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Abstract

Consumers search on a platform to learn how a product fits their
preferences. Consumers’ value for the product has a common and an id-
iosyncratic component. The platform observes which products consumers
inspect and what they eventually buy. Based on these observations on
past consumer choices the platform ranks products. We find that if a
monopoly platform wants to maximize consumer’s utility in the steady
state, it will first experiment with product rankings, so that it can pro-
vide future consumers with rankings that only list products that many
consumers have bought before. This guarantees that consumers are more
picky and only buy products they really like. The more important the
idiosyncratic component, the better the platform is able to assist con-
sumers in their search. Relative to this benchmark, learning is much more
restricted if the platform maximizes revenues from a sponsored position
or if there are competing platforms.
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1 Introduction

Online platforms, like Google, Amazon, Booking.com and Tripadvisor, possess
large amounts of data on what items people have searched for and what they
eventually bought. Platforms potentially can use this information to help fu-
ture consumers economize on their search activities, but there are increasing
concerns that platforms may use this information to their own benefit without
benefiting consumers. Regulators around the world are putting rules in place to
restrict the ways platforms can use this type of information (see, e.g. the EU’s
Digital Market Act (DMA) and the Digital Service Act (DSA)). For example,
the Digital Market Act forbids that gatekeepers “cross-use personal data from
the relevant core platform service in other services provided separately by the
gatekeeper, including other core platform services, and vice versa”,1 and requires
“Gatekeepers should therefore be required to provide access, on fair, reasonable
and non-discriminatory terms, to those ranking, query, click and view data in
relation to free and paid search generated by consumers on online search en-
gines to other undertakings providing such services, so that those third-party
undertakings can optimise their services and contest the relevant core platform
services.”2

What platforms can infer from the information they collect depends on how
they use the information. In particular, if they present consumers always with
the same type of product ranking consumers may make similar choices, re-
stricting the type of inferences platforms make as it is not clear whether the
choices consumers make reflect “true preferences” or mostly reflect the ranking
the platforms themselves chose. By experimenting with different rankings, and
observing the search behaviour and consumer choices given different rankings,
platforms potentially may learn more about consumers’ preferences. How much
platforms learn depends, however, also on how much consumers are willing to
search for alternative items, which depends, among other things, on their search
cost.

In this paper we focus on how the extent of optimal experimentation by plat-
forms depends on their objectives and on the environment they face. Platforms
may care about consumer well-being or about selling prominent slots in their
ranking to firms who may be willing to pay for being ranked first. In terms
of environment, platforms may enjoy quite some monopoly power or they may
face competition by other platforms. We also address the welfare consequences
of different objectives and environments.

We focus on online markets where consumers’ valuations for a product have a
common and an idiosyncratic component. Consumers have to pay an inspection
(or search) cost to learn their value for the product of each firm. They inspect
products sequentially and their behaviour is characterized by an optimal stop-
ping rule. Platforms observe the items the consumer has inspected and which
item the consumer eventually has bought. They choose an algorithm that maps
the observed history into a ranking of items for the next consumer. Consumers

1See, the Digital Market Act, Article 5 2(c) (European Parliament, 2022b).
2See, the Digital Markets Act, paragraph 61 (European Parliament, 2022a).
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can follow the ranking if they like, but are free to search on the platform in any
order they prefer. Consumers enter the market sequentially, but they do not
know their position in the queue: only the platform knows how many previous
consumers there are and how they behaved. Platforms do not observe, however,
the actual value a consumer attaches to the product. They only know whether
or not consumers have inspected a good and whether it was bought. We are in-
terested in how much the platform eventually may learn, and how this depends
on the platform’s objectives and environments, i.e., we look at the steady state
of the process described.

Before presenting our results, it is important to mention that the environ-
ment we study has some similarity to the social learning literature with seminal
contributions by Banerjee (1992), Smith and Sørensen (2000), Bikhchandani
et al. (1992), Kremer et al. (2014) and Glazer et al. (2021), among others, with
some important modifications. First, consumers do not know their position in
the queue and therefore cannot condition their behaviour on it.Second, the plat-
form does not observe the value of the consumer, but only whether the consumer
inspected a product or bought it. As consumers have to pay an inspection cost,
it may well be that they simply bought a product as it was “good enough” in
the sense that they did not want to pay another inspection cost to inspect an-
other unknown item. Third, there is an idiosyncratic component to consumers’
product valuation, so what is good enough for some consumers may not be good
enough for others.3

We have three sets of main results. First, if a monopoly platform aims to
eventually provide the best possible recommendation for consumers, then the
larger the idiosyncratic component, the better it is able to learn which products
have the highest common values. To see why, consider that the idiosyncratic
component is absent so that all consumers have the same value for the product.
Without experimentation, the platform would suggest to all future consumers the
item that was bought first, which is a product that has a (common) value that is
at least equal to the consumers’ ex ante reservation value, as in Wolinsky (1986).
Subsequent consumers would always buy the same product as they expect to
get to inspect a random product on their next search. With experimentation,
the platform can hide for a first set of consumers the products that consumers
before them have bought by randomising recommendations. It can gradually
shift to showing consumers a ranking where products that have been bought
before are placed first. Doing so, increases consumers’ continuation value of
search as they believe that if they continue to search they are more likely seeing
products with a high value compared to the situation where the platform does
not experiment. Thus, in expectation consumers are offered products with a
much higher common values than without experimentation. However, for any
positive inspection cost, there is a limit to what the platform can learn and it is
not only the very best products that are ranked first. The larger the inspection
cost, the less the platform learns.

3In some papers in the social learning literature, e.g., Smith and Sørensen (2000) and
Goeree et al. (2006), agents’ preferences are heterogeneous.
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If consumers’ value incorporates an idiosyncratic component, they them-
selves have a larger incentive to search and experiment. In particular, some
consumers may be unhappy with products the platform has ranked high, sim-
ply because they draw a low idiosyncratic component of their match value.
The larger the weight of the idiosyncratic component, the more consumers ex-
periment themselves and if this weight is above a critical value, the platform
eventually will learn which products have a common value component that is
arbitrarily close to the highest possible value. Thus, the less the consumers
value their common value component, the more the platform can learn about
it.

Second, we consider competition between platforms. We take it that plat-
forms choose their ranking algorithms and that consumers choose to use the
platform that provides the best expected ranking.4 We show that competition
significantly limits the possibility for platforms to experiment. The reason is
best understood by reconsidering the result on monopoly platforms. Here, by
experimenting, the platform consciously chooses at any point in time not to
provide the best possible ranking using the current information. For example,
without idiosyncratic component, once a consumer has bought a certain prod-
uct, the next consumer would be best served by a ranking where this product
is offered first. Experimentation therefore trades off the benefit of present con-
sumers in favour of future consumers. Competition, however, implies that when
they have a choice consumers prefer to use a platform that is not experiment-
ing, leaving platforms that do experiment without consumers to experiment on.
Even though the monopoly analysis also requires to carefully address the issue
of learning, learning is even more critical under competition. In both settings
consumers may learn from inspecting some products they do not value whether
they are early users of the platform, but under competition there is an additional
effect in that learning may give rise to consumers switching platforms.

Our final set of results pertains to the platform having another objective,
namely to maximize the revenue from selling a sponsored position. We show
that in this case the platform has no incentive to experiment. As consumers
are free to search on the platform in any order they like, the platform actually
has an incentive to lower the continuation value of search because it wants to
maximize the revenue from the sponsored position. Not providing information
in the organic (i.e., non-sponsored) slots by uniformly randomizing them, is the
best way to do so. Maximizing revenue means maximizing the probability the
consumer buys from the sponsored slot. To maximise this probability, the com-
mon value component of the firm in the sponsored position is not so important
as long as it exceeds the expected continuation value of searching other prod-

4That is, consumers know the algorithms the platforms use. This assumption is in line with
the Digital Service Act (paragraph 70) that stipulates “online platforms should consistently
ensure that recipients of their service are appropriately informed about how recommender
systems impact the way information is displayed, and can influence how information is pre-
sented to them. They should clearly present the parameters for such recommender systems in
an easily comprehensible manner to ensure that the recipients of the service understand how
information is prioritised for them” (European Parliament, 2022b).
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ucts in the ranking. Thus, the platform has no incentive to experiment under
this alternative objective function: it recommends a product until the moment
a consumer buys another product. Sooner or later, and certainly in the steady
state, it recommends a product that all (future) consumers buy as the common
component of the valuation is high enough so that even consumers with the
lowest possible idiosyncratic component will buy (given a random continuation
value of search).

Related Literature. As described above, our paper relates to the vast litera-
ture on social learning, with important differences. In most of the classic social
learning papers, agents know their position in the queue and learn by directly
observing the actions of all past agents (e.g., Banerjee (1992), Bikhchandani
et al. (1992), Smith and Sørensen (2000)). In Kremer et al. (2014) and Glazer
et al. (2021), agents do not observe the choices of preceding agents, but a prin-
cipal does and recommends to future agents choices based on this information.
In contrast to these papers, we allow for the consumers’ (agents’) payoffs to
include an idiosyncratic component. We also allow consumers to search prod-
ucts in any order they like and to continue searching beyond the recommended
product. Maglaras et al. (2021) studies an environment where consumers learn
from reviews of previous consumers and pay a larger “search cost” for an item
that is ranked lower by the platform. There is no real search in the model as
consumers simply buy the product that maximizes their expected utility before
inspecting. Goeree et al. (2006) study an (otherwise classic social learning) en-
vironment where the agents’ valuations comprise both a private and a common
part. They find that in contrast to the herding result of the social learning
literature, with an idiosyncratic component to their utility function, agents will
eventually always learn the true state of the world. In contrast, our paper fo-
cuses on platforms trying to influence the outcome of the social learning process
and on consumers searching different alternatives.Our paper is also closely re-
lated to other papers on platforms that recommend products to consumers and
learn about product quality.5

More generally, our papers relates to the literature on dynamic information
design (see, for example, Ely (2017), Renault et al. (2017), Ely and Szydlowski
(2020), Orlov et al. (2020), Smolin (2021)). In most of this literature, the prin-
cipal’s learning is exogenous to the actions of the agent(s), while in our model
the consumers’ actions determine what and how much the platform learns.

We find that a monopoly platform has an incentive to experiment so that
one consumer can (indirectly) learn from the actions of another, as in strategic
experimentation literature (see, e.g., and Bolton and Harris (1999) or Keller
et al. (2005)). In our model, experimentation by the platform means that con-
sumers on average search more than they would if the platform does not ex-
periment. In Hagiu and Jullien (2011), a profit-maximising platform sometimes
makes consumers search more than they would like (in order to influence sellers’
behaviour), but there is no learning.

5A literature also exists, such as Teh and Wright (2022), Janssen and Williams (2023),
Janssen et al. (2023) and Bar Isaac and Shelegia (2022), where platforms or a social influencer
steer consumers to products, but there is no learning.
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The rest of the paper is organized as follows. The next Section describes the
baseline model of a platform aiming to maximize long-run consumer welfare,
while Section 3 states the main results related to this baseline model. Section 4
then discusses the results pertaining to competition, while Section 5 provides the
results in case the platform maximizes revenues it gets from the recommended
position. Section 6 concludes with a discussion, while proofs can be found in
the Appendix.

2 The Baseline Model

We consider a population of infinitely many consumers using a platform to look
for a product. Products are sold by (infinitely) many firms, and are horizontally
and vertically differentiated, i.e., they have features that all consumers value in
the same way (a common component) and other features that consumers value
differently. Thus, a consumer i’s utility for product j is denoted by

uij = (1− δ)vj + δεij ,

where vj is the common component, εij is the idiosyncratic component and δ ∈
[0, 1] is the relative weight on the idiosyncratic component. Before inspecting a
product, the consumer is uncertain about both components of the product. The
common component vj is a random draw from the CDF G(·) with support [v, v],
while the idiosyncratic component εij is a random draw from the CDF F (·) with
support [ε, ε]. We assume that f(·) and g(·) are strictly positive over the whole
support and that 1− F and 1−G are logconcave (as is usual in the consumer
search literature; see, e.g., Anderson and Renault (1999)). To inspect a product
the consumer has to pay a (search) cost s and then learns the utility uij that
product j gives. The consumer chooses an optimal sequential search strategy
and stops searching when the utility exceeds a certain threshold reservation
utility. We assume that s is small enough. In particular, if consumers’ utility
only consists of either the idiosyncratic or the common component, i.e., δ = 1
(as in much of the search literature) or δ = 0, then they will still search a next
firm if they so far have only inspected firms whose products generate low match

values, i.e., s <
∫ ε
ε

(1 − F (ε))dε = Eε − ε and s <
∫ v
v

(1 − G(v))dv = Ev − v.
We sometimes illustrates our results for the ε’s and the v’s being uniformly
distributed over the interval [0, 1], and for this case the assumption implies that
s < 1

2 . This condition also guarantees that consumers want to start inspecting
products if they are randomly ordered.

The platform observes that consumers search for products on their platform
and which product they eventually buy. Thus, for each individual consumer,
the platform knows the identity of the firms whose product the consumer has
inspected and the eventual purchase, but it does not know the utility scores
of each product with each consumer. The only thing the platform can infer is
that the consumer’s utility for products that are inspected, but not purchased
is below the reservation utility, while the product that is bought has a utility
level above the threshold. For each consumer visiting the platform, it can create
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a (different) ranking of firms and this ranking may influence the order in which
consumers search. For example, if a product is bought by a consumer before,
then the platform may (or may not) rank that product first, and a first ranked
product may be interpreted by consumers as a product that the platform thinks
they should inspect first.

The platform also observes which consumers already have inspected and
bought products, but consumers do not know their place in the queue. The
only thing they know is that other consumers are also looking for products on
the platform and that therefore the ranking of products may be informative of
what others have inspected and bought in the past. In the baseline model, the
platform wants to maximize the long-run utility of consumers. That is, it may
experiment with rankings for some finite number of consumers without impact-
ing the value of its objective function. It can do so to better learn consumer
preferences to be able to make better rankings in the future. Firms are passive.

To be more precise, let firms have a number k ∈ N and denote by N the
set of all subsets of N. Let S(t) ∈ N be the set of firms that a consumer t has
inspected who had t − 1 consumers making inspection and purchase decisions
before him and by b(t) ∈ N ∪ ∅ the purchase decision of that consumer. For
every consumer t the platform chooses a ranking rt, which is a function rt :
{S(τ), b(τ)}τ=t−1

τ=1 xZ → X, where Z is the realization of a random device and
X denotes the set of firm permutations. The overall ranking algorithm r of the
platform is a sequence of those rankings: r = {rt}∞t=1. In the baseline model,
the platform maximizes average utility

lim
T→∞

T∑
t=1

Eu(t)

T
,

where Eu(t) is the expected utility of the consumer in position t.
We consider the steady state of the dynamic process where at each period of

time t, the platform creates a ranking for consumer t and the consumer engages
in optimal sequential search given this ranking. The consumer understands
the platform’s objective and therefore may know that the platform’s ranking
generates valuable information to the consumer. Formally, we define a steady
state as follows.

Definition 1 A steady state is a ranking r∗ and a stationary stopping rule for
consumers characterized by a utility u∗ such that

(i) the ranking r∗ places an item in the first position that has a common utility
component v ≥ v∗ for some constant v∗,

(ii) the consumers’ stopping rule tells consumers to buy any item with total
utility u ≥ u∗, with u∗ = (1− δ)v∗ + δε whenever v∗ < v.

It is clear that if v∗ < v, then in a steady state the platform does not learn
anymore from consumer decisions as consumers will always first inspect the
first item in the platform’s ranking and immediately buy from the firm in that
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position. If v∗ = v, then consumers may continue to search after inspecting the
first item, namely if u∗ > (1− δ)v∗+ δε and their idiosyncratic component is so
low that (1− δ)v∗ + δεij < u∗.

3 Results of the Baseline Model

As the platform maximizes long-term average consumer surplus, its pay-off is
unaffected by the utility level of the first, finite number of consumers. It can
use observations about their search and purchase behaviour to learn about the
common component of the consumers’ utility. As consumers do not know their
position in the ranking, they may use their observations to learn and update
their beliefs about their position in the ranking. Initially, they rationally believe
that the platform ranking is sufficiently informative to follow the ranking that
is provided (until it becomes clear after their inspection that they have been
recommended products that in a steady state should not be provided).

The platform can, for example, experiment more with the first consumers
using the platform and provide them with a different (random) ranking (of
first products). It can then record the products these consumers inspected and
bought. In a later stage, the platform can gradually move to order the products
such that only those products that have been bought before are ranked in top
positions. These are products that tend to have higher values of the common
component v. Under such a ranking algorithm, consumers are rightfully more
picky on accepting to buy products as their continuation value of search is higher
than when the products are randomly ranked.

The next proposition states what the steady state is of the dynamic process
that unfolds.

Proposition 2 The steady state is unique. If δ(Eε − ε) < s, the steady state
is characterized by a ranking r∗ and a reservation utility u∗ such that v∗ < v
solves ∫ v

v∗

1−G(v)

1−G(v∗)
dv =

s− δ(Eε− ε)
1− δ

; (1)

v∗ is strictly increasing in δ and decreasing in s. If, on the other hand, s <
δ(Eε− ε), then the steady state is characterized by v∗ = v.

The following algorithm leads to this steady state: at t, rank on any position
a random unsampled item with probability πt and rank (potentially sampled)
items in a decreasing order according to their posterior v with probability 1−πt,
where π1 = 1, π2 < 1, πt > 0 is strictly decreasing in t and limt→∞ πt = 0. If
at t a random item is ranked first, the nonrandom candidate item for rank 2 is
the item with the highest (not second-highest) posterior v.

The idea about the proposition can be easily illustrated by considering for
the uniform distribution that the common component of the utility function in
a steady state is given by v∗ < v = 1. As in such a steady state, the consumer
will always buy from the first firm in the platform’s ranking, the platform can
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Figure 1: Consumers accept items north-east from the thick (red) line: in the
triangle (hatched) and rectangle (dotted); s = 0.2, δ = 0.25.

only infer whether firms have a product with a common component that is
larger than v∗. The minimum possible utility level a consumer gets in a steady
state is then given by (1 − δ)v∗ + δε. A consumer that draws this utility level
and expects that on their next searches they only encounter products that the
platform possibly also could have recommended have a common component that
is at least as large as v∗. Thus, they will buy if, and only if,

(1− δ)v∗ + δε ≥ (1− δ)E(v|v ≥ v∗) + δEε− s,

where the RHS gives the expected utility level of continuing to search. This is
illustrated in Figure 1. The reservation utility u∗ is depicted by the downward
sloping line, crossing the horizontal axis at v∗. If consumers draw a utility
level above this line, they accept. Note that this area consists of a rectangle
where the utility level has a common component v > v∗ (where all consumers
immediately accept such products) and a triangle where the utility level has a
common component v < v∗ (where only those consumers immediately accept if
the idiosyncratic component is large enough).

In a steady state with v∗ < v this inequality should hold with equality. For
v and ε being uniformly distributed this gives

v∗ =
1 + v∗

2
+

δ − 2s

2 (1− δ)
,

or

v∗ = 1 +
δ − 2s

(1− δ)
.

This expression is smaller than 1 for δ
2 < s < 1

2 , while for s < δ
2 there is no

interior steady state: the platform will eventually learn the common component
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of many products and recommend the one with the largest v. In the steady
state, this largest value is v = 1. The proposition states the same result for
general value distributions.

The analysis regarding the part of the proposition on the dynamic process
towards the steady state is more intricate. The reason is that during the process
towards the steady state, the consumer may encounter items that he did not
expect to encounter if he was already in the steady state. As consumers do
not know their place in the queue, these observations will therefore make him
update his beliefs about his position in the queue. To see that this algorithm
gets the system to the steady state, consider first δ < δ̂ so that consumers that
start searching use the cutoff u∗ that satisfies u∗ = (1 − δ)v∗ + δε for some
v∗ < v̄. Then a consumer (active in period t) that draws a first product and
uncovers u1 < u∗, rejects this item. He also updates his beliefs, however, about
his position in the queue and puts more weight on the chance that he is early
on in the queue because the later he is in the queue, the more likely that the
first item has v1 > v∗, thus, u1 > u∗. The worst that the buyer can believe is
that he is the first one in the queue and always has to search over randomly
ranked items. Thus, the cutoff v̂t that the buyer uses for his purchasing decision
is definitely in [v∗R, v

∗]. Eventually, the buyer buys some item A with vA ≥ v̂t.
With probability 1−πt+1, at t+ 1 the platform ranks item A first if it becomes
the item with the highest posterior v and the previously first-ranked item if it
doesn’t.

If later some consumer rejects A, the platform knows that vA < v∗. In
that case another item is ranked first as the non-random item and A is ranked
lower. Otherwise, A remains on the first rank for ever (because vA > v∗). In
any case, eventually, the platform will end up with an item B on rank one that
has vB ≥ v∗ because, first, all consumers use cutoff v∗ when deciding whether
to buy the first-ranked item. Second, P (v ≥ v∗) > 0 for all v∗ < v̄. Thus,
the probability that none of t consumers buys an item with v > v∗ is less than
G(v∗)t which goes to zero as t→∞.

Now consider δ > δ̂. Even an item that has v = v̄ is rejected with posi-
tive probability. Thus, the platform always keeps changing its ranking, learn-
ing about the common components of items (including previously uninspected
items). Eventually, the platform will be able to rank first an item with v arbi-
trarily close to v̄.

A few other interesting observations related to the proposition are in place.
First, if we define

δ̂ =
s

E(ε)− ε
as the weight on the idiosyncratic component for which v∗ = v̄, then for any
δ < δ̂ the stead state v∗ is interior and increasing in δ and decreasing in s.
When s is larger, consumers are less inclined to inspect products beyond what
is recommended to them, limiting the learning possibilities of the platform. On
the other hand, when δ is larger, consumers tend to have more dissimilar tastes
and therefore the probability that consumers are satisfied with the product that
is recommended to them is smaller. This implies that consumers themselves are
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Figure 2: The value to consumers of having (relative to not having) a platform
as a function of s; δ = 0.

more inclined to experiment, making it easier for the platform to discern firms
with really high values of v. If the weight δ on the idiosyncratic component of
the utility function becomes large enough, or if s is small enough, the platform
will always be able to find out the highest value of the common component.

Second, it is interesting to see how consumers can benefit from a platform
that serves their interests by comparing for δ = 0 the above steady value v∗

with the standard consumer search problem in the absence of a platform where
the products to be inspected next are randomly drawn. In the latter case the

threshold value v̂ that is acceptable for consumers is given by s =
∫ v
v̂

(1−G(v))dv,

which for the uniform distribution results in a value v̂ = 1 −
√

2s. Figure 2

below depicts (1−2s)−(1−
√

2s)

1−
√

2s
, which is the expected value of the platform to

the consumer relative to the expected utility the consumer gets without the
platform. From the Figure it is easy to see that the larger the search cost, the
larger the benefit to the consumer, but that even at relatively low inspection
costs of say 0.05 consumers benefit around 31.6%.

4 Competition

In this section we consider markets where platforms are competing with each
other for consumers and ask to what extent the results of the previous Section
continue to hold. In particular, can platforms learn from observed consumer
search and purchase behavior about the underlying common component to the
same extent as under monopoly? To answer that question, we keep the plat-
forms’ objective as in the baseline model.

An important part of the analysis under monopoly platforms is that the
platform can experiment with different rankings to learn consumer choices in a
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variety of settings. This form of experimentation implies that the utility of early
consumers is sacrificed to the benefit of later consumers. This is easiest seen by
considering the first and second consumer using the platform. As the platform
has no information about products before the first consumer inspects products
and makes a choice whether or not to buy, it randomly ranks the products. The
situation is, however, different for the second consumer. If the first consumer
bought a particular product (whether or not it is the first inspected product),
then the platform gets positive information about the common value of that
product and if it wants to serve the second consumer best, it would prominently
place that product in the ranking that is shown to the second consumer so that
this consumer inspects this product first. However, doing so limits the scope
of learning from the choices the second consumer makes. Thus, a monopoly
interested in the long-run benefits of consumers may want to put other products
prominently in the ranking for the second consumer.

Under competition, platforms are limited in the extent to which they can
experiment with their rankings. Roughly speaking, consumers will avoid using
the platform that experiments most as they know this experimentation is not
to their own advantage. Without consumers making inspection and purchase
choices, however, a platform does not learn anything. In other words, as con-
sumers only care about their own utility and not about the utility of future
consumers they force platforms to create rankings that optimally use the infor-
mation they have to cater to current consumers. The analysis has to take into
account, however, that consumers may update their beliefs about how much a
platform is experimenting (and what their position in the queue is), especially
after observing products that upon inspection have a low utility.

To study the implications of competition, in this section we model competi-
tion between platforms in the following stark way. First, platforms choose how
to rank products in every period, i.e., they choose r = {rt}∞t=1. Second, not
knowing their place in the ranking, a consumer chooses which platform to use
for their search and which products to inspect and when to buy. This way of
modelling assumes that all consumers know exactly what ranking algorithm the
platforms use. This is, of course, a stark assumption, but it captures in the most
simple way one of the implications of the E.U.’s DSA that (some) consumers
will have some information about the platform’s ranking (cf., footnote 4). In
the unlikely event that none of the consumers knows anything about the plat-
forms’ choice of r, then there would be no competition between platforms and
the results of the previous section apply. Thus, to the extent the DSA makes
consumers more aware of the ranking algorithms platforms use, this section may
be viewed as an evaluation of the possible effects of the DSA in markets with
competing platforms.

The main result in this section is that competition limits the extent to which
platforms can learn about the common value of consumers’ utility. Before we
prove this result, we state the following Lemma:

Lemma 3 if δ < δ̂, i.e., when there is an interior solution in the monopoly
model, with competing platforms a consumer never wants to inspect a product
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that has been inspected but not bought by some previous consumer.

The lemma critically uses the notion of reservation values (utilities). To see
this, consider first the case where δ = 0. In that case v∗ = u∗ and it is equal

to the consumers’ reservation value, determined by
∫ v
v∗

(1 − G(v))dv = s. If a
product has been inspected before and not purchased, it is known to have a
common component, and thus a reservation value, which is smaller than v∗(s).
The application of Weitzman’s (1979) optimal search rule then says that any
random product, which by definition has a reservation value of v∗(s), should
be inspected first. Note that this is true independent of s as the impact of s
is incorporated in the reservation value: even if v∗(s) itself may be relatively
high (for small values of s) and even if consumers know a product has a value
close to it, they want to inspect a random product as it may have a value higher
than v∗(s) and in case it has a lower value they will continue to search other
products. An item with a known value v < v∗(s) does not have the upward
potential.

Now consider a positive, but small value of δ. Let r∗C and u∗C represent
a platform’s ranking with v∗C the common component of the product in the
first position, respectively, the stationary stopping rule in a steady state under
competing platforms (where both platforms use the same ranking). Thus, we
have that u∗C = (1− δ)v∗C + δε. If a product has been inspected before, but not
purchased, then it is known to have a common value smaller than v∗C . In line
with Figure 1, consumers may still want to inspect such items as now there is
the possibility that they draw a higher idiosyncratic value than the previous
consumer who did not purchase the product. However, if δ is small the value
of this upward potential is small and if δ < δ̂ it is not large enough to warrant
spending the search cost on it.

The implication of the lemma is that because of competition, a platform
will never attempt to have a consumer inspect a product that is rejected by
a previous consumer who inspected the product when δ, the weight on the id-
iosyncratic component, is relatively small.6 If a platform would do so it gives the
competitor the possibility to provide a ranking that is preferred by consumers
and they will therefore not visit the platform. The upper limit δ̂ is such that a
consumer does not want to search for a better idiosyncratic component of the
utility function even if it gets the lowest possible value ε.

Another implication of Lemma 3 is that as the platforms cannot experiment
and δ is small, they cannot rank the items in such a way that the consumers
inspect items that were previously inspected and not bought. We will use this
lemma to prove our main result of this section.

Proposition 4 If δ < δ̂, the steady state of the process under competition is
lower than under monopoly, i.e., v∗C < v∗ and u∗C = u∗R < u∗, where u∗R ≡
Emax {(1− δ)v + δε, u∗R} − s is the reservation utility under random search.

6As consumers are free to inspect products in the order they like, this does not necessar-
ily mean that a platform will not prominently rank such products as consumers may skip
prominently ranked products.
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The idea behind the proposition is that a platform will always create rank-
ings such that after the first item, consumers will inspect random products that
have not yet been inspected before. To help consumers, platforms will always
put a product in the top spot that the previous consumer has inspected and
purchased. This product can either generate a utility “in the triangle” in Figure
1 (in which case it will ultimately be replaced as some consumers will draw a
low idiosyncratic component of the utility function), or a utility “in the rectan-
gle” (in which case it will be purchased by all subsequent consumers after being
inspected). As the continuation value of search is, however, based on inspecting
random products after the first inspection, the consumers’ reservation utility
is as if there is no platform making recommendations, and is therefore lower
than under a monopoly platform. Still, platforms do play an important role.
First, they increase social surplus in the steady state (relative to a world with-
out platform) as by recommending a product with a high common component
they lower expected search cost as eventually all consumers buy from the firm
they inspect first. Second, in the presence of platforms it becomes increasingly
important for firms to be in the top spot as only firms in that spot have positive
sales.

When δ ≥ δ̂ consumers may be willing to inspect products that previously
have been rejected. However, the extent to which depends on the precise value
of δ. If δ is marginally larger than δ̂, then consumers only prefer inspecting a
previously rejected product to random products if that product has been bought
by many consumers before it was eventually rejected by another consumer as
this would be an indication that the common component is very close to v∗C . The
chance that such a product will be discovered is, however, very small as it relies
on the fact that products with a common component larger than v∗C have not

been inspected before. Thus, for δ values marginally larger than δ̂ competing
platforms continue to learn less about the common value relative to a monopoly
platform. When δ gets larger, consumers are more inclined to inspect previously
once rejected products (after having been bought several times) and platforms
are more inclined to put such products high up in their rankings.

The different effects of δ imply that its comparative statics can be non-
monotonic. Figure 3 below indicates that for values being uniformly distributed,
the common component v∗C of the steady state value is decreasing in δ when δ
and s are small, while for other parameter values the effect is as in the monopoly
case. This effect may seem small, but in Figure 4 we show that in a neighborhood
of δ = 0 the effect may actually be quite substantial if s is very small.7 The
reason why competing platforms may be able to learn less when δ increases
starting from small values is as follows. First, like for monopoly platforms there

7If v and ε are uniformly distributed, we can explicitly calculate the reservation value

to be v∗C =
2−δ− δ2

6(1−δ)−

√[
2−δ− δ2

6(1−δ)

]2
−4(1−2δ)

[
δ2(2−δ)
6(1−δ)2

+1−2s

]
2(1−2δ)

. (Details are available

upon request.) It is straightforward to show that limδ→0
∂v∗C
∂δ

= 5 − 3(1+4s)

2
√
2s

so that

lims→0 limδ→0
∂v∗C
∂δ

= −∞. Thus, this counterintuitive comparative statics effect of δ can
bee quite large when s is also small.
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Figure 3: Monopoly cutoff v∗ (black solid) and competitive cutoff v∗C (red dashed)
in δ; s = 0.05.

is the effect that when δ gets larger consumers tend to inspect more as they
know their preferences may not be fully aligned with those of their predecessors.
Second, also similar to monopoly platforms consumers are willing to purchase
products whose common component value is smaller than v∗C , namely when their
idiosyncratic value is large enough, i.e., products that are in the “triangle region”
of Figure 1. However, and this is the difference with monopoly platforms, for δ <
δ̂ competing platforms’ ranking are such that after rejecting the product in the
top spot, consumers search for random products and purchase products above
their reservation utility (which includes products that lie in the “triangle region”
of Figure 1). Relative to the monopoly platforms, this lowers the continuation
value of search for consumers. The strength of this effect depends on the size
of the “triangle region” relative to the size of the “rectangle region” and this
relative size is large when s is small. Thus, for small s this effect dominates the
first effect of an increase in δ creating the nonmonotonic effect of an increase in
δ.

5 Maximizing revenue from the Recommended
Position

Many platforms have different objectives than maximizing long-run consumer
welfare. It is important to know how these objectives affect the platform’s
learning. In this section we therefore consider a platform that aims to maximize
revenues from selling the top position in the ranking and ask what are the
platform’s incentives to learn from consumers’ behaviour given this different
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objective function.8 We take it that the firms, like the platform, do not have
information about consumer preferences, and that, unlike the platform, do not
observe consumer behavior on the platform. A firm’s willingness to pay for the
top spot is expressed as an amount the firm is willing to pay conditional on
making a sale.9 As this paper’s focus is on what the platform can learn from
observed consumer behaviour, we consider that firms are ex ante identical and
that their behaviour does not form a second source of information the platform
can draw upon. The analysis starts off by considering a monopoly platform, but
at the end of the Section, we argue that the analysis extends beyond this case.

A few characteristics of the steady state should be immediately clear. First,
firms will be willing to pay for the top spot if (and only if) this implies more
sales, which is for example the case if consumers are willing to start their search
there. Second, ex ante identical firms will make identical bids as they have no
information about consumers’ willingness to pay. Third,10 the platform has an
incentive to lower the continuation value of search as much as possible as this
will make it more likely that a consumer will buy from the top spot. The low-
est possible continuation value if consumers continue to search is obtained when
products are randomly placed in the ranking as consumers can (and will) always
skip inspecting products if they know (from the platform’s ranking algorithm)
that products on a certain place in the ranking are likely to be worse than a ran-
domly chosen product. Given this property of the optimal ranking, consumers
have a reservation utility equal to u∗R ≡ Emax {(1− δ)v + δε, u∗R} − s. Fourth,
the platform also has an incentive to put the product with the highest likelihood
of generating a sale in the top spot. For any consumer that is not the first in
the ranking that is the product which the last consumer bought. As this is a
product that has a reservation value larger than a random product, consumers
will start their search there and the consumer will immediately buy if her utility
u satisfies u ≥ u∗R. Fifth, the platform can announce the following algorithm.
Firms are ranked according to their bid. The firm with the highest bid will get
the top spot until the moment a consumer decides not to purchase the product
of that firm. If a consumer inspects the product at the top spot, but does not
buy it, then the top spot goes to the next highest bid, while all other products
get a random place in the ranking. Finally, defining v∗R ≡ (u∗R − δε)/(1− δ) as
the value of the common component that yields the consumer a utility equal
to u∗R if the idiosyncratic component is at its lowest possible level ε, it is not
difficult to see that as long as v∗R < 1 in the steady state of this process, a
product gets the top spot that has a v ≥ v∗R.

Thus, if we define we δ̂R as the weight such that v∗R = 1, we can state the
following result.

8Considerations similar to those in the current section apply when the platform sells off
multiple positions.

9Only payment rules that depend on the platform’s performance in helping firms to gener-
ate sales make sense as otherwise the platform would not have an incentive to change consumer
behaviour. This also implies that general payment rules that do not depend on a firm acquiring
a certain prominent position also do not affect the platform’s behavior.

10This and the next point are similar to the analysis in Janssen et al. (2023).
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Figure 4: The critical value v∗R as a function of δ for s = 0 (black dot-dashed),

s = 0.05 (red dashed), and s = 0.1 (grey) where δ̂1 := δ̂s=0.05 and δ̂2 := δ̂s=0.1.

Proposition 5 For any δ < δ̂R, the steady state of the process when the plat-
form maximizes the revenue from selling the top spot has a reservation utility
that is equal to u∗R and the common component is larger than or equal to v∗R.

We also have that δ̂R > δ̂.

The Proposition shows that if a monopoly platform sells the top spot in its
ranking, the outcome mimics the outcome under competing platforms in the
previous section in the sense that the role of the platform is limited to putting
an item with a large enough value in the top spot. As firms are willing to pay
an amount equal to their expected profits, the platform’s profit is maximized.
Consumers are still better off than without a platform as they economize on
their search cost. The result is, in a sense, however, worse than the outcome
under competition as in the present case there is no competitor constraining the
platform in offering random continuation values of search. Under competition,
platforms cannot offer a ranking with random products beyond the top spot if
δ > δ̂ as competitors could then offer a better ranking to consumers. Thus,
under a monopoly platform there is a (much) wider set of δ values for which
the steady state features a critical value of v∗R < v. This is illustrated in Figure
4 for the case of the uniform distribution. In the Figure the critical values of
δ̂R are given by the values where (for different values of s) the curves hit the

maximum common value of 1; whereas the critical values δ̂ under competition
are given by δ̂1 (for s = 0.05) and by δ̂2 (for s = 0.1). The critical value δ̂ for
s = 0 is 0 and therefore not represented.

Given our analysis so far, it is not difficult to see that the result would be
similar if we consider competing platforms. The only difference is that under
competition platforms should provide consumers with the best possible ranking
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given the information they have. Therefore, the ranking in the steady state will
be exactly identical to the one in the previous section with the threshold value
being δ̂.

6 Discussion and Conclusion

In this paper we have asked to what extent online platforms may infer informa-
tion about a common component in how consumers value products on the basis
of the observations regarding consumer search behavior, i.e., the products they
have inspected and (not) bought. If a monopoly platform cares for long-run
consumer surplus, they will experiment with product rankings and eventually
only rank products that consumers have bought in the past in top spots. This
will benefit consumers as they will only accept to buy products that are much
better than under random search. Competition, and selling top spots to firms
to boost their sales, seriously limits the incentives of platforms to learn.

In order to keep our focus on what platforms may learn from consumer
search behaviour, we have kept firm behaviour as exogenous throughout the
paper. An interesting next step in the analysis is to endogenize firm behaviour,
for example, by endogenizing their pricing decisions or by allowing them to also
have some incomplete information about consumers’ common value that they
could signal in their bids to acquire the top position. Another interesting avenue
for future research is to allow product to be vertically differentiated and to have
consumers being different in their value for quality. Will this gives rise to echo
chambers where some platforms cater to consumers with a high willingness to
pay for quality and other platforms that do not?

7 Appendix: proofs

Proof of Proposition 2.

We first prove the existence and uniqueness of an interior steady state (i.e., with
v∗ < v̄ where v∗ is the threshold value of the common component of the utility
in a steady state) and then the corner solution (i.e., with v∗ = v̄).

In an interior steady state, the buyer should always buy an item with u ≥
u∗ = (1− δ)v∗ + δε. A consumer that draws the minimum possible utility level
in a steady state, (1− δ)v∗ + δε, buys if

(1− δ)v∗ + δε ≥ (1− δ)E(v|v ≥ v∗) + δEε− s,

which gives

v∗ ≥ E(v|v ≥ v∗) +
δ(Eε− ε)− s

1− δ
. (2)

Clearly inequality (2) can hold only if δ(Eε− ε) < s so consider such δ and
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s. We can write (2) as

v∗ ≥
∫ v
v∗
vg(v)dv

1−G(v∗)
+
δ(Eε− ε)− s

1− δ

=
v − v∗G(v∗)−

∫ v
v∗
G(v)dv

1−G(v∗)
+
δ(Eε− ε)− s

1− δ

= v∗ +
v − v∗ −

∫ v
v∗
G(v)dv

1−G(v∗)
+
δ(Eε− ε)− s

1− δ
.

Thus, we have that an interior v∗ is implicitly defined by

v∗ = v −
∫ v

v∗
G(v)dv + (1−G(v∗))

δ(Eε− ε)− s
1− δ

. (3)

Equation (3) can be rewritten as∫ v

v∗

1−G(v)

1−G(v∗)
dv =

s− δ(Eε− ε)
1− δ

. (4)

Since the RHS of equation (4) is positive, we also need the LHS to be positive
for an interior v∗ to exist. Now

lim
v∗→v

∫ v

v∗

1−G(v)

1−G(v∗)
dv =

∫ v

v

1−G(v)dv = Ev − v > 0,

and

lim
v∗→v̄

∫ v

v∗

1−G(v)

1−G(v∗)
dv = lim

v∗→v̄

−(1−G(v∗))

−g(v∗)
=

0

g(v̄)
= 0,

as g(v̄) > 0. Thus, a sufficient condition for an interior solution for v∗ to exist

is Ev − v > s−δ(Eε−ε)
1−δ or

(1− δ)(Ev − v) + δ(Eε− ε) > s.

This inequality holds because, by assumption, both Ev− v > s and Eε− ε > s.
A sufficient condition for a unique interior v∗ to exist is that the derivative

of the LHS of equation (4), or

∂

∂v∗

∫ v

v∗

1−G(v)

1−G(v∗)
dv = −1 +

∫ v

v∗

(1−G(v))g(v∗)

(1−G(v∗))2
dv, (5)

is negative for all v∗ ∈ (v, v̄). The derivative can be rearranged so that it is
negative if for all v∗

g(v∗)

∫ v

v∗

1−G(v)

1−G(v∗)
dv < 1−G(v∗). (6)

We show that inequality (6) holds because the RHS of the inequality decreases
faster than the LHS for all v∗ < v̄, while the two sides equal at v∗ = v̄. At v∗ = v̄,
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using l’Hopital’s rule, the LHS equals g (v̄) −(1−G(v̄))
−g(v̄) = g (v̄)·0 = 0 and the RHS

is also equal to zero. Taking the derivative with respect to v∗ on both sides of

inequality (6) gives −g (v∗)
[
1−

∫ v̄
v∗

(1−G(v))g(v∗)

(1−G(v∗))2 dv
]

+ g′ (v∗)
∫ v̄
v∗

(1−G(v))
1−G(v∗) dv for

the LHS and −g (v∗) for the RHS. Thus, the derivative of the LHS of (6) is
larger than the derivative of the RHS if[

g2 (v∗)

1−G (v∗)
+ g′ (v∗)

] ∫ v̄

v∗

(1−G(v))

1−G (v∗)
dv > 0.

This is indeed the case if g2(v∗)
1−G(v∗) +g′ (v∗) which follows from the fact that 1−

G(v) is logconcave: logconcavity implies that for the first and second derivative

of ln(1 − G(v)) we have −g
1−G and −g′(1−G)−g2

(1−G)2 = −1
(1−G)

[
g′ + g2

(1−G)

]
≤ 0. In

sum, an interior steady state with v∗ < v̄ exists and is unique if δ(Eε− ε) < s.
A final claim to prove about the interior steady state is that v∗ strictly

increases in δ. We have just shown that the LHS of equation (4) decreases in
v∗. It is easy to show that the RHS decreases in δ. Since the LHS of (4) does
not depend directly on δ and the RHS on v∗, these two facts establish that
∂v∗

∂δ > 0.
Now consider δ(Eε− ε) > s. For any G(v∗) < 1 the RHS of equation (3) is

increasing in δ without bound for δ(Eε − ε) > s, so it must be that lim
δ→1

v∗ →
v. Finally, we show that both an interior solution to v∗ and v∗ = v̄ cannot
coexist. For an interior solution, we need s > δ(Eε−ε). For the corner solution
with v∗ = v̄ we need that a buyer who draws the lowest idiosyncratic utility
component continues even if he draws the highest common utility component:

(1− δ)v̄ + δε < (1− δ)v̄ + δEε− s,

or s < δ(Eε− ε), which cannot hold together with condition s > δ(Eε− ε). In
sum, a steady state with a corner solution exists and is unique if s < δ(Eε− ε).

We now focus on the dynamics towards the steady state. Since consumers
do not know their positions, they must form beliefs about them. When a buyer
starts searching, he believes that he is is in the steady state almost surely so a
priori uses the cutoff u∗. If the consumer’s utility from the first item exceeds
u∗, he simply buys it and does not care about what his position in the queue
really was.

Conversely, a consumer that gets utility u1 < u∗ for the first item that he
inspects, may update his beliefs about his position, depending on the value of
v∗. In particular, if v∗ = v̄, the buyer still believes that he is in the steady state
with probability one because even in the steady state consumers reject all items
(including those with v = v̄) with strictly positive probability. Thus, in this
case the consumer simply continues using the steady-state cutoff u∗.

But if v∗ < v̄, the consumer who gets utility u1 < u∗ for the first item that
he inspects, knows that he is not in the steady state and puts almost all of the
probability weight to being early in the queue, i.e., at positions t < T for some
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finite T > 1. His posterior belief that he is the first in the queue becomes

P (t = 1|u1 < u∗) =
P (u1 < u∗|t = 1)P (t = 1)

P (u1 < u∗)

=
P (u1 < u∗|t = 1)P (t = 1)

P (u1 < u∗|t = 1)P (t = 1) + ...+ P (u1 < u∗|t = T )P (t = T )
, (7)

where the denominator satisfies

P (u1 < u∗|t = 1)P (t = 1) + ...+ P (u1 < u∗|t = T )P (t = T )

≥ π1P (u < u∗)P (t = 1) + π2P (u < u∗)P (t = 2) + ...+ πTP (u < u∗)P (t = T ),

because an unsampled randomly drawn item has u < u∗ with strictly positive
probability P (u < u∗) at any t. The denominator in (7) is strictly higher than
the RHS of the last inequality if some consumers use cutoffs that are strictly
below u∗. But the important thing is that the denominator in (7) exceeds
P (u1 < u∗|t = 1)P (t = 1). This holds because after observing u1 < u∗, the
consumer puts strictly positive weight on the events that he is t’th in the queue
for t < T < ∞ and π2, ..., πT > 0. Thus, the posterior in (7) is strictly below
one: a consumer that gets utility u1 < u∗ for the first item that he inspects
believes that he is early on in the queue, but not that he is the first consumer
with probability one. As a result, the consumer uses a cutoff strictly larger than
v∗R to decide whether to buy the first item he inspects.

Let the cutoff to decide whether to purchase the first inspected item with
u1 < u∗ (i.e., used by a consumer who updates his beliefs about his position) be
denoted ût = (1− δ)v̂t+ δε where t stands for the true position of the consumer
(which is unknown to the consumer himself). Note that in principle, v̂t could
depend on u1. We want to show that limt→∞ v̂t = v∗.

Suppose first that v̂t = v∗ for some finite t and consumer t buys item A.
Then the item with the highest posterior v is A and A is always ranked first as
the nonrandom item. Since πt → 0, eventually A is ranked first with probability
one and, as consumers use the cutoff v∗ to decide whether to buy it, the steady
state is reached.

Now suppose, conversely, that v̂t < v∗ for all t. Let maxt v̂t =: v̇. Note
that no consumer rejects a first item with u1 ≥ v̇: after seeing u1 ∈ [v̇, v∗) the
consumer updates his belief about his position and then accepts the item, while
after seeing u1 ≥ v∗ the consumer accepts it without updating his belief. Effec-
tively, v̇ then is the steady-state cutoff because no item with v ≥ v̇ is rejected.
But then observing an item with u ∈ [u̇, u∗) cannot depress a consumer’s be-
lief about his position so he should use the original steady-state cutoff v∗, not
v̂t ≤ v̇. Thus, we must have that v̇ = v∗ which means that either the argument
in the previous paragraph holds or limt→∞ v̂t = v∗.

Proof of Lemma 3.

According to the optimal search rule from Weitzman (1979), a consumer should
search through items in descending order according to their reservation values.
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We show that, if δ < δ̂, the reservation value of any item that has been inspected
but not bought is below the reservation value of a random item. That is, if δ < δ̂,
a consumer optimally searches random items before searching any item about
which she knows that it has been inspected but not bought before.

We derive the reservation value for an item that has been bought some
(potentially many) times but eventually rejected. The consumer then “knows”
that the common component of the product is some v̂ ≤ v∗C , where v∗C is the
critical value of the common component in a steady state under competition
between platforms. Denote by r̂ the reservation value of inspecting a product
with a common component of the product equal to v̂. We show that if δ < δ̂
and v̂ ≤ v∗C , then r̂ is lower than (1− δ)v̂+ δε, thus, (1− δ)v∗C + δε which is the
reservation value of inspecting a random item.

If a solution exists, r̂ satisfies

E[max{u, r̂}]− r̂ − s = 0, (8)

for u = (1− δ)v̂ + δε.
Consider first that r̂ ≤ (1−δ)v̂+δε. In this case E[max{u, r̂}] = (1−δ)v̂+δEε

so that
r̂ = (1− δ)v̂ + δEε− s.

It is clear that this is a possible solution that satisfies the constraint r̂ ≤ (1 −
δ)v̂ + δε if δEε− s ≤ δε or δ ≤ δ̂.

Consider then that r̂ > (1 − δ)v̂ + δε. In this case, we can define ε̂ :=
r̂−(1−δ)v̂

δ > ε such that

δ

∫ ε̄

ε̂

(ε− ε̂)f(ε)dε = s.

The reservation value r̂ is implicitly defined through ε̂. Since the LHS of this
expression is decreasing in ε̂, the LHS is smaller than δ

∫ ε̄
ε

(ε−ε)f(ε)dε = δ(Eε−
ε). Therefore, if δ ≤ δ̂ there is no solution r̂ > (1− δ)v̂ + δε.

Thus, if δ ≤ δ̂, then for any v̂ the reservation value is given by r̂ = (1−δ)v̂+
δEε−s, which is smaller than (1− δ)v̂+ δε which for v̂ ≤ v∗C , in turn, is smaller
than (1− δ)v∗C + δε, the reservation value of a randomly selected product.

Proof of Proposition 4.

From Lemma 3 it follows that for δ < δ̂, a consumer facing competing platforms
prefers to search over random items rather than items that were rejected before.
Thus, platforms will not prominently display rejected items in their rankings.
Accordingly, for δ < δ̂ the cutoff value v∗C solves

(1− δ)v∗C + δε = VC(v∗C),

where VC(v∗C) is the continuation value if the next firm is a randomly drawn
firm. For ease of reading, we let P (4) and P (�) denote the probabilities with
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which an item has a utility either in the triangle or in the rectangle as indicated
in Figure 1:

P (4) :=

∫ v∗C

v∗C−
δ(ε̄−ε)

1−δ

∫ ε̄

ε+
(1−δ)(v∗

C
−v)

δ

f(ε)g(v)dεdv,

and
P (�) := 1−G(v∗C).

Then we can write

VC(v∗C) = (P (4) + P (�))

{
P (�)

P (4) + P (�)
[(1− δ)E(v|v > v∗C) + δE(ε)]

+
P (4)

P (4) + P (�)
E(u|u ∈ 4)

}
+ (1− P (4)− P (�)) [(1− δ)v∗C + δε]− s,

i.e., with probability P (4)+P (�) the consumer gets a higher utility (the prod-
uct has a value either in the rectangle or in the triangle) and in that case the
expected utility is the expected utility of either being in the rectangle or in the
triangle. With the remaining probability she gets a lower utility and buys at
the reservation value (1 − δ)v∗C + δε. For δ < δ̂ the reservation value v∗C is the
v∗ that solves

(1− δ)v∗ + δε = P (�) [(1− δ)E(v|v > v∗) + δE(ε)] (9)

+P (4)E(u|u ∈ 4) + (1− P (4)− P (�)) [(1− δ)v∗ + δε]− s.

Recall that in case of a monopoly, the cutoff v∗ is defined by

(1− δ)v∗ + δε = (1− δ)E(v|v ≥ v∗) + δE(ε)− s. (10)

Now the LHS of (10) and (9) as functions of v∗ are identical. The RHS of (9)
is lower than in (10) as long as, for a given v∗, E(u|u ∈ 4) < E(u|u ∈ �) =
(1− δ)E(v|v > v∗) + δE(ε).

To show that E(u|u ∈ 4) < E(u|u ∈ �) we argue that E(u|v = ṽ) increases

in ṽ if ṽ is in the support of the triangle, i.e., if ṽ ∈
[
v∗ − δ(ε̄−ε)

1−δ , v∗
]
. Let

ε̃ ≡ ε+
(1−δ)(v∗C−ṽ)

δ . Then we can write

E(u|v = ṽ) = (1− δ)ṽ + δE

(
ε|ε > ε+

(1− δ)(v∗C − ṽ)

δ

)
= (1− δ)ṽ +

δ

1− F (ε̃)

∫ ε̄

ε̃

f(ε)εdε

= (1− δ)ṽ + δε̃+ δ

∫ ε̄

ε̃

1− F (ε)

1− F (ε̃)
dε

= (1− δ)v∗C + δε+ δ

∫ ε̄

ε̃

1− F (ε)

1− F (ε̃)
dε,
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where the one but last equality follows by integrating by parts. Now

∂E(u|v = ṽ)

∂ṽ
= (1− δ)

[
1−

∫ ε̄

ε̃

(1− F (ε))f (ε̃)

(1− F (ε̃))
2 dε

]
,

which is positive as long as the term in the squared brackets is positive. But
showing that this term is positive is analogous to showing that the expression
in (5) is negative, which we did in the proof of Proposition 2. Thus, E(u|u ∈
4) < E(u|u ∈ �) and the solution to (9), if it exists, is smaller than for (10).

THE PART ON THE DYNAMICS TO BE COMPLETED.
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8 Online Appendix

In this online appendix we describe the dynamics that lead to the steady states
in the different settings when the consumers know their position in the queue.
We do this to show that for two reasons. First, for easy comparison with related
literature that assumes consumers know their position in the queue, and second,
to show our results are robust to this modelling assumption.
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8.1 Monopoly platform

Proposition 6 If buyers know their position in the queue, then the following
algorithm leads to the steady state as described in Proposition 2 as t→∞:

• at t, rank on any position a random unsampled item with probability πt
and rank (potentially sampled) items in a decreasing order according to
their posterior v with probability 1− πt,

• where π1 = 1, π2 < 1, πt > 0 is strictly decreasing in t and limt→∞ πt = 0.

Note that if at t a random item is ranked first, the nonrandom candidate for
rank 2 is the item with the highest (not second-highest) posterior v, etc.
Proof. Let the cutoffs that buyer who know his position to be t be denoted ũt
and ṽt for the total utility and common utility parts respectively and note that
ṽt ∈ [v∗R, v

∗] for all t.
First, let v∗ < v̄ and consider buyer t = 1. He knows that he samples

random items, thus, optimally uses the cutoff ṽ1 = v∗R. Thus, for buyer 2, the
nonrandom candidate item for rank 1 is the item that buyer 1 bought because

E(u|v ≥ v∗R) > E(u).

Thus, the value of starting search for buyer 2 is

V (ṽ1, π2) := π2Emax{u, ũ1}+ (1− π2)E(max{u, ũ1}|v > ṽ1)]− s

> Emax{u, ũ1} − s = u∗R.

Thus, the cutoff that buyer 2 uses satisfies

(1− δ)ṽ2 + δε = V (ṽ1, π2),

with ṽ2 > ṽ1. By a similar argument, ṽ3 > ṽ2 because E(u|v > ṽ2) > E(u|v >
ṽ1) and π3 < π2 imply that V (ṽ2, π3) > V (ṽ1, π2). The cutoffs of buyers that
know their positions, {ṽt}∞t=1, thus, constitute a bounded strictly increasing
sequence that converges to v∗. The steady state with v∗ < v̄ is reached in the
limit as t→∞.

Now let v∗ = v̄. That is, in a steady state a buyer rejects an item with
positive probability even if that item’s common component has the highest
possible value. Denote by v̂(ũ) the v such that (1− δ)v̂(ũ) + δε̄ = ũ and by v̌(ũ)
the v such that (1− δ)v̌(ũ) + δε = ũ if such v̌(ũ) ≤ v̄ exists. Both v̂(ũ) and v̌(ũ)
increase in ũ.

Buyer 1 uses the cutoff ũ1 = u∗R because he knows that he faces only random
items so v̌(ũ1) = v∗R. For buyer 2, the platform again places the item bought
by buyer 1 as the the nonrandom candidate item for rank 1 because

E(u|v ≥ v̂(ũR)) > E(u).

As a result, essentially the same argument as above establishes that the buyers
cutoffs {ũt}∞t=1 constitutes a strictly increasing sequence. Thus, {v̌(ũt)}∞t=1 con-
stitutes a bounded strictly increasing sequence that converges to v∗ = v̄. The
steady state with v∗ = v̄ is reached in the limit as t→∞.
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