for

specific, disaggregated inputs which are typically unobserved. One important example of such

policy-sensitive inputs are fossil fuels, which provide energy for production but also contribute to

negative externalities such as pollution and climate change. This paper aims to provide a more

nuanced understanding of the role of fossil fuels in firms’ input mix and how they respond to

policies that affect their demand such as carbon taxes.

Studying the role of fossil fuels in firms’ production processes highlights two important mea-

surement issues. First, energy that firms use in production, which is referred to realized energy, is

unobserved because it is the outcome of combining fuels with technology. This is in contrast with

physical quantity of fuels measured in common heating potential units, which I refer to potential

energy.1 The wedge between potential and realized energy underlie differences in the productivity

of energy, due in parts to the quality of capital such as furnaces and kilns, and firms’ capacity

to mitigate energy waste (Christensen, Francisco and Myers, 2022; Gerarden, Newell and Stavins,

2017; Allcott and Greenstone, 2012). Second, it has long been recognized that establishment-level

consumption of fossil fuels varies not only at the intensive margin (Joskow and Mishkin, 1977), but

also at the extensive margin, through variation in fuel sets, both over time and across firms within

narrowly defined industries (Atkinson and Halvorsen, 1976). Extensive margin choices underlie

dynamic selection that hampers the evaluation of decisions under counterfactual fuel sets if not

properly taken into account.

To address these issues, I propose a dynamic production model with multidimensional energy

input (fuel) choices and heterogeneity in fuel-augmenting productivity. The model features two

nests of production: an outer nest with capital, labor, intermediate inputs and energy, and an

inner nest where firms combine fuels to create energy. Fuel choices are then separated between an

inter-temporal fuel set choice subject to fixed costs (e.g. pipeline access, furnaces, kilns, generator)

and a within-period relative fuel quantity choice conditional on the fuel set. Consistent with the

1The use of potential energy in the context of this paper should not be confused with potential energy in physics.
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literature on input complementarity (Broda and Weinstein, 2006), there are gains from variety for

having multiple fuels in a set which decrease marginal costs. In the absence of fixed costs, firms would

always use all fuels. Fixed cost thus creates a trade-off between a reduction in contemporaneous

profits and a decrease in expected future marginal costs.

To identify the within-period component of the production model, I rely on recent development in

production function estimation in the presence of unobserved input quantities (Grieco, Li and Zhang,

2016) and factor-augmenting productivity (Demirer, 2020; Zhang, 2019) that exploit optimality

and timing of firms’ decisions. Identifying the inter-temporal component of the production model

is non-trivial because firms likely use knowledge of their own (expected) productivity to make

fuel set decisions, which create dynamic selection on unobservables. For example, a firm may use

coal this year and oil next year. The decision may be based on a prediction that the firm will

be quite successful if it switches to oil for a variety of reasons, some of which are unobserved to

the researcher. To deal with this issue, I assume that unobserved productivity for counterfactual

fuels has a permanent component that differentiate firms. Identification then proceeds following

Arcidiacono and Jones (2003, 2011). I am able to recover all production function parameters, the

distribution of fuel-augmenting productivity, and switching costs between fuel sets. This allows

me to conduct policy counterfactual that affect firms’ fuel choices at both margins and make novel

predictions in terms of externality mitigation.

I then estimate the model with the Indian Survey of Industries (ASI), a panel of manufacturing

establishments from India between 2009 and 2016. The panel features quantities and prices of dis-

aggregated inputs that plants purchase, standard measures of revenue and costs, as well as plants’

location into 775 districts. Every year, all manufacturing plants with more than 100 workers are

part of the dataset, as well as a random sample of plants between 10 and 100 workers. Quantities of

fuels such as coal, natural gas, oil and electricity are converted into British thermal units (mmBtu),

a standard measure of potential energy in the literature (EPA). I narrow the focus on heavy man-

ufacturing industries such as steel, cement and glass production, which are known to be both very

energy and coal intensive in India.

I choose to investigate manufacturing plants because most studies of energy productivity have

either studied households consumption or electricity generation. Meanwhile, manufacturing activity

is an important contributor of pollution, accounting for 37% of global greenhouse-gas emissions

(Worrell et al., 2009). I also choose to investigate Indian plants because many plants primarily use

coal in energy-intensive industries such as Steel manufacturing and Cement manufacturing.
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In this context, switching costs refer to capital that firms must purchase to use specific fuels.

For example, recent developments in metal-casting allow steel-producing firms to use an electric

arc furnace rather than the traditional coal-powered oxygen furnaces, which combines electricity,

natural gas and recycled materials to cast iron within the steel-making process. Switching costs also

refer to transportation infrastructure. For example, firms that want to use natural gas either need

to pay a fix cost to connect high-pressure transmission pipelines directly to their establishment,

or they need to invest in gasification terminals to convert liquified natural gas (LNG) into natural

gas. These switching costs are identified from aggregate factors that affected fuel prices such as

state-wide reforms to electricity supply and the global oil shock of 2014, as well as the expansion

of the natural gas pipeline network between 2009 and 2016.

Preliminary results suggest large and persistent heterogeneity in fuel productivity, consistent

with stylized facts about productivity found by Bartelsman and Doms (2000) and Syverson (2011).

Moreover, I find that firms with more fuels in their set face a lower marginal cost of energy. I am

able to decompose the different factors that contribute to this difference in marginal costs, and I

find that it is due to a combination of higher fuel productivity, lower fuel prices, and the gains from

variety. Moreover, the gains from variety explain the majority of this difference and are the main

motivation behind firms’ choice to expand their fuel set over time.

On the policy side, I explore various tax schemes that affect fuel prices to mitigate externality

damages from carbon dioxide (CO2) and related emissions that contribute to climate change. These

tax schemes include a Pigouvian carbon tax levied on fossil fuels, a carbon tax on every fuel but

natural gas, a tax on coal only, and various non-Pigouvian taxes. These policy counterfactual affect

both margin of choices on the mix of fuels (extensive margin) and the relative intensity of each fuel

within a mix (intensive margin). These choice margins highlight important trade-offs that a public

decision maker ought to consider. On one hand, a policy that incentivizes firms to add a fuel to

their set provides a private benefit to firms. Indeed, a larger fuel set allow firms to better allocate

fuels in the context of decreasing marginal returns, creating a gain from variety. Moreover, it allow

firms to hedge against various shocks. These shocks include persistent fuel price fluctuations which

are ubiquitous in this market due to external geopolitical events, as well as supply disruption such

as electricity shortages which are prevalent in India (Allcott, Collard-Wexler and O’Connell, 2016;

Mahadevan, 2022; Ryan, 2021). On the other hand, this private benefit can be costly to society

because it increases firms’ energy demand, potentially increasing CO2 emissions.

In a benchmark model where firms cannot switch between fuel sets, I find that a Pigouvian carbon
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tax allow firms to internalize marginal externality damages, achieving the first-best allocation, as in

(Golosov, Hassler, Krusell and Tsyvinsky, 2014). However, such Pigouvian taxes can be improved

when firms are allowed to inter-temporally switch between fuel sets, which creates discontinuity in

the planner’s objective function. Preliminary results suggest that the optimal tax rate on natural

gas relative to coal should be larger than relative marginal externality damages because natural gas

is subject to more frequent and persistent price shocks, whereas the price of coal is stable. However,

the tax rate on both coal and natural gas relative to oil and electricity should be larger than

relative marginal externality damages to disincentives firms to add a new fuel to their set because

the social loss overweight the private gain from variety. Quantitatively, I find that the optimal tax

rate increases the net present value (NPV) of welfare by 0.08% and decreases the NPV of pollution

damages by 10%, in the welfare formulation of Fowlie, Reguant and Ryan (2016). While the change

in welfare isn’t large relative to a carbon tax, most of the welfare gains come from decreases in

externality damages rather than increases in government revenue. Since the tax is assumed to be

revenue neutral, any policy that achieves welfare gains through reduction in externality damages is

preferable to a policy that achieves the same welfare gains through government revenue (Kotchen,

2022).

Literature and Contribution

I contribute to the longstanding empirical literature on energy input/fuel substitution in man-

ufacturing industries by combining the two canonical approaches of Joskow and Mishkin (1977),

who consider fuel switching as a discrete choice between sets of fuels, and Atkinson and Halvorsen

(1976), who use a continuous fuel demand approach. I associate these choices with multiple new

implications. Indeed, matching the intensive margin of observed fossil fuel consumption has impli-

cation for fuel-specific productivity, while matching the extensive margin of observed inter-temporal

fuel set choices has implication for the option value that different sets provide, and creates dynamic

selection à la Roy (1951). Together, these margins of choice underlie novel predictions for the opti-

mal design of externality taxes on fossil fuels to improve social welfare. Along the way, I contribute

to multiple strain of literature.

First, I contribute to the literature on production function estimation (Olley and Pakes, 1996;

Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Grieco et al., 2016; Zhang, 2019; Gandhi et

al., 2020; Demirer, 2020). I make a methodological contribution by showing identification of a

production function with input-augmenting productivity, where some of the inputs are not always

used by firms and can change over time, creating dynamic selection. I solve this selection problem
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by combining the aformentioned literature with methods from the dynamic discrete choice literature

in the presence of unobserved heterogeneity (Arcidiacono and Jones, 2003, 2011).

Second I contribute to the literature on energy productivity/efficiency which has put much atten-

tion to the consumer/residential sector (Fowlie and Meeks, 2021; Chan and Gillingham, 2015) and

the power generation sector (Cicala, 2022; Davis and Wolfram, 2012; Fabrizio, Rose and Wolfram,

2007).2 Yet, manufacturing activities contribute to 37% of global greenhouse-gas emissions (Worrell,

Bernstein, Roy, Price and Harnisch, 2009), and energy productivity improvements through more

efficient furnaces and better heat waste management in this sector can help dealing with climate

change. While there is a literature on energy efficiency that extends to the industrial sector (Gerar-

den, Newell and Stavins, 2017; Allcott and Greenstone, 2012), this literature studies the adoption

(or lack thereof) of specific physical technologies. Considering the heterogeneous nature of industrial

activity, my paper interprets energy productivity from a more general perspective, where technology

can be both physical and intangible (such as worker’s knowledge) and where energy productivity

can be decomposed into relative efficiency of different fuels.

Third, I contribute to the literature investigating gains from variety in the composition of inter-

mediate inputs, which underlie complementarity between inputs (Ramanarayanan, 2020; Goldberg,

Khandelwal, Pavcnik and Topalova, 2010; Kasahara and Rodrigue, 2008; Broda and Weinstein,

2006; Romer, 1990; Ethier, 1982). My application of this theory to the consumption of fossil fuels is

consistent with the large literature on electricity shortages in India and other developing economies

(Allcott, Collard-Wexler and O’Connell, 2016; Mahadevan, 2022; Ryan, 2021). Indeed, Fisher-

Vanden, Mansur and Wang (2015) find that substitution towards other inputs is an important

margin of adjustment when Chinese firms face electricity shortages.

Fourth, my paper also contributes to the literature investigating the effects of environmental

policies on firm-level pollution, and the optimal design of policies aimed at mitigating climate change

and other externalities. I relax the canonical assumptions of a pollution function that underlie a

uni-dimensional choice of pollution abatement that has been staple in this literature (Copeland and

Taylor, 2004; Shapiro and Walker, 2018). I also contribute the very large literature on the social

cost of carbon which aims to find the optimal level of a carbon tax (Golosov, Hassler, Krusell and

Tsyvinsky, 2014; Hambel, Kraft and Schwartz, 2021; Miftakhova and Renoir, 2021; Dietz, van der

Ploeg, Rezai and Venmans, 2021). I complement this literature by studying the optimal relative

tax rate across polluting units such as fossil fuels.

2It is important to mention that the terms ”productivity” and ”efficiency” can be used interchangeably in this
context.
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On the policy side, closest to me is the work of Fowlie, Reguant and Ryan (2016) who quantify

the optimal carbon price in cement manufacturing when there is an additional market inefficiency

caused by imperfect competition. While the role of imperfect competition in the optimal design of

externality taxes has been recognized since Buchanan (1969), I abstract from concerns of imperfect

competition to instead focus on the role of dynamic fuel set selection.

Closest to my paper is the work of Scott (2021), who studies how pipeline expansion in the US

encourages power plants to switch towards natural gas.

Paper outline

In section 2, I discuss relevant features of the data. In Section 3, I provide evidence on emissions

and fuel usage by ASI establishments. In section 4, I elaborate on the model. In section 5, I

show identification and estimation of the outer and inner production model. In section 6, I show

identification of fixed costs. In section 7, I present optimal taxes on fossil fuels.
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2 Data

I use longitudinal data on inputs, location, and emission of manufacturing establishments in India.

This allows for a comprehensive understanding of the role of fuels in the production processes

of these establishments and the evolution of fuel use over time. I then link this data to India’s

vast Natural Gas pipeline infrastructure network, providing a unique level of detail and enabling

estimation of a rich model of establishment dynamics. The findings therein offer novel insights into

the impact of policies, such as carbon taxes, in reducing the negative effects of climate change.

Manufacturing Establishments I use a panel of establishments from the Indian Survey of

Industries (ASI) covering 2009-2016 for 300,000 establishment-year observations. The panel ASI is

a restricted-use dataset that covers all manufacturing establishments with at least 100 workers, and

a representative sample of establishments with less than 100 workers. The sample is stratified at

various levels, including number of workers and location. Some of the sampling rules changed over

time, and more detailed can be found in Appendix A.1. The ASI features measures of costs and

revenues such as inputs, outputs, and prices. In particular, it contains information on prices and

quantities of Coal, Oil, Electricity, and Natural Gas, which I convert to million British thermal unit

(mmBtu) using standard scientific calculations from the U.S. Environmental Protection Agency

(EPA, 2022).

Location I obtain detailed location information from the publicly available version of the ASI. I

locate establishments in one of 775 districts across 28 Indian states. This information allows me to

relate cross-sectional variation in fuel prices from the panel ASI to spatial variation in transportation

costs. Additionally, I map the entire natural gas pipeline network to these districts from public

records by the Petroleum and Natural Gas Regulatory Board (PNGRB, 2023), which oversees all

pipelines in India. This allows me to capture variation in the fixed costs of using natural gas, and

helps explaining fuel set choices, as I show in Section 3.

Emissions To get establishment-level measures of greenhouse gas emissions, I convert units of

potential energy (mmBtu) of each fuel into metric tons of carbon dioxide equivalent. Since I focus

on heavy manufacturing industries that use fossil fuels for combustion, each mmBtu of fuel releases

some quantity of carbon dioxide CO2, methane CH4, and nitrous oxide N2O in the air, which varies

by industry based on standard practices in the Indian context Gupta, Biswas, Janakiraman and

Ganesan (2019). I then convert emissions of these three chemicals into carbon dioxide equivalent

(CO2e) using the Global Warming Potential method (GWP, see Appendix A.4.1). The conversion
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rate of carbon dioxide, methane and nitrous oxide to carbon dioxide equivalent is the same across

establishments and industries.

Deflation Lastly, I follow standard procedures to deflate all production variables in the Indian

manufacturing context (Harrison, Hyman, Martin and Nataraj, 2016). Particularly, I deflate output

values by industry-specific wholesale price indices (WPI). I deflate material inputs by the aggregate

wholesale price index following Martin, Nataraj and Harrison (2017). Capital stock is deflated

by the both the WPI for machinery and an India-specific capital deflator from the Penn World

Table Feenstra, Inklaar and Timmer (2015). Both measures yield largely equivalent results. Labor

spending is deflated using the consumer price index (CPI) to get a measure of wages that reflects

the value it provides to consumers.

3 Facts about Emissions and Fuels in India

Using these datasets, I highlight a set of facts about fuel usage and carbon emissions, that motivate

my choice of India’s manufacturing sector to conduct this analysis, and influences modeling choices

to capture plants’ fuel decisions.

Fact 1: High Pollution Levels from Indian Manufacturing Establishments

Indian manufacturing establishments exhibit a higher level of pollution intensity compared to

their counterparts in developed economies. As demonstrated in Figure 1a, half of Indian cement

manufacturers emit twice the amount of carbon dioxide per unit of energy compared to the average

of Canadian cement manufacturer. This trend is not limited to the cement industry, but prevails

across all heavy manufacturing industries that use fuels as primary means of combustion (Figure

1b).

The main reason underlying this gap in emission intensity is the use of different fuels. The cluster

of Canadian establishments that emit on average 55 kg of CO2e per mmBtu in Figure 1a reflect

establishments that primarily use natural gas. Indeed, switching from coal to gas has been a large

contributor to the manufacturing clean-up in developed economies (Rehfeldt, Fleiter, Herbst and

Eidelloth, 2020). In contrast, a large portion of Indian plants primarily use coal, which pollutes

twice as much as gas. In Figure 2, I show that coal consistently contributes to 40% of all fuels used

by Indian Establishments. This prevalence of coal usage among Indian manufacturers explains the

cluster of plants that emit on average 95 kg of CO2e per mmBtu in figure 1a.
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Figure 1: Pollution Intensity of Energy in India and Canada (kg CO2e/mmBtu).

Note: Information from Canadian plants come from the National Pollutant Release Inventory (NPRI) (Government of Canada,
2022). This is a publicly available dataset that records emission of specific pollutants by Canadian manufacturing plants, which
I convert into CO2e emissions using the Global Warming Potential (GWP) method. In Figure 1b, I compare the within industry
average pollution intensity for 5 heavy manufacturing industries: Pulp & paper, cement, steel, aluminium, and glass.
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Figure 2: Comparison of Fuels used by ASI establishments

Note: Figure 2a aggregates across all manufacturing establishments in the ASI by year, and suggests a much lower usage of
natural gas compared to coal. Figure 2b shows the average emission intensity of each fuel, where the average is taken across
industries according to scientific calculations made by Gupta et al. (2019).

10



Fact 2: Indian Manufacturing Establishments often Switch Between Fuel Sources

I find that plants operating in narrowly defined industries use different fuel mixes at any given

time. Moreover, I find that 40% of all plants add at least one fuel to their mix at some point in

the sample, and 40% of all plants drop an existing fuel at some point in the sample. Additionally,

I find that plants who switch tend to switch on average two times, which is likely to be an under-

estimate of switching because I only observe plants for a maximum of 8 years. See Appendix A.5.

Importantly, this isn’t a feature of Indian plants, but rather a prevalent feature of fuel consumption

in manufacturing across the world. In Appendix A.5, I look at fuel switching in U.S. based plants

and find similar results. Below I document two facts that help explaining fuel switching.

Steel Casting of Metal Cement Glass

Oil, Electricity 51.3 51.5 42.1 53.6
Oil, Electricity, Coal 19.3 23.7 42.00 3
Oil, Electricity, Gas 10.8 12.2 1 31
Oil, Electricity, Coal, Gas 7.4 3.5 1.3 1.2
Other 11 9.2 13.7 11.2

Table 1: Percentage (%) of ASI Establishment That use Different Fuel Sources - Selected Industries

Adds New Fuel (%) Drops Existing Fuel (%)

No 58.5 60.4
Yes 41.5 39.6

Table 2: Percentage of unique plants that add and drop a fuel.

Notes: To construct Table 2, I balanced the panel, keeping establishments that operate in all 8 years between 2009-
2016. I did this to get a sense of the prevalence of aggregate fuel switching.

Fact 3: Establishments Increase the Number of Fuels as they age

As firms become older, the average number of fuels in their set rises. See Figure 3. Consistent

with a standard firm life-cycle model in which older firms are moe productive and have accumulated

capital, making it possible for them to finance fixed costs such as new furnaces to expand their

activity. I interpret as the suggestive of the importance of fixed costs for firms’ choice of fuel sets.

In this context, firms would like to use more fuels, but may not always find it profitable to pay

the fixed costs. My model will include many factors explaining why firms want to use more fuels.

These include gains from variety, an option value against fuel-specific price shocks and an option

value against fuel-specific quantity shortages, all of which are relevant in the Indian context.
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Fact 4: Proximity of Establishments to Pipelines Correlates with Gas Usage

Plants located near pipelines have access to the main distribution network through direct con-

nection to transmission pipelines. This access reduces costs compared to those located far from

the pipeline network, who need to construct expensive gasification terminals to convert liquified

natural gas to its usable form. This is because natural gas can only be transported as a gas through

high pressure pipelines. In the Indian context, I investigated the impact of the natural gas pipeline

network expansion between 2009 and 2016 on the likelihood of adding natural gas as a fuel source.

I used a simple logit regression where the dependent variable is an indicator for whether a plant

in district j added natural gas between year t and t + 1. The dependent variable of interest is

whether the pipepline network expanded in that district between t and t+ 1. The results indicate

that an expansion in the pipeline network within a plant’s district leads to a 2.2 percentage point

increase in the probability of adding natural gas. These results are consistent with Scott (2021)

who provides evidence that proximity of power plants to gas pipelines in the U.S. is a critical factor

in determining the fixed costs of adding natural gas as a fuel source, which affects the probability

that a power plant adds natural gas.

12



Figure 4: Indian districts by zone of access to natural gas pipelines.

(a) 2009 (b) 2016

Notes: Zone 1 is closest to source and Zone 4 is furthest from source. Zones are defined according to regulations under
the Petroleum and Natural Gas Regulatory Board (PNGRB)

Added Natural Gas (1) (2) (3)

Pipeline Expanded 0.013∗∗ 0.013∗∗ 0.02∗∗∗

(0.004) (0.004) (0.005)

Industry Fixed effects Y Y

District Fixed effects Y

Observations 128,496 128,496 128,496

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Probability of adding natural gas, logit average marginal effects from pipeline expansion
between two years.
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4 Model

Consistent with the evidence provided so far, I develop and estimate a rich dynamic production

model which allows me to quantify firms’ choice of fuel sources, both at the intensive and the ex-

tensive margin. Decisions in the model are reliant on the channels discussed above, and includes

idiosyncratic reasons why establishments use different fuel sources. Particularly relevant are differ-

ences in the productivity of using different fuels such as heat management practices and the types

of furnaces/kilns that plants operate, and heterogeneity in fuel prices. The model improves upon

the literature on externality mitigation at predicting the effect of various policies such as carbon

taxes on the emissions of manufacturing establishments.

Each period, firms have access to a set of fuels from a combination of oil, natural gas, coal

and electricity. They combine fuels to produce realized energy that goes into the outer nest of

production. Each fuel in the firm’s set has its own productivity term, and the production model

for energy is the same across fuel sets. Then, firms can choose which set of fuels to use for the next

period. Since fuels can only be used in conjunction with technological capital such as furnaces and

kilns, firms have to pay a fixed cost to use a new fuel, but get a salvage value from dropping an

existing fuel. The presence of gains from variety implies that all firms would use all fuels in the

absence of fixed costs. Thus, fixed costs create a trade-off between reduction in contemporaneous

profits and decreases in expected marginal cost. I first present the structure of production for a given

plant in a static setting, and then consider inter-temporal decisions. Throughout the exposition,

subscript i refers to a plant and t refers to a year. The analysis is conducted industry-by-industry,

so I omit the industry subscript going forward.

4.1 Static Production Model

There are two levels of production which correspond to two nests. The outer nest is a standard

CES production function and features Hicks-neutral productivity zit, labor (Lit/L), capital (Kit/K),

intermediate inputs (Mit/M) and realized energy (Eit/E) inputs.3 Following Grieco et al. (2016),

the production function is explicitly normalized around the geometric mean of each variable X =(∏n
i=1

∏T
t=1Xit

) 1
nT

.4

3The particular functional form of the CES is not necessary. Identification works for a large class of production
functions.

4It has been known for a long time that all CES functions are either implicitly or explicitly normalized around
a point (León-Ledesma, McAdam and Willman, 2010). I choose the geometric mean as a normalization point to be
consistent with the literature, but the choice of any particular normalization does not carry any meaning beyond
mathematical convenience, or lack thereof. Details on the explicit derivation of the CES normalization can be found
in the appendix
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s.t. αL + αK + αM + αE = 1

(1)

Where σ ≥ 0 is the elasticity of substitution between inputs, and η is the returns to scale. In

the outer nest, firms choose the quantity of all inputs given input prices, including realized energy,

Eit
E

. Then, given the current fuel set Fit ⊆ F, firms combine all fuels available in the set to produce

a quantity of realized energy Eit
E

in the inner nest of production.

Eit

E
=

( ∑
f∈Fit

(
ψfit

efit
ef

)λ−1
λ

) λ
λ−1

(2)

efit refers to quantity of fuel f for plant i in year t, and pfit is the corresponding price. λ is the

elasticity of substitution between fuels. This parameter plays a crucial role in this model because it

determines the magnitude of gains from variety that a firms would get by expanding its fuel set Fit.

As long as λ > 1, there are gains from variety. However, the more complements fuels are conditional

on being gross substitutes, the larger are the gains from variety. This is because a lower λ implies

that marginal products from a given fuel decrease faster, so there are larger marginal gains from

switching. In section 3.4, I explore these comparative statics in more details. The production model

of realized energy in equation 2 features a fuel-specific productivity term for each firm in each year,

which allows for flexible variation in input usage at the intensive margin.

4.2 Static Decisions

Assumption 1-. Capital is rented flexibly every period at user cost of capital rkit
5

Assumption 2-. Firm takes output price in year t as given and engage in perfect competition (I

discuss this assumption in section 3.3)

For a given set of fuels Fit, the firm’s static problem is then to maximize profits. To avoid notation

clutter, I will define X̃it ≡ Xit
X

for normalized quantities and p̃xit ≡ pxitX for normalized prices from

now on.

5This is not needed for identification of the production function, but it simplifies the computation of firms’ dynamic
choice of fuel set.
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max
Kit,Mit,Lit,{efit}f∈Fit

{
PtYit − witLit − rkitKit − pmitMit −

∑
f∈Fit

pfitefit

}

s.t. Ỹit = zit

[
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αE

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

σ−1
σ

] ησ
σ−1

The nested structure of production is such that it can be express in two stages:

1. Fuel choices to minimize cost given quantity of realized energy (Inner nest):

Given fuel prices, firms find the combination of fuels that minimizes the cost of producing a

given unit of realized energy. Note that fuel prices in mmBtu are observed allowed to vary across

plants here. Appendix A.2 discusses the main reason underlying cross-sectional price variation.

min
{efit}f∈Fit

{ ∑
f∈Fit

pfitefit

}
s.t. Ẽit =

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

(3)

The solution to this problem is an energy cost function C(Ẽit) that satisfies:

C(Ẽit) =
( ∑
f∈Fit

( p̃fit
ψfit

)1−λ) 1
1−λ

Ẽit

= P̃EitẼit =
∑
f∈Fit

pfitefit

Where the unobserved price of realized energy p̃Eit correspond to a CES price index in fuel prices

over productivity. Constant returns in the energy production function implies that the marginal

cost of realized energy is the price of realized energy and is constant MC(Ẽit) = p̃Eit.

2. Input choices to maximize profit (outer nest):

Given a cost-minimizing allocation of fuels that produce a quantity of realized energy, firms pay

a price pEit for each unit of realized energy. They take this price as given when choosing quantity

realized energy because pEit is only a function of the optimal relative allocation of fuels, not the

scale of energy. This is due to the constant returns assumption in equation 2. Firms also take other

inputs and ouput prices as given, and maximize profits:
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max
Kit,Mit,Lit,Eit

{
PtYit − witLit − rkitKit − pmitMit − pEitEit

}
s.t.Ỹit = zit

[
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αEẼ
σ−1
σ

it

] ησ
σ−1 (4)

The solution to this problem is a profit function:

πit =
(PtY zit)

1
1−η

p̃
η

1−η
it

[
η

η
1−η − η

1
1−η
]

Where p̃it is the CES input price index from the outer nest:

p̃it =
(
ασK r̃

1−σ
kit + ασM p̃

1−σ
Mit + ασLw̃

1−σ
it + ασE p̃

1−σ
Eit

) 1
1−σ

4.3 Full model and inter-temporal fuel set choices

Aggregation

All analysis, including welfare evaluations is done at the industry level. In each industry, there is

a representative consumer with quasi-linear utility over the total output produced in a given period

Yt and an outside good Y0t. The representative consumer owns the firms and derives income It from

total profits Πt. This quasi-linear utility specification is standard in the literature on externality

taxation (Fowlie et al., 2016) and allows researchers to use the social cost of carbon (SCC) in dollars

to construct externality damages. As such, externality damages and firms profit will act as shift on

the representative consumer’s aggregate income.

U(Yt, Y0t) = max
Yt,Y0t

u(Yt) + Y0t (5)

s.t.
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Y0t + PtYt = It = Πt

Yt =

∫
i
Yitdi

Πt =

∫
i
πitdi

In each period, firms take output prices as given and engage in perfect competition. In Appendix

C.1, I show that identification of this production economy is equivalent to an economy in which firms

produce differentiated goods and engage in monopolistic competition, but have constant returns to

scale (CRS) technology.6 However, there is one key distinction. When setting optimal taxes in an

imperfectly competitive economy, the government takes into account both the externality and the

inefficient allocation caused by imperfect competition (Buchanan, 1969). This assumption allows me

to isolate the government’s role in correcting the externality rather than the inefficiency caused by

imperfect competition. The interaction between externality mitigation and imperfect competition

has been studied quantitatively by Fowlie et al. (2016) in the Portland Cement industry.

Inter-temporal fuel set choice

At the beginning of each period, plants start with a set of fuels Fit ⊆ F, observe their hicks-neutral

productivity zit, productivity for each fuels {ψfit}f∈Fit , and all input prices {wit, rkit, pmit, {pfit}f∈Fit}.

Together, these form a set of state variables sit. Firms then take expectation over the evolution of

state variables, and choose a fuel set for next period F ′ to maximize expected lifetime profits:

V (sit,Fit ∈ F) = max
F ′

{
π(sit,Fit)− Φ(F ′ | Fit) + εF ′it + β E[V (sit+1,F ′) | sit]

}

Where Φ(F ′ | Fit) is the net cost of switching from fuel set F to F ′ and εF ′it allow for unobserved

variation in fixed costs for all fuel sets. Fuel switching costs are composed of two terms. First, there

are fixed costs of adding a fuel κf which underlie the technologies that plants need to buy to use that

fuel. Second, there are salvage values of dropping a fuel γf that plants obtain by selling technologies.

In later sections, I show that the fixed cost to add natural gas κg can vary based on plants’ distance

to the nearest distribution pipeline to account for expansion of the natural gas pipeline network.

6In Appendix C.1, I show how aggregation with quasi-linear utility can be adapted to monopolistic competition.
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Φ(F ′ | Fit) =
( ∑
f∈Fit

I(f /∈ F ′)γf︸ ︷︷ ︸
value of dropping fuels

−
∑
f /∈Fit

I(f ∈ F ′)κf
)

︸ ︷︷ ︸
cost of adding fuels

Since 90% of plants in the dataset always use Electricity and Oil, I assume that the choice set of

firms is as follow, where e = electricity, o = oil, g = gas, c = coal:

F =
{

(oe); (oec); (oeg); (oecg)
}

K = {κg, κc, γg, γc}

4.4 Comparative statics: gains from variety and option value

In this section I show why a firm would want to pay a fixed cost to add a new fuel to its set. The

price that firms pay for realized energy is a CES price index:

pẼit =
( ∑
f∈Fit

( p̃fit
ψfit

)1−λ) 1
1−λ

Broda and Weinstein (2006) and others show that this CES price index is decreasing in the

number of inputs it contains, here | Fit |, as long as inputs are gross substitutes (λ > 1). This

means that absent of fixed costs, all firms would always include all fuels in their set. The intuition

underlying the gains from variety and can be understood through decreasing marginal products.

Indeed, the energy production function is concave in each inputs, so fuel-specific marginal products

are decreasing in fuel quantities. Adding an additional fuel allows to substitute away from the

least productive units of existing fuels to the more productive units of the new fuel due to gross

substitution (λ > 1), which in terms increases the marginal product of each existing fuels. The

net effect is an overall decrease in the total quantity of fuels required to produce a unit of realized

energy Ẽit, which decreases marginal costs pEit. In section 4, I show evidence consistent with

this conceptualization of these gains from variety. In appendix C.3, I show how similar comparative

statics can be derived from a task-based model for realized energy similar to Acemoglu and Restrepo

(2021).
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Proposition 1. Gains from variety: ceteris-paribus, if a fuel set F is a strict subset of F ′ and

fuels are gross subsitute (λ > 1), then the marginal cost to produce energy is higher under F .

F ⊂ F ′ → pẼit(F) > pẼit(F ′)

Proof. Assume not:

(∑
f∈F

( p̃fit
ψfit

)1−λ) 1
1−λ

<
( ∑
f∈F ′

( p̃fit
ψfit

)1−λ) 1
1−λ

0 >
∑

f∈F ′\F

( p̃fit
ψfit

)1−λ
> 0⇒⇐

In addition, by expanding its fuel set, a firm also gains the option value of being able to hedge

against negative price shocks and quantity shortages. The following two propositions demonstrate

the differential effects of a fuel price increase and a binding quantity shortage on a firm, depending

on the size of its fuel set.

Proposition 2. Option value against positive fuel price shock: ceteris-paribus, if a fuel set F is a

strict subset of F ′, an increase in the price of a fuel in both sets will increase marginal costs under

F by a larger amount. F ⊂ F ′ →
∂pẼit(F)

∂pfit
>

∂pẼit(F′)
∂pfit

∂pEit(F)

∂p̃fit
−
∂pEit(F ′)

∂p̃fit
=
( pfit
ψfit

)−λ 1

ψfit

[
pλ
Ẽit(F)

− pλ
Ẽit(F ′)

]
> 0

if F ⊂ F ′ since λ > 1 and pẼit(F) > pẼit(F ′) by Proposition 1

The idea behind Proposition 2 is that a larger set of fuels can act as a form of insurance against

negative price shocks, which is particularly relevant in a world where many fossil fuels are susceptible

to geopolitical turmoil that can have long-lasting effects on fuel prices. Consider, for instance, the

Ukraine-Russia war of 2021, which sent natural gas prices soaring worldwide, or the oil shock of

2014, which resulted in a significant drop in the price of both oil and natural gas (figure 5). In this

volatile geopolitical landscape, firms’ decisions carry significant weight in terms of how they plan

to weather potential future shocks.

The final proposition demonstrates that a larger fuel set allows firms to weather binding quantity

shortages of a particular fuel more effectively. This proposition is particularly applicable in the In-
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Figure 5: Yearly Median Fuel Prices (INR/mmBtu)

dian context, where the economy frequently experiences disruptions in its electricity supply (Allcott

et al., 2016; Mahadevan, 2022; Ryan, 2021) due to financial struggles faced by state-owned utility

suppliers, which can lead to the discontinuation of electricity supply (Mahadevan, 2022). In such

circumstances, fuel substitution can serve as a means of adjustment for firms to insure themselves

against these shortages.

Proposition 3. Option value against binding fuel shortage: ceteris-paribus, a binding shortage

on the quantity of a specific fuel ef will increase the perceived marginal cost to produce energy.

Moreover, if a fuel set F is a strict subset of F ′, the increase in marginal costs will be larger under

F . F ⊂ F ′ → pẼit(F ,ef ) > pẼit(F ′,ef )

min
{efit}f∈Fit

{ ∑
f∈Fit

pfitefit

}
s.t. Ẽit =

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

efit ≤ ef for some f

The Lagrangian can be written as:

L =
∑
f∈Fit

pfitefit + µ1

[
Ẽit −

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

]
+ µ2(efit − ef )
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In the first order condition for fuel f, the Lagrange multiplier for the supply constraint µ2 acts

as an increase in the shadow price of fuel f. Since I assume that the constraint is binding, the value

of this shadow price will be such that the quantity purchased of fuel f would be ef if the firm was

facing pfit + µ2 as the true price.

pfit + µ2 = µ1

(∑
f∈F

(ψfitẽfit)
λ−1
λ

) 1
λ−1

ψ
λ
λ−1

fit e
−1
λ
fit︸ ︷︷ ︸

Marginal Product of efit

Then, the perceived marginal cost of energy, pEit(F ,ef ) will include the shadow cost of fuel f.

By proposition 2, the increase in marginal costs will be larger under F than F ′. Thus, the firm is

better of under the larger fuel set, F ′ when facing a shortage.

5 Estimating the production model

Identification of the model is done is three steps, each of which rely on different methods. First, I

jointly identify and estimate the unobserved quantity and prices of realized energy in the outer nest

of the production function by exploiting variation between observed expenditures on energy, expen-

diture on labor, and the quantity of labor. Identification relies on the mapping between observed

substitution patterns between inputs and implied substitution patterns induced by optimality of the

firm’s choice, and works for a large class of parametric production functions (Grieco et al., 2016).

Second, I jointly identify the inner nest of production, including all fuel-specific productivity. To

do so, I rely on recent development in production function estimation in the presence of input-

augmenting productivity that exploit firms’ optimality conditions and Markovian assumptions on

productivity (Demirer, 2020; Zhang, 2019).

Third, While the previous method allows me to recover fuel productivity for fuels that firms

are using in a given period, it doesn’t allow me to point identify counterfactual productivity for

fuels that firms have never used, which may underlie selection in the distribution of observed fuel

productivity. To uncover the unselected distribution of fuel productivity and perform counterfactual

policy experiments, I follow Arcidiacono and Jones (2003, 2011) by assuming that the distribution

of unobserved fuel productivity comes from a finite mixture with known support. I use the full

information likelihood coupled with the EM algorithm to iteratively estimate the probability that

a firm is in each point of the support conditional on observables and choices made . This method
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is then embedded into an otherwise standard dynamic discrete choice model in fuel sets to recover

fixed switching costs.

Similarly for unobserved prices in counterfactual fuel sets, I use firms’ location information into

Indian districts and geopolitical shocks to deduce counterfactual fuel prices. Indeed, after mapping

the entire natural gas pipeline network of India, I find significant spatial variation in fuel prices

based on the distance between firms’ location and the source of the nearest pipeline which captures

transportation fees. For example, firms located nearby the Midwest Coast of India in the states of

Gujarat and Maharashtra face significantly cheaper gas prices because most gas is imported from

the Middle East to the West Coast, where most pipelines begin. I explain this in detail in Appendix

A.2.

5.1 Identification of outer production function

In the outer nest, the main unobserved quantity that departs from standard models is realized energy

Ẽit. In contrast to heating potential of fuels, realized energy is the output of combining different

fuels in production, and is unobserved by construction. Fortunately, using a method developed by

Grieco et al. (2016), there is a way to uniquely recover Ẽit by exploiting structural variation in the

quantity of another flexible input (labor) induced by unobserved variation in the price of realized

energy that underly firm’s choice of the scale of energy. To see this, one can look at the ratio of

first-order conditions for labor and energy from profit maximization in equation 4:

wit
pEit

=
αL
αE

(Lit/L
Eit/E

)−1/σE

L

Multiply both sides by L/E:

witLit
pEitEit

=
αL
αE

(Lit/L
Eit/E

)(σ−1)/σ
(6)

Given production function parameters, Eit
E

can be recovered from (6) because I observe expen-

ditures for both inputs (recalling that energy expenditure is the sum of fuel expenditures from the

energy production function: pEitEit =
∑

f∈Fit pfitefit) and I observe quantity of labor. Identifi-

cation of Ẽit comes from variation in the relative input price of labor to energy induces variation
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in the expenditure ratio that isn’t one-for-one with relative prices. For a given σ, observed vari-

ation in spending on energy SEit , spending on labor SLit and the quantity in labor Lit implies a

unique quantity of realized energy by the optimality condition between both inputs. Only when

σ = 1 (Cobb-Douglas), the percentage change in relative prices is always offset by an equivalent

percentage change in expenditure shares, such that expenditure shares are constant.

Eit

E
=
(peitEit
witLit

) σ
σ−1
(αL
αE

) σ
σ−1 Lit

L
(7)

In this setting, Grieco et al. (2016) show that one can identify production parameters by replac-

ing Eit for (7) in the production function and exploiting first-order conditions to control for the

transmission bias from unobserved hicks-neutral productivity zit to observed inputs, a method that

is also used by Doraszelski and Jaumandreu (2013, 2018). Detailed derivations can be found in

appendix X. Following Grieco et al. (2016), I also use the same method to control for unobserved

price dispersion in the bundle of material inputs, which has been known to vary significantly:

Mit

M
=
(pmitMit

witLit

) σ
σ−1
( αL
αM

) σ
σ−1 Lit

L

The main dependent variable is revenues, where euit is an unobserved iid shock which is meant to

capture measurement error and unanticipated demand & productivity shocks to the plant (Klette

and Griliches, 1996).

Rit = euitp(Yit)Yit

=
1

η

[
witLit

(
1 +

αk
αL

(Kit/K

Lit/L

)σ−1
σ
)

+ pmitMit + peitEit

]
euit

Taking logs of revenues yields the main estimating equation:

lnRit = ln
1

η
+ ln

[
witLit

(
1 +

αk
αL

(Kit/K

Lit/L

)σ−1
σ
)

+ pmitMit + peitEit

]
+ uit (8)
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Note that due to the substitution for Eit and Mit in the production function, the main estimating

equation (8) does not recover αE and αM . To recover αE and αM , I can rearrange the ratio of

first-order conditions to show that expenditure shares of labor to energy must satisfy:

witLit
peitEit

=
αL
αE

(Lit/L̄
Eit/Ē

)σ−1
σ

An analogous expression exists for the ratio of expenditures on materials and labor. Taking the

geometric mean of relative expenditures yields the first parameter restriction7, whereas the second

is implied by constant returns to scale:

wL/peE =
αL
αE

wL/pmM =
αM
αE

αK + αL + αM + αE = 1

(9)

Then, I estimate (8) subject to (9) with non-linear least squares.

5.1.1 Outer Production function estimation results

Preliminary estimates of the production function parameters can be found in Table 5. I also report

the average output elasticity with respect to each input to be consistent with the literature (Gandhi

et al., 2020). The output elasticity with respect to intermediate materials (and the coefficient on

materials) is much larger than other inputs, which is consistent with previous estimates in the

literature. Moreover, the share of energy in the production function is larger for plants in industries

that are expected to be more energy intensive such as the manufacturing of cement (Ryan, 2012).

5.1.2 Reduced-form evidence of gains from variety

One important quantitative goal of this paper is to study how much of the variation in the marginal

cost of energy across different fuel sets can be explained by the gains from variety/option value vs.

variation in prices and fuel/energy productivity due to the selection of more productive firms into

large fuel sets. At this point, I have an estimate of energy Eit/E which gives me an estimate of the

7This is the convenience given by the geometric mean normalization of the CES. However, any other normalization
would work, but would require some more albegra to recover the distribution parameters
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Table 5: Production Function Estimation (selected industries)

Glass Cement Basic Steel Casting of Steel & Iron

Returns to scale: η̂ 0.87 0.76 0.92 0.88
[0.857,0.880] [0.749,0.769] [0.916,0.923] [0.876,0.887]

Elasticity of substitution: σ̂ 1.51 3.36 1.81 1.50
[1.410,1.646] [2.646,4.978] [1.707,1.948] [1.413,1.589]

Capital coef: α̂K 0.12 0.08 0.06 0.08
[0.102,0.128] [0.058,0.084] [0.055,0.062] [0.080,0.091]

Labor coef: α̂L 0.12 0.10 0.03 0.08
[0.107,0.114] [0.080,0.085] [0.025,0.026] [0.076,0.079]

Materials coef: α̂M 0.64 0.61 0.82 0.74
[0.644,0.669] [0.594,0.619] [0.822,0.830] [0.736,0.747]

Energy coef: α̂E 0.12 0.21 0.09 0.09
[0.112,0.124] [0.231,0.249] [0.088,0.092] [0.092,0.097]

N 1,553 2,145 7,177 4,654

Bootstrap 95% confidence interval in bracket (499 reps)

Table 6: Average Output Elasticities (selected industries)

Glass Cement Basic Steel Casting of Steel & Iron

ε̄y,l 0.11 0.09 0.03 0.09
[0.11,0.12] [0.08,0.09] [0.03,0.04] [0.09,0.09]

ε̄y,k 0.11 0.07 0.07 0.09
[0.10,0.13] [0.06,0.09] [0.07,0.08] [0.09,0.10]

ε̄y,m 0.60 0.55 0.76 0.70
[0.59,0.62] [0.54,0.57] [0.76,0.77] [0.69,0.70]

ε̄y,e 0.17 0.29 0.13 0.12
[0.16,0.18] [0.28,0.30] [0.13,0.13] [0.12,0.13]
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price of energy p̃EitE = p̃Eit =
sEitE

Eit
. Before imposing any further assumptions on the production

model, I look at the relationship between the price of energy and the number of fuels available to

firms. I find a large and monotone negative relationship between energy prices and the number of

fuels. Since this evidence comes before imposing any assumption on the inner nest of production,

it provides evidence in favor of the energy production model presented earlier.

Table 7: Relationship between ln p̃Eit and the number of fuels available to plants.

(1) (2) (3) (4)
ln pEit ln pEit ln pEit ln pEit

Two fuels -0.57∗∗∗ (0.014) -0.51∗∗∗ (0.014) 0 (.) 0 (.)
Three fuels -1.48∗∗∗ (0.017) -1.42∗∗∗ (0.017) -0.91∗∗∗ (0.012) -0.93∗∗∗ (0.01)
Four fuels -1.92∗∗∗ (0.036) -1.87∗∗∗ (0.035) -1.37∗∗∗ (0.032) -1.42∗∗∗ (0.028)
Industry Dummies Yes Yes Yes Yes
Year Dummies Yes Yes Yes
Controlling for fuel prices Yes Yes
Controlling for TFP Yes

N 222,104 222,104 197,512 197,512

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: the third and fourth columns control for the prices of electricity and oil, and are based on plants that always
use these two fuels. This means that the benchmark number of fuels in these columns is two, rather than one in the
first and second columns.

5.2 Identification of inner production function for energy

The energy production function in equation 2 can be rewritten by taking out the productivity of a

fuel that plants always use, such as oil, and redefining the productivity of all other fuels relative to

oil, ψ̃fit =
ψfit
ψoit

:

Ẽit = ψoit

( ∑
f∈Fit

(
ψ̃fitẽfit

)λ−1
λ

) λ
λ−1

(10)

At this point, I observe Ẽit, {ẽfit}f∈Fit , and all prices: p̃Eit = SEit
Ẽit

, {p̃fit =
sfit
ẽfit
}f∈Fit . I show

how to recover the elasticity of substitution λ, and the distribution of all productivity terms ψfit.

To do so, I rely on optimality of the firms’ cost-minimization coupled with a Markovian assumption

on the productivity of one of the input (e.g. oil). This is similar to the method proposed by Zhang

(2019) and Demirer (2020), but relies on insights from the dynamic panel literature rather than
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the proxy variable/control variable approach to deal with endogeneity of productivity (transmission

bias). As a reminder, the cost-minimization problem of the firm is as follows:

min
{efit}f∈Fit

∑
f∈Fit

p̃fitẽfit s.t. Ẽit = ψoit

( ∑
f∈Fit

(
ψ̃fitẽfit

)λ−1
λ

) λ
λ−1

The relative first order conditions identifies relative productivity of fuel f as a function of ob-

servables up to parameter values:

ψ̃fit =
( p̃fit
p̃oit

) λ
λ−1
( ẽfit
ẽoit

) 1
λ−1

(11)

I then impose this optimality condition by plugging back the implied relative fuel productivity

terms (11) into the energy production function (10) and rearrange (where sfit ≡ pfitefit is spending

on fuel f):

Ẽit = ψoitẽoit

( ∑
f∈Fit

sfit
soit

) λ
λ−1

(12)

At this point, the only unobservable in the energy production function is the productivity of oil,

which is correlated with current period quantities and spending on inputs since it is assumed to be

known to the firm at the time of choosing fuel quantities. This is the standard transmission bias.

To deal with this issue, I assume that the productivity of oil follows an AR(1) Markov process with

both years t and location s fixed effects. 8

lnψoit = (1− ρψo)(µ
ψo
0 + µψos ) + µψot − ρψoµ

ψo
t−1 + ρψo lnψoit−1 + εψoit (13)

I then take log of equation 12 and use the Markov process above to get an estimating equation:

8The choice of these modified AR(1) processes is to ensure that the average of each state variables observed in
the data corresponds to the unconditional average of this process. This means that many even though the model
is estimated from a short panel (between 2 and 8 years), forward simulations multiple years ahead will match the
support of the data.
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ln Ẽit−ln ẽoit = µψo0 (1−ρψo)+µ
ψo
t −ρψoµ

ψo
t−1+ρψo(ln Ẽit−1−ln ẽoit−1)+

λ

λ− 1

(
ln
∑
f∈Fit

sfit
soit
−ρψo ln

∑
f∈Fit−1

sfit−1

soit−1

)
+ εψoit (14)

Since εψoit is a shock to productivity of oil at time t, it is uncorrelated with choices made at time

t− 1:

E(εψoit | Iit−1) = 0

Moreover, estimating equation (14) is a linear structural regression, and I can use linear IV

with t − 1 choices as instruments to control for endogeneity between relative spending on all fuels

ln
∑

f∈Fit
sfit
soit

and the shock to productivity of oil uoit. In the paper, I use the price of oil and

electricity, and the quantity of oil and electricity purchased at t−1 to instrument for ln
∑

f∈Fit
sfit
soit

.

The underlying assumption is that fuel price variation is persistent, which is consistent with the

many geopolitical shocks which are pervasive in this market. In this dataset, this includes, for

example, the oil crash of 2014 which persisted until 2016. For the price of electricity, Mahadevan

(2022) documents many state-specific reforms to electricity markets which had persistent increases

on the price of electricity. In the dynamic section, I specify a Markov process for the price of oil

and electricity which is consistent with these assumptions.

Remark

So far, I haven’t used the first-order condition for oil in the cost-minimization problem. This

is not an issue because firms choose the level of realized energy in the first stage of production,

given some price of energy. Once I recover the price of energy and the quantity of energy that

firms want to buy, cost minimization implies that one of the input choice is ”free”. That is, I

only need to recover the optimal quantity of all fuels relative to oil, whereas the quantity of oil

will be pinned down by the firm’s choice of realized energy. The first order condition for oil in the

cost-minimization problem is as follows, where I sub in equation 11 for all relative fuel-augmenting

productivity:
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p̃oit = µitψoit

( ∑
f∈Fit

(
ψ̃fitẽfit

)λ−1
λ

) 1
λ−1

ẽ
−1/λ
oit

= µitψoit

( ∑
f∈Fit

sfit
soit

) 1
λ−1

(15)

Once I take into account all first-order conditions, firms’ optimality condition implies that the

shadow cost of oil (Lagrange multiplier µit) is the marginal cost of realized energy. Plugging the

equilibrium condition for the shadow cost of oil into equation (15) implies that the first order

condition for oil is always satisfied.

µit = p̃Eit =
1

ψoit

( ∑
f∈Fit

( p̃fit
ψ̃fit

)1−λ) 1
1−λ

=
( ∑
f∈Fit

sfit
soit

) 1
1−λ p̃oit

ψoit
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5.2.1 Estimation of the inner production function

Energy production function

Table 8: Estimates of Energy Production Function (Selected parameters and industries)

(1) (2) (3)
Casting of Steel & Iron Glass Basic Steel

Elasticity of sub. λ 1.754∗∗∗ 2.191∗ 1.901∗∗∗

(0.140) (0.902) (0.105)
Persistence of oil prod ρψo 0.859∗∗∗ 0.873∗∗∗ 0.911∗∗∗

(0.0162) (0.0288) (0.0121)

Observations 1,737 652 2,746

Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

To get the distribution of all fuel productivity, I multiply the estimates of oil productivity with

the relative productivity of all other fuels ψ̂fit =
ˆ̃
ψfitψ̂oit. I then construct a measure of energy

productivity by taking the firm-by-year sample average of all fuel productivity terms:

lnψit =
1

| Fit |
∑
f∈Fit

lnψfit

Of course this is a selected sample of productivity, because I only observe gas and coal produc-

tivity for firms that use gas and coal. Yet, it is still indicative of productivity differences across

different fuel sets. In the dynamic section, I show how to recover the unselected distribution of fuel

productivity.

Distribution of energy and fuel productivity, by fuel sets

The average and median energy productivity tend to increase as firms use more fuels, which

is consistent with a productivity-efficiency argument in which more productive firms select into

large fuel sets (Table 8). However, firms who use only gas with oil and electricity (rather than gas,

coal, oil and electricity) tend to have a comparative advantage in using gas relative to their overall

productivity of energy (Figures 6):
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Table 9: Distribution of log energy productivity lnψit by fuel sets (Steel manufacturing)

Mean Median s.d. N

oil, electricity 0.31 0.22 1.93 1,501
oil, coal, electricity 0.29 0.50 2.05 667
oil, gas, electricity 0.38 0.24 1.53 353
oil, gas, coal, electricity 0.55 0.57 1.43 225
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Figure 6: Kernel density of log relative productivity of gas (ln ψ̃git), Steel manufacturing
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Figure 7: Kernel density of log relative productivity of coal (ln ψ̃cit), Steel manufacturing
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6 Estimating fuel switching costs

The firm has access to a set of fuels Fit and is considering all alternative fuel sets in the next

period F ′ ≡ Fit+1 ⊆ F ≡ {oe, oge, oce, ogce}. Since all state variables sit will be assumed to follow

a Markovian process, I can start from the recursive formulation of the problem, where the firm

chooses F ′ to maximize a bellman equation, the net present value of lifetime profits:

V (sit, εit,Fit) = max
F ′⊆F

{
π(sit,Fit)︸ ︷︷ ︸
static profit

+ Φ(F ′ | Fit) + εF ′it︸ ︷︷ ︸
Fixed switching costs

+β

∫
Ωs

∫
ε
V (sit+1, εit+1,F ′)dF (sit+1 | sit)dG(εit+1)

}
(16)

Where the constant component of switching costs are defined as:

Φ(F ′ | Fit) =
( ∑

f∈Fit

I(f /∈ F ′)γf︸ ︷︷ ︸
salvage value for dropping fuels

−
∑
f /∈Fit

I(f ∈ F ′)κf︸ ︷︷ ︸
cost of adding new fuels

)

From now on, I define the parameters governing the switching cost function θ1 = {κg, κc, γg, γC}

for coal c and gas g, and θ2 the parameters underlying the evolution of state variables. I make

the assumption that cost shocks are iid and come from a standardized Type 1 Extreme value

εF ′it ∼ Gumbel(0, 1). This allows me to analytically integrate over these shocks and work with the

expected value function:

W (sit,Fit) =

∫
max
F ′∈F

{
π(sit,Fit) + Φ(F ′ | Fit) + εF ′it + β E[V (sit+1,F ′) | sit]

}
g(ε)dε

= γ + log

( ∑
F ′∈F

exp
(
π(sit,Fit) + Φ(F ′ | Fit) + β

∫
W (sit+1,F ′)f(sit+1 | sit)dsit+1

))

= γ + log

( ∑
F ′∈F

exp
(
υF ′(sit,Fit)

))

Where γ ≈ 0.5772 is the Euler–Mascheroni constant. Then, the probability of choosing fuel F ′

has a logit formulation, which simplifies the likelihood. Note that This probability is implicitely a

function of both θ1 and θ2
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Pr(F ′ | Fit, sit; θ1, θ2) =
exp
(
υF ′(sit,Fit; θ1, θ2)

)
∑
F ′∈F exp

(
υF ′(sit,Fit; θ1, θ2)

)

Where υ() are the choice-specific expected value functions. Below is the main assumption un-

derlying firms’ expectation over state variables:

Assumption 1-. I assume that firms are agnostic about the evolution of labor, capital and material

prices (wit, rkit, pmit). However, firms take expectation over all productivity terms and fuel prices

({ψfit, pfit}f∈F, zit)

6.1 Evolution of non-selected state variables

I assume a specific process for the evolution of state variables that is consistent with previous

sections of the paper. The productivity and price of both electricity and oil follow a persistent

AR(1) process with time (t) and location (s) fixed effects. Since firms always use these two fuels,

they are referred as non-selected state variables. ∀f = {e, o} :

lnψfit = (1− ρψf )(µ
ψf
0 + µ

ψf
s ) + µ

ψf
t − ρψfµ

ψf
t−1 + ρψf lnψfit−1 + ε

ψf
it

ln pfit = (1− ρpf )(µ
pf
0 + µ

pf
s ) + µ

pf
t − ρpfµ

pf
t−1 + ρpf ln pfit−1 + ε

pf
it

I also assume a similar persistent AR(1) process for hicks-neutral productivity zit:

ln zit = (1− ρz)µz + µzt − ρzµzt−1 + ρz ln zit−1 + εzit

I allow all shocks to productivity and prices to be arbitrarily correlated in a multivariate normal

distribution. Baseline Electricity prices are set by state-owned electricity utilities, but vary non-

linearly based on demand across the grid. Moreover, due to widespread electricity shortages, many

states have made reforms in different years to modernize the electricity sector, at the expense

of higher prices. Mahadevan (2022) shows that these reforms also increased firm productivity,

thereby increasing demand for electricity, which motivates a joint process for shocks to prices and

productivity.
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(
εψoit , ε

po
it , ε

ψe
it , ε

pe
it , εzit

)
≡ εit ∼ N (0,Σ)

6.2 Evolution of selected state variables - Permanent heterogeneity

I assume prices and productivity for coal and gas follow a joint process with permanent plant-specific

heterogeneity in productivity. ∀f = {c, g},

lnψfit = µ
ψf
0 + µ

ψf
t + µ

ψf
s + µfi + ε

ψf
it

ln pfit = µ
pf
0 + µ

pf
t + µ

pf
s + ε

pf
it

Both price and productivity may vary over time and across locations. For example, Firms typically

face lower prices of natural gas when closer to the source of a natural gas pipeline (Table 11,

Appendix A.2). Moreover, I allow shocks to productivity and prices to be correlated:

εψfit
ε
pf
if

 ∼ N
0

0

,
 σ2

ψf
σψfpf

σψfpf σ2
pf

 ∀f = {g, c}

The main difference between selected and unselected state variables is the presence of firm-specific

comparative advantage at using fuel f, µfi. Whereas unselected variables feature persistent hetero-

geneity in the form of an AR(1), I assume that the productivity of selected fuels feature permanent

heterogeneity in the form of random effects. The main difference is methodological and stems from

limitation in the literature to handle persistent unobserved heterogeneity.

6.3 Identification

To learn about the extent to which the distribution of comparative advantage for natural gas

and coal is selected, I follow Arcidiacono and Jones (2003, 2011). I assume that the distribution

of comparative advantages comes from a finite mixtures, where the initial guess of the mean and

variance of the finite mixture are the same as the mean and variance of some initial guesses (µ̃f , σ̃
2
µf

)

of an underlying continuous process:
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K∑
k

π0
fkµfk = µ̃f

K∑
k

(µfk − µ̃f )2π0
fk = σ̃2

µf

Where π0
fk = Pr(µfk) is the unconditional probability of being type k, and

∑
k π

0
fk = 1. I make an

informed initial guess of both distributions from the selected sample of firms who use these fuels.

µ0
fi ∼ N(µ̃f , σ̃

2
µ̃f

)

In this context, external estimation of parameters governing the distribution of random effects

from a selected sample of firms who use these fuels leads to biased estimates of µ̃g, µ̃c, σ̃
2
µg , σ̃

2
µc . This

is because different firms face different distributions of expected fuel-specific productivity on the

basis of their comparative advantage, which affects their decisions of which fuel sets to choose for

next period. Indeed, firms with larger comparative advantage to use coal are more likely to use

coal, and likewise for gas. Thus, I expect to get upward biases in both the mean of coal and gas.

Discretization methods such as Rouwenhorst (1995) allow me to initialize the finite mixture

from the continuous distribution of observed productivity from selected firms. For now, the true

probability weights πfk over the support of the finite mixture are unknown due to selection, but

Arcidiacono and Jones (2003, 2011) provide a method to recover the unselected distribution by

sequentially iterating over the fixed costs to maximize the likelihood and updating the probability

weights π0
kf , π

1
fk, π

2
fk, ... using an EM algorithm. For now I assume the support of the finite mixture

is know. In later versions, I will also allow the support points to vary.

Using the law of total probability, I can write the full information (log) likelihood by integrating

the log of choice probabilities over this distribution (assuming there is only one finite mixture over

both coal and gas for notational convenience):

lnL(F , s | θ1, θ2) =

n∑
i=1

ln

[∑
k

πfk

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µfi = µfk; θ1, θ2)

]]
+

n∑
i=1

T∑
t=1

ln f(sit | sit−1; θ2)
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Figure 8: Example of how updating the probability weights can shift the distribution

I assume that the state transitions are independent of the random effects. This is possible if the

parameter estimates θ̂2 are unbiased from selected data, and if I slightly redefine the state space.

In Appendix C.2, I show Monte-Carlo simulation results that are consistent with this assumption.

Then, following Baye’s law, one can show that the solution to this maximum likelihood problem is the

same as the solution to a sequential EM algorithm that uses the posterior conditional probabilities

that firm i is of type k given all observable, including choices made:

θ̂1 = arg max
θ1,θ2,π

n∑
i=1

ln

[∑
k

πfk

[
T∏
t=1

Pr(Fit+1 | Fitsit, µfi = µfk; θ1, θ2)

]]

≡ arg max
θ1

N∑
i=1

T∑
t=1

∑
k

ρ(µfk | Fi, si; θ̂1, θ̂2, π̂) lnPr(Fit+1 | Fit, sit, µfi = µfk; θ1, θ̂2)

Where Fi is all the choices that we observe firm i making. Using Baye’s rule, the conditional

probability of that firm i is of type k is given by the current guess of the unconditional probability

πfk weighted by the probability that the firm makes the observed sequence of fuel set choices

conditional being type k:
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ρ(µfk | Fi, si; θ1, θ2, π) =

πfk

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µfi = µfk; θ1, θ2)

]I(Fit=F)
]]

∑
k πfk

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µfi = µfk; θ1, θ2)

]I(Fit=F)
]] (17)

The Procedure to estimate the fixed costs parameters θ1 and the unselected, unconditional distribu-

tion of fuel-specific random effects goes as follows. I experimented with both the Arcidiacono and

Jones (2003) version that relies on a nested fixed point algorithm to update the value function and

the Arcidiacono and Jones (2011) that uses the conditional choice probabilities (CCP) and forward

simulations to update the value function. Going forward, I will be using the nested fixed point

version with a large grid for the state space, unless specified otherwise:

1. Initialize fixed cost parameters θ1
1 and guess some initial probabilities {π1

f1, π
1
f2, ..., π

1
fK}. I

will use the distribution of selected random effects to initialize.

2. Do VFI/Foward Simulation to update the expected value function W conditional on these

guesses, where different realizations of the random effects µfk are just another state variable

that is fixed over time.

3. Get posterior conditional probabilities that firm i is of type k according to (equation 17):

ρ1(µfk | Fi, si; θ1
1, θ̂2, π

1)

4. Update the unconditional probabilities as follows:

π2
fk =

∑n
i=1 ρ

1(µfk | Fi, si; θ1
1, θ̂2, π

1)

n

5. Find fixed cost parameters θ2
1 that maximize the (log)-likelihood conditional on current guess

of unconditional and conditional probabilities π1
fk, ρ

1(µfk | .)

6. Repeat 2-5 until convergence

7 Preliminary Estimation Results - Steel manufacturing (in progress)

First, I find that fixed costs are consistent with ballpark estimates of capital typically required to

use various fuels in steel manufacturing. For example, an electric arc furnace that uses natural gas

typically costs from several hundred thousands to several million US dollars depending on the scale
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of a plant’s operations. I find that the average fixed cost of adding natural gas is equal to $ 615,595

USD. I also find that the fixed cost to add coal is 30% cheaper than natural gas, consistent with

coal-based methods being older and more archaic. Lastly, I find that salvage values are much lower

than fixed costs, but 93% larger for natural gas relative to coal. Indeed, many plants who drop

coal salvage older and cheaper equipment than firms who drop gas. These results are qualitatively

consistent with depreciating capital over time.

Fixed Costs (Thousand $USD) Salvage Values (Thousand $USD)

Natural Gas 615.9 208.2
Coal 474.6 107.6

N 2,385 2,385

Table 10: Estimates of fixed costs and salvage values

Regarding the distribution of unselected comparative advantage for natural gas and coal, I find

a significant upward bias in the mean of both distributions. Moreover, I find that coal is much more

selected than gas.

Natural Gas Coal

Mean Variance N Mean Variance N

All sample 0.064 2.94 2,385 -0.38 1.81 2,385
Selected sample 0.1 2.91 508 0.16 2.73 763

Table 11: Distribution of unobserved heterogeneity (comparative advantages) for natural gas and
coal, selected vs. unselected sample

Overall, the estimates of switching costs and the distribution of comparative advantage allow

the model to predict quite well the unconditional empirical distribution of fuel set choices and

the observed transition patterns between fuel sets. In all figures below, the blue bars (Data) are

constructed as follows:

NF ′(data) =
∑
i

∑
t

I(Fit+1 = F ′)

NF ′|F (data) =
∑
i

∑
t

I(Fit+1 = F ′ | Fit = F)

The orange bars (model) are constructed by adding the predicted probability that each firm uses

each fuel sets, integrated over the conditional distribution of comparative advantages:
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NF ′(model) =
∑
i

∑
t

∑
k

ρ(µfk | Fi, si; θ̂1, θ̂2, π̂)Pr(F ′ | Fit, sit, µfi = µfk; θ̂1, θ̂2)

NF ′|F (model) =
∑
i

∑
t

∑
k

ρ(µfk | Fi, si; θ̂1, θ̂2, π̂)︸ ︷︷ ︸
Conditional probability of comparative advantage

Pr(F ′ | F , sit, µfi = µfk; θ̂1, θ̂2)︸ ︷︷ ︸
Conditional choice probability

Graphs using conditional probability of comparative advantage

Figure 9: Unconditional distribution of fuel sets, model vs. data

Figure 10: Conditional distribution of fuel sets (transition), model vs. data
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8 Optimal Fossil Fuels Taxes (in progress)

Externality Damages

Externality comes from the release of pollutants in the air by the combustion of fuels. All

pollutants are converted into carbon dioxide equivalent (CO2e) using standard scientific calculations

from the US EPA. Then, each unit of potential energy of fuel f contributes to contemporaneous

greenhouse gas emissions as follows: 1 mmBtu of ef releases γf short tons of CO2e. γf are fuel-

specific emission intensity, and are calculated using the global warming potentital (GWP) method

detailed in Appendix A.3. For example, 1 mmBtu of coal releases roughly twice as much carbon

dioxide equivalent in the air as 1 mmBtu of natural gas γc
γg
≈ 2. Fuel-specific emission intensity

γf are then multiplied by the social cost of carbon (SCC) to get a monetized value of externality

damages: γ̃f = SCC ∗γf . Following Fowlie et al. (2016), I use the most recent estimates of the SCC

from the IPCC which is $53 USD per short ton of CO2e, assuming a social discount factor of 3%.9

Marginal externality damages are economically significant, For example, the marginal externality

damage for coal is almost twice as high as the average price of coal. Below I compare the average

price of all fuels if a planner were to impose a pigouvian carbon tax where the tax rate on each fuel

is equal to marginal externality damages τf = γ̃f ∀f ∈ {o, g, c, e}.

Figure 11: Average Fuel prices with and without carbon tax - Steel Manufacturing

Since I assume there is a representative consumer with quasi-linear utility, when expressed in

dollars using the social cost of carbon, externality damages effectively act as reduction in aggregate

income. This is one of the two standard approach in the literature to evaluate externality taxes.10

9While 3% is standard in the literature, I also experiment with different values of the social discount factor which
yield different SCC. The more society discounts the future, the lower the SCC will be.

10The other approach is to use integrated assessment models (IAM), in which the social cost of carbon is endoge-
nously determined by the interaction of economic activity and the atmospheric concentration of CO2. These are
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Per-period welfare is composed of four terms (Fowlie et al., 2016):

wt(τ) = νt(τ)︸ ︷︷ ︸
consumer surplus

+
∑
i

πit(τ)︸ ︷︷ ︸
Producers surplus

+
∑
f

∑
i

τfefit︸ ︷︷ ︸
Gov. revenues

−
∑
f

∑
i

γ̃fefit︸ ︷︷ ︸
Externality damages

(18)

Where τf are fuel-specific tax rates, γ̃f are marginal externality damages, νt(τ) is the indirect

utility of the representative consumer, and
∑

i πit(τ) is the sum of firm profits including switching

costs. As in Fowlie et al. (2016), I assume that the social cost of carbon (SCC) is constant and the

government imposes a permanent tax to maximize the net present value (NPV) of expected period

welfare functions over an infinite horizon:

max
{τf}f∈F

∞∑
t=0

βt E0(wt(τ))

To evaluate the social welfare, I follow Fowlie et al. (2016) by simulating firms’ path of fuel set

choices and production decisions over an horizon of 30 years, which I average over S simulations.

Standard Pigouvian taxation dictates that a carbon tax can be implemented with taxes on different

fuels, where relative tax rate reflects the relative emission intensities of different fuels τf = γ̃f . This

is also how carbon taxes are implemented in practice.

8.1 Benchmark with literature

To evaluate how the introduction of fuel-augmenting productivity and costly switching contrasts

with previous findings in the literature, I use a benchmark version of my model in which all firms

have access to different fuel sets to produce energy, but cannot switch between sets and do not

differ in fuel productivity. In that context, a firm with fuel set F produces energy according to the

following CES production function:

E(F) =

(∑
f∈F

βfe
λ−1
λ

f

) λ
λ−1

dynamic general equilibrium models of the aggregate economy and are not used to study the behavior of individual
agents.
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In Appendix B.2 I show that these fuel-set specific energy production functions can be aggre-

gate into a single aggregate CES production function for energy, where ψf are endogenous loading

of each fuels. They are a function of both the average productivity of each fuel βf and the share of

firms who use each fuels.

Ẽ =

( ∑
f∈{o,g,c,e}

ψ
1
λ
f e

λ−1
λ

f

) λ
λ−1

This production function allow me to compare results with Golosov et al. 2014 who study

optimal fossil fuel taxes in a general equilibrium IAM model with an aggregate CES production

function for energy. Below I compare the full model with the restricted models to study the effect

of a carbon tax on the different components of welfare. First, allowing firms to switch leads to a

decrease in fuel sets that include coal when faced with a carbon tax because the tax on coal almost

doubles its price. In particular, the probability of choosing a fuel set that contains coal goes from

0.37 to 0.31, a decrease of 6 percentage points. There is also some movements to and off natural

gas, but the net effect is a decrease of in the probability of using a fuel set that contains natural

gas by 2.7 percentage points.

Figure 12: Predicted probability of using different fuel sets when facing a carbon tax - Steel manu-
facturing

Notes: To compute these predicted probabilities, I averaged across all fuel choices made by firms in the forward
simulation. To compute the predicted probability in the no switching model, I used the predicted probabilities under
no carbon tax which closely corresponds to the data, and did the simulation under the carbon tax by imposing a no
switching rule.
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In particular, I find that disallowing firms to switch significantly underestimate the reduction

in externality damages from a carbon tax by 122% and overestimates the reduction in operating

profits by 8.8 %. This is because fuel switching adds an additional margin of substitution that

firms can exploit to hedge against the tax. Since firms internalize externality damages when facing

a carbon tax, this additional margin of substitution improves both the private benefits (operating

profits) and the social costs (externality damages), which improves overall welfare. When I turn off

fuel productivity in the model, I significantly underestimate efficiency gains from fuel combustion,

which reduces fuel demand across the board. This leads to a reduction in both operating profits

due to larger marginal costs of realized energy and an a decrease in externality damages.

Effect of a Carbon tax on Welfare Components

Full Model
(1)

No switching
(2)

No fuel prod
(3)

% difference
(1) vs. (2)

% difference
(1) vs. (3)

Operating profits (excl. switching costs)
(billion rupees)

21.4 19.6 10.6 8.8 67.5

Externality Damages (billion rupees)

Coal 51.15 217.9 0.15 123 199
Gas 0.1 0.9 0.01 160 160
Oil 1.14 1.94 0.3 52 116
Electricity 1.05 2.65 0.31 86 108
Total 53.4 223.4 0.5 122.8 196

Table 12: Effect of a carbon tax - Full Model vs. No switching vs. No fuel productivity - Steel
Manufacturing

Notes: Given a $53 USD social cost of carbon, the carbon tax is 211 rupee/mmBtu for gas, 411 rupee/mmBtu for
coal, 323 rupee/mmBtu for oil and 300 rupee/mmBtu for electricity.

8.2 Policy Evaluation

The vast majority of externality damages come from the combustion of coal, even under a carbon

tax. See Table 12. Firms who use coal use very large quantities and pollute twice as much as natural

gas. While a pigouvian carbon tax maximizes social welfare, this type of first-best argument has

been recently questioned by Kotchen (2022). Indeed, a key element to the pigouvian argument rests

on the tax being revenue-neutral. Since tax revenues are returned to the representative consumer

as aggregate income, it exactly cancel the loss of aggregate income from externality damages when

τf = γ̃f . However, in a developing economy like India, government intervention may not be friction-

less, and the revenue-neutral argument of the carbon tax may fall. For this reason, Kotchen (2022)

proposes to evaluate the effectiveness of a policy by looking at the ration of welfare to tax revenues.

The idea is to find a policy that achieves most of its welfare gains by reducing externality damages.

In this context, a policy whose primary aim is to reduce coal consumption may fair better than a

carbon tax.
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I choose to investigate the effectiveness of two policies in addition to a carbon tax. See Table 14.

The first one is a large tax on coal where the tax rate is equal to the sum of marginal externality

damages for all fuels τc =
∑

f∈{o,g,c,e} γ̃f ,

Coal Gas Oil Electricity

Carbon Tax 211 411 323 300
Coal Tax 0 1245 0 0
Coal Tax and Gas Subsidy -211 1245 0 0

Table 14: Different tax proposals (rupees/mmBtu)

Figure 14: Probability of each fuel set choice
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No tax Carbon Tax Coal Tax

Externality damage
(ED)

Gas 394 0.1 0.05
Coal 437,049 51 0.42
Oil 483 1.14 16
Elec 394 1.05 0.88
Total 438,320 53.4 17.35

Producer surplus
(PS)

Operating profit 29,015 21.4 11.3
Net switching costs -6,296 -7,237.6 -7,236.7
Total 35,311 7,259 7,248

Tax revenue
(TR)

0 53.4 17.67

Consumer surplus
(CS)

42.4 32.8 32.7

Welfare
(CS+PS+TR-ED)

-403,352 7,291 7,264.8

Table 15: Welfare Analysis with Different Tax Regimes - Full Model

Notes: All units in the table (except consumer surplus) are in billion rupees. The negative net switching cost implies
that firms get paid for switching. This may be because firms drop fuels more often than they add new fuels, but
requisite a more careful investigation.

No tax Carbon Tax Coal Tax

Externality damage
(ED)

Gas 0.025 0.01 0.024
Coal 4.34 0.15 0.026
Oil 0.09 0.032 0.08
Elec 0.44 0.31 0.43
Total 4.89 0.5 0.57

Producer surplus
(PS)

Operating profit 7.8 7.68 7.64
Net switching costs -7,171.7 -7,171.8 -7,171.8
Total 7,179 7,179 7,179

Tax revenue
(TR)

0 0.5 0.08

Consumer surplus
(CS)

30.9 30.3 30.5

Welfare
(CS+PS+TR-ED)

7,205.6 7209.9 7,209.5

Table 17: Welfare Analysis with Different Tax Regimes - No Fuel Productivity (ψf = 1 ∀f)

Notes: All units in the table (except consumer surplus) are in billion rupees. The negative net switching cost implies
that firms get paid for switching. This may be because firms drop fuels more often than they add new fuels, but
requisite a more careful investigation.
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A Data

A.1 Details on sampling rules

A.2 Fuel Productivity and Distinction Between Potential and Realized Energy

Energy inputs are measured in different units. For example, coal is typically measured in weight

whereas natural gas is typically measured in volume. As a result, scientific calculations converts

baseline fuel quantities into equivalent heating potential (million British thermal units, mmBtu).

In this paper, I call this potential energy. This is because it captures what energy may be extracted

from combustion of a particular fuel.

However, what firms get in terms of energy service from the combustion process, which I call

realized energy, depends on a variety of factors, such as the technology used for combustion and

firms’ knowledge on wasting energy. In essence, realized energy is what firms get after combining

fuels with some technology. As such, there is a conceptual gap between potential and realized

energy, which underlies productivity differences. These differences come in many forms, and I

highlight three examples:

1. Across fuel types: In the transformation of liquid iron into liquid steel, electric-arc furnaces

which use a combination of electricity, natural gas and recycled materials, are more productive

than coal furnaces at using heating potentials of the underlying fuels (Worrell, Blinde,

Neelis, Blomen and Masanet 2010).

2. Within fuel types: In coal manufacturing, Coal used in rotary kilns is more productive

than in vertical shaft kilns for the production of clinker as part of cement manufacturing

(Christina Galitsky and Lynn Price,2007).

3. Wasted resources: Energy retrofit programs underlie large heterogeneity differences on how

efficiently agents in the economy use the heating potential of fuels (Christensen, Francisco

and Myers 2022). Examples include keeping lights opened unnecessarily or forgetting to

turn off machinery.

A.3 Fuel Prices and Transportation Costs

Identification of firms’ responses to changes in fuel prices rests on two important sources of price

variation. First, it relies on persistent shocks that are largely driven by worldwide variation in

supply and demand related to macroeconomic conditions and geopolitical events such as wars,

trade agreements, and sanctions. Figure Y shows the evolution in the median fuel prices paid
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Figure 15: Yearly Median Fuel Prices (INR/mmBtu)

by ASI plants. Notably, the oil shock of 2014 led to a 50% decrease in the price of oil and a 30%

decrease in the price of natural gas. At the same time, the price of coal is much more stable. This

is largely because there are less geopolitical events surrounding coal due to the general phase-out of

coal in developed countries (source). This will play an important role in the government’s provision

of insurance against price shocks through taxation.

Second, identification relies on spatial variation in fuel prices, which I argue is related to trans-

portation costs. As an example, natural gas is expensive to transport because it needs to be carried

in high pressure pipelines. The Petroleum and Natural Gas Regulatory Board of India (PNGRB)

sets transportation prices according to a 4 zone schedule in a vicinity of 10 km on both sides of the

pipeline: 1 being the closest to the source and 4 being farthest from the source of the pipeline11.

By 2016, there was 13 gas pipeline networks, each with their own 1-4 zone tariffs (depending on

the length of the pipeline). However, different pipelines have different baseline transportation costs,

such that it is possible for a plant in the zone 4 of a pipeline to pay less than a plant in the zone 1

of another pipeline. For example, transportation costs the zone 4 of the integrated Hazira-Vijaipur-

Jagdishpur pipeline costs 49 INR/mmBtu, whereas transportation costs in the zone 1 of the East

West Gas Pipeline (PNGRB) is 65.5 INR/mmBtu. If the plant is not in a vicinity of a pipeline, it

can carry liquefied natural gas (LNG), but it needs to re-gasify it which is costly. Below is a schema

describing how the natural gas pipeline tariffs work:

Overall, the transportation cost structure of natural gas should lead to large dispersion in the

price of natural gas that plants pay. On the contrary, coal is much simpler to transport because it

11The Indian government is considering changing its pricing structure, and it would be an interesting counterfactual
to consider
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is a solid and because it is mostly extracted domestically12. As such, 17% of all coal is transported

directly from the mine to plants through conveyor belts, 33% is transported by road, and 50%

is transported by train. These cheaper and simpler transportation methods should lead to lower

dispersion in the price of coal. If fuel prices in the ASI reflect differences in transportation costs,

then the price distribution should reflect this difference in dispersion. This is indeed what I find, as

figure Y suggests a much larger dispersion in the price of gas relative to that of coal.

Moreover, I find that accounting for pipeline fixed effects, there is a positive and significant jump

in the price of natural gas from being in zone 2-4 relative to zone 1. However, the effect for zone

4 does not seem robust. Zones and pipeline data were constructed by mapping the entire natural

gas pipeline network to the districts in which they pass, directly or indirectly. Thus these results

are subject to measurement error.

Lastly, I argue that spatial fuel price variation captures some exogenous variation from the

12Khanna 2021 shows that Coal India Limited (CIL) is the largest coal mining company in the world
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Table 19: Relationship between (log) natural gas prices and proximity to pipelines

(1) (2) (3)
(log) Pnatgas (log) Pnatgas (log) Pnatgas

Zone 2 0.278∗∗∗ (0.044) 0.235∗∗∗ (0.045) 0.219∗∗∗ (0.045)
Zone 3 0.214∗∗∗ (0.046) 0.176∗∗∗ (0.047) 0.163∗∗∗ (0.047)
Zone 4 0.119∗∗∗ (0.033) 0.052 (0.036) 0.038 (0.035)
year dummies Yes Yes Yes
Pipeline dummies Yes Yes Yes
Industry dummies Yes Yes
Additional controls Yes

Observations 11,780 11,780 11,780

Standard errors in parentheses

Baseline zone is 1 (closest to source of pipeline).

Additional controls: number of workers and quantity of gas purchased.
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

firms’ perspective because plants location decisions are somewhat constrained by the language

locals speak. Indeed, there are 22 official regional languages in India, which are broadly related to

one of 28 States. For examples, Bengali is the main language in West Bengal, Gujarati is the main

language in Gujarat, Punjabi is the main language in Punjab, and so on. For this reason, I will use

States as the main driver of spatial price variation in the model.

A.4 Emissions Data

A.4.1 Calculation of Emissions

Excluding Electricity

To get establishment-level measures of greenhouse gas emissions, I convert units of potential

energy (mmBtu) of each fuel into metric tons of carbon dioxide equivalent, as a result of combustion.

Each mmBtu of fuel releases some quantity of carbon dioxide CO2, methane CH4, and nitrous oxide

N2O in the air, which may vary by industry based on standard practices and technology. Emissions

of chemical k for a plant in industry j can be calculated as follows:

emissionsjk =
∑
f

∑
k

ζfkj ∗ ef

∀ k = {CO2, CH4, N2O} ∀ f = {Natural Gas, Coal, Oil}
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The fuel-by-industry emission factors of each chemical ζfkj are found in the database provided

by GHG Platform India, and come from two main sources: India’s Second Biennial Update Re-

port (BUR) to United Nations Framework Convention on Climate Change (UNFCCC) and IPCC

Guidelines. Quantities in mmBtu of each fuel ef are observed for each establishment in each year.

Then, quantities of each chemical is converted into carbon dioxide equivalent CO2e using the Global

Warming Potential (GWP) method as follows:

CO2e = GWPco2︸ ︷︷ ︸
=1

∗CO2 +GWPch4 ∗ CH4 +GWPn2o ∗N2O

From the calculations above, I can define fuel-specific emission factors which will be used to

directly convert fuels to CO2e (or GHG):

γfj = GWPco2 ∗ ζf,co2,j +GWPch4 ∗ ζf,ch4,j +GWPn2o ∗ ζf,n2o,j

Total greenhouse gas emissions in units of CO2e for plant i in industry j and year t is defined as

follows:

GHGijt =
∑

f∈{natgas,coal,oil}

γfj ∗ efijt

Including Electricity

Calculations of emissions from electricity is done slightly differently than from fossil fuels because

emissions comes from production rather than end usage of electricity. Figure 1 shows that coal is

used to consistently generate above 60% of total electricity in India, which increased in 2010 and

started to decrease after 2012.

To construct measures of emissions from electricity, I will take the distribution of emissions from

different fuels used to produce electricity, averaged across years for the entire grid. Let ωef ∈ [0, 1]

∀f ∈ {Coal,Gas} be the share of fuel f used to generate electricity, then
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Source: International Energy Agency (IEA)

γe =
∑

f∈{coal,gas}

ωef ∗ γef

Where γef is calculated exactly as in 2.2.1 for the electricity generation industry. Including

electricity, total GHG emissions for plant i in industry j and year t is defined as:

GHGijt = γe ∗ eeijt +
∑

f∈{natgas,coal,oil}

γfj ∗ efijt

Below are the tables detailing emissions factors. Note that for oil, I take hte average over all

pretoleum fuels. The dispersion between oil types is much lower than the dispersion between the

average of oil and coal/gas.

A.5 Evidence on Switching and Mixing

Indian Plants

U.S. plants

Here I show some of the evidence presented in the main text from manufacturing plants located

in the U.S. The data is from the Greenhouse Gas Reporting Program (GHGRP), which reports fuel

consumption (oil, gas, coal) from large manufacturing plants in selected industries. Below I show

evidence from the Pulp & Paper industry between 2010 and 2018.
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Emission factors (kg CO2e/mmBtu)

Fuel Industry CO2 CH4 N2O Total (γfj)

Coal

Cement 100.90 0.03 0.42 101.34
Non-ferrous metals 101.67 0.03 0.42 102.11
Pulp and paper 101.59 0.03 0.42 102.04
Electricity generation 102.09 0.03 0.42 102.54
Other 98.84 0.03 0.42 99.29

Oil All 77.34 0.09 0.17 77.59
Natural Gas All 50.64 0.03 0.03 50.70

Table 20: Emission factors from fuels to carbon dioxide equivalent ζfkj ∗GWPk (kg CO2e/mmBtu).
Source: GHG Platform India

Share of Electricity Generated by Source
Natural Gas Coal Hydro Other Emission factor (kg CO2e/mmBtu)

0.052 0.68 0.046 0.23 72.05

Table 21: Emission factors from Electricity
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Figure 19: Number of Times Unique Plants add or drop a Fuel (ASI)

Table 22: Different Fuel Sets

Frequency %

Natural Gas 602 50.76
Oil 36 3.04
Natural Gas, Coal 72 6.07
Natural Gas, Oil 332 27.99
Coal, Oil 9 0.76
Natural Gas, Coal, Oil 135 11.38

Total 1186 100.00

Table 23: Percentage of unique plants that
add and drop a fuel

Adds New Fuel (%) Drops Existing Fuel (%)

No 77.13 76.68
Yes 22.87 23.32
Total 100.0 100.0

Pulp and Paper Manufacturing (U.S. GHGRP)
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A.5.1 Fuel Expenditure Shares - ASI
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B Model

B.1 Aggregation with Monopolistic Competition

Each period, plants in a given industry produce differentiated goods and engage in monopolistic

competition. In each industry, there is a representative consumer with quasi-linear CES utility

function that aggregates all differentiated goods:

U(Yit, Y0t) = max
Y0t,{Yit}

Y0t +
1

ζ

(∫
i
Y

ρ−1
ρ

it di
) ζρ
ρ−1

(19)

s.t.

Y0t +

∫
i
PitYitdi = It = Πt (20)

Where ρ is the demand elasticity, ζ is the elasticity between firms’ output and the outside good,

and I is the consumer’s income. This quasi-linear specification has been used by Bagwell and Lee

(2018) and Helpman and Itskhoki (2010), and will be useful to study optimal tax policies later.

From (11) and (12), plant i faces the following inverse demand:

Pit(Yit; ρ, ζ) = P
ρ(1−ζ)−1

1−ζ
t Y

− 1
ρ

it (21)

Pt =
( ∫

i P
1−ρ
it di

) 1
1−ρ

is the industry-level price index and pit is firm’s i output price at time t.

B.2 Aggregation of production function without switching

In this section, I show that when firms do not have fuel-augmenting productivity and cannot switch

between fuel sets, the economy can be aggregated into a single CES production function similar to

the one of Golosov et al. 2014 who study optimal externality taxes on fossil fuels in an aggregate

economy. This allows me to benchmark results from my model with the existing literature. For

reference, Golosov et al. 2014 postulate the existence of an aggregate production Cobb-Douglas

production function which nests an aggregate CES production function for energy. The aggregate
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CES production function for energy takes the following form, where f indexes fuels

E =

( ∑
f∈{o,g,c,e}

βfe
λ−1
λ

f

) λ
λ−1

∑
f

βf = 1

(22)

In my paper, there are multiple firms with a different fuel sets F available to them. To be

consistent with Golosov et al. 2014 and get aggregation results, I assume that all firms are

identical but differ in the fuel set available to them F ⊂ F =
(
{o, e}, {o, g, e}, {o, c, e}, {o, g, c, e}

)
.

Then, firms in each fuel set have the following production function:

EF =

(∑
f∈F

βfe
λ−1
λ

f

) λ
λ−1

(23)

From equation (23) and cost-minimization, I can solve for the quantity of each fuel demanded

ef (F) given fuel prices and fuel sets as

ef (F) = E

(
βf
pf

)λ
PE(F)λ

For pre-determined quantity of energy E, where PE(F) is the energy price index of firms using

fuel set F .

PE(F) =
(∑
f∈F

βλf p
1−λ
f

) 1
1−λ

Let soe, soge, soce, sogce be the share of firms that use each fuel sets such that soe + soge + soce +

sogce = 1. I can then use these share of firms in each fuel set to define the total quantity of each

fuel demanded by summing over all fuel set that use fuel f.
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ef =
∑
F

I(f ∈ F)sFef (F)

= E

(
βf
pf

)λ(∑
F

I(f ∈ F)sFPE(F)

) (24)

I postulate that there exist an aggregate CES energy production function Ẽ such that the total

quantity demanded of each fuel is equal to (24).

Proposition 4. There exist an aggregate energy production function in all fuels Ẽ with aggregate

productivity Ψ such that cost-minimizing input quantities ẽf are the same as cost-minimizing input

quantities in equation (24).

Proof. I show this proposition by constructing the following production function:

Ẽ =

( ∑
f∈{o,g,c,e}

ψ
1
λ
f e

λ−1
λ

f

) λ
λ−1

(25)

Where ψf is the endogenous loading of each fuel into the production function. As I show below,

it takes into account both the share of each fuel in the original production function βf as well as

the share of firms who are using each fuels. The cost-minimizing quantity of each fuel from the

production function in (25) for a given quantity of energy E is

ẽf = sfE

(
PẼ
pf

)λ
(26)

Where PẼ is the price index of energy:

PẼ =

( ∑
f∈{o,g,c,e}

ψfβ
λ
f p

1−λ
f

) 1
1−λ

Then, the loadings on each fuels are implicitely defined by
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ψf =
βλf
∑
F I(f ∈ F)sFPE(F)

P λ
Ẽ

Then, ẽf from (26) is equal to ef from (24).

C Identification

C.1 Equivalence (non-Identification) of Monopolistic Competition and Variable

Returns to Scale

Constant Returns to Scale and Monopolistic Competition

Production function:

Yit

Y
= eωit

(
αk

(Kit

K

)σ−1
σ

+ αl

(Lit
L

)σ−1
σ

+ αm

(Mit

M

)σ−1
σ

+ αe

(Eit
E

)σ−1
σ

) σ
σ−1

(27)

= eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) σ
σ−1

(28)

Where I define Xit
X

= X̃it

Demand:

P (Yit) = Pt

( Yt
Yit

) 1
ρ

(29)

Revenues:

Rit = P (Yit)Yite
uit

= PtY
1
ρ

t Y
ρ−1
ρ

it euit

64



Assumption 1-. Lit,Mit, Eit are flexible inputs

Assumption 2-.. I observe the quantity for Lit and Kit but only spending for materials and energy:

SLit , SEit

Profit-maximization:

max
Lit,Mit,Eit

{
PtY

1
ρ

t Y
ρ−1
ρ

it − pmitMit − peitEit − plitLit
}

s.t.Yit = Y eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) σ
σ−1

First-order conditions:

Mit/Lit:

Mit

M
=
( αl
αm

SMit

SLit

) σ
σ−1 Lit

L
(30)

Eit/Lit:

Eit

E
=
(αl
αe

SEit
SLit

) σ
σ−1 Lit

L
(31)

Lit:

ρ− 1

ρ
PtY

1
ρ

t Y
− 1
ρ

it eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) 1
σ−1

αlL̃
σ−1
σ

it = SLit

Solve for TFP:

e
ωit

ρ−1
ρ =

1

Y
ρ−1
ρ

ρ

ρ− 1

SLit

αLL̃
σ−1
σ

it

1

PtY
1
ρ

t

(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) σ−ρ
ρ(σ−1)

(32)
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Plug (6) into revenue equation:

Rit = PtY
1
ρ

t e
ωit

ρ−1
ρ

(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) ρ−1
ρ

σ
σ−1

euit

=
ρ

ρ− 1

SLit

αLL̃
σ−1
σ

it

(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

)
euit

Plug ratio of FOCs (4) and (5) into the previous equation:

Rit =
ρ

ρ− 1
SLit

(
αk
αL

(K̃it

Lit

)σ−1
σ

+ 1 +
SMit

SLit
+
SEit
SLit

)
euit

=
ρ

ρ− 1

(
SLit

(
1 +

αk
αL

(K̃it

L̃it

)σ−1
σ
)

+ SMit + SEit

)
euit

Estimating Equation:

lnRit = ln
ρ

ρ− 1
+ ln

(
SLit

(
1 +

αk
αL

(K̃it

L̃it

)σ−1
σ
)

+ SMit + SEit

)
+ uit (33)

Comparing this equation with the main estimating equation in the text (X) shows that defining

the returns to scale as η = ρ−1
ρ yields the exact same estimating equation in both economy.

Adding Variable Returns to Scale

Production Function:

Yit = Y eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) ησ
σ−1

(34)

Equation (6) for productivity revised :

e
ωit

ρ−1
ρ =

1

η

ρ

ρ− 1

SLit

αLL̃
σ−1
σ

it

1

PtY
1
ρ

t

(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) ρ(σ−1)−ησ(ρ−1)
ρ(σ−1)

(35)
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Estimating Equation (7) revised:

lnRit = ln
ρ

ρ− 1
+ ln

1

η
+ ln

(
SLit

(
1 +

αk
αL

(K̃it

L̃it

)σ−1
σ
)

+ SMit + SEit

)
+ uit (36)

Hence, the markup ρ is not separately identified from the returns to scale ν.

C.2 Monte-carlo simulations to recover the distribution of comparative advan-

tages over selected fuels

I create a sample of firms with all state variables present in the main model. External estimation

of parameters governing the distribution of random effect from the sample of firms who use gas

and/coal leads to upward biased estimates. Indeed, firms with larger comparative advantage to

use coal are more likely to use coal, and likewise for gas. Monte-Carlo simulations confirms this

intuition:

Natural Gas

µpg σ2
ψg

σ2
pg σψgpg µg σ2

µg

Unselected Sample (N = 3, 000) -0.0004 (0.003) 0.03 0.03 -0.0122 0.28 0.48
Selected Sample (N = 694) 0.005 (0.006) 0.03 0.028 -0.0128 0.41 0.48
True value 0 0.03 0.03 -0.0120 0.3 0.5

Table 24: Selected and unselected state transition parameters for price and productivity of natural
gas (Monte-carlo data, standard errors in parenthesis)

Coal

µpc σ2
ψc

σ2
pc σψcpc µc σ2

µc

Unselected Sample (N = 3, 000) 0.003 (0.002) 0.21 0.01 -0.018 0.19 0.39
Selected Sample (N = 936) 0.002 (0.003) 0.21 0.01 -0.019 0.25 0.39
True value 0 0.2 0.01 -0.0179 0.2 0.4

Table 25: Selected and unselected state transition parameters for price and productivity of natural
gas (Monte-carlo data, standard errors in parenthesis)

In this Monte-Carlo simulation, there isn’t much selection going on for coal because gas has a

higher average productivity so firms are mostly selecting on the basis of gas, and almost all firms

either use oil and electricity or oil,electricity, gas and coal.
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C.3 Alternative Energy Production Models

In this section, I show how the model and identification can be adapted to different energy pro-

duction function models, including a task-based model and a non-parametric model. I worked out

identification and estimation of the energy task model and I show that the gains from variety argu-

ment also holds in the energy task model, but some additional assumptions are required to identify

the non-parametric model

C.3.1 Energy Task Model

for a given quantity of realized energy, firms allocate fuels to energy tasks that compose a given

unit of E in an inner nests. This task model is very similar to Acemoglu and Restrepo (2021)

which I adapt to study energy substitution. It features the assignment of a mix of energy inputs to

energy tasks which allows for flexible variation in input usage. Specifically, the inner nest features

a continuum of energy tasks in the ω ∈ (0, 1) interval that are perfect complements in producing a

unit of E.

E = inf
{
τ(ω) : ω ∈ [0, 1]

}
(37)

I assume that tasks are perfect complements, where firms have to complete steps that are nec-

essary for production. However, the task production function can be relaxed to more general

functional forms like CES. Each energy task τ(ω) can be performed with physical quantities of fuels

ef that are available in the firm’s fuel set F , where fuels are in principle perfectly substitutable at

performing each task:

τ(ω) =
∑
f∈F

ψf (ω)ef (ω) (38)

Where ψf (ω) are fuel-by-task specific productivity terms. The latter is important distinction

from standard task-based production models and allows for very flexible input usage. To motivate

this framework one should be thinking of tasks such as the steps required to produce crude steel:

preparation of raw material, conversion of iron ore into iron, and conversion of iron into crude steel

(Luh, Budinis, Giarola, Schmidt and Hawkes, 2020). The preparation of raw materials typically
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requires coal whereas the two subsequent steps can be done with different fuels and the ψf (ω) terms

can reflect the different fuel-specific technologies that the plant can use for each step. Moreover,

these steps are complementary and require high amounts of energy.

Going back to the model, the inner nest problem can be solved in two steps:

1. Find the cheapest fuel to perform each task

2. Aggregate across tasks into fuel categories to get fuel demand.

C.4 Task choices:

Minimize the cost of producing one unit of energy E given task prices p(ω)

min
τ(ω)

{∫ 1

0
p(ω)τ(ω)dω

}
s.t. E = inf

{
τ(ω) : ω ∈ [0, 1]

}

Which implies that demand for each task is the same and equals total energy demand. Then,

the cost of producing one unit of realized energy pe is given by aggregating across all tasks and is

equivalent to the price index of tasks:

∫ 1

0
p(ω)τ(ω)dω = E

∫ 1

0
p(ω)dω

= Epe (39)

Assignment of fuels to energy tasks:

Given the set of fuels available to the plant, F , and fuel prices, a plant finds the fuel that

minimize the cost of performing task ω:

C(ω) = min
e1(ω),...,eF (ω)

∑
f

pfef (ω)

s.t.
∑
f

ψf (ω)ef (ω) = τ(ω)
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The linearity of the constraint implied by perfect substitution across fuels is such that the plant

chooses the fuel that has the lowest unit cost to produce the task. Hence, the task price and fuel

choices follow a discrete choice:

p(ω) = min
f∈F

{ pf
ψf (ω)

}
(40)

Aggregation from tasks to fuels

From the problem before, I can define the set of tasks that are performed by each fuel:

Tf =
{
ω :

pf
ψf (ω)

≤ pj
ψj(ω)

∀j 6= f ∈ F
}

(41)

From the optimal assignment of fuels to energy tasks, I also get fuel demand for each task:

ef (ω) =


Eψf (ω)−1 if ω ∈ Tf

0 otherwise

(42)

I can then aggregate fuel demand across all tasks to get fuel demand at the plant-level (conditional

on some level of realized energy E):

ef = E

∫
Tf
ψf (ω)−1dω︸ ︷︷ ︸

Γ−1
f

(43)

Rearranging terms, I can defined realized energy E as the product of physical fuel quantities ef

times a terms that converts fuel quantities into realized energy Γf .

E = efΓf ∀f ∈ F
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The Γf term is an important novelty of this model, and contains information about both the

share of tasks performed by fuel f , and the average productivity of fuel f . One one hand, Γf could

be large if there are many tasks are allocated fuel f which would happen if fuel f is relatively cheap

(price/task channel). On the other hand, Γf could be large if the productivity for each task is high

(productivity channel). An important empirical challenge will be to separate these two channels

to separately identify the share of tasks performed by a fuel from the average productivity of that

fuel.13 I can now rewrite the price index of realized energy as a weighted sum of fuel prices:

pe =
1

E

∫ 1

0
p(ω)τ(ω)dω

=
1

E

∑
f

∫
Tf

pf
ψf (ω)

E

=
∑
f

pfΓf (44)

Both the price of realized energy and the quantity of realized energy are a function of fuel prices

and unobserved fuel efficiency terns, hence are by definition unobserved. However, I observe energy

spending which equals fuel spending:

peE =
∑
f

∫
Tf

pf
ψf (ω)

E

M

=
∑
f

pfef (45)

This identity is very important and will play an important role in identifying the production

function, from which I will identify the weighted share of tasks performed by fuel f, Γf and later on

to identify the underlying distribution of fuel efficiency. This production model in energy inputs is

fairly flexible because it allows for very large variation in relative fuel quantity shares, an important

feature of plant-level fuel consumption.

Proposition 5. Ceteris-Paribus, increasing the number of fuels available F weakly decreases the

13note that both channels interact with each others. Ceterus-paribus, higher task productivity also implies a higher
share of tasks performed by a fuel.
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price of energy pe(F).

| F ′ |>| F |→ pe(F ′) ≤ pe(F)

Proposition 1 highlights the option value that an additional fuel provide. Indeed, when a fuel is

added, firms have more productivity draws to choose from for each tasks. Since fuels are perfect

substitutes within tasks and tasks are perfect complements, this means that the overall productivity

of energy sources will increase, leading to a lower marginal cost of realized energy

Identification

My approach to identifying fuel productivity is novel and exploit the task-based nature of pro-

duction. I show how to simultaneously recover the production function and the normalized quantity

of realized energy Eit
E

. I can use this result to recover the weighted share of tasks performed by

each fuel (also the cost-minimizing quantity of potential energy from fuel f required to produce one

unit of realized energy), up to the normalization of Grieco et al. (2016):

ÊΓfit = efit

( E
Eit

)
(46)

I need to separate the unweighted share of tasks performed by each fuel (Tfit) from the produc-

tivity of each fuels at performing each tasks Ψit. To do so, I rely on two assumptions which allow

me to aggregate fuels across tasks and exploit observed fuel price variation in order to separate

the share of tasks performed by each fuel from the efficiency of each fuel. The first assumption

is standard in the task-based production function literature (Acemoglu and Restrepo, 2021). The

second assumption is standard in the literature on technological choice (Boehm and Oberfield, 2020;

Oberfield, 2018; Kortum, 1997).

Assumption 1-Symmetric tasks. Energy tasks are all equivalent and for a given fuel, plants

draw from the same productivity distribution across tasks.

Under this assumption coupled with a continuum of energy tasks in the ω ∈ [0, 1] interval, the

(unweighted) share of tasks performed by each fuel Tfit can also be interpreted as the probability

that fuel f is is preferable over all other fuels, where the probability is taken over the distribution

of fuel efficiency:
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Tit = Pr
( pfit
ψfit

≤ pjit
ψjit
∀j 6= f ∈ Fit

)
(47)

Then, Γf is the joint distribution of the inverse productivity of a fuel when that fuel is chosen.

By Bayes’s rule, it is also the distribution of inverse fuel productivity conditional on fuel f being

chosen times the probability that fuel f is chosen. Since the fuel f needs to outperform all other fuels

to be chosen, the distribution of observed fuel efficiency is a truncated version of the underlying

true fuel productivity. In this sense, realized fuel efficiency is an endogenous outcome of the choices

that firms make.

Γfit =

∫
Tit
ψfit(ω)−1dω

= Eω
(
ψ−1
fit(ω), ω ∈ Tfit

)
= Eω(ψ−1

fit(ω) | ω ∈ Tfit)︸ ︷︷ ︸
inverse fuel efficiency when f is chosen

× Tfit︸︷︷︸
Probability f is chosen

For a given plant, Γfit integrates out the inverse of productivity for fuel f over the probability

that each draw makes fuel f chosen over all other alternative fuels:

Γf =

∫
ψ−1
f

[∏
j 6=f

∫
I
(
ψf ≥ pf max{ψj/pj}

)
f(ψj)dψj

]
︸ ︷︷ ︸
Pr(efficiency draw for f is chosen over all other fuels)

f(ψf )dψf (48)

However, I am interested in recovering the underlying exogenous distribution of fuel efficiency

which doesn’t vary with fuel prices. Otherwise, I cannot separate fuel price variation (needed for

counterfactual tax experiments) from fuel efficiency. To do so, I make the following assumption:

Assumption 2-Pareto Distribution. I assume that the distribution of fuel productivity/efficiency

across tasks follows a Pareto distribution with plant and year-specific scale and common shape.

ψfit ∼ Pareto(ψfit, θ)
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From now, the scale of the fuel efficiency distribution will be referred as fuel efficiency. Under

assumption 2, Γfit has a closed-form solution. If the plan has access to two fuels, e.g. gas (g) and

coal (c), then

Γg,it =
θ

θ + 1
Ω−θ−1
git ψ

θ
git︸ ︷︷ ︸

Direct task displacement

−
(pcit
pgit

)−θ θ

2θ + 1
Ω−2θ−1
git (ψgitψcit)

θ︸ ︷︷ ︸
Indirect task displacement through fuel c

(49)

Where Ωgit = max
{pgit
pcit

ψcit, ψgict
}

. Note that there is an analogous expression for Γc,it. For

a given shape parameter (θ), this is a system of two equations (Γg,it,Γc,it) and two unknowns

(ψgit, ψcit), which can be solved easily to recover the scale of the exogenous fuel efficiency distribution

that each plant has for each fuel it is using. In the appendix, I show extension of equation (23)

to the case with more than 2 fuels. I also show that in the 2 fuels case, there is a unique solution

(ψgit, ψcit) that solves the system of equation in (23). This means that there for a given set of prices,

there is a unique optimal allocation of fuels to tasks. In the case of more than 2 fuels, Monte-Carlo

simulations also suggest uniqueness.

When there are more than 2 fuels, the number of interaction terms increases exponentially with

the number of fuels. For example, if one adds oil (o) to gas and coal, then there will be two

second-order task displacement terms (the interaction of oil with gas, oil with coal and coal with

gas), and one third-order task displacement term (e.g. the task displacement of tasks performed

by gas induced by the price of oil caused by changes in the price of oil). This proves to be a fairly

general micro-foundation for the production of realized energy under different fuel sets. I only

observe Γfit up to an industry-specific normalization (the geometric mean of realized energy, which

is unobserved), EΓfit. While I can use (22) to recover the scale of fuel efficiency for each plant, I

cannot compare fuel efficiency across plants in different industries.

Lastly, I normalize the shape of the Pareto distribution θ to 1. This is because for different shape

parameters, I can always recover different scale parameters that will exactly solve the system of

equations in (23). Since the weighted share of tasks captures all information about the substitution

of fuels to task, any moment related to fuel consumption/expenditure shares will not recover the

common shape θ separately from the individual-specific scale ψfit. Intuitively, this is because the

same fuel substitution patterns can be achieved with a high Pareto tail (low θ) and low scale

parameters, or with a low Pareto tail (high θ) and large scale parameters.
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C.4.1 Non-parametric

Given a fuel set F , firms produce realized energy according to the following unspecified production

function:

Eit = g(ψ1ite1it, ψ2ite2it, ..., ψfitefit)

= g(Ψiteit)

∀f ∈ F , where ψfit is the productivity of fuel f. Taking input prices {pfit}f∈F and the set of

fuels F as given, fuel quantity choices are static. Given a unit of realized energy Eit, the cost-

minimization problem of the firm is as follows:

min
{efit}f∈Fit ,λ

∑
f∈F

pfitefit + λ
(
Eit − g(Ψiteit)

)
(50)

In this approach, I do not seek to recover the production function g directly. Rather, I seek

to recover a structural equation for the endogenous price of realized energy peit(pit,Ψit), which is

what the task-based model allows me to do in the main text. Indeed, knowing the endogenous price

of realized energy is sufficient to perform all counterfactual. Given standard assumptions on g, the

solution to (34) gives a cost function, which can be mapped to total spending on energy. Then, I

know that the endogenous price of realized energy is the unit cost function:

peitEit = C(Eit,pit,Ψit)

peit = C(1,pit,Ψit)

To identify the unit cost of energy, I exploit firms’ optimality conditions. Using Sheppard’s

Lemma, I can characterize optimal fuel choices as the derivative of the unit cost with respect to

fuel prices:
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efit =
∂C(Eit,pit,Ψit)

∂pfit
∀f ∈ Fit

= Hf (Eit,pit,Ψit)

Which gives me a system of structural equations:

e1it = H1(Eit, p1it, p2it, ..., ψ1it, ψ2it, ..., ψfit)

e2it = H2(Eit, p1it, p2it, ..., ψ1it, ψ2it, ..., ψfit)

...

efit = Hf (Eit, p1it, p2it, ..., ψ1it, ψ2it, ..., ψfit)

Matzkin (???) shows that identification of both the structural equations {Hf}f∈F and unob-

served terms {ψfit}f∈F is possible under certain conditions.14 First, fuels must be ordered such that

there is monotonicity in ψfit and ψ−fit. Second, unobserved productivity terms must be separable

from the observed prices. Unfortunately, this is not usually the case, even in log. For examples,

only the ratio of (log) fuel quantities admits separability with a CES production function. With

the task-based model used in the main text, there is no separability at all. In this context, if may

be difficult to rationalize what kind of production functions this approach admits. Relaxing this

assumption is an interesting question, but it is realistically beyond the scope of this paper. Lastly,

these structural equations must be integrated to recover the unit cost.

14I omit some technical assumptions which are standard in non-parametric identification of systems of structural
equations.
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