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Abstract

This paper studies jump bidding in an ascending-bid auction with affiliated

values using a multi-round signaling model. Bidders communicate their private
information with one another via the sizes of jump bids. These signals are cred-
ible since bidders with lower private information incur a higher ex ante cost for
choosing a jump bid with any given size. This prevents the bidders with lower
private information from mimicking those with higher private information. In

equilibrium, the signaling model predicts that the size of a jump bid placed each
round is bounded above by a strategy that is equivalent to one in a first-price
sealed-bid auction. The expected revenue to the seller is reduced due to bidders’
abilities to send signals through jump bidding. Using data from a spectrum auc-
tion held by the Federal Communications Commission in the United States, the
mean valuation estimated using the signaling model is higher compared to that
of the “open exit” model. This implies that if bidders are indeed using jump

bids as signals, ignoring it leads to estimates of the mean values that are biased
downwards. This result is consistent with the prediction of the theoretical model

that bidders pay lower prices with jump bidding than in an open exit auction.
I estimate that if jump bidding was prohibited, the government could have had
8% higher revenues from the auction.
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1 Introduction

Jump bidding in an ascending-bid auction refers to the action of placing a bid in

excess of what is required by the auctioneer for a particular round. It is a common

phenomenon in art auctions, spectrum auctions and online auctions. It is also observed

in auction-like settings such as takeover bids.

In the auction literature, an ascending-bid auction is often modeled as an “open

exit” auction (also called a button auction, or a clock model), in which the price in

each round increases by a small fixed amount set by the auctioneer. Bidders choose

at which prices to drop out of the auction irrevocably. The open exit model leaves

no scope to study the behavior of jump bidding, as bidders do not submit bids. In

alternative models of the ascending-bid auction where bidders actively submit bids,

jump bidding is weakly dominated by the strategy of bidding the minimum required

price each round in the absence of two elements: transaction costs and signaling using

bids between bidders. The two main theoretical strands of literature which explain

jump bidding are concerned with these two elements.

This paper focuses on the informational role of jump bidding in an ascending-

bid auction. There is substantial anecdotal evidence that bidders engage in jump

bidding to intimidate their competitors so that they drop out of the auction sooner. In

the earlier spectrum auctions organized by the Federal Communications Commission

(“FCC”), jump bidding was pervasive. For example, in the very first FCC auction (the

nationwide narrowband PCS auction) in 1994, 49% of all new high bids were jump bids

that exceeded the high bid by more than two bid increments (Cramton, 1997). While

the transaction cost theory could be applicable in this case, many economists believed

that there were other factors at play given the large sizes of some of the jump bids and

the fact that some were placed towards the end of the auctions. They suspected that

bidders were using jump bids as signals of high valuation or “toughness” (McAfee and

McMillan, 1996; Cramton, 1997).

In 1997, the FCC introduced click box bidding which limited the size of a jump

bid. One of the motivations was arguably to reduce the potential anticompetitive

effects of jump bidding. Before this change in auction rules, 15 spectrum auctions

had been conducted by the FCC, bringing in a total revenue of $23 billion. Given

the high stakes, if bidders were indeed using jump bids as signals and were successful

in reducing the prices paid due to early withdrawal of competitors, the revenue effect

could be significant. Any attempt to quantify this effect will require a theoretical
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framework that describes a signaling equilibrium in an ascending-bid auction.

Avery’s 1998 paper provides an excellent starting point. The paper solves for equi-

libria of ascending-bid auctions with two symmetric bidders and affiliated values when

jump bidding strategies may be employed as signals. In this model, each bidder receives

a private observation, which is a noisy signal of her true valuation of the auctioned ob-

ject. The private observations are strictly affiliated, meaning a large realized private

observation for one bidder makes the other bidder more likely to have large realized

private observations as well. The paper shows that if bidders are allowed to have a

one-off opportunity to simultaneously choose from a discrete set of jump bids as their

opening bids and continue according to prespecified asymmetric equilibrium in favor

of the higher bidder, then there exists a unique symmetric signaling equilibrium where

the size of the opening bid is weakly monotone in a bidder’s private observation. In

other words, the choices of jump bids are partially separating. The bidder with the

higher private observation chooses a weakly larger jump bid. Each possibility of jump

bidding provides a Pareto improvement for the bidders from the symmetric equilibrium

of a second-price sealed-bid auction.

While Avery’s paper provides a useful framework to empirically study the use of

jump bidding as a signaling device, it has a number of stylized features that are in-

compatible with most empirical settings. It is a model limited to an auction with 2

bidders. More important, it only allows bidders a one-off opportunity to send signals

through jump bidding at the beginning of the auction. Bidders’ abilities to send signals

in multiple rounds will change the predictions of the model.

This paper builds upon Avery’s model and extends it to more than two players.

By focusing on the equilibrium in which bidders are willing to drop out of the auctions

as soon as they find out their private observations are not the highest, and extending

the jump bid space from a bounded discrete set to a continuous set without an upper

bound, the 2-player 2-stage game is transformed into a first-price sealed-bid auction.

One challenge of building a multi-round signaling model is the existence of multiple

equilibria. Instead of focusing on equilibrium selection employing various refinement

criteria, I instead construct a model that predicts characteristics of auction outcomes

that are common to all equilibria. In particular, the model predicts the upper bounds

for each bid placed depending on whether it is a jump bid. A jump bid is bounded

above by a strategy that is equivalent to one in a first-price sealed-bid auction. On the

other hand, the upper bound for a non-jump bid is the equilibrium strategy in an open
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exit model following Milgrom and Weber (1982). These model predictions suggest that

the signaling model works like a hybrid model of a first-price sealed-bid auction and

an open exit ascending-bid auction. To structurally estimate such a model involves

estimating each of these two auction formats.

The data used in the structural estimation are from the FCC broadband PCS

auction (C-block), or “Auction 5” that took place between December 1995 and May

1996. In this auction, the U.S. was divided into 493 regional markets and one license

was offered for each market. The reason I chose this auction is two fold. First, Auction

5 brought in over $10 billion of revenue, the highest among all 15 FCC spectrum

auctions before jump bids were restricted by the introduction of click box bidding.

Second, only small businesses (defined as those with annual revenues less than $40

million) were eligible to participate. Compared to other auctions where the sizes of

the participating firms are much more heterogeneous, Auction 5 is more suited to be

described with the theoretical model of this paper which involves symmetric bidders.

The empirical context of a spectrum auction has an implication on the choice of

information structure of the model (that is, a common value model vs. a private value

model) . One would expect the value of a spectrum license to consist of both a common

value component to reflect market attributes that are valued by all bidders, such as

market size measured by population, and a private value component to allow values to

differ across bidders. This suggests that a common value model, which is nested into

the affiliated value framework of the theoretical model, is the most appropriate,.

Nonparametric identification of a common value model has been proven infeasible in

both a first-price sealed-bid auction (Laffont and Vuong, 1996) and an ascending-bid

auction (Athey and Haile, 2007). Given the challenges with nonparametric identifi-

cation, I adopt a parametric approach by choosing a multiplicative specification and

making distributional assumptions following Hong and Shum (2003).

The theoretical model places bounds on the bids observed. While a partial identifi-

cation approach may be the most appealing, the implementation of such an approach

is difficult. Haile and Tamer. (2003) point out that the lack of sufficient structure of an

ascending-bid auction makes a mapping between the bids observed and the underlying

demand structure challenging. They instead construct bounds on observed bids and

partially identify the distribution functions using an independent private value model.

However, it is infeasible to replicate this approach in a common value model due to

the interdependence in distributions of bidder information and valuation. In this case,
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stronger assumptions become necessary. I follow the approach of Donald and Donald

and Paarsch (1996), Paarsch (1997) and Hong and Shum (2003) where the last bid

placed by each bidder (except the winner of the auction) is equal to the upper bound

predicted by the theoretical model. This approach allows for point identification.

I estimate the distributional parameters of the signaling model using a simulated

nonlinear least-squares approach following Laffont, Ossard and Vuong (1995) and Hong

and Shum (2003). The estimation involves the computation of the equilibrium strate-

gies for an open exit auction and a first-price sealed-bid auction respectively. The

former has a closed form solution under the parametric assumptions. However, the

equilibrium strategy of a first-price sealed-bid auction does not have a closed form so-

lution. I compute it with a combination of simulation and numerical approximations.

In order to understand the impact of jump bidding on bidder valuation, I repeat the

estimation using an open exit model. The mean valuation obtained is lower than the

one estimated using the signaling model. This suggests that if bidders are indeed using

jump bids as signals, ignoring it leads to an underestimation of the mean value. A

counterfactual analysis using the estimation results from the signaling model suggests

that if the FCC forbade the action of jump bidding and designed the auction following

the open exit format, the total revenue would have been 8% higher. The result is

consistent with the prediction of the theoretical model: by sharing information and

coordinating among themselves using jump bids as signals, bidders are able to lower

the prices they pay to the seller.

Understanding the revenue effect of jump bidding is imperative in designing an

ascending-bid auction that maximizes the seller’s revenue. This has direct welfare

consequences if the seller is the government, as in the case of a spectrum auction. The-

oretical models predict the direction of this revenue effect. It is up to the empirical

research to quantify it. There is a growing body of empirical literature that studies the

relation between auction revenue and jump bidding using reduced form methodologies,

which I will discuss in more details in the next section. In short, these papers find a

revenue effect in the opposite direction as predicted by the theoretical models poten-

tially due to the endogenous effects of missing variables. The adoption of a structural

approach in this case is particularly useful in shedding light on quantitative effect of

jump bidding.

The remainder of the paper is organized as follows: Section 2 reviews the literature

relevant to this paper; Section 3 introduces the theoretical model; Section 3 discusses
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the empirical strategy and identification; Section 4 describes the estimation methodol-

ogy and presents the results; Section 5 discusses the counterfactual analysis; Section 6

concludes.

2 Literature Review

As briefly discussed earlier, there are mainly two strands of the theoretical literature

that explain jump bidding. The first deals with transaction costs. If bidders incur a

transaction cost every time a bid is placed, placing fewer but larger bids could reduce

this cost. The transaction costs could be either pecuniary costs associated with revising

and submitting a bid (Fishman, 1988; Daniel and Hirshleifer, 1998), or time costs due

to bidders’ impatience (Isaac, Salmon and Zillante, 2007; Kwasnica and Katok, 2009).

This paper treats all costs of participating in an auction as sunk and assumes away

any significant marginal transaction costs associated with placing an additional bid.

The second strand of literature is concerned with the informational role played by

jump bids when bidders interact strategically. Jump bids are used as signals of private

information either to deter the entry of new bidders (Easley and Tenorio, 2004) or to

induce early withdrawal of existing bidders (Avery, 1998; Hörner and Sahuguet, 2007).

This paper contributes to the theoretical literature by extending Avery’s well-known

signaling model to a form that is more compatible with auction settings in real life. It

abstracts away from the effect of entry deterrence of an opening jump bid and treats

entry as exogenous. Instead of information sharing, jump bids could also be used as

tools to conceal information when some bidders have an information advantage over

others (Ettinger and Michelucci, 2015, 2016).

The econometric literature on structural estimation of auctions with independent

private values is vast. Hickman, Hubbard and Sağlam (2012) presents a comprehen-

sive survey of structural econometric methods in auctions. In addition, Perrigne and

Vuong (1999) survey on structural econometrics of first-price auctions and Athey and

Haile (2007) discuss the nonparametric estimation methods of first-price auctions and

ascending-bid auctions. However, when it comes to auctions with affiliated values, the

literature becomes sparse due to considerable difficulties with identification. Laffont

and Vuong (1996) show that a common value model in a first-price sealed-bid auction

is unidentified nonparametrically. In fact, any affiliated value model is observationally

equivalent to some affiliated private value model. Similarly in ascending-bid auctions,
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Athey and Haile (2002) prove that a common value model is generally not identified

nonparametrically.

This paper is the first to analyze the revenue effect of jump bidding in ascending-

bid auctions using a structural approach. The empirical research on jump bidding in

spectrum auctions is limited and adopts a descriptive approach. McAfee and McMillan

(1996) and Cramton (1997) analyze the first 3 and 6 FCC spectrum auctions respec-

tively. Both papers document prevalent jump bidding behavior in these auctions but

argue that it had little effect in deterring competition since most of the jump bids were

eventually overtaken.

Based on the signaling model of this paper, whether an auction ends with a jump

bid depends on the realization of the private observations of the top 2 bidders. If

they are sufficiently dispersed, the auction ends with a jump bid with probability 1.

Otherwise the auction ends with a jump bid with a positive probability. While it is

true that if an auction does not end with a jump bid its revenue is the same as the one

in an open exit model, the revenue reduction for those that do end with a jump bid is

significant as demonstrated by the counterfactual analysis.

Jump bidding aside, there are two other papers that adopt a structural approach

in estimating value distributions in an FCC spectrum auction. Hong and Shum (2003)

develop an econometric model of ascending-bid auctions with affiliated values and

bidder asymmetries. Fox and Bajari (2013) estimate the deterministic component of

bidder valuations using a pairwise stability condition which results in a matching game.

There is a growing body of empirical literature on jump bidding in the Swedish and

Norwegian housing markets, where houses are sold through broker-assisted ascending-

bid auctions (Hungria-Gunnelin, 2018; Sommervoll, 2020; Khazal et al., 2020; Sønstebø,

Olaussen and Oust., 2021). Using a reduced form approach, these papers investigate

the motivation behind jump bidding and its effect on entry and withdrawal of bidders

and the selling prices. The key findings are: 1) bidders’ primary motive of jump

bidding is to intimidate their competitors as indicated by the survey data; 2) jump

bidding is effective in deterring entry and inducing early withdrawal of competitors;

3) auctions containing jump bids achieve a premium. While the first two findings are

consistent with the signaling model of this paper, the third one appears to contradict its

prediction. There are two potential explanations. First, the OLS regressions may not

have controlled for all important attributes of the houses. It is even harder to control

for the heterogeneity in individual tastes. Second, the participants in the housing
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markets are individuals, who are likely more susceptible to bounded rationality than

the bidders in the spectrum auctions which are firms.

3 Theoretical Model

3.1 Timing

The timing of the auction game is as follows:

1. Before the auction, the auctioneer sets a reservations price ρ1 = 0.

2. In round r = 1, all bidders submit bids b1i ≥ ρ1 simultaneously.

3. At the end of round 1, all bidding information, including the value and identity

of the bidder associated with each bid, is made public to all bidders. Each bidder

(except the one(s) with the highest bid) publicly announces whether to drop out.

The auction ends if only 1 bidder remains, who then becomes the winner and

pays her bid.

4. If more than 1 bidder remains, the auctioneer sets the minimum required price

for round r = 2 using the function ρ2 = Pmin(p
1), where p1 is the highest bid in

round 1. Pmin(a) ≥ a, is strictly increasing, and is known to all bidders.

5. Repeat steps 2-4 until the auction ends.

3.2 Assumptions

There are n ≥ 2 risk neutral bidders taking part in an ascending-bid auction of a single

object. Each bidder i values the object at Ui, but does not observe Ui directly. Instead,

each receives a scalar private observation X̃i about the object. X̃i’s are identically dis-

tributed over the support (0, X̄) and are strictly affiliated. Intuitively, strict affiliation

means that large realized values for some of the variables make the other variables

more likely to be large than small1. Formally, let z and z′ be points in Rn. Let z ∨ z′

denote the element-wise maximum of z and z′, and let z ∧ z′ denote the element-wise

minimum. Strict affiliation requires that for all z and z′,

f(z ∨ z′)f(z ∧ z) ≥ f(z)f(z′). (1)

1For a general definition of affiliation, see the Appendix of Milgrom and Weber (1982).
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Bidder valuations are affiliated in the sense that bidder i’s expected value of the

object Vi is a function of private observations of all bidders Vi = v(xi, {xj}j ̸=i) = E[Ui |
xi, {xj}j ̸=i], where v is continuous and increasing in each argument. By assumption,

the value function v(·) is the same for all bidders. This value function encompasses the

common value case (which consists of both a private value component and a common

value component) and two special cases: the private value case and the pure common

value case. For the private value case, Vi = v(xi, {xj}j ̸=i) = v(xi), where bidder i’s

expected value only depends on her own private observation. For the pure common

value case, Vi = v(xi, xk, {xj}j ̸=i,j ̸=k) = v(xk, xi, {xj}j ̸=i,j ̸=k),∀k ̸= i, that is, private

observations of all bidders (including bidder i) enter into bidder i’s value function

symmetrically. In contrast, when both a private value component and a common

value component are present (i.e. the common value model), a bidder’s own private

observation enters her value function differently from those of other bidders. Assume

one places weakly more weight on her own private observation than her rival bidders’,

i.e. Vi = v(xi, xj, {xk}k ̸=i,k ̸=j) ≥ Vj = v(xj, xi, {xk}k ̸=i,k ̸=j) iff xi ≥ xj.

A jump bid is one that is “substantially” higher than the minimum required price

set by the auctioneer for that round. Formally, a jump bid in round r is defined as

b ≥ ρr + κ̄(ρr), where κ̄(ρr) ≫ 0, and is known to all bidders.

3.3 A two-player, two-stage game by Avery

Placing a jump bid is not cheap talk because the bid may win the auction. Jump

bids are costly to bidders since by placing a jump bid, bidders forego the possibility

of winning at a lower price. However, if the cost of placing a jump bid (of the same

size) differs across different “types” of bidders, it has the potential of being used as a

signaling tool. In a symmetric equilibrium where the strategy is strictly increasing in

the private observation x, a bidder prefers to lose if she can be convinced that there

exists another bidder with a private observation higher than hers because winning

requires her to pay above her expected value. If a jump bid of a given size is more

costly to bidders with lower x′s than those with higher x′s, then it can potentially be

used as a signaling tool of the underlying value.

Before presenting the general model, I will first use a simple two-player, two-stage

game taken from Avery’s 1998 paper to illustrate the intuition behind using jump bids

as signals for underlying values when bidder values are affiliated.2 I will demonstrate

2See Avery (1998) Sections 3 and 4 for a more general discussion and more details.
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that affiliation in private observations makes it more costly ex ante for the player with

a lower x to place a jump bid than the one with a higher x.

The assumptions of this game follow the previous section. Additionally, assume

Pmin(p
r) = pr + ϵ, where ϵ is a small positive number, i.e. the auctioneer raises the

minimum required price by a small amount from round to round. This is a standard

assumption for an ascending-bid auction.

The game (referred to as the “metagame” hereafter) proceeds in two stages. In the

first stage, the bidders simultaneously choose between two choices of bids: an ordinary

bid 0 and a jump bid K > 0. The second stage resembles a standard ascending-bid

auction, with the reservation price equal to the maximum bid from the first stage. In

this stage, jump bids are not seen as signals by all bidders.

Let S∗(x) denote a symmetric strategy played by both players at the second stage

of the game, which represents the drop-out price in the ascending-bid auction. S∗(x)

is assumed to be increasing in x. Note that this strategy does not predict how a bidder

behaves from round to round, but simply at which price the bidder will drop out. One

example of such a symmetric strategy is S∗(x) = v(x, x), derived by Milgrom and

Weber (1982). There is an obvious subgame perfect equilibrium where both players

bid 0 in the first stage, and follow S∗(x) in the second stage. However, there exists

another class of subgame perfect equilibria which deliver higher ex ante payoff to the

bidders.

Let Sa(x) denote a bidding strategy such that Sa(x) < S∗(x) and S∗(x) − Sa(x)

is increasing. It can be shown that there exists a threshold x∗ ∈ (0, X̄) such that

the following symmetric strategy is a subgame perfect equilibrium of the two-stage

metagame: in the first stage, bid K if x > x∗, bid 0 otherwise; in the second stage,

play Sa(x) if outbid by the opponent in the first stage, play S∗(x) otherwise. In this

equilibrium, if the actions in the first stage are symmetric/asymmetric, the strategies

played in the second stage are also symmetric/asymmetric. Table 1 summarizes the

bidding functions of the second stage as a function of the first stage bidding. In

addition, the threshold x∗ is unique for a fixed two-tuple {Sa, K}.

Table 1: Bidding functions as a function of opening bids
Player 1’s Bid Player 2’s Bid

K 0
K (S∗(x), S∗(x)) (S∗(x), Sa(x))
0 (Sa(x), S

∗(x)) (S∗(x), S∗(x))
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Figure 1: Symmetric equilibrium with jump bids

To prove this strategy is a subgame perfect equilibrium, I will start from the second

stage of the metagame. Suppose it is common knowledge that x1 > x2, then the

strategy pair (S∗(x1), Sa(x2)) form an equilibrium for the second stage. The reason is

given x1 > x2, bidder 1 prefers to win since V1 = v(x1, x2) > v(x2, x2) = S∗(x2) >

Sa(x2). Similarly, bidder 2 prefers to lose since V2 = v(x2, x1) < v(x1, x1) = S∗(x1).

Neither bidder has an incentive to deviate, the strategy pair is therefore an equilibrium

of the second stage.

Given the equilibrium of the second stage, it remains to show that there exists a

(partially) separating signaling equilibrium in the first stage with threshold x∗. Assume

bidder 2 plays the following strategy: in the first stage, bid K if x2 > z, z is fixed and is

public knowledge; bid 0 otherwise. In the second stage, play Sa(x2) if outbid by bidder

1 in the first stage; play S∗(x2) otherwise. Conditional on x2 < z, bidder 1 is able to

induce bidder 2 to shift from a bidding strategy S∗(x2) to Sa(x2) in the second stage by

placing a jump bid K. As shown in Figure 1, the yellow path PK(x2) = max(K,Sa(x2))

represents the price path faced by bidder 1 triggered by an unmatched jump bid. If

x2 < x′, bidder 1 is better off not placing a jump bid and face S∗(x2) since S∗(x2) lies

below PK(x2). If x
′ < x2 < z, bidder i prefers to place a jump bid and faces the lower

curve PK(x2). Since X̃1 and X̃2 are strictly affiliated, then intuitively the larger the

private observation x1, the more likely that x2 lies between x′ and z, the more likely

that bidder 1 chooses to place a jump bid.
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Suppose that bidder 1 receives the private signal x and define

ϕ(x, z) = E[S∗(x2)− PK(x2) | x1 = x, x2 ≤ z]. (2)

ϕ(x, z) measures the expected reduction in price that bidder 1 has to pay conditional

on placing a jump bid unmatched by bidder 2. ϕ(x, z) > 0 implies that jump bidding

by bidder 1 would be profitable conditional on bidder 1 winning. Since S∗(x)− Sa(x)

is increasing, S∗(x) − PK(x) is also increasing and continuous. As a result, ϕ(x, z) is

continuous and strictly increasing in both arguments by the property of strict affiliation

between x1 and x2. In addition, as depicted in Figure 1, ϕ(x, z) is negative for x near

zero and positive for large x. By the intermediate value theorem, there is a unique

value x∗ such that ϕ(x∗, x∗) = 0. Update bidder 2’s strategy by replacing the threshold

z with x∗. To complete the proof, it remains to show that player 1 does not want to

deviate from a symmetric strategy that also uses x∗ as the jump bid threshold in the

first stage. There are 4 scenarios to consider: 1) x1 > x∗ ≥ x2; 2) x1 > x∗, x2 > x∗;

3) x1 ≤ x∗, x2 ≤ x∗; 4) x1 ≤ x∗ < x2. Scenario 1 is straight forward to show. Since

x1 > x2, bidder 1 wins the auction regardless of her choice in the first stage. However,

if she chooses to jump bid, the expected reduction in price is positive, i.e. ϕ(x1, x
∗) > 0.

Bidder 1 therefore does not deviate from the decision to jump bid. For the remaining

3 scenarios, Avery (1998) provides a detailed proof, which I will not repeat here.

The equilibrium in the first stage is partially separating as all bidders with x′s

below threshold x∗ (“low-value” types) choose one action and those with x′s above

(“high-value” types) choose the other. Low-value types are not able to mimic high-

value types because they face a higher ex ante cost attributed to the property of strict

affiliation of private observations. If the outcome in the first stage is asymmetric, the

bidder that chooses not to jump bid learns that her private observation is lower than

her opponent’s. As a result, she prefers to lose the auction than to win it. She is

therefore indifferent between strategies S∗ and Sa.
3 When Sa ≤ K, she chooses to

drop out right away at the end of the first stage. The willingness of lower types to

drop out at prices lower than the equilibrium prices without signaling results in lower

expected revenue to the auctioneer and higher expected profit to the bidders.

With independent private observations, there remains a unique signaling equilib-

rium with jump bids for each two-tuple {Sa, K}. However, this equilibrium is pooling,

3If a small transaction cost of ϵ is introduced every time a bid is placed, the bidder will strictly
prefer Sa.
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instead of partially separating. Both bidders choose the same action in the first stage,

always leading to a symmetric outcome in the second stage. The expected revenue to

the auctioneer is therefore equivalent to that under an ascending-bid auction without

signaling. This result is in line with the what revenue equivalence theorem predicts.4

3.4 A symmetric equilibrium with one-round signaling

The simple 2-player 2-stage game has demonstrated that the existence of a partially

separating signaling equilibrium is directly attributed to the property of strict affilia-

tion. The same intuition applies when the auction is extended to allow for endogenous

jump bids. Proposition 1 by Avery describes the conditions for the existence and the

characteristics of a unique symmetric signaling equilibrium of a 2-player 2-stage game

with endogenous jump bids in the first stage.

Proposition 1. (Avery).5 Suppose that the two bidders choose their opening bids en-

dogenously and simultaneously from a fixed set of n possible bids and that they continue

according to a prespecified asymmetric equilibrium in favor of the higher bidder. Then

there is a unique symmetric signaling equilibrium, with strategies identical to those

strategies for an n-stage descending signal game with the same set of possible jump

bids.

I will broadly outline the idea behind this proposition. For a detailed proof, see

Avery (1998). First consider a fixed set of jump bids {K1, K2, ..., Kn} where K1 >

K2 > ... > Kn > 0. Unlike in the two-stage game, bidders may now signal in more

than one round. In round 1, bidders face a set of {0, K1}. If at least one bidder chooses
K1, no more signaling is allowed and bidders proceed to play S∗ or Sa as in the simple

game. If both bidders choose 0, then they proceed to round 2 and face the new choice

set {0, K2}. Bidders can now signal up to n rounds. The threshold x∗
r in round r is

determined the same way as in the simple game and x∗
r is decreasing in r. The subgame

that starts from the last round of signaling is identical to the simple game. Conditional

on the existence of a unique symmetric equilibrium for this subgame, adding one more

signaling round to the beginning of this subgame retains the structure of the simple

game and the proof that a unique symmetric equilibrium exists for the bigger subgame

4The revenue equivalence theorem specifies a class of auctions that would generate the same ex-
pected revenue to the seller, in particular the independent private values model must apply. See
Milgrom and Weber (1982), Theorem 0.

5This corresponds to Theorem 4.7 in Avery (1998)
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is identical to the proof of the simple game. Hence by iteratively adding a signaling

round to the beginning of the expanded subgame, it can be shown that the multi-round

signaling game with descending jump bids has a unique symmetric equilibrium.

Next, suppose that bidders again can only signal in the first round, but are now

allowed to choose their opening bids from the descending set {K1, K2, ..., Kn, 0}. Con-
sider the choice of the lowest jump bid Kn in the simultaneous game of the first round.

In equilibrium, the only bidders who will not make at least that bid are those with the

lowest private observations. Suppose the threshold for such a bid is zn. zn is identified

by finding the level of private observation which makes the receiver indifferent between

bidding 0 and Kn, conditional on the opponent’s private observation being below zn.

This condition is identical to the condition for the threshold in the nth round of signal-

ing in the multi-round signaling game. By inductive reasoning, the n thresholds in this

single-round signaling game are equal to the thresholds in the multi-round signaling

game with descending jump bids, thereby producing a unique equilibrium.

While Proposition 1 provides an excellent starting point for a structural model for

estimation, there are two issues that need to be resolved. First, the equilibrium changes

with the specification of Sa, the second-stage strategy played by the bidder with the

lower jump bid from the first stage. Sa will need to be fixed to avoid multiple equilibria.

The second is that the model needs to be generalized from a model with two bidders

to a model with more than two.

Proposition 2. The following symmetric strategy is a subgame perfect equilibrium of

the multi-player ascending bid auction: in the first round of the auction, place a bid

following a symmetric first-price sealed bid strategy S1st(x); if outbid by any bidder in

the first round, drop out immediately, otherwise move on to the second round; from

the second round onward, follow an ascending-bid strategy with drop-out price equal to

S∗(x | Ω̂), where Ω̂ denotes all information available up to that point of the auction.

Proof. This equilibrium can be written as {S1st(x), (0, S
∗(x | Ω̂)}. Proposition 1 holds

for any discrete set. Consider an equally spaced discrete set defined by {K,K, δ},
where K > 0 is the lower bound, K < ∞ is the upper bound, and δ > 0 is the

equal spacing. Fix Sa(x) = 0. This implies that as long as the two bidders do not

choose the same jump bid in the first round, the one with the lower jump bid drops

out at the end of the first round. As K → 0, K → ∞, and δ → 0, the choice set

approaches the set of non-negative (real) numbers. As the private observations are

drawn from a continuous distribution, the probability that the two bidders draw the
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same private observations is zero. Hence the probability that they choose the same

jump bid approaches 0 and the probability that the auction ends after the first round

approaches 1. In the limit, the bidders are free to choose any nonnegative bid in the

first (and only) round of the auction. The one with the lower bid drops out and the

other one wins the auction and pays her own bid. This describes a first-price sealed bid

auction. Let S1st(x) denote the strictly increasing symmetric equilibrium strategy for a

first-price sealed bid auction, where S1st(xi) maximizes E[(Ui−bi)1(S1st(xj) ≤ bi) | xi].

This equilibrium strategy can be easily extended to when there are more than 2 bidders

by redefining xj = maxk ̸=i xk.

In the limit of K → 0, K → ∞, and δ → 0, the auction beyond the first round be-

comes degenerate. Nevertheless, a strategy is needed for a subgame perfect equilibrium.

I will adopt the strictly increasing symmetric strategy S∗(x | Ω̂) for 2 or more bidders

by Milgrom and Weber (1982). Note that the key difference between an ascending

auction with 2 bidders and one with more than 2 bidders is that more information is

revealed in the course of the auction in the latter case. When a bidder drops out of the

auction, if the auction does not end (i.e. when there are two or more bidders left), the

remaining bidders are able to infer the private observation received by the bidder who

drops out from her drop-out price. The remaining bidders can therefore update their

expectations since the value function is assumed to be affiliated. Ω̂ denotes the set of

drop-out prices observed up to a particular point of the ascending-bid auction.

If either K → 0 or K → ∞ (or both) is relaxed, the first round can be interpreted

as a first-price sealed bid auction with a price floor or a price ceiling (or both). In each

case, there is a probability mass for the first-round bids at 0 or K. The auction beyond

the first round is no longer degenerate.

3.5 Multi-round signaling

This section explores an extension of the multi-player model with one round of signaling

to one with multiple rounds of signaling.

Proposition 2 describes an equilibrium in which bidders send signals through jump

bidding in the first round only. Beyond the first round, the implicit assumption is

that any further jump bidding will not be interpreted as signals. If this assumption is

relaxed, that is, jump bids in rounds beyond the first round are also seen as signals,

then this provides further opportunities for bidders to increase the expected payoff.
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Consider a simple case in which bidders can signal in the first 2 rounds. Again as-

sumeK → 0,K → ∞, and δ → 0. Consider the following strategy {S1st(x), (0, S1st(x)),

(0, S∗(x | Ω̂))}. The difference between this strategy and the one in Proposition 2 is

that in the second round, a bidder plays S1st(x) again if she is not outbid by any other

bidders in the first round. If all bidders follow this strategy, the auction again ends

after the first round. However, this strategy is no longer an equilibrium. Assume all

bidders but i play this strategy. Consider an alternative strategy for bidder i where

she places a reduced bid S̃ = S1st(xi) − θ > 0 in the first round. Let S1st(xj) be the

highest bid in the first round among the rest of the bidders. If S1st(xj) > S1st(xi)

(that is, xj > xi), then bidder i drops out right away and her payoff remains 0. If

S̃ ≤ S1st(xj) < S1st(xi), bidder i can move onto the second round with bidder j and

bid S1st(xi) to win the auction and receive the same payoff. In the last scenario when

S̃ > S1st(xj), bidder i wins the auction at a lower price. Since the probability of the last

scenario is non zero, the alternative strategy delivers a strictly higher ex ante payoff.

The two-round signaling example demonstrates that there is an incentive to place a

bid lower than S1st(xi) in the earlier round due to the possibility of winning at a lower

price. The same argument applies when bidders can signal in more than 2 rounds, and

in an unlimited number of rounds.

There are additional benefits for placing a bid lower than S1st(xi) in earlier rounds

when bidders can signal in multiple rounds. Bidders are able to infer more information

about the private observations other bidders receive from their decisions to drop out or

to stay in the auction using the inverse of the equilibrium strategy. This information

affects both the expected value of the object as well as the expected probability of

winning. In particular, having more information will allow bidders to form an expected

value closer to the true value of the object, thus reducing the winner’s curse typical to

a sealed-bid auction. This ability to collect more information along the course of the

auction and update one’s expectations accordingly is what differentiates an ascending-

bid auction from a second-price sealed bid auction. In this case, it also marks the

difference between a multi-round signaling game and a one-round signaling game. I

use S̃1st(xi | Ωr) to denote the strategy that maximizes E[(Ui − bi)1(S̃1st(xj | Ωr) ≤
bi) | xi,Ω

r], where Ωr is the set of information revealed up to round r − 1.
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3.6 General predictions for equilibria with multi-round sig-

naling

When multi-round signaling is allowed and the decision to stop placing a jump bid

becomes endogenous, it is complicated to specify a pure-strategy equilibrium. The

very nature of a multi-round auction means the cost for bidders to make a mistake

is low, in particular in earlier rounds. This suggests that there are likely multiple

equilibria. It is complicated to predict which equilibrium is more likely to be played in

reality. Instead of trying to argue which equilibrium prevails, I will focus on predicting

some common characteristics shared by all the equilibria. Note that there is no limit

on how many rounds a bidder can signal through jump bids. The only restriction is

that once a bidder stops placing a jump bid in a round, she will not be allowed to do

so in all future rounds. I will call the earlier rounds where jump bids are placed the

signaling stage and the later rounds where non-jump bids are placed the ascending-bid

stage.

Proposition 3. For any symmetric (pure) strategy that constitutes a SPE of the multi-

player ascending bid auction with multi-rounds of signaling, the following holds:

1. if bri , the bid in round r by bidder i, is a jump bid, i.e. bri ≥ ρr + κ̄(ρr), then

S̃1st(xi | Ωr) ≥ bri ;

2. if bri is not a jump bid, i.e. ρr ≤ bri ≤ ρr + κ̄(ρr), then S̃1st(xi | Ωr) ≤ ρr + κ̄(ρr)

and bri < S∗(xi | Ω̂);

3. if a bidder i drops out at the end of round r, then either there is a high enough

signal, i.e. brj ≥ ρr + κ̄(ρr) and brj ≥ S̃1st(x | Ωr), where brj is the highest jump

bid of round r; or the expected value is lower than the minimum required price of

the next round, i.e. S∗(x | Ωr+1) < ρr+1.

Proof. As discussed earlier, in round r, with additional information collected from the

dropout decisions of other bidders, S̃1st(xi | Ωr) gives the jump bid that makes bidder i

indifferent between placing a jump bid and placing a bid equal to the minimum required

amount. As a result, S̃1st(xi | Ωr) serves as the upper bound of bidder i’ jump bid in

round r for all equilibria.

When bidder i places a non-jump bid, this means she has endogenously chosen to

end the signaling stage as the smallest jump bid now exceeds the upper bound. She
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then moves on to follow the strategy in an ascending-bid auction, which specifies a

drop out price at S∗(xi | Ω̂).
A bidder decides to drop out at the end of round r as soon as she receives a signal

that puts the sender’s private observation above her own. This means there must be

at least one jump bid that is higher than the upper bound of bidder i’s jump bid in

round r. There is another reason for the bidder to drop out. This happens when ρr+1,

the minimum required price for the next round exceeds the drop-out price given by

S∗(x | Ωr+1).

Proposition 3 places bounds on the observed bids based on whether a bidder places

a jump bid and her dropout decision at the end of each round. These model predictions

suggest that the signaling model works like a hybrid model of a first-price sealed-bid

auction and an open exit ascending-bid auction. To structurally estimate such a model

involves estimating each of these two auction formats.

4 Empirical Strategy

4.1 Auction background and data

In 1997, the FCC introduced “click box bidding” in Auction 16. Participants placed

bids by simply clicking on the license numbers and all bids were exactly one increment

above the standing high bid. It was believed that the change in auction rule was to

primarily address the issues of jump bidding and code bidding6 (Cramton and Schwartz,

2000; Bajari and Yeo, 2009). In later auctions, this rule was relaxed to allow bidders

to place jump bids up to 9 bid increments. Nonetheless bidders’ ability to signal using

jump bids was restricted, making the later auctions less suitable for studying jump

bidding.

Among the first 15 auctions where bidders faced no restriction on bid size, Auction

5 (broadband PCS auction (C-block)) was the largest in terms of total revenue raised

(over $10 billion). It was only open to small businesses with annual revenues less

than $40 million. Compared to other auctions, the bidders in Auction 5 are more

homogeneous in size, therefore more appropriate to be described as symmetric, which

6Code bidding refers to the practice of attaching market numbers in the trailing digits of bids to
signal key interest.
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is a key feature of the theoretical model. In this auction, the U.S. was divided into 493

markets (“Basic Trading Areas”). One license was offered for each market. 255 small

businesses took part in the auction.

In the empirical exercise that follows, I treat the auction of each of the 493 licenses

as an independent auction and assume each auction follows the rules detailed in the

theoretical section. However, in real life, these auctions ran in parallel following a

simultaneous multiple round format. Each round, bidders simultaneously placed bids

on all the licenses they were interested in. A key difference between the rules of the

theoretical model and those of Auction 5 is that bidders did not need to announce

whether they dropped out of the auction for a particular market at the end of each

round. It is therefore unclear at which point the dropout took place. Following Don-

ald and Paarsch (1996), Paarsch (1997), and Hong and Shum (2003), I assume this

happened immediately after a bidder placed her last bid in a market and the other

bidders made the same inference. While this assumption may not always hold, the

eligibility rule of Auction 5 encouraged participants to actively bid in all markets they

were interested in by making the maximum number of bids a bidder could place in

future rounds dependent on the number of bids she placed in the current round. If a

bidder adopted a “sit-and-wait” strategy in too many markets, she might eventually

lose the eligibility to contest in some of the markets that she stood a chance to win.

The eligibility rule could therefore be interpreted as a milder version of the irrevocable

dropout assumption made in the theoretical model.

4.2 Define a jump bid

The theoretical model defines a jump bid in round r as b ≥ ρr+κ̄(ρr), where κ̄(ρr) >> 0,

and is known to all bidders. In auctions where bidders can only place a bid that

either equals the minimum required price, or exceeds it by whole multiples of a fixed

increment set by the auctioneer (for example in FCC Auction 17 and some art auctions),

the definition of a jump bid is unambiguous. However, in Auction 5, bidders faced no

restrictions on the choice of bids, as long as they were not below the minimum required

price. This begs the question: how should a jump bid be defined in this empirical

context?

In the data, out of all the bids that exceed the minimum required price, over 20%

exceed the minimum required price by $100 or less, and over 40% exceed it by $1000

or less (see Figure A in Appendix A). In a signaling model, jump bids are intended as
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tools to disclose some information about one’s private observation. However, bidders

could aim to achieve other goals with small jumps. For example, some may simply

want to avoid a tie with another bidder and become the highest bidder of that round.

In Auction 5, the highest bidder in a round does not need to raise her own bid in the

following round. Further, since the FCC always sets the minimum required price in

multiples of thousands, i.e. the last three digits are zeros, all code bids (bids with the

market numbers attaching to the end) exceed the minimum required prices. Code bids

send signals in a different way than jump bids.

It is entirely possible that bidders do not agree on how much a bid must exceed the

minimum required price to be interpreted as a jump bid in the way described by the

theoretical model. However, if the majority of them agree on a common definition, is

there a way to identify it? Suppose a bidder believes a jump bid exceeds the minimum

required price by at least κ̄, then bidding ρr + κ̄ − ϵ is strictly dominated by bidding

ρr+κ̄ in most cases since the value of signaling exceeds ϵ when ϵ is small.7 This suggests

that we may observe “bunching”, defined as a spike in the probability distribution over

sizes of jumps, at the true κ̄. Figure A is a histogram of the empirical distribution of

jumps. Each bar correspond to a bin with width of 50. We observe distinct spikes for

the following bins with lower bounds at 0, 100 (this bin contains jump sizes from 100

to 149), and whole thousands. Considering that numbers that are multiples of 100 and

1000 may contain additional informational value or associate with lower transaction

cost, I remove bids with jump sizes equal to 100, 500, 1000 and 2000. The spikes with

lower bounds at 100 and 1000 persist after the adjustment (see Figure A). The spike

at 1000 become more prominent in the later rounds of the auction (see Figure A).

Based on the empirical evidence, I define κ̄ at 1000. Compared to 100, 1000 has

the added benefit of excluding all potential code bids (since there are 493 markets, a

code bid exceeds the minimum required price by at most $493). Further, a relatively

stringent criterion for a jump bid will reduce the probability of over stating the revenue

effect of jump bidding.

4.3 A parametric approach to estimation

As discussed earlier, the affiliated value framework of the theoretical model nests the

private value model, the pure common value model and the common value model,

7ρr + κ̄ − ϵ is strictly dominated by ρr + κ̄ if ρr + κ̄ ≤ S̃1st(·), and is strictly dominated by ρr if
ρr + κ̄ > S̃1st(·).
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which includes a common value component and a private value component. In the

context of a spectrum auction, one would expect the presence of both a common value

component to reflect market attributes that are valued by all bidders, such as market

size measured by population, and a private value component to allow values to differ

across bidders. This suggests that a common value model is the most appropriate in

this empirical context.

The difficulties with nonparametric identification of a common value model are well

recognized in the econometric literature. Laffont and Vuong (1996) show that a com-

mon value model in a first-price sealed-bid auction is unidentified nonparametrically.

In fact, any affiliated value model is observationally equivalent to some affiliated pri-

vate value model. Similarly in ascending-bid auctions, Athey and Haile (2002) prove

that a common value model is generally not identified nonparametrically. Given the

challenges with nonparametric identification of a common value model, I adopt a para-

metric approach following Hong and Shum (2003).

I assume that Ui, the value of the object to bidder i, takes a multiplicative form

Ui = AiV , where Ai is a bidder-specific private value for i, and V is a common value

component unknown to all bidders. V and Ai’s are assumed to be independently log

normally distributed. Let v ≡ lnV , ai ≡ lnAi, ui ≡ lnUi:

v = m+ ϵv ∼ N(m, r20),

ai = ā+ ϵa,i ∼ N(ā, t2),

ui = m+ ā+ ϵv + ϵa,i ∼ N(m+ ā, r20 + t2).

Each bidder receives private observation Xi = Ui · exp(sξi), where ξi is an unobserved

error term with a standard normal distribution, and s is an unobserved parameter. Let

xi ≡ lnXi, then conditional on ui,

xi = ui + siξi ∼ N(ui, s
2).

As a result, (ui, xi, i = 1, ..., N) are jointly normally distributed. The joint distribution

is fully characterized by parameters {m, r0, ā, t, s}. These parameters are common

knowledge among the bidders and are what I will estimate using the signaling model.
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4.4 Identification

As pointed out by Haile and Tamer. (2003), the lack of sufficient structure of an

ascending-bid auction makes a mapping between the bids observed and the underlying

demand structure challenging. Point identification typically relies on observing at

which price a bidder drops out. Haile and Tamer. (2003) instead construct bounds on

observed bids and partially identify the distribution functions using an independent

private value model.

As the theoretical model of this paper also places bounds on the bids observed,

a partial identification approach could naturally follow. However, it is difficult to

implement the approach by Haile and Tamer. (2003) in a common value model due to

the interdependence in distributions of bidder information and valuation. In this case,

stronger assumptions become necessary. I follow the approach of Donald and Paarsch

(1996), Paarsch (1997) and Hong and Shum (2003) and assume that the last bid placed

by each bidder (but the winner of the auction) is equal to the dropout prices predicted

by the theoretical model. This assumption allows for point identification. As discussed

in Section 4.1, whether this assumption is valid depends on whether the bidder indeed

drops out immediately after placing the last bid. If instead the bidder stays in the

auction for a few additional rounds without placing any bid, the last observed bid is

below the real dropout price. While this scenario could happen in Auction 5 because a

formal announcement of dropout was not required, an eligibility rule was put in place

to discourage such a “sit and wait” strategy by reducing the maximum number of bids

a bidder could place in each future round for bidders who did not place enough bids in

a few consecutive rounds.

5 Structural Estimation

5.1 Simulated nonlinear least-squares (SNLS)

I use a simulated non-linear least squares estimator following the methodology of Laf-

font et al. (1995) and Hong and Shum (2003). This estimator minimizes the nonlinear

least-squares objective function:

QT (θ) =
1

T

T∑
t=1

Nt∑
i=2

(pti −mt
i(θ))

2. (3)
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pti is the observed log dropout price for bidder i in auction t. For tractability, I

number the bidders in an auction in the reverse of the dropout order. For example, in

auction t, the winner is labelled bidder 1, and the bidder who is the first to drop out is

labelled bidder Nt, where Nt is the total number of bidders in this auction. Notice that

the bidder number in Equation 3 starts from 2. This is because the dropout price for

the winner is not observed since she never dropped out. mt
i(θ) is the model-predicted

counterpart of pti, which is the mean of a multivariate truncated distribution. Due

to the difficulties of computing mt
i(θ) analytically, it is natural to replace it with a

consistent simulation estimator m̃t
i(θ).

m̃t
i(θ) =

1

S

S∑
s=1

(bti,s(x⃗s; θ)), (4)

where bti,s(x⃗s; θ) is the model predicted dropout price for bidder i in auction t for a

particular draw of x⃗s from the joint distribution.

The updated objective function is:

Q̄S,T (θ) =
1

T

T∑
t=1

Nt∑
i=2

(pti − m̃t
i(θ))

2. (5)

Laffont et al. (1995) show that while m̃t
i(θ) is a consistent estimator of mt

i(θ),

Q̄S,T (θ) is not a consistent estimator of QT (θ) for any fixed number of simulations S

as T goes to infinity. It can be shown that the size of the bias for each auction t is:

∆S(θ) =
1

S(S − 1)

S∑
s=1

(bti,s(x⃗s; θ)− m̃t
i(θ))

2. (6)

As a result, to obtain a consistent simulation estimator for QT (θ), simply subtract

Equation 6 from Equation 5:

Q̃S,T (θ) =
1

T

T∑
t=1

Nt∑
i=2

{(pti − m̃t
i(θ))

2 − 1

S(S − 1)

S∑
s=1

(bti(x⃗s; θ)− m̃t
i(θ))

2}. (7)

As discussed in Section 4.4, bti,s(x⃗s; θ) in the signaling model is predicted by the

equilibrium strategy of a first-price sealed-bid auction if the observed bid is a jump

bid; and is predicted by the equilibrium strategy of an open exit auction if the observed

bid is not a jump bid. In the rest of this section, I will discuss how each of the two
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is computed in auction t with simulated draw x⃗s. For simplicity, I will suppress the

superscript t.

5.2 Computing the open exit strategy

The equilibrium strategy of an open exit auction with symmetric affiliated value follows

Milgrom and Weber (1982). In equilibrium, the price βi at which bidder i drops out of

the auction is defined as follows:

βi(Xi) = E[Ui | Xi;Xj = Xi, j = 1, 2, ..., i− 1;Xk, k = i+ 1, ..., N ]. (8)

Since bidder valuations are affiliated, the expected valuation of each bidder depends

on the private observations of all bidders. For each bidder i, the private observations

can be partitioned into 3 groups. The first group includes bidder i’s own private obser-

vation Xi. The second group consists of Xj’s in Equation 8, the private observations

of the bidders that remain in the auction. Since these private observations are unob-

served by bidder i, she needs to form expectations on them. Given the assumption of

symmetric bidders, bidder i simply assumes Xj = Xi. The last group includes Xk’s,

the privates observations of the bidders that dropped out before bidder i. While bid-

der i does not observe these private observations at the beginning of the auction, she

can infer them by inverting the bidding strategy after observing at which prices these

bidders drop out.

Given the parametric assumptions per Section 4.3 , the log dropout price has a

closed-form solution that can be easily computed with each simulated draw x⃗s ≡
(x1

s, ..., x
N
s )

′. Let x̂i = ( xi
s, ..., x

i
s︸ ︷︷ ︸

first i elements

, xi+1
s , ..., xN

s︸ ︷︷ ︸
last N-i elements

)′.

bi(x⃗s) =lnβi(Xi)

=E[ui | x̂i] +
1

2
V ar[ui | x̂i]. (9)

Denote the marginal mean-vector and variance-covariance matrix of (ui, x1, ..., xN) by

µi ≡ (ui, µ
∗)′ and Σi ≡

(
σ2
i σ∗

i
′

σ∗
i Σ∗

)
. Then using the formulas for conditional mean and

variance of a multivariate normal distribution:

E[ui | x̂i] = (ui − µ∗′Σ∗−1σ∗
i ) + x̂i

′Σ∗−1σ∗
i , (10)
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V ar[ui | x̂i] = σ2
i − σ∗

i
′Σ∗−1σ∗

i . (11)

5.3 Computing the first-price strategy

The equilibrium strategy of a first-price sealed-bid auction with symmetric affiliated

value according to Milgrom and Weber (1982) is:

bi(Xi) = ln

∫ Xi

0

v(α, α)
fY1(α | α)
FY1(α | α)

L(α | Xi)dα, (12)

where Y1 = max{Xj}, j ̸= i, L(α | Xi) = exp(−
∫ Xi

α

fY1 (s|s)
FY1

(s|s)ds).

This strategy does not have a closed-form analytical solution. To compute it, I

employ a combination of simulation and numerical approximation. First, I divide the

integral into n bins and rewrite the it into a summation:

bi(Xi) ≈ ln
n∑

s=1

v(αs, αs)
fY1(αs | αs)

FY1(αs | αs)
L(αs | Xi)ωs︸ ︷︷ ︸

ρs,i

, (13)

where αs is the mid-point of bin s and ωs is the width of bin s. I use ρs,i to denote

the value of bin s conditional on Xi. Next, I estimate components of ρs,i ( v(αs, αs),
fY1 (αs|αs)

FY1
(αs|αs)

and L(αs | Xi)) separately for each bin s. Last, I sum up the values of all n

bins and take the natural log to obtain an estimate for the equilibrium strategy of a

first-price sealed-bid auction.

The number of bins I select for approximation is 10. I conduct tests for robustness

using various bin numbers up to 50. The value estimated is not very sensitive to the

choice of bin numbers. Further, as the number of bins increases, the estimation for
fY1 (αs|αs)

FY1
(αs|αs)

tends to yield undefined values for bins with lower values since FY1(αs | αs)

is more likely to be zero. The reason for this will become clear once I discuss how

FY1(αs | αs) is estimated.

For a given number of bins, an intuitive way of defining the bins is to draw a

large number of observations from the empirical distribution8, and divide the distance

between the minimum and maximum observations into equal intervals. However, given

8The empirical distribution changes in every iteration of the minimization algorithm due to changes
in parameter values. To make sure that the definitions of bins are consistent across iterations, I make
draws from the standard normal distribution to obtain the bounds for each bin, and rescale them
based on the parameter values of a particular iteration. The number of observations drawn is 100
million.
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the normal distribution, the majority of the observations drawn will fall into the middle

bins, rendering estimations for
fY1 (αs|αs)

FY1
(αs|αs)

and L(αs | Xi) for the bins at the two ends

inaccurate due to a lack of observations. As a result, I define the bins using percentiles

of the observations drawn. In particular, when the number of bins is 10, the bins are

defined by the deciles (i.e. the 10th, 20th, ... and 90th percentiles). This makes sure

the probability of a randomly drawn observation falling into any of the bins is the

same. I number these bins from 1 to 10 starting from the lowest decile.

v(Xi = αs, Y1 = αs) measures the expected value of bidder i when both bidder i

and the bidder with the highest private observation among all other bidders receive a

private observation equal to αs. The analytical solution to v(·) is a multi-dimensional

integral on the joint distribution of X’s, which is difficult to compute. I therefore

approximate v(x⃗s) by fitting a function on the largest two elements of 500 simulated

draws. v(x⃗s) is evaluated using Equation 10. By assumption, v(x⃗s) is monotone in

each element of vector x⃗s and the elements are strictly affiliated, v(x⃗s) is therefore

likely to be monotone in the largest two elements, too. I experiment with a number

of specifications up to a cubic term of each element. Higher level functions do not

significantly improve the fitting than a linear specification, which is what I adopt.

The cumulative distribution function (“cdf”) FY1(αs | αs) can be re-written as a

conditional probability:

FY1(Y1 = αs | Xi = αs) = Pr(Y1 ≤ αs | Xi = αs). (14)

To estimate FY1 using simulation, I again draw 500 observations of x⃗s. I then proceed

to identify all observations that contain at least an element which falls in bin s. Out

of these observations, I calculate the share of observations which do not contain any

element that falls in a bin higher than s. This share provides an approximation of

FY1(αs | αs). It can be easily shown that FY1 is increasing in αs. This pattern is

generally observed for the estimates of FY1 for the higher bins. However, for the lower

bins, the increasing pattern is often broken. This is because the probability of drawing

an observation of x⃗s of which the largest element falls in bin s decreases as s decreases.

The accuracy of the estimates therefore decreases as a result of a smaller number of

observations for the lower bins. In some cases, the estimate falls to zero. Unfortunately

this issue does not readily go away when the number of observations drawn increases.

The probability distribution function fY1(αs | αs) is computed based on the estimates
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of the cdf’s. Specifically,

fY1(αs | αs) = (FY1(αs | αs)− FY1(αs−1 | αs))/ωs (15)

L(αs | Xi) = exp(−
∫ Xi

αs

fY1 (s|s)
FY1

(s|s)ds) is an integral. To approximate it, I again rewrite

it into a summation:

L(αs | Xi) ≈ exp(−
Ni∑

m=s

fY1(αm | αm)

FY1(αm | αm)
ωm), (16)

where Ni is the number of the bin into which Xi falls. The computation of this

summation for each bin s makes use of approximations of
fY1 (αs|αs)

FY1
(αs|αs)

. However, unlike
fY1 (αs|αs)

FY1
(αs|αs)

which is independent of Xi, the approximation of L(αs | Xi) depends on Xi

through Ni. For s > Ni, define L(αs | Xi) to equal zero.

To reflect the fact that Xi falls into bin Ni, but does not necessarily cover the entire

bin, I adjust ρNi,i by multiplying it with the ratio
Xi−lbNi

ubNi
−lbNi

, where lbNi
and ubNi

are

the lower and upper bounds of bin Ni respectively.

5.4 Estimation results

The second panel of Table 2 shows the estimation results of the multi-round signaling

model. The mean of the common value component m, is parameterized into 2 parts, a

constant and a coefficient on population. I choose this parsimonious parameterization

to reduce the burden of computation. In addition, simple regressions of the winning

bids against a selection market attributes, including population, population density

and area suggest that population is the best predictor. The mean of the private value

component, ā is not separately identified from the constant associated with the common

value component.

In order to understand the impact on valuation from a potential model misspecifi-

cation when bidders play according to the signaling model but the econometrician fits

the data using an open exit model, I repeat the SNLS estimation using an open exit

model with the same data. In this case, bti,s(x⃗s; θ), the model predicted dropout price

for a random draw of private observations x⃗s as defined in Section 5.1 is simply equal

to the closed-form analytical solution in Section 5.2. The estimation results are shown

in the first panel of Table 2.

27



Table 2: Simulated nonlinear least-squares estimates

Coefficient Open Exit Signaling

Components of mean
Constantb 11.57 13.18

(0.22) (0.14)
POP (mils) 0.91 0.95

(0.29) (0.27)
Standard deviations
r0 (common value comp.) 12.75 2.66

(5.96) (0.29)
t (private value comp.) 2.84 3.58

(0.13) (0.26)
s (unobserved error) 3.95 0.65

(0.27) (0.05)

# auctions (T) 491 491

Note:
a Bootstrapped standard errors in brackets, computed from empirical

distribution of parameter estimates from 100 parametric bootstrap
resamples

b Not separately identified from ā
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Comparing the estimates of the components of the m, the mean of the common

value, the values for both parts are higher under the multi-round signaling model

than the open exit model. Consider a market with a population of 200k (the median

population of all 493 markets is 187k), the mean of the log value of the license estimated

by the signaling model is 13.4, 14% higher than that estimated by the open exit model

at 11.8. This suggests that if bidders are using jump bids as signals, ignoring them

leads to underestimation of the mean.

6 Counterfactual Analysis

Table 3: Counterfactual mean log prices and total revenues

“Jump bid”
auctions

All
auctions

Mean actual log prices ($)
Highest/winning bid 15.95
Second highest bid (jump bid) 15.90

Mean predicted log pricesa($)
Multi-round signaling 16.58
Single-round signaling 16.90
Open exit auction (no signaling) 17.18

Predicted total revenues ($bn) % ∆ % ∆
Multi-round signaling 17 170
Single-round signaling 23 33% 176 3%
Open exit auction (no signaling) 31 76% 183 8%

# auctions 81 491

Note:
a Average model predicted log prices of 1000 simulated draws

In the counterfactual analysis, I assess the revenue impact of jump bidding using the

estimates from the signaling model. In particular, I estimate the changes in revenues

from an auction with multi-round signaling to one with single-round signaling, and to

an open exit auction where no signaling is allowed.

If jump bids were prohibited, the auctions that would have different prices would be

the ones where the winning bids were jump bids. However, the empirical model is not
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able to make any prediction on the winning bid because it is not the dropout price of

the winner. To get around the limitation, I will instead focus on auctions with second

highest bids being jump bids, and make counterfactual predictions on these bids to

approximate a change in revenue.

In the data, 81 auctions out of 491 fit this description. I refer to these auctions

as the “jump bid” auctions. As shown in Table 3, the mean log winning bid for the

jump-bid auctions is at 15.95 and the mean log second highest bid is 15.90. The small

difference between these two numbers suggest that the latter serves as a fairly close

estimate to the former.

The multi-round signaling model predicts the mean log second highest bid to be at

16.58. If we only allow the bidders a one-off opportunity to signal using jump bid, the

auction is transformed into a first-price sealed-bid auction as shown by the theoretical

model. The mean log price is predicted to increase to 16.90. It continues to go up to

17.18 if all jump bids are forbidden, i.e. in an open exit auction.

The revenues from the 81 jump bid auctions are estimated to increase by 33% when

the auction moves from one that allows multi-round signaling to one that only allows

one round of signaling. The revenues increase by another 35% when signaling through

jump bids are prohibited. The total increase in revenues amounts to 76% of those

from the auction with multi-round signaling. Overall, this increase account for an 8%

increase in total revenues across all 491 auctions.

7 Conclusions

The existing empirical research on jump bidding adopts either a descriptive or a re-

duced form approach. While both approaches help confirm the pervasiveness of jump

bidding and identify its correlation with a number of economic factors, they are unable

to quantify the revenue effect of jump bidding. This paper generalizes a theoretical

signaling model on jump bidding and uses it as the basis for a structural estimation

that uncovers the underlying bidder value distribution. A counterfactual analysis using

these estimates finds an overall improvement of revenue by 8% for the FCC broadband

PCS auction (C-block).

A Additional figures
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Figure 2: Density distribution of jump bids by size I

Figure 3: Density distribution of jump bids by size II
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Figure 4: Density distribution of jump bids by size III

Figure 5: Density distribution of jump bids by size IV
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Figure 6: Density distribution of jump bids by size V
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