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Abstract

We study the development of apps on competing platforms. We first show

that, whenever an increase in the commission charged by a platform reduces

the number of apps present on another platform, competition leads platforms

to charge commission rates that exceed the level maximizing consumer surplus

(and, a fortiori, total welfare). We then study a simple setting in which a fraction

of developers can port their apps across platforms at no cost, and find that

platform competition then always leads to excessive commissions; furthermore,

as this fraction tends to one, commissions become so high that they deter any

app development.
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1 Introduction

The 30 percent commission charged by Apple’s App Store and Google’s Play Store has

prompted major disputes, such as the battle led by Epic Games,1 and triggered policy

initiatives around the world. For instance, to reduce the commissions paid by app

developers, in 2021 the South Korean parliament adopted in 2021 a bill banning major

app store operators—such as Google and Apple—from requiring developers to only

use the app stores’ payment systems. Later on, the Indian Competition Commission

issued a similar order.2 In 2022, the European Union adopted the Digital Markets Act,

which requires gatekeepers to apply fair, reasonable and non-discriminatory conditions

of access to app stores, among others.3

The main concern raised by this 30 percent commission charged by Apple and

Google is its impact on app development, well summarized by Brent Simmons, a Mac

and iOS app developer, in his testimony before the U.S. Congress:

“[T]he more money Apple takes from developers, the fewer resources developers

have. .... They decide not to make apps at all that they might have made were it

easier to be profitable.”4

In response, Apple and Google argue that platforms and consumers have a common

interest in attracting apps, and moreover point to the disciplining role of platform

competition. For instance, in its response to the investigation of the Dutch National

Competition Authority (NCA), Google argues:

“The level of the commission fee charged is used by app stores to compete with

each other, as a means to attract app providers on their platform.”5

Some regulators have however expressed doubt about the extent to which the

largest platforms are subject to competitive pressure, and emphasize instead the im-

portance of switching costs and behavioral biases among consumers.

To shed some light on this debate, we study a setting in which two-sided platforms

compete on prices for consumers and on ad valorem commission rates for apps. Con-

sumers single-home and benefit from the platform’s service and the available apps,

whereas app developers, who face heterogeneous innovation costs, may single- or mul-

tihome, and derive their revenue from consumers.

1In August 2020, Epic started encouraging mobile-app users of its Fortnite game to adopt Epic’s
payment option, offering a 20% discount from Apple’s or Google’s in-app purchase. In response,
Apple and Google removed Fortnite from their respective app stores, which led Epic to sue Apple
and Google, with the backing of Microsoft, Facebook, Spotify, Match Group and ten other companies.

2See https://cci.gov.in/images/pressrelease/en/pr-no-562022-231666698260.pdf.
3See Article 6.12.
4See Subcommittee (2020), at p. 350. In the same vein, see Greg Bensinger’s

article, “What Apple’s Fortnite Fee Battle Is Really About,” the New York Times,
https://www.nytimes.com/2020/09/24/opinion/apple-google-mobile-apps.html.

5Netherlands Authority for Consumers and Markets (2019), at p. 92.
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Our main finding is that platform competition may not be a cure but, rather, an

obstacle to app development. Specifically, competition generates higher commissions

than what would maximize consumer surplus whenever an increase in one platform’s

commission reduces the number of apps present on the rival platform. This, in turn,

is likely to be the case when apps multihome, as an increase in either commission then

reduces their overall profitability.

Our analysis highlights a key factor, namely, the importance of multihoming on

the app side: the greater the proportion of multihoming, the higher the commissions

and the more limited is the app development. In practice, successful apps indeed tend

to multihome; for instance, the U.K. NCA notes:

“Most large and popular third-party apps are present on both Apple’s iOS and

Google’s Android. For example, we have estimated that 85% of the top 5,000 apps on

the App Store also list on the Play Store and vice versa.”6

In a similar vein, the Dutch NCA finds that consumers’ initial choice between an

iPhone and an Android phone does not depend on the availability of apps, because all

popular and known apps are present in both smartphone platforms.7

Our analysis, along with the fact that most popular apps multihome, questions

the role of competition as a disciplining device and provides a rationale for policy

intervention. It suggests that platform competition is likely to generate excessively

high commissions, compared to the level that would maximize consumer surplus (and,

a fortiori, total welfare), leading to too little app development. Relatedly, platform

competition may incentivize platforms to inhibit the development of cross-platform

technology such as cloud gaming, which enables game developers to reach a larger

user base without having to port their apps on multiple operating systems. CMA

(2022) documents how Apple has used its control over app distribution to block the

emergence of cloud gaming apps on its App Store.8

Our results also shed light on the level of commissions observed in the Chinese app

store market. In that market, where Google Play Store is not available and Apple has

typically less than 10 percent market share, there is vivid competition among multiple

Chinese smartphone manufacturers, all based on the Android operating system. Yet,

the major Chinese manufacturers (e.g., Xiaomi, Oppo, Vivo, and Huawei), who own

their own app stores, charge a 50 percent commission to app developers.9 Hence, the

intense platform competition is associated with a commission that is even higher than

6CMA report (2022), at p. 121.
7See Netherlands Authority for Consumers and Markets (2019).
8See Appendix I of the CMA (2022) report.
9See for instance “China’s App Store Fee’s Make Apple’s Look Cheap” by Zheping Huang,

Bloomberg, 8 October, 2020, https://www.bloomberg.com/news/newsletters/2020-10-08/china-s-
app-store-fees-make-apple-s-look-cheap.
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the one charged by Google and Apple, which is consistent with our analysis: a larger

number of competing platforms further exacerbates the negative externalities gener-

ated by multihoming apps, which induces the platforms to charge higher commissions.

Throughout the paper we model competition between the platforms as follows.

In a first stage, platforms first set ad valorem commissions on the app side; app

developers, facing heterogeneous innovation costs, then decide which platform(s), if

any, to develop their apps for. In a second stage, first platforms set consumer prices

and, simultaneously, active developers set app prices; consumers then decide which

platform to join, if any, and which apps to buy. This timing, in which commissions

are set ahead of consumer and app prices, is consistent with Apple charging a 30%

commission since the launch of its App Store. Consumers are assumed to single-

home and observe their valuations for the available apps after joining a platform. The

distributions of valuations (for the platforms, and for each app) are ex ante symmetric;

platforms are thus symmetrically differentiated and, in equilibrium, all apps are offered

at the same price.

We first adopt a stylized approach in which the number of apps on a given platform

is a function of both platforms’ commissions. Competition for consumers is then

similar to standard Bertrand competition, with the caveat that each platform receives

a subsidy per consumer. This subsidy corresponds to the value—for the consumer and

the platform—generated by the consumers’ use of the apps, and therefore depends on

the portfolio of apps available on the platform. It follows that the commission charged

by a platform can affect its rival’s subsidy as well as its own.its rival.

We first note that the joint interest of the platforms is indeed aligned with that

of consumers, in that they both favor higher subsidies: raising the subsidies has a

direct positive impact on platforms’ profits, but also fosters competition for consumers,

leading the platforms to transfer part of the additional subsidies to consumers. As a

result, maximizing industry profit is the same as maximizing consumer surplus: it boils

down to maximizing the subsidies. By contrast, app developers favor lower commission

rates; hence, maximizing total welfare requires lower rates than those that maximize

consumer surplus or the platforms’ profits.

We then compare these benchmarks with the commission rates arising under plat-

form competition. Increasing the subsidy of a given platform benefits that platform, as

just noted, but also encourages it to compete more aggressively for consumers, which

tends to reduce the profit of its rival. Hence, when choosing its commission rate, each

platform has an incentive to increase its own subsidy but reduce its rival’s. In the

particular case in which one platform’s commission has no impact on the number of

apps available on the rival platform, it does not affect either the rival’s subsidy; each
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platform then focuses on maximizing its own subsidy, and the competitive outcome

thus maximizes consumer surplus as well as the platform’s joint profit. However, if

instead an increase in one commission reduces (resp., increases) the number of apps

present on the other platform—and, thus, the rival’s subsidy—, then the platforms

have an incentive to raise (resp., lower) their commissions above (resp., below) the

level maximizing their own subsidy—and, thus, consumer surplus.

To gain further insights, we then focus on a particular setting with horizontal dif-

ferentiation à la Hotelling on the consumer side and two types of developers on the app

side: multihomers can port their apps across platforms at no cost once they have devel-

oped their apps, whereas single-homers face platform-specific development costs. We

find that as long as there is a positive fraction of multihomers, platform competition

leads to a higher commission than what would maximize consumer surplus. Further-

more, as the fraction of single-homers tends to disappear, the commissions become so

high that there is almost no app development. The intuition is that a platform has

little incentive to encourage the development of apps when most of these apps become

also available on the competing platform. By contrast, a monopolistic firm running

both platforms would seek to encourage app development—and actually choose here

the commissions that maximize consumer surplus.

Related literature. Our framework builds on the model of competitive bottlenecks

developed by Armstrong (2006) and Armstrong and Wright (2007), by explicitly con-

sidering the innovation incentives of app developers. Belleflamme and Peitz (2010) ex-

tend Armstrong (2006)’s Hotelling model of platform competition and find that sellers

invest less than is socially desirable when sellers multihome and buyers single-home.

We emphasize instead that competition exacerbates this under-investment problem

and can even eliminate any app development. Choi and Jeon (2022) study platform

design in a model of competitive bottlenecks and identify the design biases (e.g., in

technology adoption) generated by different platform business models.

Etro (2022) studies a setup that coincides with our second model in the absence

of multihoming developers, and shows that platform competition leads to commission

rates that maximize consumer surplus. We find that the commissions are instead above

that level whenever there is a positive fraction of multihoming developers.10

Wright (2002) uses a model of competitive bottlenecks to study the market for

fixed-to-mobile calls. Mobile network operators (MNOs) compete to attract consumers

and charge fixed-to-mobile termination fees to a fixed-line network operator. If that

operator is constrained to charge the same price for all fixed-to-mobile calls, then the

10Specifically, what matters is not whether apps end up being available on both platforms or only
one, but whether developing the app for one platform affects the decision to develop it on the other
platform.
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MNOs set termination fees higher than the monopoly fee; in particular, if two MNOs

compete à la Hotelling, the termination fees are so high that there is no fixed-to-mobile

call, which is similar to our choke-off result. However, several differences can be noted.

First, mobile subscribers obtain no utility from fixed-to-mobile calls and are thus

insensitive to the level of the termination fees. By contrast, in our setting consumers

enjoy the applications and thus indirectly care about the commissions charged on the

app side as well as about the device prices on the consumer side. Second, the choke-off

of fixed-to-mobile calls stems from a non-discrimination rule imposed on the fixed-line

network, whereas in our setting, the choke-off of app development arises instead when

the fraction of single-homing apps goes to zero.11

Roadmap. We describe the general setting in Section 2. In Section 3, we adopt a

stylized approach to present our key insights. In Section 4, we illustrate them in the

context of a fully specified model and emphasize the role of multihoming on the app

side. We provide concluding remarks and policy implications in Section 5.

2 Setting

Two platforms (1 and 2) compete to attract (single-homing) consumers and (single-

or multihoming) apps. On the app side, each platform sets an ad valorem commission

rate; app developers, who face heterogeneous innovation costs, then decide whether to

develop an app and, if they do, which platform(s) to join, if any. On the consumer

side, each platform sets an access price; consumers then choose which platform to join,

if any. This setting corresponds for example to the two leading mobile OS platforms

(iOS and Android, with their app stores, App Store and Google Play), interpreting

consumer prices as the prices of the devices (iPhone or Android phone), and treating

for simplicity the Android platform as vertically integrated, like the iPhone platform.

We now present the model in more detail.

• Consumers. There is a continuum of consumers, each endowed with a stochastic

value v for each app, drawn (independently across consumers and apps) from a distri-

bution with c.d.f. G (·) over R+. A consumer’s expected demand for an app offered

at price p is therefore given by

d (p) ≡ 1−G (p) .

11In a previous version, we also found that a complete choke-off does not arise if platforms charge
wholesale prices instead of ad valorem commissions on the app side.
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Let

s (p) ≡
∫ +∞

p

d (p̂) dp̂

denote the associated surplus, and π(p) ≡ pd(p) the per consumer profit, which is

assumed to be maximal for some price pm.

Consumers have also intrinsic utilities u1 and u2 for the two platforms, and they

observe their valuations for the available apps only after joining a platform. Hence, if

platform i (= 1, 2) charges consumers a price pi and attracts yi apps, each offering an

expected surplus si, then joining the platform gives consumers a net payoff equal to

ui + siyi − pi = ui − Pi,

where

Pi ≡ pi − siyi

denotes platform i’s “quality-adjusted” price. We assume that consumers’ intrinsic

valuations for the two platforms are distributed in such a way that the demand for

platform i is given by

D (Pi, Pj) ,

which features (imperfect) substitution: ∂1D(·) ≤ −∂2D(·) < 0.

• Developers. Apps being digital goods, the only costs that developers incur are

fixed innovation costs, which vary across developers and possibly across platforms.

Specifically, each developer faces three innovation costs: ki ≥ 0 for developing its

app on platform i, for i = 1, 2, and k for developing it on both platforms. The costs

k = (k1, k2, k) are independently and identically drawn from a joint distribution F̂ (k),

which is symmetric in k1 and k2. If platform i charges an ad valorem commission ai

and attracts xi consumers, then offering the app on platform i at price p̃i gives the

developer a payoff equal to

(1− ai)π(p̃i)xi − ki,

whereas the payoff from joining both platforms is given by:

(1− a1) π(p̃1)x1 + (1− a2) π(p̃2)x2 − k.

• Platforms. For the sake of exposition, we set the cost of servicing consumers to zero.

Hence, if each platform i charges a commission rate ai and a consumer price pi, and

attracts yi developers generating an average profit πi and consumer surplus si, then
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platform i obtains a payoff given by, for i 6= j ∈ {1, 2}:

(pi + aiπiyi)D (pi − siyi, pj − sjyj) .

• Timing. The timing is as follows:

1. Competition for apps :

(a) each platform i = 1, 2 sets its ad valorem commission rate ai ∈ [0, 1];

(b) each app developer draws its innovation costs (k1, k2, k) and makes its in-

vestment decision;

(c) those developers who invested develop their apps and then decide which

platform(s) to join, if any.

2. Competition for consumers :

(a) each platform i = 1, 2 sets its price pi ∈ R+ and each developer sets, for

each platform it joined, the price at which consumers can buy its app on

that platform;

(b) each consumer then decides which platform to join, if any; upon joining a

platform, each consumer learns her valuations for every available app and

decides which apps to buy.

At each stage, decisions are simultaneous and publicly observed; hence, each stage

determines a proper subgame. We will therefore look for the subgame-perfect equilibria

of this game.

As is well-known, multi-sided markets are subject to network effects, which makes

them prone to tipping; as a result, competition—even between equally efficient firms—

may lead to monopolization. We highlight here another potential source of market

failure, namely, that competition may lead to too little app development. For the sake

of exposition, we will therefore ignore the possibility of tipping and focus instead on

shared-market, symmetric equilibria, in which the two platforms eventually attract the

same number of users on both sides of the market.

3 A stylized approach

We first adopt a stylized approach and assume that, once the commission rates have

been set (in stage 1a), there exists a well-behaved continuation equilibrium in the key

next stages, namely, the app development stage 1b and the platform pricing stage 2a.
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Using backward induction, we first consider the second stage of the game. In

stage 2b, consumers’ participation decisions determine the demand D (Pi, Pj) described

above. In stage 2a, all developers charge the same price pm—regardless of the commis-

sion rates a1 and a2, and of the expected number of consumers joining the platforms;12

each developer present on a platform thus generates a profit πm ≡ π(pm) per con-

sumer, and each consumer obtains a surplus sm ≡ s(pm) per app. For each platform

i, choosing a price pi thus amounts to choosing a quality-adjusted price Pi = pi− smyi
and the resulting profit, given by (1), can be expressed as:

Πi = Π (Pi, Pj;σi) ≡ (Pi + σi)D (Pi, Pj) ,

where

σi ≡ (sm + aiπ
m) yi.

It follows that, given the commission rates (a1, a2) and the number of apps (y1, y2)

developed in stage 1, in stage 2a the continuation subgame amounts to a classic price

competition game, in which each platform i chooses its quality-adjusted price Pi and

faces the demand D (Pi, Pj), with the caveat that it benefits from a subsidy σi. In line

with our stylized approach, we will suppose that, for any given subsidies σ1 and σ2,

this game has a unique price equilibrium, in which platform i’s price is given by

Pi = P e (σi, σj) .

Let

Πe (σi, σj) ≡ Π (P e (σi, σj) , P
e (σj, σi) ;σi) (1)

denote platform i’s equilibrium profit. Intuitively, an increase in σi should benefit

platform i, but also induce it to price more aggressively (i.e., charge a lower quality-

adjusted price), thus harming the rival. We will therefore maintain the following as-

sumptions, namely:

Assumption 1 (prices and profits). For any σ ∈ R+:

(a) ∂1P
e (σ, σ) < ∂2P

e (σ, σ) < 0;

(b) ∂1Π
e (σ, σ) + ∂2Π

e (σ, σ) ≥ 0 and ∂1Π
e (σ, σ) > ∂2Π

e (σ, σ).

Part (a) asserts that increasing a uniform subsidy reduces quality-adjusted prices.

Part (b) asserts that such an increase can only improve profit, and that a unilateral

12In the boundary case where ai = 1, developers obtain zero profit and are thus indifferent about
joining and pricing decisions; for the sake of exposition, we assume that they still join platform i and
charge pm.
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increase in one platform’s subsidy has a more beneficial impact on that platform than

on its rival.13

• Competition for apps. In stage 1c, every app joins any platform for which it was

developed. In stage 1b, given the commission rates (a1, a2) set in stage 1a, developers

base their innovation decisions on expected consumer participation in the two plat-

forms, which in turn depends on app development, and thus on the commission rates

a1 and a2. Sticking to our stylized approach, we will assume that the joint distribution

F (k) of the development costs k generates a unique app development equilibrium, in

which the number of apps developed on platform i is given by

y∗ (ai, aj) ,

which satisfies

y∗ (0, 0) > 0 = y∗ (1, 1) .

The resulting expected subsidy for platform i is then given by

σi = σ∗ (ai, aj) ≡ (sm + aiπ
m) y∗ (ai, aj) , (2)

and thus satisfies:

∂2σ
∗ (ai, aj) = (sm + aiπ

m) ∂2y
∗ (ai, aj) . (3)

As long as sm + aiπ
m,14 the sign of ∂2σ

∗ is thus the same as the sign of ∂2y
∗: an

increase in the rival’s commission rate aj reduces platform i’s subsidy if and only if it

reduces the number of apps developed on that platform.

Summing up, our stylized approach postulates the existence of a price function

P e (σ1, σ2) (with associated profit Πe (σ1, σ2) given by (1)) satisfying Assumption 1

and of an app supply function y∗ (ai, aj), such that, for any given commission rates

(a1, a2), there is a unique continuation equilibrium, in which:

• the number of apps developed on platform i is given by yi = y∗ (ai, aj) (with

associated subsidy σi = σ∗ (ai, aj) given by (2));

• platform i charges consumers a quality-adjusted price

Pi = P ∗ (ai, aj) ≡ P e (σ∗ (ai, aj) , σ
∗ (aj, ai)) .

13The second condition in Assumption 1b is automatically satisfied if the rival is harmed (in which
case ∂1Πe (σ, σ) > 0 > ∂2Πe (σ, σ)).

14As we will see, this is indeed the case for the commission rates that maximize consumer surplus
– see Lemma 1.
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The number of consumers joining platform i is therefore given by

xi = D∗ (ai, aj) ≡ D (P ∗ (ai, aj) , P
∗ (aj, ai)) ,

and platform i’s profit is

Πi = Π∗ (ai, aj) ≡ Πe (σ∗ (ai, aj) , σ
∗ (aj, ai)) . (4)

We now show that platform competition can lead to commission rates exceeding

those that would maximize consumer surplus or total welfare.

3.1 Benchmarks

We first characterize the optimal commission rate a that a regulator would seek to

impose in stage 1a,15 assuming that the platforms, developers and consumers subse-

quently take their decisions according to the timing described above. We will denote

by

y (a) ≡ y∗ (a, a) and σ̂ (a) ≡ σ∗ (a, a) = (sm + aπm) y (a)

the equilibrium number of apps on each platform and the associated subsidy, and by

P̂ (a) ≡ P e (σ̂ (a) , σ̂ (a)) and D̂ (a) ≡ 2D
(
P̂ (a) , P̂ (a)

)
the resulting quality-adjusted price and demand.

We distinguish two cases, depending on whether the regulator focuses on consumer

surplus or total welfare.

3.1.1 Consumer surplus

Suppose first that the regulator sets the commission rate a so as to maximize consumer

surplus, and let aS denote the optimal rate. Consumer surplus can be expressed as:16

Ŝ (a) ≡
∫ +∞

P̂ (a)

2D (P, P ) dP. (5)

Maximizing Ŝ (a) amounts to minimizing the quality-adjusted price P̂ (a), which, from

Assumption 1a, amounts in turn to maximizing the subsidy σ̂ (a). It follows from

15For the sake of exposition, we focus on symmetric rates (i.e., a1 = a2). Given the symmetry of
the setting, it is natural to do so; moreover, the regulator may be constrained by non-discrimination
provisions. That the continuation equilibrium is unique implies that it is also symmetric.

16For a uniform price P1 = P2 = P , total demand is 2D (P, P ) = 1 − G̃(P ), where G̃ (ũ) denotes
the distribution of the maximal intrinsic value ũ ≡ max {u1, u2}, and consumer surplus is given by

S̃ (P ) =
∫ +∞
P

(ũ− P ) dG̃ (ũ), which satisfies S̃′(P ) = −[1− G̃(P )] = −2D(P, P ).
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Assumption 1b that it also maximizes the profit of the platforms, given by

Π̂P (a) ≡ 2Πe (σ̂ (a) , σ̂ (a)) . (6)

Building on this leads to:

Lemma 1 The commission rate that maximizes consumer surplus, aS, also maximizes

the platforms’ subsidy, σ̂ (a), as well as their profit, Π̂P (a); it moreover satisfies:

sm + aSπm = πm y
(
aS
)

−y′ (aS)
> 0. (7)

Proof. See Appendix A.

The interest of the platforms is therefore aligned with that of consumers: they both

want to maximize the subsidy σ̂ (a), as doing so maximizes the profit of the platforms

and minimizes the quality-adjusted prices. For the sake of exposition, in what follows

we will assume that aS is uniquely characterized by (7).17

3.1.2 Total welfare

Suppose now that the regulator seeks to maximize total welfare, given by

Ŵ (a) ≡ Ŝ (a) + Π̂P (a) + Π̂D (a) , (8)

where the consumer surplus Ŝ (a) and the platforms’ profit Π̂P (a) are respectively

given by (5) and (6), and the profit of the developers can be expressed as:

Π̂D (a) ≡
∫
R3
+

πD (r̂ (a) ,k) dF (k) , (9)

where

r̂ (a) ≡ (1− a) πmD̂ (a)

denotes the revenue that a developer can obtain by joining both platforms, and

πD (r,k) ≡ max
{

0,
r

2
− k1,

r

2
− k2, r − k

}
denotes the equilibrium profit of a developer with cost realization k = (k1, k2, k3). As

noted above, the commission rate aS, which maximizes the subsidy σ̂ (a), maximizes

Ŝ (a) and Π̂P (a) as well. Developers would instead favor lower rates, so as to boost

17In case of multiple solutions, Lemma 2 holds for any of them, including the lowest one.
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their revenue, r̂ (a). It follows that the welfare-maximizing commission rate, which we

will denote by aW , lies below aS:18

Lemma 2 (total welfare) The commission rate that maximizes total welfare, aW ,

is such that aW < aS, and it satisfies:

sm + aWπm =
P̂
(
aW
)

+ (sm + πm)y(aW )

−y′ (aW )

D̂′
(
aW
)

D̂ (aW )
. (10)

Proof. See Appendix B.

3.2 Platform competition

We now show that competition between the platforms can lead to excessively high

commission rates. To this end, we complete our stylized approach by assuming that,

in stage 1a, the commission-setting game with payoffs Π∗ (ai, aj) (given by (4)) is

“well-behaved”, namely:

Assumption 2 (commission-setting game):

(a) Π∗ (a1, a2) is strictly quasi-concave in its first argument;

(b) R (a) ≡ arg maxã Π∗ (ã, a) is differentiable and has a unique fixed point, aC ,

which satisfies
∣∣R′ (aC)∣∣ < 1.

Part (a) ensures that the platforms have a unique best-response, R (·); part (b)

ensures in turn that there exists a unique, locally stable equilibrium, in which a1 =

a2 = aC . Our first proposition shows that the comparison between this equilibrium

commission rate and what would maximize consumer surplus hinges on a simple con-

dition:

Proposition 1 (platform competition) Platform competition yields higher (resp.,

lower) commissions than those maximizing consumer surplus whenever raising one

commission reduces (resp., increases) the number of apps available on the rival plat-

form. Formally, aC T aS if and only if ∂2y
∗ (aS, aS) S 0.

18The commission rates may also affect developers’ revenue, r̂(a) = (1 − a)πmD̂(a), through the
consumer participation D̂(a); departing from aS reduces the platforms’ subsidies, which curbs the
competition for consumers and depresses total participation whenever it is elastic. This additional
effect further calls against raising a above aS ; by contrast, a slight reduction below aS has only a
second-order negative effect on subsidies and consumer participation, which is thus dominated by the
direct positive impact on the developers’ revenue.
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Proof. See Appendix C.

Whether competition yields higher or lower commission rates than those maximiz-

ing consumer surplus thus simply depends on whether app development on the two

platforms entails complementarity or substitutability. In case of complementarity, that

is, if raising one commission reduces the number of apps present on the rival platform,

competition generates higher rates than what would maximize consumer surplus—and

welfare, as aS > aW . In case of substitutability, that is, if raising one commission fosters

app development on the rival platform, competition generates lower rates than those

maximizing consumer surplus—they may however still exceed those maximizing total

welfare.

As the commission rate aS maximizes both consumer surplus, Ŝ (a), and platforms’

profits, Π̂P (a), Proposition 1 shows that, as long as a platform’s commission does not

affect app development on the rival platform, competition induces each platform to

maximize the sum of its profit and of the surplus of single-homing agents, as shown by

Armstrong (2006, Proposition 4) for the case of competitive bottlenecks. However, this

no longer holds when the commission charged by one platform exerts an externality

on the apps available on the rival platform.

Remark 1 (robustness to pass-through) It is easy to see that the result of the

proposition is robust to introducing a positive marginal cost for apps such that devel-

opers pass through a higher commission rate into a higher app price. Introducing a

positive marginal cost affects the subsidy of platform i, σi ≡ (sm + aiπ
m) yi, by making

the consumer surplus sm and the developer profit πm depend on the platform’s com-

mission ai. However, platform i’s commission affects the rival’s subsidy only through

its number of apps. Therefore, introducing a positive marginal cost affects neither the

result that aS maximizes both consumer surplus Ŝ (a) and the platforms’ profits Π̂P (a)

nor the result that aC T aS if and only if ∂2y
∗ (aS, aS) S 0.

3.3 Discussion

The above analysis highlights a key factor, namely, the effect that a commission has

on the number of apps available on the rival platform.19 To assess this effect, suppose

that, starting from a1 = a2 = aS, platform 1 slightly raises its commission by da1 > 0.

Initially, each platform attracts xS ≡ D̂
(
aS
)

consumers, offers developers a revenue

equal to rS ≡ r̂
(
aS
)

=
(
1− aS

)
πmxS, and as a result attracts yS ≡ y

(
aS
)

apps.

19Within our stylized model, the consumer value generated by a platform’s app base only depends
on the number of available apps. More generally, we would expect the quality and diversity of apps
to matter as well, both within and across app categories.
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Raising a1 can affect app development in two ways: directly, by reducing the revenue

offered by platform 1, and indirectly, by altering consumer participation. However, as

shown in Appendix D, the latter effect tends to reinforce the former.20 We thus focus

here on the direct impact, assuming that each platform keeps attracting xS consumers.

Initially, a developer facing innovation costs k = (k1,k2, k) obtains a net payoff equal

to rS−ki if it develops its app specifically for platform i = 1, 2, and 2rS−k if it develops

it for both platforms; it therefore multihomes if 2rS − k > max
{
rS − k1, rS − k2, 0

}
,

single-homes on platform i if rS−ki > max
{

2rS − k, rS − kj, 0
}

, and otherwise refrains

from developing the app. Raising a1 reduces the revenue offered by platform 1 by

dr1 ≡ πmxSda1, and has no direct impact on the revenue offered by platform 2; it

therefore reduces the payoff from multihoming and single-homing on platform 1 by

dr1, and leaves unchanged the revenue from single-homing on platform 2. Hence, it

cannot affect developers’ choice between multihoming and single-homing on platform 1,

but may discourage multihoming and/or induce a switch to single-homing on platform

2. Specifically:

• If the developer initially multihomes (which occurs if k < rS + min
{
k1, k2, r

S
}

),

then either: (i) it keeps doing so (namely, if k < rS+min
{
k1, k2 − dr1, rS − dr1

}
)

or focuses on platform 2 (if k2 < min
{
k + dr1 − rS, k1 + dr1, r

S
}

), in which case

there is no impact on y2; or (ii) it stops developing entirely (if min{k1 + dr1, k2,

(k + dr1) /2} > rS), in which case there is a negative impact on y2.

• If instead the developer initially single-homes on platform 2 (which occurs if

k2 < min
{
k1, r

S, k − rS
}

), then it keeps doing so (as its revenue is unchanged,

and the revenues from multihoming or switching to platform 1 are reduced by

dr1); hence, there is no impact on y2.

• Finally, if the developer initially single-homes on platform 1 (which occurs if k1 <

min
{
k2, r

S, k − rS
}

), then either: (i) it keeps doing so (if k1 < min
{
k2, r

S
}
−

dr1), in which case there is again no impact on y2; or (ii) it switches to platform

2 (if k2 < min
{
k1 + dr1, r

S
}

), in which case there is a positive impact on y2.

Summing up, raising platform 1’s commission can have two conflicting effects on

the app base of its rival: it may reduce y2 by discouraging multihomers from developing

their apps altogether, and may instead increase y2 by inducing single-homers to switch

20The intuition is as follows. Suppose for example that raising a1 has a negative direct impact on
y2 (i.e., dy2 < 0). This reduces σ2 by dσ2 = (sm + aSπm)dy2 and increases σ1 by dσ1 = −dσ2 (as
by construction, starting from a1 = a2 = aS , dσ1 + dσ2 = 0), which in turn induces platform 2 to
increase its price, and platform 1 to lower its own price. As a result, consumer participation decreases
on platform 2, and increases on platform 1, which further incentivizes some app developers to switch
from platform 2 to platform 1.
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from from platform 1 to platform 2. Hence, the overall net impact depends on the

relative importance of multihoming versus single-homing apps. As already noted, in

practice most popular apps are multihoming, which suggests that the negative effect

is likely to prevail.

Remark 2 (scale economies) It is worth noting that discouraging a multihoming

developer requires k < rS + k1 (to induce multihoming for a1 = aS) and rS < k2 (to

rule out single-homing on platform 2 for a1 > aS), which together implies:

k < k1 + k2.

That is, the app development must in this case entail economies of scale. By contrast,

inducing a single-homing developer to switch from platform 1 to platform 2 requires

k > k1 + rS (to prevent multihoming) and rS > k2 (to ensure that single-homing on

platform 2 is profitable), which together implies:

k > k1 + k2.

That is, the app development must in that case entail diseconomies of scale.21

4 Illustration

We now illustrate the above insights using a classic horizontal differentiation setting on

the consumer side, and specialized developers—in terms of single- or multihoming—on

the app side.

• Consumers. The two platforms are located at the two ends of a unit-length Hotelling

segment, along which consumers are uniformly distributed. Upon joining a platform,

a consumer obtains an intrinsic utility u0 > 0 and faces a transportation cost t > 0

per unit of distance. As in Armstrong (1998) and Laffont, Rey and Tirole (1998a,b),

u0 is supposed to be large enough to ensure that all consumers join a platform (full

participation). Consumers know their locations before joining a platform and, from

the above, anticipate an expected surplus sm from each app present on the platform.

Hence, if platform i charges consumers a price pi and attracts yi apps, joining that

platform gives a consumer located at distance xi a net payoff equal to:

u0 + smyi − pi − tx.
21In practice, apps are often developed for one platform and then ported on the other platforms, at

a cost that is presumably lower than the initial development cost; we would thus expect some scale
economies. The portability decision is taken later on, and typically depends on the success of the
app; we explore the implications in Section 4.3.
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The consumer indifferent between the two platforms is located at a distance x from

platform i (and, thus a distance 1− x from platform j, for i 6= j ∈ {1, 2}) equal to:

1

2
+
sm(yi − yj)− (pi − pj)

2t
.

Using the quality-adjusted price Pi = pi− smyi, the demand for platform i is therefore

given by:

D (Pi, Pj) =
1

2
− Pi − Pj

2t
.

As before, its profit is equal to Πi = (Pi + σi)D (Pi, Pj), where σi = (sm + aiπ
m) yi.

In stage 2, the platforms compete à la Hotelling with a marginal cost equal to −σi,

which leads to:

Lemma 3 (Hotelling competition) In stage 2, for any given subsidies (σ1, σ2),

competition for consumers leads to P e (σi, σj) = PH (σi, σj) and Πe (σi, σj) = ΠH (σi, σj),

where

PH (σi, σj) ≡ t− 2σi + σj

3
and ΠH (σi, σj) ≡

1

2t

(
t+

σi − σj

3

)2

.

Proof. See Appendix E.

It is straightforward to check that Assumption 1 is satisfied.22

• Developers. Some apps multihome whereas others single-home. To capture this in a

simple way, we distinguish two types of app developers: a mass α ∈ (0, 1) of multihom-

ing developers and a mass 1 − α of single-homing developers for each platform—the

maximal number of apps per platform is thus equal to 1.

Specifically, the multihoming developers can make their apps available on both

platforms at cost k, drawn from a distribution with c.d.f. H(·) and density h(·) > 0

over [0,∞).23 The developers single-homing on platform i can instead develop their

app at cost ki, drawn from a distribution with c.d.f. F (·) and density f(·) > 0 over

[0,∞).

Remark 3 (interpretation) This cost distribution is a particular case of the joint

distribution F̂ (k) introduced in Section 2, in which multihomers benefit from substan-

tial scale economies (i.e., k � k1 + k2), and single-homers face instead substantially

lower costs for a given platform (i.e., ki � k, kj). Alternatively, treating a “pair” of

22We have ∂1P
e(·) = 2∂2P

e(·) = −2/3 and ∂1Πe(σ, σ) = −∂2Πe(σ, σ) = 1/3, and so ∂1P
e(·) +

∂2P
e(·) < 0, ∂1Πe(σ, σ) + ∂2Πe(σ, σ) = 0 and ∂1Πe(σ, σ) > (0 >)∂2Πe(σ, σ).

23Introducing a small cost of porting these apps from one platform to the other would not qualita-
tively affect the analysis.
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single-homers dedicated to the two platforms as a single developer, this setting can be

interpreted as featuring substantial scale economies for a fraction α of developers, and

neither scale economies nor diseconomies (i.e., k = k1 + k2) for the other developers,

who moreover face independently and symmetrically drawn platform-specific develop-

ment costs. With the latter interpretation, the case α = 0 corresponds to the model of

Etro (2022).

We will denote by ỹ the number of multihoming apps, by ŷi the number of apps single-

homing on platform i = 1, 2, and by yi ≡ ỹ + ŷi the total number of apps present on

platform i.

To ensure the existence of a well-behaved equilibrium under competition, we will

maintain the following assumption:

Assumption 3: The density functions are non-increasing: h′(·) ≤ 0 and f ′(·) ≤ 0.

4.1 Benchmarks

If both platforms charge the same commission rate a, in the symmetric continuation

equilibrium a developer can obtain r (a) = (1− a) πm when multihoming, and r (a) /2

when single-homing; hence, there are y (a) = ŷ(a) + ỹ(a) apps available on each plat-

form, where

ỹ(a) ≡ αH ((1− a) πm) (11)

is the number of multihoming apps, and

ŷ(a) ≡ (1− α)F

(
(1− a)πm

2

)
(12)

is the number of single-homing apps. The resulting subsidy is

σ̂ (a) ≡ (sm + aπm) y (a) ,

leading to the (quality-adjusted) price and profit:

P̂ (a) ≡ PH (σ̂ (a) , σ̂ (a)) = t− σ̂ (a)

and

Π̂ ≡ ΠH (σ̂ (a) , σ̂ (a)) =
t

2
.

Note that there is full pass-through: competition induces the platforms to pass on their

entire app revenue to consumers; as a result, the platforms’ profit does not depend on

the commission rate.
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As total consumer demand is inelastic (namely, D̂ (a) = 1), it follows from Lemma

2 that the welfare-maximizing commission rate aW nullifies the subsidy: the first-order

condition (10) boils down to sm + aWπm = 0, implying σ̂
(
aW
)

= 0. It follows that

aW = −sm/πm; regardless of the proportion of multihoming, parameterized here by α,

the social planner subsidizes the developers so as to align their profit per consumer,

(1− aW )πm, with the total surplus generated by their apps, sm + πm.

By contrast, the commission rate that maximizes consumer surplus, characterized

by the first-order condition (7), may depend on α but always generates a positive

subsidy.24 Summing up, we have:

aW = − s
m

πm
< aS (α) < 1 and σ̂

(
aW
)

= 0 < σ̂
(
aS (α)

)
.

Example: uniform distribution. When development costs are uniformly distributed

over [0, 1] (i.e., F (k) = H(k) = k), the commission rate that maximizes consumer

surplus is independent from α and equal to:

aS =
πm − sm

2πm
(∈ (aW ,

1

2
)). (13)

Hence, aS ≶ 0 if and only if sm ≷ πm.

Remark 4 (monopoly profit) We have already noted that the commission rate aS

maximizes the profit of the platforms when they compete for consumers. Interestingly,

in the Hotelling setting, a = aS also maximizes the monopoly profit that an integrated

firm, operating both platforms, could obtain when exploiting consumers. This is because

total demand is here inelastic, and therefore the same under competition and monopoly

(as long as full participation remains optimal). It follows that the number of apps gen-

erated by a commission a is also the same in both situations; and as a monopolist can

appropriate the consumer value generated by the apps, it finds it optimal to maximize

σ̂ (a).25

4.2 Platform competition

We now show that competition between the platforms leads indeed to excessively

high commission rates. As in Section 3, for any given commission rates (a1, a2) set

in stage 1a, let y∗(ai, aj) denote the total number of apps available on platform i in

24See Appendix F.
25Given the unit demand and the absence of operating costs, the monopoly profit, which corresponds

to the sum of the monopoly price on the consumer side and the platforms’ revenue from apps, is equal
to u0 − t/2 + σ̂ (a), and is thus maximal for aS .
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the continuation equilibrium, and σ∗(ai, aj) denote the resulting expected subsidy for

platform i, given by (2). Building on Lemma 3, platform i’s expected demand satisfies

D∗ (ai, aj) =
1

2
+

∆∗ (ai, aj)

6t
, (14)

where ∆∗ (ai, aj) ≡ σ∗ (ai, aj)−σ∗ (aj, ai) denotes platform i’s subsidy advantage. Fur-

thermore, the number of single-homing apps on platform i is given by

ŷ∗ (ai, aj) = (1− α)F (ρ̂∗ (ai, aj)) , (15)

whereas the number of multihoming apps is equal to

ỹ∗ (a1, a2) = αH (ρ̂∗ (a1, a2) + ρ̂∗ (a2, a1)) , (16)

where ρ̂∗ (ai, aj) denotes the revenue from joining platform i, which satisfies

ρ̂∗ (ai, aj) = (1− ai) πmD∗ (ai, aj) . (17)

Finally, the subsidy advantage can be expressed as

∆∗ (ai, aj) = sm [ŷ∗ (ai, aj)− ŷ∗ (aj, ai)] + πm [aiy
∗ (ai, aj)− ajy∗ (aj, ai)] (18)

Together, equations (14) to (18) jointly characterize the continuation equilibrium.26

From Lemma 3, the continuation equilibrium profit of a platform increases with

its subsidy advantage; hence, in stage 1a, each platform i sets ai so as to maximize

∆∗ (ai, aj). Building on this, the following proposition establishes the existence of a

unique equilibrium and highlights its key features.

Proposition 2 (illustration) For t large enough, there exists a unique equilibrium,

which is symmetric. Furthermore, whenever a symmetric equilibrium exists, it is

unique and the equilibrium commission rate, aC (α), is strictly increasing in α and

such that:

(i) aC (0) = aS (0);

(ii) aC (α) > aS (α) for α > 0;

(iii) aC (1) = 1.

26In particular, y∗(ai, aj) = ŷ∗(ai, aj) + ỹ∗(ai, aj); in addition, ŷ∗(a, a) = ŷ(a) and ỹ∗(a, a) = ỹ(a),
where ŷ (a) and ỹ (a) are respectively given by (12) and (11), y∗(a, a) = y(a) = ŷ(a) + ỹ(a) and
σ∗ (a, a) = σ̂ (a) = (sm + aπm) y (a).
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Proof. See Appendix G.

In the absence of multihoming (i.e., for α = 0), as in Etro (2022), competition

induces the platforms to adopt the commission rates that maximize consumer surplus.

This is because the subsidy of rival platform j is then

σj = (sm + ajπ
m)ŷ∗ (aj, ai) ,

where, from (17) and (15), the number of apps ŷ∗ (aj, ai) of apps developed on the

rival platform depends only on its own rate aj and on its expected demand, D∗j (aj, ai),

which, from (14), only depends on platform j’s subsidy advantage ∆∗ (aj, ai). However,

by construction, in a symmetric equilibrium in which each platform maximizes its

subsidy advantage, a small deviation in ai has no first-order impact on ∆∗ (aj, ai)—and,

thus, on ŷ∗ (aj, ai).
27 It follows that, when contemplating a deviation in ai, platform i

takes as given the rival’s subsidy, and so maximizing its subsidy advantage boils down

to maximizing its own subsidy σ∗ (ai, aj), leading in equilibrium to a1 = a2 = aS.

This no longer holds in the presence of multihoming types. The rival’s subsidy is

then

σj = (sm + ajπ
m) [ŷ∗ (aj, ai) + ỹ∗ (aj, ai)] ,

where the number of multihoming apps, ỹ∗ (aj, ai), depends not only on the rival’s

rate aj and on its expected demand Dj, but is also directly affected by platform

i’s own commission rate. Each platform then has an additional incentive to raise its

commission rate, as reducing the number of these apps decreases its rival’s subsidy—

all the more so when α is large.28 In particular, when all developers multihome (i.e.,

α = 1), platforms’ incentives lead them to choke off entirely the development of

(multihoming) apps: aC (1) = 1, leading to y1 = y2 = 0—indeed, in that case, there

cannot be any symmetric or asymmetric equilibrium without choke-off.29 Interestingly,

there is no longer a complete choke-off when platforms compete in wholesale prices

or per-unit fees rather than commissions; this is because the former generate double-

27By construction, ∆∗ (aj , ai) = −∆∗ (ai, aj); hence, in a symmetric equilibrium in which each
platform j maximizes its subsidy advantage ∆∗ (aj , ai), we have ∂1∆∗ (a, a) = ∂2∆∗ (a, a) = 0.

28Evaluated at a symmetric equilibrium in which each platform maximizes its subsidy advantage
(implying, as noted above, that a small change in ai has no direct effect on market shares), the impact
of a marginal increase in ai on the number of multihoming apps is given by

∂ỹ∗ (a1, a2)

∂ai

∣∣∣∣
a1=a2=aC

= −α
2
πmh (ρ̃∗ (a, a)) ,

the absolute value of which increases with α.
29To see this, it suffices to note that platform i’s advantage becomes ∆∗ (ai, aj) =

(ai − aj) ỹ (a1, a2)πm. It follows that, starting from ai < aj , say, platform i would have an incentive
to match its rival’s subsidy; and starting from a1 = a2 = a, both platforms would have an incentive
to raise their rates as long as their remains some app development, as ∂1∆∗ (a, a) = ỹ (a, a)πm.
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marginalization problems, which in turn act as a disciplining device.30

Recall that the commission rate that maximizes consumer surplus is always higher

than the welfare-maximizing level; thus, for α = 0 we have:

aC(0) = aS(0) > aW ,

and for any α > 0, we have:

aC (α) > aS (α) > aW .

The following example illustrates these insights.

Example: uniform distribution. When development costs are uniformly distributed

over [0, 1] (i.e., F (k) = H(k) = k), under competition the commission rate is equal to:

aC(α) =
(1 + α)πm − (1− α)sm

2πm
,

which strictly increases from aS(0) to 1 as α increases from 0 to 1. Furthermore, the

total number of apps on each platform is given by

y(aC(α)) =
1− α2

4
(πm + sm),

which strictly decreases to 0 as α increases. By contrast, as the commission rate

that maximizes consumer surplus is independent of α (see (13)), the resulting number

of apps, y(aS), increases with α. Figure 1 presents the values of interest for the

commission rate for the case πm = 2sm. Figure 2 presents the corresponding number

of apps.

These findings support neither the positions of Apple and Google nor the opposing

views of competition authorities such as the CMA in the policy debate surrounding the

commission rates charged by the app stores.31 The two platforms argue that competi-

tion acts as a disciplining device, which prevents commission rates from being exces-

30Llobet and Padilla (2016) consider a setting in which upstream firms license their patents to
a downstream firm. They compare ad valorem royalties with per-unit royalties and show that the
former bring two welfare benefits. First, ad valorem royalties makes double marginalization less
severe, not only between the downstream firm and its partners but also among upstream firms (the
so-called royalty stacking problem), which leads to lower prices. This, in turn, gives all firms greater
incentives to invest in complementary technologies. In our paper, ad valorem rates actually eliminate
double marginalization entirely, because applications are digital goods with zero marginal costs.
Interestingly, it is exactly this absence of double marginalization which harms consumers by choking
off app development, thereby overturning the welfare comparison between ad valorem rates and
wholesale prices.

31We thank Jorge Padilla for this comment.
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Figure 1: Commissions for a uniform distribution (F (k) = H(k) = k and πm = 2sm)
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Figure 2: Number of apps for a uniform distribution (F (k) = H(k) = k and πm = 2sm)

sive.32 The CMA (2022) argues instead that, in practice, there is little competition.33

Our analysis suggests instead that competition may actually create or exacerbate the

32For instance, Apple argued the 30 percent commission was determined in competitive conditions
in 2008 and has not increased since then (CMA, 2022, p. 133). See also the responses of Apple and
Google to the interim report of the CMA.

33“Overall, we consider that the lack of competition faced by the App Store and Play Store allows
them to charge above a competitive rate of commission to app developers.” (CMA, 2022, p.138)
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problem.

4.3 Sequential development decisions

In practice, investing in app development is a risky venture, as the success of an

app is uncertain. To mitigate this risk, developers initially develop their app for a

given platform, and then port their app onto alternative platforms if it is sufficiently

successful. We thus explore here a variant that accounts both for the uncertain nature

of app success, and for the sequentiality of the development and porting decisions.

Specifically, we suppose that an app is successful with probability λ ∈ (0, 1). If

successful, it generates a revenue of ri on platform i, otherwise it generates a revenue

ηri, where η ∈ [0, 1) is the fraction of consumers with a demand for the app. The

success of an app is idiosyncratic and independent of the platform on which it is

initially developed.34 Let ki denote the cost of developing an app for platform i = 1, 2,

and δ denote the cost of porting an app to the other platform, which for the sake of

exposition is set to be the same across developers and platforms. We assume that the

development costs k1 and k2 are independently drawn from the same distribution with

c.d.f. F (·) and density f (·), and that the porting cost δ always satisfies, for i = 1, 2:

δ ∈ (ηri, ri) .

It follows that a developer ports its app if and only if it is successful.

If a developer facing development costs (k1, k2) develops an app for platform i and

then ports it to platform j if successful, its profit is given by

λ(r1 + r2 − δ) + (1− λ)ηri − ki = Ri − ki,

where Ri ≡ λ(r1 + r2 − δ) + (1 − λ)ηri. A developer thus chooses to develop its app

for platform i if and only if:

Ri − ki ≥ max {Rj − kj, 0} .

To assess the impact of a platform’s commission on its rival’s app base, suppose

that, starting from the equilibrium commissions (i.e., a1 = a2 = aC), platform 1

slightly deviates and raises its commission by da1 > 0. By construction, a1 = aC

maximizes platform 1’s profit, given a2 = aC ; in the Hotelling setting, this means that

34The analysis developed in the previous sections still applies, with the caveat that platform i’s
subsidy is now of the form σi = (sm + aiπ

m)ȳi, where, denoting by y̌i the number of apps initially
developed for platform i, ȳi ≡ λ(y̌1 + y̌2) + (1 − λ)ηy̌i denotes the total number of apps eventually
available on platform i, weighted by their popularity.

23



a1 = aC maximizes platform 1’s market share on the consumer side; it follows that

the deviation has only a second-order effect on the platforms’ consumer base. We can

thus focus on the impact of da1 on the platforms’ app base through its direct impact

on the revenues offered by the platforms—namely, r1 is reduced by dr1 = πmda1/2,

whereas r2 remains at its equilibrium value, rC ≡ aCπm/2.

Consider first the polar cases where either η or λ is set to 0. If η = 0, then only

successful apps generate value; all developed apps are therefore ported, and R1 = R2 =

λ(r1 +r2−δ). Hence, the number of apps available on both platforms is the same, and

is given by F̃ (λ(r1 + r2 − δ)), where F̃ (·) denotes the distribution of min {k1, k2}. It

follows that an increase in the commission of either platform has a negative impact on

both platforms ’ app bases.

If instead λ = 0, then all apps single-home, and Ri = ηri. A developer facing costs

(k1, k2) then develops its app for platform i if and only if

ki ≤ min {kj + η(ri − rj), ηri} .

Raising platform 1’s commission, which lowers r1 by dr1, thus reduces the number

of apps developed for platform 1, but increases the number of apps developed for

platform 2.

Consider now the generic case where λη > 0. In equilibrium, we have R1 = R2 =

RC ≡ [2λ+ (1− λ)η] rC − λδ. Hence, the number of apps initially developed on each

platform is (see Figure 3):35

ȳC ≡
∫ +∞

0

F
(
min

{
k,RC

})
f (k) dk.

Raising platform 1’s commission reduces R1 by dR1 = [λ+ (1− λ)η] dr1 and R2 by

dR2 = λdr1. This induces three changes, as illustrated by Figure 3:

a.
[
1− F

(
RC
)]
f
(
RC
)
dR1 developers, initially developing their apps for platform

1, drop out;

b.
[
1− F

(
RC
)]
f
(
RC
)
dR2 developers, initially developing their apps for platform

2, drop out as well;

c. finally, Φ
(
RC
)

(dR1 − dR2) developers, where

Φ (R) ≡
∫ R

0

f 2 (k) dk,

35For example, the app is developed for platform 1 for k1 < k2 if k2 ≤ RC , and for k1 < RC if
instead k2 > RC .
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which were initially developing their apps for platform 1, now switch to platform

2.

𝑘𝑘1

𝑘𝑘2

𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶 − 𝑑𝑑𝑅𝑅1

𝑅𝑅𝐶𝐶
𝑅𝑅𝐶𝐶 − 𝑑𝑑𝑅𝑅2

𝑑𝑑𝑅𝑅1 − 𝑑𝑑𝑅𝑅2

𝑐𝑐

𝑏𝑏

𝑎𝑎

1

10

Figure 3: The effect of platform 1’s commission on app development

Cases a and b represent a negative impact on platform 2, whereas case c represents

instead a positive impact on that platform. In equilibrium, 2λȳC apps end up being

successful and are eventually present on both platforms, and (1 − λ)ȳC unsuccessful

apps have also been developed on each platform. Hence the total number of apps

available on each platform, weighted by their popularity, is equal to

yC ≡ [2λ+ (1− λ)η] ȳC .

Building on the above, raising platform 1’s by da1 alters the weighted number of apps

available on platform 2 by:

dy2 = Φ
(
RC
)

(dR1 − dR2)× [λ+ (1− λ) η]

−
[
1− F

(
RC
)]
f
(
RC
)
{dR1 × λ+ dR2 × [λ+ (1− λ) η]}

= Φ
(
RC
)

(1− λ)ηdr1 × [λ+ (1− λ) η]

−
[
1− F

(
RC
)]
f
(
RC
)
{[λ+ (1− λ) η] dr1 × λ+ λdr1 × [λ+ (1− λ) η]}

=
{

(1− λ)ηΦ
(
RC
)
− 2λ

[
1− F

(
RC
)]
f
(
RC
)}

[λ+ (1− λ) η] dr1.
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It follows that raising platform 1’s commission reduces the weighted number of apps

available on platform 2 if and only if:

2λ

(1− λ) η
>

Φ
(
RC
)

[1− F (RC)] f (RC)
,

that is, if the rate of success λ is large enough and/or the revenue generated by

unsuccessful apps is small enough (i.e., η low enough).

5 Concluding remarks

The main insight of this paper is that competition induces platforms to charge higher

commissions than those maximizing consumer surplus—and, a fortiori, those maximiz-

ing total welfare—whenever raising the commission of one platform reduces the number

of apps on rival platforms. Such negative externalities arise when a positive fraction of

apps multihome—and in practice, a large majority of popular apps multihome on App

Store and Google Play. This insight is illustrated in a particularly striking way in our

model with a Hotelling-like full consumer participation, where platform competition

leads to a complete choke-off of app development if all app developers multihome.

These insights suggest that platform competition between App Store and Google

Play need not discipline the commission rates charged to developers. This is consistent

with the remark by Judge Gonzalez Rogers to Apple’s CEO Tim Cook in the legal

battle between Epic and Apple:

“it doesn’t seem to me that you feel under pressure or competition to actually

change the manner in which you act to address the concerns of the developers”.36

Indeed, as long as the cost of multihoming is smaller than the expected profit from

joining an additional app store between App Store and Google Play, which should

be the case for most popular apps, competition between the two platforms is likely

to lead to excessively high commissions that stymie app development. This risk of

underdevelopment is particularly strong in the case of cross-platform technology (such

as cloud gaming), which is intrinsically a multihoming technology. Therefore, our

results provide a rationale for regulating app store commissions as is specified by the

recent Digital Markets Act in Europe, which requires FRAND access to app stores.37

36https://www.theverge.com/2021/5/21/22448023/epic-apple-fortnite-antitrust-lawsuit-judge-
tim-cook-app-store-questions

37See Bisceglia and Tirole (2022) for a study of appropriate access prices.
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Appendix

A Proof of Lemma 1

We already established that maximizing consumer surplus amounts to maximizing the

subsidy σ̂ (a). To conclude the proof, it suffices to note that the first-order condition

yields:

0 = σ̂′
(
aS
)

=
(
sm + aSπm

)
y′
(
aS
)

+ πmy
(
aS
)
.

As σ̂ (0) = smy (0) > 0, the optimal commission is such that σ̂
(
aS
)

=
(
sm + aSπm

)
y
(
aS
)
>

0, thus implying y
(
aS
)
> 0 (as by construction y (·) ≥ 0) and, thus, sm + aSπm > 0.

It then follows from the above equation that y′
(
aS
)

= −πmy
(
aS
)
/
(
sm + aSπm

)
< 0;

dividing the above equation by y′
(
aS
)

then leads to (7).

B Proof of Lemma 2

Let

si (k) ≡ 1{max{0, r2−k1, r2−k2,r−k}= r
2
−ki}

denote the indicator function for developers single-homing on platform i, and

m (k) ≡ 1{max{0, r2−k1, r2−k2,r−k}=r−k}

denote that for multi-homing developers. The developers’ profit, given by (9), can be

expressed as:

Π̂D (a) =

∫
R3
+

[
r̂ (a)

2
− k1

]
s1 (k) dF (k) +

∫
R3
+

[
r̂ (a)

2
− k2

]
s2 (k) dF (k)

+

∫
R3
+

[r̂ (a)− k]m (k) dF (k) ,

and its derivative is given by:1

Π̂′D (a) =
r̂′ (a)

2

∫
R3
+

s1 (k) dF (k) +
r̂′ (a)

2

∫
R3
+

s2 (k) dF (k) + r̂′ (a)

∫
R3
+

m (k) dF (k) ,

1The expression captures the negative impact of an increase in a on the revenue r̂ (a) of the infra-
marginal developers (i.e., those who keep developing their apps). Raising a also induces some marginal
developers to drop out, and may induce switches between multihoming and single-homing, and/or
induce single-homing developers to switch platforms; however, these additional marginal impacts have
zero first-order effect.
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where the integrals are respectively equal to the number of developers single-homing

on platforms 1 and 2, and to the number of multihoming developers. It follows that:

Π̂′D (a) = r̂′ (a)

[
1

2
× ŷ (a) +

1

2
× ŷ (a) + ỹ (a)

]
= r̂′ (a) y (a) ,

where ŷ (a) denotes the number of single-homing apps, ỹ (a) the number of mul-

tihoming apps, and y (a) = ŷ (a) + ỹ (a). By construction σ̂′
(
aS
)

= 0, implying

D̂′
(
aS
)

= P̂ ′
(
aS
)

= 0; hence:

Π̂′D
(
aS
)

= −πmy (a) D̂ (a) < 0. (19)

Total welfare is given by (8), and its derivative is thus equal to:

Ŵ ′ (aS) = Ŝ ′
(
aS
)

+ Π̂′P
(
aS
)

+ Π̂′D
(
aS
)

= Π̂′D
(
aS
)
< 0, (20)

where the second equality follows from aS maximizing both Ŝ (a) and Π̂P (a), and the

inequality from (19). Furthermore, for any a > aS:

• Ŝ (a) ≤ Ŝ
(
aS
)

and Π̂P (a) ≤ Π̂P

(
aS
)
;

• σ̂ (a) < σ̂
(
aS
)
, implying P̂ (a) > P̂

(
aS
)

and thus D̂ (a) ≤ D̂
(
aS
)
; hence:2

r̂ (a) = (1− a)πmD̂ (a) <
(
1− aS

)
πmD̂

(
aS
)

= r̂
(
aS
)
,

which in turn implies Π̂D (a) < Π̂D

(
aS
)
.

It follows that Ŵ (a) < Ŵ
(
aS
)

for any a > aS; together with (20), this implies

aW < aS.

The derivative of Ŵ (a) can be expressed as:

Ŵ ′ (a) = Ŝ ′ (a) + Π̂′P (a) + Π̂′D (a)

=
[
−D̂ (a) P̂ ′ (a)

]
+
{[
P̂ ′ (a) + σ̂′ (a)

]
D̂ (a) +

[
P̂ (a) + σ̂ (a)

]
D̂′ (a)

}
+ r̂′ (a) y (a)

= σ̂′ (a) D̂ (a) +
[
P̂ (a) + σ̂ (a)

]
D̂′ (a) + r̂′ (a) y (a)

= [πmy (a) + (sm + aπm) y′ (a)] D̂ (a)

+
[
P̂ (a) + (sm + aπm) y (a)

]
D̂′ (a) + πmy (a) (1− a) D̂′ (a)− πmy (a) D̂ (a)

= (sm + aπm) y′ (a) D̂ (a) +
[
P̂ (a) + (sm + πm) y (a)

]
D̂′ (a) .

2If a < 1, the inequality follows from 1 − aS > 1 − a and D̂
(
aS
)
≥ D̂ (a). If instead a ≥ 1, it

follows from
(
1− aS

)
πmD̂

(
aS
)
> 0 ≥ (1− a)πmD̂ (a).
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The first-order condition therefore amounts to:

(
sm + aWπm

)
y′
(
aW
)
D̂
(
aW
)

= −
[
P̂
(
aW
)

+ (sm + πm) y
(
aW
)]
D̂′
(
aW
)
.

If D̂′
(
aW
)

= 0, then y′
(
aW
)
< 0, as a slight increase in a has then no impact

on demand, and strictly reduces the developers’ share of revenue. And if instead

D̂′
(
aW
)
6= 0, then the first-order condition implies that y′

(
aW
)
6= 0. Dividing by

y′
(
aW
)

then leads to (10).

C Proof of Proposition 1

Assumption 2b (namely, equilibrium uniqueness and local stability) implies that a∗ >

aS if and only R
(
aS
)
> aS; Assumption 2a (namely, strict quasi-concavity) ensures

in turn that R
(
aS
)
> aS if and only if ∂1Π

∗ (aS, aS) > 0. Furthermore (with σS =

σ∗
(
aS, aS

)
):

∂1Π
∗ (aS, aS) = ∂1Π

e
(
σS, σS

)
∂1σ

∗ (aS, aS)+ ∂2Π
e
(
σS, σS

)
∂2σ

∗ (aS, aS)
= −

[
∂1Π

e
(
σS, σS

)
− ∂2Πe

(
σS, σS

)]
∂2σ

∗ (aS, aS)
= −

[
∂1Π

e
(
σS, σS

)
− ∂2Πe

(
σS, σS

)] (
sm + aSπm

)
∂2y

∗ (aS, aS) ,
where the second equality stems from the first-order condition

0 = σ̂′
(
aS
)

= ∂1σ
∗ (aS, aS)+ ∂2σ

∗ (aS, aS) ,
and the last equality follows from (3). From Assumption 1b, ∂1Π

e
(
σS, σS

)
> ∂2Π

e
(
σS, σS

)
.

It follows that ∂1Π
∗ (aS, aS) > 0 if and only if ∂2y

∗ (aS, aS) < 0, which concludes the

argument. A similar reasoning establishes that a∗ < aS (resp., a∗ = aS) if and only if

∂2y
∗ (aS, aS) > 0 (resp., ∂2y

∗ (aS, aS) = 0).

D Impact of consumer participation on app devel-

opment

We study here the indirect impact of consumer participation on app development.

Specifically, starting from a1 = a2 = aS, consider a slight increase in platform 1’s

commission by da1 > 0. Recall that, initially, each platform attracts xS ≡ D̂
(
aS
)

consumers, and offers developers a revenue equal to rS ≡ r̂
(
aS
)
; as a result, it attracts

yS ≡ y
(
aS
)

developers. Following the change in platform 1’s commission, platform 1
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offers a revenue r1 = (1− a1) πmx1 and platform 2 offers a revenue r2 =
(
1− aS

)
πmx2,

where the platforms’ consumer bases are given by

x1 = D (P1, P2) and x2 = D (P2, P1) ,

where

P1 = P ∗
(
a1, a

S
)

= P e
(
σ∗
(
a1, a

S
)
, σ∗

(
aS, a1

))
,

P2 = P ∗
(
aS, a1

)
= P e

(
σ∗
(
aS, a1

)
, σ∗

(
a1, a

S
))
.

By construction,

dσ2 =
(
sm + aSπm

)
dy2.

Furthermore, because aS maximizes σ̂ (a) = σ∗ (a, a), we have:

dσ1 = ∂1σ
∗ (aS, aS) da1 = −∂2σ∗

(
aS, aS

)
da1 = −dσ2.

It follows that:

dP2 = ∂1P
e (·) dσ2 + ∂2P

e (·) dσ1 = [∂1P
e (·)− ∂2P e (·)] dσ2,

where ∂iP
e (·) is evaluated at σ1 = σ2 = σ̂

(
aS
)
, and

dP1 = ∂1P
e (·) dσ1 + ∂2P

e (·) dσ2 = [∂2P
e (·)− ∂1P e (·)] dσ2 = −dP2.

Therefore:

dx2 = ∂1D (·) dP2 + ∂2D (·) dP1

= [∂1D (·)− ∂2D (·)] dP2

= [∂1D (·)− ∂2D (·)] [∂1P
e (·)− ∂2P e (·)] dσ2,

and

dx2 = −dx1.

The overall impact of the change da1 on platform 2’s app base, dy2, can be decom-

posed as dy2 = dŷ2 + dỹ2, where dŷ2 is the effect on platform 2’s app base stemming

from the direct impact of da1 on the revenue offered by platform 1,

dr̂1 = −da1πmxS,

and dỹ2 is the effect stemming from the indirect impact of da1 on the revenues offered
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by the two platforms, through the induced change in the platforms’ consumer bases:

dr̃1 =
(
1− aS

)
πmdx1 and dr̃2 =

(
1− aS

)
πmdx2.

It follows from the above that dx1 +dx2 = 0: starting from a1 = a2 = aS, increasing a1

by da1 has no first-order effect on total consumer participation; hence, dr̃1 + dr̃2 = 0:

the impact of da1 on the platforms’ consumer base does not affect the developers’

revenue from multihoming, as the total consumer base is unaffected. The impact on

each platform’s consumer base however affects the revenue from single-homing. We now

argue that this change will reinforce the effect of da1 on platform 2’s app base through

its direct impact on the revenue offered by platform 1, dŷ2. To see this, consider first

the impact of dŷ2 on consumer participation. If dŷ2 < 0, then it decreases σ2 by dσ̂2 =(
sm + aSπm

)
dŷ2 (< 0) and increases σ1 by dσ̂1 = −dσ̂2 (> 0); this, in turn, induces

platform 2 to increase its quality-adjusted price, and platform 1 to decrease its own

price: as ∂1P
e (·) < ∂2P

e (·) from Assumption 1(a), dP̂2 = [∂1P
e (·)− ∂2P e (·)] dσ̂2 > 0

and dP̂1 = −dP̂2 < 0. As a result, platform 2 attracts fewer consumers, whereas

platform 1 expands instead its consumer base: dx̂2 = [∂1D (·)− ∂2D (·)] dP̂2 < 0 and

dx̂1 = −dx̂2 > 0. In other words, if the change da1 > 0 has a negative direct impact on

platform 2’s app base (i.e., dŷ2 < 0), then the induced change in consumer participation

reduces the revenue offered by platform 2 (as we then have
(
1− aS

)
πmdx̂2 < 0) and

enhances instead the revenue offered by platform 1 (as
(
1− aS

)
πmdx̂1 > 0). This

would further incentivize some of the developers initially single-homing on platform

2 (namely, those facing similar innovation costs for the two platforms) to switch to

platform 1, thereby reinforcing the effect of da1 on platform 2’s app base through its

direct impact on the revenue offered by platform 1.

E Proof of Lemma 3

The profit Πi = (Pi + σi)D (Pi, Pj) is strictly quasi-concave in Pi and maximal for

Pi = R (Pj) ≡
t− σi + Pj

2
.

As this best-response has a slope lower than 1, the usual tâtonnement process converges

towards a unique, stable equilibrium, in which each platform i charges Pi = PH (σi, σj),

leading to

Pi + σi = 2tD (Pi, Pj) = t+
σi − σj

3
,

and, thus, to Πi = ΠH (σi, σj).
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F Illustration: consumer surplus benchmark

The first-order condition (7) amounts to:

(
sm + aSπm

)
y′
(
aS
)

+ πmy
(
aS
)

= 0,

where, from (12) and (11):

y (a) = (1− α)F

(
(1− a)πm

2

)
+ αH ((1− a) πm) ,

and

y′ (a) = −1− α
2

f

(
(1− a)πm

2

)
πm − αh ((1− a)πm) πm.

Re-arranging, the first-order condition can be expressed as φ
(
aS;α

)
= 0, where:

φ (a;α) ≡
[
F

(
(1− a)πm

2

)
+

α

1− α
H ((1− a) πm)

]
−
(
sm + aSπm

) [1

2
f

(
(1− a)πm

2

)
+

α

1− α
h((1− a)πm)

]
.

For any a < 1, the two bracketed terms are both positive, and so the first-order

condition implies sm + aSπm > 0. Furthermore, the first one is strictly decreasing in a

whereas the second one is strictly increasing in a under Assumption 3, and so φ (a;α)

is also strictly decreasing in a in the relevant range where sm + aπm > 0. In addition:

φ
(
aW ;α

)
= F

(
(1− aW )

πm

2

)
+

α

1− α
H
((

1− aW
)
πm
)
> 0,

φ (1;α) = − (sm + πm)

(
1

2
f(0) +

α

1− α
h(0)

)
< 0,

where (i) the first equality stems from sm +aWπm = 0 and aW < 1, and (ii) the second

one from F (0) = H (0) = 0, f (0) > 0 and h (0) > 0 (from Assumption 3). Hence,

there is a unique solution, which lies strictly between aW = −sm/πm and 1.

G Proof of Proposition 2

We first establish existence and uniqueness for t large enough (part 1), before charac-

terizing the (unique) symmetric equilibrium (part 2).

Part 1. We first establish uniqueness, before turning to existence.

As noted in the text, in stage 1a each platform i seeks to maximize its subsidy

advantage, ∆∗ (ai, aj). Furthermore, as t −→ +∞, the continuation equilibrium con-
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ditions (14) to (17) yield, up to O (1/t):

D∗ (ai, aj) '
1

2
,

ŷ∗ (ai, aj) ' (1− α)F

(
(1− ai) πm

2

)
,

ỹ∗ (a1, a2) ' αH

(
(1− a1) πm

2
+

(1− a2)πm

2

)
.

Plugging-in these expressions in (18) yields, up to O (1/t), ∆∗ (ai, aj) ' ∆̂∗ (ai, aj),

where:

∆̂∗ (ai, aj) = (sm + aiπ
m) (1− α)F

(
(1− ai) πm

2

)
− (sm + ajπ

m) (1− α)F

(
(1− aj) πm

2

)
+πm (ai − aj)αH

(
(1− a1) πm

2
+

(1− a2) πm

2

)
.

The first-order equilibrium conditions are therefore, up to O (1/t):

0 =
∂∆̂∗ (a1, a2)

∂a1

= πm(1− α)F

(
(1− a1) πm

2

)
− (sm + a1π

m) (1− α)f

(
(1− a1) πm

2

)
πm

2

+πmαH

(
(1− a1) πm

2
+

(1− a2) πm

2

)
−πm (a1 − a2)αh

(
(1− a1) πm

2
+

(1− a2) πm

2

)
πm

2
,

and:

0 =
∂∆∗ (a2, a1)

∂a2

= πm(1− α)F

(
(1− a2) πm

2

)
− (sm + a2π

m) (1− α)f

(
(1− a2) πm

2

)
πm

2

+πmαH

(
(1− a1) πm

2
+

(1− a2) πm

2

)
+πm (a1 − a2)αh

(
(1− a1) πm

2
+

(1− a2) πm

2

)
πm

2
.
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Subtracting the second condition from the first one yields:

(1− α)πm

[
F

(
(1− a1) πm

2

)
− F

(
(1− a2) πm

2

)]
= (1− α)

πm

2

[
(sm + a1π

m) f

(
(1− a1) πm

2

)
− (sm + a2π

m) f

(
(1− a2) πm

2

)]
+2πm (a1 − a2)αh

(
(1− a1) πm

2
+

(1− a2) πm

2

)
πm

2
.

If a1 ≥ a2 (resp., a1 ≤ a2), the left-hand side is weakly negative (resp., positive),

as F ((1− a)πm/2) is decreasing in a, whereas the right-hand side is weakly positive

(resp., negative), as sm +aπm and f ((1− a) πm/2) are both non-negative and increas-

ing in a, from Assumption 3. It follows that any equilibrium is symmetric: a1 = a2.

Furthermore, any symmetric equilibrium satisfies (setting a1 = a2 = a in the above

conditions):

0 = πm(1− α)F

(
(1− a) πm

2

)
+ πmαH ((1− a) πm)

− (sm + aπm) (1− α)f

(
(1− a) πm

2

)
πm

2
. (21)

For α = 1, this boils down to H ((1− a) πm) = 0, implying aC (α) = 1. For α < 1, the

above condition amounts to ψ
(
aC (α) ;α

)
= 0, where:

ψ (a;α) ≡ F

(
(1− a) πm

2

)
+

α

1− α
H ((1− a) πm)− sm + aπm

2
f

(
(1− a) πm

2

)
.

ψ (a;α) is strictly decreasing in a under Assumption 3, and it satisfies (using sm +

aWπm = 0)

ψ
(
aW ;α

)
= F

((
1− aW

)
πm

2

)
+

α

1− α
H
((

1− aW
)
πm
)
> 0

and (using F (0) = H(0) = 0)

ψ (1;α) = −s
m + πm

2
f (0) < 0,

where the inequalities respectively stem from aW = −sm/πm < 1 and f (0) > 0 (from

Assumption 3). It follows that there is a unique candidate symmetric equilibrium,

which is moreover such that aC (α) ∈
(
aW , 1

)
for α < 1, and aC (α) = 1 for α = 1.
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To establish existence, we show that the function

φ (a) ≡ ∆̂∗
(
a, aC (α)

)
is indeed maximal for a = aC (α). We first note that:

φ′ (a) = πm(1− α)F

(
(1− a) πm

2

)
− (sm + aπm) (1− α)f

(
(1− a) πm

2

)
πm

2

+πmαH

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)

−πm
(
a− aC (α)

)
αh

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)
πm

2
,

which by construction satisfies φ′
(
aC (α)

)
= 0, and

φ′′ (a) ' −2πm(1− α)f

(
(1− a) πm

2

)
πm

2

+ (sm + aπm) (1− α)f ′
(

(1− a) πm

2

)(
πm

2

)2

−2πmαh

(
(1− a)πm

2
+

(
1− aC (α)

)
πm

2

)
πm

2

+πm
(
a− aC (α)

)
αh′

(
(1− a) πm

2
+

(
1− aC (α)

)
πm

2

)(
πm

2

)2

.

For a ≥ aC (α), the second-order derivative is negative, as f (·) > 0 ≥ f ′ (·) and

h (·) > 0 ≥ h′ (·) under Assumption 3. Hence, in the range a ≥ aC (α), φ (a) is

maximal for a = aC (α).

Furthermore, for a ≤ aC (α), we have φ (a) ≤ φ̂ (a), where:

φ (a) ≤ φ̂ (a) ≡ (sm + aπm) (1− α)F

(
(1− a) πm

2

)
−
[
sm + aC (α) πm

]
(1− α)F

([
1− aC (α)

]
πm

2

)
+πm

[
a− aC (α)

]
αH

([
1− aC (α)

]
πm
)

35



satisfies

φ̂
′
(a) = πm(1− α)F

(
(1− a) πm

2

)
− (sm + aπm) (1− α)f

(
(1− a)πm

2

)
πm

2

+πmαH
([

1− aC (α)
]
πm
)
,

By construction, φ̂
(
aC (α)

)
= φ

(
aC (α)

)
= 0 and φ̂

′ (
aC (α)

)
= φ′

(
aC (α)

)
= 0.

Furthermore:

φ̂
′′

(a) = −πm(1− α)f

(
(1− a) πm

2

)
πm

+ (sm + aπm) (1− α)f ′
(

(1− a) πm

2

)(
πm

2

)2

< 0,

where the inequality stems from f (·) > 0 ≥ f ′ (·) under Assumption 3. It follows that,

in the range a ≤ aC (α), φ (a) is again maximal for a = aC (α).

Part 2. We now focus on symmetric candidate equilibria, in which both platforms

thus set the same commission rate a. Suppose that platform 1, say, deviates to some

a1 6= a, and let ŷi(a1) ≡ ŷ∗ (ai, aj)(with the convention a2 = a), ỹi(a1) ≡ ỹ∗ (ai, aj),

yi(a1) ≡ y∗ (ai, aj). Let Di(a1) ≡ D∗ (ai, aj) and ∆i(a1) ≡ ∆∗ (ai, aj) denote the user

base and the subsidy advantage of platform i following the deviation (by construction,

ỹi = ỹj and D1 + D2 = 1), and ŷ, ỹ, y, D and ∆ denote their equilibrium values (by

construction, D = 1/2 and ∆ = 0).

From (17) and (15), we have (using D1 +D2 = 1):

ŷ1 = (1− α)F ((1− a1) πmD1) , (22)

ŷ2 = (1− α)F ((1− a2) πm (1−D1)) , (23)

leading to (evaluated at a2 = a):

dŷ1
da1

= (1− α)f ((1− a1)πmD1) π
m[(1− a1)

dD1

da1
−D1], (24)

dŷ2
da1

= −(1− α)f ((1− a)πm (1−D1))π
m (1− a)

dD1

da1
. (25)

Likewise, from (17) and (16), we have (evaluated at a2 = a and using again D1 +D2 =

1):

ỹ1 = αH ((1− a)πm + (a− a1)πmD1) , (26)
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leading to:

dỹ

da1
= αh ((1− a) πm + (a− a1)πmD1) π

m[(a− a1)
dD1

da1
−D1]. (27)

In addition, from (18), we have (using ỹ2 = ỹ1):

∆1 = sm(ŷ1 − ŷ2) + πm(a1ŷ1 − aŷ2) + πm (a1 − a) ỹ1.

Differentiating leads to (using ŷ1 + ỹ1 = y1):

d∆1

da1
= sm(

dŷ1
da1
− dŷ2
da1

) + πm(a1
dŷ1
da1
− adŷ2

da1
) + πm (a1 − a)

dỹ

da1
+ πmŷ1 + πmỹ

= (sm + a1π
m)

dŷ1
da1
− (sm + aπm)

dŷ2
da1

+ (a1 − a) πm dỹ

da1
+ πmy1. (28)

Finally, differentiating (14) yields:

dD1

da1
=

1

6t

d∆1

da1
. (29)

In equilibrium, we must have d∆1/da1 = 0. It then follows from (25) and (29) that

dŷ2
da1

=
dD1

da1
= 0

and from (24) that (using D1 = 1/2 and ŷ1 = ŷ)

dŷ1
da1

= −1− α
2

f

(
(1− a1)πm

2

)
πm. (30)

Using these observations and evaluating (28) at equilibrium, where a1 = a, D1 = 1/2

and y1 = y, yields:

0 =

[
y1 − (sm + aπm)

1− α
2

f

(
(1− a1)πm

2

)]
πm,

which, using (15) and (16), amounts to (21). It then follows from the analysis of part

1 that there is a unique symmetric equilibrium, where a = aC (α).

Furthermore, ψ (a;α) is strictly increasing in α, implying that aC (α) is also strictly

increasing in α. In addition, comparing ψ (a;α) with the function φ (a;α) characteriz-

ing aS (α), we have:

ψ (a;α)− φ (a;α) =
(
sm + aSπm

) α

1− α
h((1− a)πm) ≥ 0,
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where the inequality is strict for α > 0. It follows that aC (0) = aS (0) and aC (α) >

aS (α) for α > 0.
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