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Abstract 

This paper introduces the moment interaction between different assets in the semi-

nonparametric modeling of the multivariate distribution. We analyze bivariate portfolios 

where skewness and kurtosis may interact between different assets showing that these 

new parameters may be significant pieces of information, particularly for risk measuring. 

Model performance for risk assessment is tested with backtesting techniques considering 

equally weighted portfolios of S&P 500 and Nasdaq 100 indices and major 

cryptocurrencies (Bitcoin and Ethereum), the latter with high frequency data. Results 
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Keywords: Gram-Charlier expansions, multivariate distributions, Cross-Skewness, 

Cross-Kurtosis, Risk management. 

JEL classification: C14, C58, G17. 

  

                                                           
+ Corresponding author. 

E-mail addresses: inesjimenez@usal.es (I. Jiménez), a.mora262@uniandes.edu.co (A. Mora-Valencia), 

perote@usal.es (J. Perote) 

mailto:inesjimenez@usal.es
mailto:a.mora262@uniandes.edu.co
mailto:perote@usal.es


2 
 
 

1. Introduction 

 

The existing literature devoted to analyzing financial risk in a multivariate context is 

relevant for portfolio choice. The most widely used approaches for this type of analysis 

have been the GARCH family with the Constant Conditional Correlation (Bollerslev, 

1990) and the BEKK model (Engle and Kroner, 1995) in the 1990’s or the DCC and 

DECO model  (Engle and Sheppard, 2001; Engle, 2002; Engle and Kelly, 2012) from the 

beginning of the century. Due to the fact that multivariate distribution of financial assets 

is characterized by a non-Gaussian performance it is a challenge to find the best joint 

distribution of the GARCH model to fit the data. One interesting approach is the semi-

nonparametric modeling introduced in finance by Mauleon (2003) and Perote (2004). 

Since then, it has been successfully applied in different papers that include: (i) Positive 

transformations (Del Brio et al., 2009; Ñíguez and Perote, 2012); (ii) Two-stage dynamic 

conditional correlation (DCC) (Del Brio et al., 2011; Del Brio et al., 2019); (iii) 

Alternative non-orthogonal expansions (Ñíguez and Perote, 2016); (iv) Inclusion of 

moment spillovers (Del Brio et al., 2017); (v) Risk quantification (Jiménez et al., 2020). 

However, despite the advantages of multivariate modeling and the availability of stepwise 

procedures to provide consistent estimations, these techniques have still been scarcely 

used for risk quantification in a univariate setting. These methods, based on the Gram-

Charlier (GC) and other related series of expansions, provide flexible structures to 

incorporate as many moments (parameters) as required to improve data fits (Kendall and 

Stuart, 1977). This implicitly acknowledges the importance of high-order moments, 

mostly skewness and kurtosis, to incorporate leptokurtic and wavy tails. The so-obtained 

densities are built upon the basis of the orthogonality property of the Hermite polynomials 

(HPs) linked to the derivatives of a standard Gaussian distribution. Indeed, such a 

property can be used for capturing the interaction between the moments, which are also 

relevant pieces of information for risk management since, for example, thick tails may be 

a consequence of both skewness and kurtosis altogether (Jiménez et al., 2022). The 

present paper generalizes the distribution in the latter paper to a multivariate context, but 

also incorporates all types of cross-moment interaction effects between different assets in 

a multivariate setting. We explore the potential significance of such parameters and apply 
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backtesting model performance techniques to show to what extent these parameters may 

contribute to improving portfolio risk measures. 

Our results applied to an equally weighted portfolio compounded by S&P 500 and Nasdaq 

100 show that the cross-moment parameters have information content for capturing the 

interaction between high-order moments of different series. Our multivariate model 

shows a good performance with the two risk measures employed: Value at Risk and 

Median Shortfall, considering ups and downs mainly in the far end of the tail. In order to 

provide more information about this new methodology, we have selected another type of 

asset, a portfolio of the two main cryptocurrencies, Bitcoin and Ethereum, but this time 

with high-frequency (hourly) data to check the robustness of the model to higher volatility 

and frequency series. For these new series and high confidence levels results are as good 

as in the previous case. 

The next section presents our methodology and the risk measures employed for assessing 

model performance. An empirical application is presented in Section 3 and, finally, 

Section 4 summarizes the main conclusions. 

 

2. Methodology 

2.1. The Multivariate semi-nonparametric approach 

A natural approach to the multivariate semi-nonparametric modeling is by defining the 

Multivariate Gram–Charlier density (MGC) through the product of n independent 

(univariate) marginal GC, as defined next: 

𝐹(𝒙𝑡) =
1

𝑛
[∏ (𝑥𝑖𝑡)

𝑛

𝑖=1

] ∑ ℎ𝑖(𝑥𝑖𝑡) =

𝑛

𝑖=1

=
1

𝑛
(𝒙𝑡) ∑ ℎ𝑖(𝑥𝑖𝑡)

𝑛

𝑖=1

 (1) 

where (𝑥𝑖𝑡) =
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑥𝑖𝑡

2 ) and ℎ𝑖(𝑥𝑖𝑡) is a m-order GC expansion that weighs the 

HP succession {𝐻𝑠(𝑥𝑖𝑡)}𝑠=1
𝑚 by the cumulant/moment function,  parametrized by  {𝛿𝑠𝑖}𝑠=1

𝑚  

series.  

ℎ𝑖(𝑥𝑖𝑡) = 1 + ∑ 𝛿𝑠𝑖𝐻𝑠(𝑥𝑖𝑡)

𝑚

𝑠=2

, (2) 
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𝐻𝑠(𝑥𝑖𝑡) =
(−1)𝑠

(𝑥𝑖𝑡)

𝑑𝑠(𝑥𝑖𝑡)

𝑑𝑥𝑖𝑡
𝑠 . (3) 

Such a function is an asymptotic (as m tends to infinity) multivariate frequency function 

and even for a finite m is a density in a constrained domain  see Jondeau and Rockinger 

(2001) for the 𝛿3𝑖 and 𝛿4𝑖 (i.e. skewness and excess kurtosis) positive area and Lin and 

Zhang (2022) for a generalization theorem for expansions of any order. This is because 

the HPs constitutes an orthonormal basis satisfying: 

∫ 𝐻𝑠(𝑥𝑖𝑡)𝐻𝑚(𝑥𝑖𝑡)(𝑥𝑖𝑡) 𝑑𝑥𝑖𝑡 = 0 𝑠  𝑚, (4) 

∫ Hs(𝑥𝑖𝑡)2(𝑥𝑖𝑡) d𝑥𝑖𝑡 = s!  s ≥ 0. (5) 

This property makes ∫ … ∫ 𝐹(𝑥𝑡)𝑑𝑥1𝑡 … 𝑑𝑥𝑛𝑡 = 1  but also the marginal densities 

behaving as univariate GC, i.e. 𝑓(𝑥𝑖𝑡) = (𝑥𝑖𝑡)ℎ𝑖(𝑥𝑖𝑡) . Furthermore, the {𝛿𝑠𝑖}𝑠=1
𝑚  

parameters are directly related to the first m of moments the variable 𝑥𝑖𝑡, which allow to 

identify their relative importance in the fitting. Recently, Jiménez et al. (2022) have 

argued that by including the crossed HP terms in the GC expansion, e.g. 𝛿𝑠𝑗𝑖 terms, one 

may capture the interaction between the moment s and j, which might be a valuable source 

of information for risk management. Therefore ℎ𝑖(𝑥𝑖𝑡) may be defined as follows: 

ℎ𝑖(𝑥𝑖𝑡) = 1 + ∑ 𝛿𝑠𝑖𝐻𝑠(𝑥𝑡) +

𝑚

𝑠=2

∑   

𝑚

𝑠=2

∑ 𝛿𝑠𝑗𝑖𝐻𝑠(𝑥𝑖𝑡)𝐻𝑗(𝑥𝑖𝑡)

𝑚

𝑗=1,𝑗>𝑠

. 

   (6) 

In particular, the authors consider the univariate case that only amounts for the effect of 

polynomials 𝐻3(𝑥𝑖𝑡) = 𝑥𝑖𝑡
3 − 3𝑥𝑖𝑡  and 𝐻4(𝑥𝑡) = 𝑥𝑖𝑡

4 − 6𝑥𝑖𝑡
2 + 3  and their interaction, 

thus incorporating the impact of 𝛿3𝑖 (skewness) 𝛿4𝑖 (excess kurtosis) and 𝛿5𝑖 (interaction 

between skewness and kurtosis). The rationale behind the incorporation of the latter 

parameter lies in the fact that both ‘skewness’ and ‘kurtosis’ altogether are jointly 

responsible for the effects of extreme outliers in the density fitting. In this paper we 

generalize the MGC by directly considering these moment interaction terms. For instance, 

the bivariate case whose marginal densities are those in Jiménez et al. (2022) are: 

𝐹(𝑥1𝑡, 𝑥2𝑡) =
1

2
(𝑥1)(𝑥2)[2 + 𝛿31𝐻3(𝑥1𝑡) + 𝛿41𝐻4(𝑥1𝑡) + 𝛿51𝐻3(𝑥1𝑡)𝐻4(𝑥1𝑡) 
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+𝛿32𝐻3(𝑥2𝑡) + 𝛿42𝐻4(𝑥2𝑡) + 𝛿52𝐻3(𝑥2𝑡)𝐻4(𝑥2𝑡)].   (7) 

Furthermore, our modeling goes a step further by introducing the interaction between 

skewness and kurtosis (parameters 𝛾3  and 𝛾4) and also the cross-moment interaction 

(parameters 𝛾34 and 𝛾43) of the different variables in the model. In particular, we explore 

potential gains in risk measures from considering the following density specification: 

𝐹(𝑥1𝑡, 𝑥2𝑡) =
1

2
(𝑥1)(𝑥2)[2 + 𝛿31𝐻3(𝑥1𝑡) + 𝛿41𝐻4(𝑥1𝑡) + 𝛿51𝐻3(𝑥1𝑡)𝐻4(𝑥1𝑡) 

+𝛿32𝐻3(𝑥2𝑡) + 𝛿42𝐻4(𝑥2𝑡) + 𝛿52𝐻3(𝑥2𝑡)𝐻4(𝑥2𝑡) 

+𝛾3𝐻3(𝑥1𝑡)𝐻3(𝑥2𝑡) + 𝛾4𝐻4(𝑥1𝑡)𝐻4(𝑥2𝑡) + 𝛾34𝐻3(𝑥1𝑡)𝐻4(𝑥2𝑡) + 𝛾43𝐻3(𝑥2𝑡)𝐻4(𝑥1𝑡). (8) 

 

2.2. The semi-nonparametric dynamic conditional correlation model 

The MGC–DCC model considers a dynamic correlation which is a richer time-varying 

structure for two pairs of assets providing more information about correlation. For this 

purpose, we applied an AR(1)-GARCH (1,1) model for the conditional mean and variance 

and thus the model can be parameterized as follows: 

𝒚𝑡 = 𝝁𝑡 + 𝒖𝑡,        (9) 

𝒖𝑡|𝑡−1~ 𝐺𝐶(0, 𝑫𝑡𝑹𝑡𝑫𝑡),      (10) 

𝑫𝑡
2 = 𝑑𝑖𝑎𝑔{𝜆𝑖} + 𝑑𝑖𝑎𝑔{𝛼𝑖}  ◦ 𝑢𝑡−1𝑢𝑡−1

′ +  𝑑𝑖𝑎𝑔{𝛽𝑖} ◦ 𝑫𝑡−1
2 ,        (11) 

 𝑡 = 𝑫𝑡
−1𝒖𝑡,                   (12) 

𝑸𝑡 = 𝑺 ◦ (𝒊𝒊′  A B) + A◦ 𝑡−1𝑡−1
′  + B◦ 𝑸𝑡−1,   (13) 

𝑹𝑡
𝐷𝐶𝐶 = 𝑸̃𝑡

−1/2
𝑸𝑡𝑸̃𝑡

−1/2
,       (14) 

𝜌𝑡 =
2

𝑛(𝑛−1)
∑ ∑

𝑞𝑖𝑗𝑡

√𝑞𝑖𝑖𝑡𝑞𝑗𝑗𝑡

𝑛
𝑗=1,𝑗>𝑖

𝑛
𝑖=1 ,     (15) 

where 𝜆𝑖 > 0, 𝛼𝑖 > 0 and 𝑖 > 0 𝑖 = 1,2, … , 𝑛; 
−1

𝑛−1
< 𝜌𝑡 < 1;  𝑺 is the unconditional 

correlation matrix; 𝒊  is a vector of ones; A, B and ii′ − A – B positive definite matrices; 

𝑸̃𝑡 = 𝑑𝑖𝑎𝑔{𝑸𝑡} (a diagonal matrix with the same diagonal as 𝑸𝑡) and ◦ the Hadamard 

product of two identically sized matrices (computed by element-by-element 

multiplication).  
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These models were originally defined for the Gaussian distribution. In this research, we 

assume a Gram-Charlier conditioned on the information set 𝑡−1, as stated in equation 

(10). This involves a non-trivial evaluation of the polynomial terms in equation (2) on 

𝒙𝑡 = 𝑹𝑡
−1/2

𝜺𝑡 , which for the bivariate DCC model can be expressed as in Del Brio et al. 

(2011a): 

𝑥1𝑡 = 𝑎𝑡𝜀1𝑡 + 𝑏𝑡𝜀2𝑡 and 𝑥2𝑡 = 𝑏𝑡𝜀1𝑡 + 𝑎𝑡𝜀2𝑡   (16) 

where 𝑎𝑡 =
1

2
(

1

√1+𝜌𝑡
+

1

√1−𝜌𝑡
) and 𝑏𝑡 =

1

2
(

1

√1+𝜌𝑡
−

1

√1−𝜌𝑡
). 

Based on Del Brio et al. (2011) a stage-wise procedure is feasible: 

(i) The conditional mean and variance are estimated by Quasi maximum 

likelihood (QML) for each asset independently, in this case with an AR(1)-

GARCH(1,1) model. 

(ii) Conditional correlation, as well as the Gram Charlier parameters are jointly 

estimated in a multivariate framework. 

(iii) Risk measures are computed for the selected portfolio (in a univariate model), 

considering a given quantile  see Eq. (19) for a useful expression for 

computation purposes  and the mean, variance, and conditional correlation 

of the previous stages.   

2.3. Risk measures 

One of the best-known risk measures is Value at Risk (VaR). It represents the maximum 

loss for a given confidence level probability. It focuses on the tail of the distribution, and 

jointly with backtesting techniques, provides consistent information for model validation 

in risk management. Apart from VaR, we have also considered Median Shortfall (MS) 

(Kou and Peng, 2014), which is computed as a VaR but with a higher confidence level. 

From a statistical standpoint, the latter is a more robust measure since it is not sensitive 

to outliers. Both measures may be obtained as in Eqs. (17) and (18). 

𝑉𝑎𝑅𝛼,𝑡+1  = 𝜇𝑖,𝑡+1 + 𝜎𝑖,𝑡+1𝑞𝛼,           (17) 

𝑀𝑆𝛼,𝑡+1 = 𝑉𝑎𝑅1+𝛼

2
,𝑡+1

,             (18) 
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where 𝜇𝑖𝑡 and 𝜎𝑖𝑡, are the conditional mean and variance, respectively, the confidence 

level is 𝛼  and the time horizon t+1.  In this specific case, we have to consider the 

interaction between skewness and kurtosis and also the cross-moment interaction of the 

different variables in the model for the -quantile of the distribution, which is 𝑞𝛼 and can 

be numerically computed as 

∫ 𝑔(𝑥)
𝑞𝛼

−∞
𝑑𝑥 =  ∫ 𝜙(𝑥)

𝑞𝛼

−∞
𝑑𝑥 − 𝜙(𝑥)[𝛿3𝐻2(𝑥) + 𝛿4𝐻3(𝑥) + 𝛿5𝐻4(𝑥)𝐻2(𝑥) + 4𝛿5𝐻3(𝑥)𝐻1(𝑥) + 12𝛿5𝐻2(𝑥) +

24]    (19) 

 

3. Empirical application 

3.1. In-sample analysis 

S&P500 and Nasdaq 100 daily prices (𝑃𝑡) have been considered from January 3rd, 2017, 

to December 27th, 2022, with 1,507 observations, downloaded from www.investing.com. 

Daily percentage returns have been computed as  

𝑅𝑡 = 100[𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1)].    (20) 

Fig. 1 show prices and returns for the two indices, for the whole sample.

 

http://www.investing.com/
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Fig. 1. SP &500 and Nasdaq 100 prices and returns. Daily prices from January 3rd, 2017, to December 27th, 2022.   

For this purpose, one equally weighted portfolio has been formed and its descriptive 

statistics, as well as every series are shown in Table 1. 

Table 1. Returns descriptive statistics 

    
Min. Median Mean Max. 

Stand. 

Dev. 

Annual 

volatility 

Ex. 

Kurtosis 
Skewness 

  S&P 500 -9.143 0.151 0.053 6.722 1.482 23.435 3.384 -0.623 

  Nasdaq 100  -7.141 0.108 0.036 6.034 1.060 16.767 5.118 -0.613 

  Portfolio -8.142 0.129 0.044 5.926 1.234 19.518 4.060 -0.663 
S&P 500 index, Nasdaq 100 index and Portfolio (equally weighted) for returns from January 3rd, 2017, to December   

27th, 2022, with 1,507 observations. 

They present the typical features of financial assets with negatively skewed distribution, 

close to zero mean, and high volatility, both in terms of standard deviation and annual 

volatility. The leptokurtosis is shown in the column excess kurtosis for all the returns, 

whose values describe heavy tails. Portfolio returns, when equally weighted, have a 

middle-values except for the skewness, which is the highest. 

The bivariate empirical histogram of Nasdaq 100 and S&P 500 is displayed in Fig. 2. It 

is noteworthy the presence of scattered areas at the distribution tails that have a non-

negligible probability and that might depend on the moment interactions between both 

assets. 



9 
 
 

 

Fig. 2. Empirical bivariate histogram of S&P 500 and Nasdaq 100 returns. Daily prices from January 3rd, 2017, to 

December 27th, 2022. 

The Maximum likelihood (ML) estimates for the MGC-DCC are shown in Table 2. The 

fitted values correspond to the first in-sample window of the backtesting with 1,006 

observations where φ0 and φ1 are the conditional correlation parameters of the DCC 

model; The parameters of the HPs 𝐻3(𝑥𝑖𝑡) and 𝐻4(𝑥𝑖𝑡) are 𝛿3i and 𝛿4i, respectively; The 

other parameters 𝛿51,  𝛿52,  34, 43, 3 and 4 account for the HP interactions: 

𝐻3(𝑥1𝑡)𝐻4(𝑥1𝑡),  𝐻3(𝑥1𝑡)𝐻4(𝑥2𝑡), 𝐻3(𝑥2𝑡)𝐻4(𝑥𝑖1𝑡), 𝐻3(𝑥1𝑡)𝐻3(𝑥1𝑡) and 

𝐻4(𝑥1𝑡)𝐻4(𝑥2𝑡), respectively.  

The correlation parameters for the three models are significant, as well as the kurtosis 

parameters, 𝛿4𝑖, for both assets (i=1,2) which are positive, reflecting the leptokurtic shape. 

The evidence of skewness is linked to parameter 𝛿3𝑖, with negatives values according to 

the nature of the data and being mostly significant. One major focus of our research is the 

analysis of the performance of the new parameters, which proxy the moment interactions 

between different variables. For the specific case of 𝛿5𝑖, parameters are all negative and 

significant, showing that the interaction of skewness and kurtosis is valuable to capture 

the thick tails of the marginal distributions. Interestingly, we find that there are also 

significant results for the cross-asset interaction terms, i.e. parameters linked to the 

interaction between 𝐻3(𝑥𝑖𝑡) and 𝐻4(𝑥𝑗𝑡)  for 𝑖 ≠ 𝑗 . In particular, 4 is positive and 

significant revealing an interaction between kurtosis of both series being significant. 

Furthermore, 34  and 43 are both negative and significant (in the extended model with all 
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the parameters) showing that skewness and kurtosis of different assets may also be 

interrelated. 

Table 2.  Parameter estimates 

Parameter 
MGC3(𝛿3𝑖, 𝛿4𝑖, 

𝛿5𝑖) 

MGC4(𝛿3𝑖, 𝛿4𝑖, 

𝛿5𝑖,γ34, γ43) 
GC5(𝛿3𝑖, 𝛿4𝑖, 𝛿5𝑖,γ34,γ43,γ3,γ4) 

φ0 0.869 0.858 0.836 

  (0.000) (0.000) (0.000) 

φ1 0.085 0.086 0.100 

  (0.000) (0.000) (0.004) 

𝛿31 -0.046 -0.063 -0.134 

  (0.218) (0.084) (0.001) 

𝛿41 0.087 0.097 0.134 

  (0.000) (0.000) (0.000) 

𝛿32 -0.065 -0.068 -0.047 

  (0.073) (0.063) (0.218) 

𝛿42 0.107 0.097 0.090 

  (0.000) (0.000) (0.000) 

𝛿51 -0.002 -0.001 -0.003 

  (0.009) (0.062) (0.014) 

𝛿52 -0.002 -0.006 -0.014 

  (0.001) (0.004) (0.000) 

 34 - -0.023 -0.039 

  - (0.006) (0.000) 

 43 - -0.006 -0.024 

  - (0.465) (0.005) 

 3 - - -0.019 

  - - (0.409) 

 4 - - 0.023 

  - - (0.000) 

Estimates for the first in-sample window. φ0 and φ1 are the parameters of the DCC model; 𝛿3i and 𝛿4i   are the parameters 

of the basic HPs 𝐻3(𝑥𝑖𝑡) and 𝐻4(𝑥𝑖𝑡), respectively; 𝛿5i , 34, 43, 3 and 4 are the parameters of the HP interactions: 

𝐻3(𝑥𝑖𝑡)𝐻4(𝑥𝑖𝑡), 𝐻3(𝑥1𝑡)𝐻4(𝑥2𝑡) , 𝐻3(𝑥2𝑡)𝐻4(𝑥1𝑡) ,𝐻3(𝑥1𝑡)𝐻3(𝑥2𝑡)  and 𝐻4(𝑥1𝑡)𝐻4(𝑥2𝑡), respectively. P-values in 

parentheses.  

 

 

Fig. 3 plots the bivariate estimates of models in Table 2. The pictures illustrate the ability 

of the densities to capture the probabilistic mass at different areas at the tails. For 

comparison purposes, in Fig. 3 (c) we depicted the MGC model with no interaction term 

(i.e only with the parameters 𝛿3 and 𝛿4), which seems to exhibit flatter and less wavy tails.   



11 
 
 

 

 
 

 
Fig. 3. Fitted bivariate MGC3 (a), MGC4 (b) and MGC (c) for the first in-sample window. 

 

3.2. Out-of-sample analysis 

The out-of-sample performance is tested through a backtesting technique with constant-

sized estimation window of 1,006 observations and a testing window size of 500 

observations for two risk measures: VaR and MS. Table 3 displays the results of different 

confidence levels assuming a univariate distribution for an equally weighted portfolio and 

different confidence levels varying from 97.5%-VaR to 99.5%-VaR (99%-MS). Model 

performance is assessed in terms of the Conditional Coverage Test (CC), Dynamic 

Quantile (DQ) test, and the actual over-expected ratio (AE). 
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Table 3. Backtesting VaR and MS for S&P 500 – Nasdaq 100 

  E.E. Exc. CC DQ AE 

97.5%-VaR 13 5 (0.048) (0.564) 0.400 

98.125%-VaR 9 5 (0.272) (0.817) 0.530 

98.75%-VaR (97.5%-MS) 6 5 (0.830) (0.916) 0.800 

99%-VaR 5 3 (0.613) (0.991) 0.600 

99.375%-VaR 3 2 (0.785) (0.999) 0.640 

99.5%-VaR (99%-MS) 3 2 (0.940) (1.000) 0.800 

E.E. (Exc.) stands for the expected (observed) number of exceptions. Conditional Coverage (CC) test assumes the null 

hypothesis of correct model specification, where exceptions satisfy the Unconditional Coverage and Independence test. 

Dynamic Quantile (DQ) (with 4 lags) test is under the null hypothesis of correct model specification. P-values in 

parentheses. For the actual over expected ratio (AE) ratio the closer to one the better model.  

 

The results for the six confidence levels depict good results for all the tests. For the 

specific case of 97.5%-VaR, the Conditional Coverage test is almost 5%, the worst result. 

The improvement of the number of exceptions in comparison to expected exceptions, as 

well as the p-values according to the progressing confidence level is noteworthy, which 

means the best performance for the extremes of the tails, which supports the relevance of 

cross-moment interaction parameters to account for the waves at the end of the 

distribution. This analysis also corroborates, similarly to Jiménez et al. (2022), the good 

performance of the interaction between skewness and kurtosis even with a multivariate 

perspective. 

3.3. Robustness check 

To assess the model robustness, we extend the model performance analyses to different 

types of data. Particularly, we use cryptocurrencies, which exhibit typical stylized 

features similar to other financial assets, but with higher volatility and fatter tails. For this 

specific case, we have considered high-frequency (hourly) data for Bitcoin and Ethereum, 

downloaded from www.CryptoDataDownload.com. from January 1st, 2022, to May 31st, 

2022, with 3,623 observations. The dynamics of these series in levels and returns are 

displayed in Fig. 4 and the bivariate histogram of the data is depicted in Fig. 5. 
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Fig. 4. Bitcoin and Ethereum prices and return. Hourly data from January 1st, 2022 at 0:00, to May 31st, 2022 at 23:00, 

with 3,623 observations. 
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Fig. 5. Empirical histogram of Bitcoin and Ethereum returns. Hourly prices for the samples (January 1st, 2022, at 0:00, 

to May 31st, 2022 at 23:00, with 3,623 observations). 

Similar to other financial assets the histogram not only shows the leptokurtosis but also 

the fat and wavy tails with scattered areas of non-zero probability at the extremes. In this 

case, the GC with moment interactions seems also capable of capturing these areas, as 

illustrated in Fig. 6. 
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Fig. 6. Fitted bivariate MGC3 (a), MGC4 (b) and MGC5 (c) for the first in-sample window for Bitcoin - Ethereum. 

Supporting these extended GC specifications, Table 4 shows their good performance a 

backtesting for all the confidence levels. As in Section 3.2, it is considered a testing 

window size of 500 observations for both VaR and MS with a constant- sized estimation 

window of 3,123 observations. It is remarkable the results for 97.5-MS and 99%-VaR 

where the number of expected exceptions and the observed exceptions are exactly the 

same. As in the portfolio of stock indices, it seems that the information gathered in the 

interaction parameters helps improve risk measures. 

Table 4. Backtesting VaR and MS for Bitcoin and Ethereum 

  E.E. Exc. CC DQ AE 

97.5%-VaR 13 8 (0.339) (0.868) 0.64 

98.125%-VaR 9 7 (0.647) (0.966) 0.75 

98.75%-VaR (97.5%-MS) 6 6 (0.925) (0.998) 0.96 

99%-VaR 5 5 (0.951) (0.999) 1.00 

99.375%-VaR 3 5 (0.589) (0.954) 1.60 

99.5%-VaR (99%-MS) 3 5 (0.360) (0.810) 2.00 

E.E. (Exc.) stands for the expected (observed) number of exceptions. Conditional Coverage (CC) tests assume the null 

hypothesis of correct model specification, where exceptions satisfy the Unconditional Coverage and Independence test. 

Dynamic Quantile (DQ) (with 4 lags) tests are under the null hypothesis of correct model specification. P-values in 

parentheses. For the actual over expected ratio (AE) ratio the closer to one the better model.  
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4. Conclusions 

This work focuses on providing a general multivariate methodology extending the Gram-

Charlier distribution with dynamic conditional correlations to a more flexible model. 

Thanks to the orthogonality properties of this type of expansion we propose an easy and 

consistent method of estimation of the higher-order cross-moment interaction effects 

between assets. These interaction terms, introduced for the first time in a multivariate 

context, seem to be relevant pieces of information to improve risk measures. A very 

simple and accurate stepwise procedure is applied to obtain risk measures such as Value 

at Risk and Median Shortfall, along with backtesting techniques to assess the model 

performance. 

We consider an equally weighted portfolio for daily returns for S&P 500 and Nasdaq 100 

and six different confidence levels of VaR (97.5%, 98.125%, 98.75%, 99%, 99.375%, 

and 99.5%). Furthermore, we implement another risk measure, Median Shortfall, since it 

has been argued to be more robust to outliers and may be obtained as a simple VaR but 

with a higher level of confidence (98.75% VaR is equal to 97.5%- MS and 99.5%-VaR 

is equal to 99%-MS). The results show an accurate model performance, mostly for the 

ability of capturing ups and downs at the tails probability though the cross-moment 

parameter interactions. 

Furthermore, in order to test the accuracy of the methodology we select series that that 

might exhibit extreme volatility even at high frequencies, particularly cryptocurrency 

with high-frequency (hourly) data. The results show again a satisfactory performance of 

the backtesting with similar results of the stock indices portfolio at daily frequency. 

All in all, we suggest that this new semi-nonparametric approach that incorporates all 

types of parameter interaction in a multivariate setting, provides consistent and accurate 

results, mainly with a high confidence level of risk measures forecasting. Therefore, we 

propose it as a useful tool for risk management, especially with portfolios involving 

highly volatile assets such as cryptocurrencies. 
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