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1 Introduction

We propose a price-competition model in which prices are dispersed and a subset of
consumers decide whether to make immediate purchases with no active price search or
engage in sequential search. We formulate an incomplete-information model with produc-
tion heterogeneity and information friction: firms’ production cost types are drawn from
an interval and privately observed. This approach brings two important consequences.
First, we obtain price dispersion in a pure-strategy equilibrium where firms set prices
conditional on their production cost types. Second, the model includes active or inactive
consumer search as an equilibrium outcome while allowing a competition-induced switch
between the two outcomes in the market with arbitrarily many firms. With these ingre-
dients in place, the model can capture how firms and consumers interact in determining
pricing and active-or-inactive search. We provide some answers to the questions that may
arise when competition becomes more intense with more firms in the market. How does
active or inactive search make a difference in pricing response to competition? How does
pricing response to competition affect whether search is active or inactive?

In the model, firms have private information as to their production cost types before
selecting prices, where production cost types are drawn from a continuum and indepen-
dent and identically distributed (iid) across firms.1 We follow Stahl (1989) and assume
that a subset of consumers are uninformed about prices and have the option to incur a
positive search cost and sequentially search for another firm. The remaining consumers
observe prices and purchase at the lowest price in the market. We look for a symmetric
pure-strategy equilibrium in which the strategy of firms is a price function that satisfies
incentive compatibility constraints: no firm can gain by mimicking firms with other cost
types on the function, or by selecting a price that deviates from the function. We establish
its existence and uniqueness in two steps. First, we show that incentive compatibility of
firms boils down to a set of price functions. Every function in the set is strictly increasing
on the interval of possible production cost types. Second, for any search cost, we identify

1Private information as to production costs arises from the fact that there are firm-specific variations
in technology and supply contracts while firms lack knowledge of firm-specific component of competitor
costs. The current model can be modified such that production costs consist of two separate parts: (i)
the firm-specific component that is private information and iid and (ii) the common component that is
publicly observed. This modification shifts the distribution function of cost types with no qualitative
changes in our results. Private information as to production costs is commonly found in the collusion
literature, as in Athey and Bagwell (2001, 2008), Aoyagi (2003), Athey, Bagwell and Sanchirico (2004),
Skryzpacz and Hopenhayn (2004), Lee (2010), and Bagwell and Lee (2010).
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a unique price function from the set and verify the optimality of search decision.
The results show that any symmetric pure-strategy equilibrium can be classified into

one of two types: (i) Random Equilibrium (RE) in which uninformed consumers make
immediate purchases from the first firm they randomly select, and (ii) Search Equilibrium
(SE) in which uninformed consumers engage in sequential search. More specifically, for
any search cost, there is a unique symmetric pure-strategy equilibrium, and if the search
cost is higher than (below) a cut-off value, the equilibrium is RE (SE). The cut-off value
is unique and approaches zero if production heterogeneity decreases such that the interval
of possible cost types becomes sufficiently narrow. In RE, firms select prices lower than
the reservation price and consumer search is inactive. In SE, the market is divided into
the lower-price and higher-price segments, in that each firm selects a price at one segment.
The higher-price segment induces active search with its prices above the reservation price
and captures the transactions that are made at one price after all prices are observed with
none of them at the lower-price segment. The two equilibria have different implications
for price dispersion. In RE, transaction prices are just as dispersed as posted prices:
transactions can take place at any price of the price function. In SE, except in the event
that all prices belong to the lower-price segment, transaction prices are less dispersed than
posted prices: transactions can take place either at any price of the lower-price segment
or at only one price of the higher-price segment. For any given number of firms, more
active search must accompany a decrease in transaction price dispersion, since search can
become more active only if the higher-price segment expands and includes more prices.

We are interested in how firms and consumers interact in determining pricing and
active-or-inactive search when competition becomes more intense as the number of firms,
N , increases in the market. We first show that whether search is active or inactive makes a
difference in pricing response to competition. The difference is particularly pronounced in
higher prices. If search is inactive (i.e., in RE), the expected price is higher in the market
with more firms under the assumption that the interval of possible cost types is sufficiently
narrow and demand is sufficiently inelastic. Two factors contribute to this result. One is
that an increase in N has the price-increasing effect on a range of higher prices: firms with
higher cost types raise prices since they focus on the profit from uninformed consumers
with less prospect of winning informed consumers. The other is that the price-increasing
effect is strong enough that the expected price rises.2 In contrast, if search is active (i.e.,

2The assumption stated above on the interval of possible cost types and demand function works for
strengthening the price-increasing effect by decreasing the pay-off advantage of having lower costs and
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in SE), then an increase in N has the price-decreasing effect on the original higher-price
segment except the highest possible (boundary) price: firms remaining at the higher-price
segment decrease prices, and any firm’s move to the lower-price segment causes its price
decrease. A firm at the higher-price segment does not increase its price when there are
more rivals. Intuitively, the firm’s price increase can occur only if a range of rival prices
also goes up at the segment, and the lowered demand for those rivals and the increase
in N deter the firm’s price increase by decreasing the information rents in its expected
profit.

We next study how pricing response to competition affects whether search is active
or inactive (i.e., whether the equilibrium is SE or RE). We show that a sufficiently large
N has the search-inactivating effect: prices are distributed in favor of inactive search in
the market with a sufficiently large N . In SE, an increase in N has the price-decreasing
effect on the higher-price segment, and this effect generates the price dispersion above the
reservation price. However, a more critical factor for active search is the price dispersion
below the reservation price: if prices are not sufficiently distant from the reservation price
in terms of consumer’s expected utility, then the market fails to be segmented since firms
at the lower-price segment can increase prices without inducing search. We find that a
sufficiently large N has the price-increasing effect on the lower-price segment, and this
effect discourages active search by causing the segment’s prices to be more concentrated
near the reservation price. We also find that a sufficiently large N does not allow a switch
from inactive to active search: in any RE, prices remain sufficiently close to the boundary
price in terms of consumer’s expected utility, when the market has a sufficiently large N .

We finally analyze pricing in the environment where the search cost declines. If search
is inactive and the original search cost is not too high, then a decrease in the search cost
causes non-uniform price reductions: the price function shifts downward with less steep
slope (i.e., with greater reductions in higher prices). Firms truthfully select prices on the
new function since they are less tempted to mimic lower types when prices are lower,
and consumer search remains inactive since prices are less distant from the new boundary
price in terms of consumer’s expected utility. On the other hand, if search is active, then a
decrease in the search cost induces more active search with two opposing effects on prices:
the higher-price segment expands and the lower-price segment includes a price-decreasing

setting lower prices. The price-increasing effect of competition has been shown in various contexts as in
Stiglitz (1987), Schulz and Stahl (1996), Janssen and Moraga-González (2004), and Chen and Riordan
(2007, 2008).
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interval while it shrinks. Price reductions arise only from firms remaining at the lower-
price segment. The difference in price reductions may lead to opposite impacts on the
range between the highest and lowest possible prices: if search is inactive, the range may
fall, but if search is active, the range may increase.

A large number of existing search models are built on the assumption that produc-
tion costs of firms are common or perfectly correlated. A competition-driven interaction
between pricing and active-or-inactive search has not been explored by papers with the
assumption. In Varian (1980) and Stahl (1989), uninformed consumers are inactive in
search in a mixed-strategy equilibrium. Janssen and Moraga-González (2004) consider a
fixed-sample-size search and find equilibria in which uninformed consumers’ search inten-
sity declines with N . However, the equilibrium in which uninformed consumers search for
only one price fails to exist in their model if N is large. Janssen et al. (2011) introduce
common cost uncertainty in a sequential-search model, and find an equilibrium in which
uninformed consumers purchase at the first visit despite their potential learning about
the common cost.3 Using a duopoly version of common cost uncertainty, Janssen et al.
(2017) show that uninformed consumers search beyond the first visit in a non-reservation-
price equilibrium.4 Janssen and Shelegia (2020) introduce common cost uncertainty in
a duopoly competition and show that consumer search and prices depend on the extent
to which consumers attribute a price deviation to a monopolist upstream input supplier.
Using a setting with one large seller and a continuum of remaining sellers, Menzio and
Trachter (2015) include sequential search in their mixed-strategy equilibrium where the
reservation price is conditional on the large seller’s price.

There are search models assuming that production costs are heterogeneous.5 In Rein-
ganum (1979), there are a continuum of firms, and all consumers are uninformed but
inactive in their search in the equilibrium. In Spulber (1995), all consumers are informed
and purchase at the same lowest price. Bagwell and Lee (2014) show that an increase in
N induces higher prices for higher-cost firms and lower prices for lower-cost firms and that
uninformed consumers are harmed as a result. This result is based on the environment

3Their model introduces incomplete information with the assumption of common cost uncertainty: all
firms draw the same production cost type, but this realization is unknown to consumers. This assumption
holds if production costs are perfectly correlated but unknown to consumers. Dana (1994), Yang and Ye
(2008) and Tappata (2009) similarly adopt incomplete information in their newspaper-search models.

4Janssen et al. (2017) extend this result to a model with imperfectly correlated production costs.
5The search literature allows heterogeneity in a labor-market context. Albrecht and Axell (1984) and

Gaumont, Schindler, and Wright (2006) allow workers to have heterogeneous intrinsic values of outside
options, and different match values for jobs, respectively.
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where consumer search is inactive and has no interaction with pricing response to compe-
tition. Bénabou and Gertner (1993) and Fishman (1996) presents a model of search with
learning in which consumers, after observing a price hike, resolve whether it is due to a
firm-specific cost shock or a common inflationary factor. Focusing on a duopoly market,
these papers highlight the role of consumer learning and search in how production cost
shocks increase prices, while putting aside the impact of competition on the interaction
between consumer search and pricing.

Some recent studies investigate price-directed search models in which consumers ob-
serve prices before search but learn their match values for products after search. In this
line of research, consumers’ search order is affected by prices, and complexity of search
and demand analysis arises from different search paths consumers can follow. Armstrong
and Zhou (2011), Shen (2015), and Haan et al. (2018) analyze a duopoly market and
Choi et al. (2018) consider a market with N firms.6 It is shown in the literature that
sufficient heterogeneity of consumers’ pre-search preference is crucial for the existence
of a pure-strategy equilibrium with endogenous search order. In our model, a subset of
consumers do not observe prices before search, and the heterogeneity of production costs
is crucial for the existence of a pure-strategy equilibrium with active sequential search.

The remainder of this paper is organized as follows. Section 2 describes the model.
Section 3 characterizes RE and verifies its existence. Section 4 characterizes SE and
presents its existence. Section 5 investigates the interaction between pricing and active-
or-inactive search in the market where competition becomes more intense with more firms,
and analyzes pricing in the market where the search cost decreases. Section 6 concludes.
Appendices provide the proofs.

2 Model

We propose a price-competition model in which prices are dispersed and a subset of
consumers decide whether to make immediate purchases or search sequentially. The model
uses an incomplete-information setting with production heterogeneity and information
friction: firms’ production cost types are drawn from an interval and privately observed.

6Choi et al. (2018) show that the demand of a firm can be derived without the need to keep track of
different search paths that consumers can follow before they eventually purchase from the firm.
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2.1 Basic Assumptions

There are N ≥ 2 ex ante identical firms in a homogeneous-good market. Each firm i has
private information about its unit production cost θi which is drawn from the support
[θ, θ] of a differentiable distribution function F (θ), where θ > θ ≥ 0. The cost draws are
iid across firms. The density f(θ) ≡ F ′(θ) is positive for all θ ∈ [θ, θ]. The market contains
a unit mass of consumers. Each consumer has a twice-continuously differentiable demand
function D(p) that satisfies D(p) > 0 > D′(p) for all p < r, where r ≡ sup{p : D(p) > 0}.
We follow Stahl (1989) and assume that a fraction U ∈ (0, 1) of consumers are uninformed
about prices and have the option to incur a search cost, s > 0, and search sequentially.
The remaining fraction I = 1−U of consumers observe prices and purchase at the lowest
price in the market. The model maintains a standard assumption: uninformed consumers
randomly pick an initial firm at no cost, and having perfect recall, they can come back to
previously-visited firms at no additional cost.

A firm with cost type θ earns π(p, θ) = (p − θ)D(p) when it sets price p and sells to
the entire unit mass of consumers. We assume that π(p, θ) is strictly concave in p and has
its maximum at monopoly price, pm(θ) = arg maxp π(p, θ), and that r > pm(θ). It then
follows that pm(θ) is strictly increasing in θ with positive margin, pm(θ) − θ > 0, for all
θ. We also define a strictly decreasing function, u(p) ≡

∫ r
p D(x)dx, to represent consumer

surplus at price p. In some part of Section 5.1, we consider inelastic demand, D(p) = 1
for p ≤ r and D(p) = 0 for p > r, under the assumption that r > θ.

2.2 Equilibrium Requirements

We analyze the game in which (i) firms learn their own cost types and simultaneously
choose their prices, and (ii) each consumer chooses a firm to visit and makes desired
purchases given the firm’s price. We are interested in Perfect Bayesian Equilibrium which
may be defined in terms of the following requirements: (i) each firm selects its price to
maximize its expected profit given its cost type and the strategies of other firms, (ii) each
consumer selects an initial firm to visit and any subsequent firm to visit in a way that
maximizes expected utility at each point given the information that the consumer then has
and the beliefs about prices at firms not yet visited, and (iii) where possible, consumers’
beliefs are formed in a manner consistent with Bayes’ rule given the equilibrium strategies
of firms.

We impose two requirements on the equilibrium concept. First, firms use symmet-
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ric pure strategies. Second, informed consumers randomize equally over the firms with
the same lowest price if there is more than one such firm, and uninformed consumers
randomize equally over all “unvisited” firms whenever they select a firm to visit. The
strategy that firm i uses is a price function p(θi) that maps from [θ, θ] to R+. Let p(θ−i)
denote the vector of price selections made by firms other than i when their cost types are
the (N − 1)-tuple θ−i. The vector of prices selected by firm i and its rivals determines
the market share for firm i, m(p(θi),p(θ−i)), where m maps from RN

+ to [0, 1]. We use
the interim market share and interim profit for firm i to represent the expected market
share and expected profit for firm i, respectively, when it has cost type θi, sets the price
p(θi) and anticipates that its rivals employ the strategy p to determine their prices upon
observing their cost types. Firm i has the interim market share

M(p(θi); p) ≡ Eθ−i
[m(p(θi),p(θ−i))],

and earns the interim profit π(p(θi), θi)M(p(θi); p). We drop subscript i and write the
interim profit in a direct form: if a firm with cost type θ picks the price p(θ̂) when its
rivals employ the strategy p to determine their prices, then its interim profit is

Π(θ̂, θ; p) ≡ π(p(θ̂), θ)M(p(θ̂); p).

Any symmetric pure-strategy equilibrium has the price function p(θ) that satisfies
incentive compatibility constraints: no firm can gain by mimicking firms with other cost
types on the function, or by selecting a price that deviates from the function. Formally,
the function p(θ) satisfies the on-schedule constraints,

π(p(θ), θ)M(p(θ); p) ≥ π(p(θ̂), θ)M(p(θ̂); p) for all θ and θ̂ 6= θ, (On-IC)

and the off-schedule constraints,

π(p(θ), θ)M(p(θ); p) ≥ π(p̂, θ)M(p̂; p) for all θ and p̂ /∈ p([θ, θ]). (Off-IC)

In addition, it satisfies the participation constraints,

π(p(θ), θ)M(p(θ); p) ≥ 0 for all θ. (IR)

These inequality constraints imply some basic requirements of equilibrium. We list them
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in the following lemma.

Lemma 1. Suppose p(θ) satisfies On-IC, Off-IC, and IR. (i) The interim profit is positive,
π(p(θ), θ) > 0 and M(p(θ); p) > 0, for all θ < θ. (ii) p(θ) is nondecreasing on [θ, θ] and
strictly increasing on (θ, θ) with the boundary value p(θ) ≥ θ. (iii) If M(p(θ); p) > 0, then
p(θ) ≤ pm(θ) for all θ, and if M(p(θ); p) = 0, then p(θ) ≤ min{θ, pm(θ)} for all θ < θ.

Lemma 1 (i) shows that the interim profit cannot be zero for any firm with θ < θ. If it
is zero, this firm can increase it above zero by deviating to p̂ ∈ (θ, θ) given that all other
firms have cost types above p̂ with probability [1− F (p̂)]N−1 > 0. For (ii), we use On-IC
for any two types, θ1 and θ2, and derive an inequality,

[D(p(θ1))M(p(θ1); p)−D(p(θ2))M(p(θ2); p)][θ2 − θ1] ≥ 0, (1)

which shows thatD(p(θ))M(p(θ); p) is nonincreasing in θ. We note from (i) thatD(p(θ)) >
0 and M(p(θ); p) > 0 for all θ < θ. The inequality (1) thus implies that p(θ) is nonde-
creasing in θ on the entire interval [θ, θ]. Moreover, p(θ) is not constant on any subinterval
of (θ, θ). If it has a constant subinterval, a firm can experience a discrete increase in its
expected market share by decreasing its price by an infinitesimal amount. The bound-
ary value p(θ) has the requirement, p(θ) ≥ θ, since if p(θ) < θ, there is θ̂ < θ such that
p(θ̂) < θ̂, which contradicts (i). The result (iii) shows that any price above monopoly price
pm(θ) is dominated. This is obviously true for all θ if M(p(θ); p) > 0. If M(p(θ); p) = 0,
the additional restriction, p(θ) ≤ θ for all θ < θ, is needed to prevent a firm with θ from
mimicking lower types: if M(p(θ); p) = 0 and p(θ̂) > θ for any θ̂ < θ, then a firm with θ
can earn π(p(θ̂), θ)M(p(θ̂); p) > 0 by mimicking θ̂ and selecting p(θ̂).

A symmetric pure-strategy equilibrium consists of a price function and uninformed
consumers’ search decision. In the next two sections, we show its existence and uniqueness
in two steps. First, we focus on incentive compatibility of firms and characterize the set
of all price functions that satisfy the infinitely many inequality constraints, On-IC and
Off-IC. Second, for any search cost, we identify a unique price function from the set and
verify the optimality of search decision and the participation constraints, IR. We find
two kinds of equilibria: (i) Random Equilibrium (RE) in which uninformed consumers
purchase from the first firm they randomly select, and (ii) Search Equilibrium (SE) in
which uninformed consumers engage in sequential search. Lemma 1 (ii) indicates that a
firm with θ selects the lowest price in the market with probability [1−F (θ)]N−1 and thus,
a firm with θ has no chance of winning informed consumers, [1−F (θ)]N−1 = 0. In RE, a
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firm with θ makes the profit from uninformed consumers by deterring their search. In SE,
a firm with θ induces their search, and despite having no chance of winning any consumers,
M(p(θ); p) = 0, it does not mimic firms with θ < θ which set p(θ) ≤ θ as shown in Lemma
1 (iii). The price function in SE includes a price range above the reservation price, ρ, and
uninformed consumers find it optimal to purchase at the currently-observed price p(θ̂) if
p(θ̂) ≤ ρ and search for another firm if p(θ̂) > ρ. The reservation price ρ is endogenous
but constant at any round of search given that production costs are privately informed
and iid across firms.7 As discussed in further detail below, our two-step analysis relies on
an assumption on demand function.

Assumption 1. The following inequality holds for all θ and p ∈ (θ, pm(θ)):

π(p, θ)
πp(p, θ)

(
πpp(p, θ)
πp(p, θ)

− D′(p)
D(p)

)
< 1,

where πp and πpp are the first-order and second-order derivatives, respectively.

A large family of demand functions satisfy this assumption, including any linear func-
tion and a constant-elasticity function, D(p) = p−ε with ε > 1. The assumption holds as
long as D(p) is not too convex.

3 Random Equilibrium

In this section, we characterize RE and establish its existence. This section focuses on
the reservation price ρ ≥ θ, since if ρ < θ, the boundary-value requirement, p(θ) ≥ θ, in
Lemma 1 (ii) shows that a firm with θ cannot deter consumer search.

3.1 Characterization of RE

We begin by showing that if ρ ≥ θ, then a firm with θ, having no chance of winning
informed consumers, selects p(θ) to deter search and maximize the profit from uninformed
consumers, p(θ) = min{ρ, pm(θ)}, and uninformed consumers purchase from the first firm
they randomly select. Thus, if ρ ≥ θ, then the market-share function M(p(θ); p) can be
represented by M(θ) = U

N
+ [1−F (θ)]N−1I, and the possible boundary prices range from

7Specifically, if an uninformed consumer has visited firm i and contemplates visiting another firm j,
then the consumer’s belief about the price at firm j is not altered by the price observed at firm i.
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p(θ) = pm(θ) to p(θ) = θ. Given the possible boundary prices, we next contemplate the
set of price functions that solve

p′(θ) = −π(p(θ), θ)[∂M(θ)/∂θ]
πp(p(θ), θ)M(θ) with p(θ) ∈ [θ, pm(θ)], (2)

where M(θ) is strictly decreasing, ∂M(θ)
∂θ

= −(N −1)[1−F (θ)]N−2f(θ)I < 0, for all θ < θ.
The differential equation in (2) is the first-order condition, Π1(θ̂, θ; p) = 0 for θ̂ = θ, which
requires p(θ) to be strictly between marginal cost and monopoly price, θ < p(θ) < pm(θ),
for any θ ∈ (θ, θ). Suppose PD denotes the set of price functions that solve the differential
equation for θ ∈ (θ, θ) with the boundary values in (2) and no jump at {θ, θ}. Now, letting
PIC represent the set of all price functions that satisfy On-IC and Off-IC, the following
lemma characterizes this set by showing that PD and PIC are equivalent.

Lemma 2. If ρ ≥ θ, then PIC consists of the functions, p(θ) ∈ PD for θ ∈ (θ, θ) with
the boundary values, p(θ) = min{ρ, pm(θ)}, and no jump at {θ, θ}.

The key result in Lemma 2 is that if ρ ≥ θ, the infinite number of inequality constraints,
On-IC and Off-IC, boils down to (2). The boundary values, p(θ) = min{ρ, pm(θ)}, and
no jump at {θ, θ} are necessary for incentive compatibility of p(θ) and p(θ), and the
first-order condition, Π1(θ̂, θ; p) = 0 for θ̂ = θ, is necessary for a local optimality under
which no firm with θ ∈ (θ, θ) gains by mimicking other types in the neighborhood of
θ. These necessary conditions are also sufficient to ensure that On-IC and Off-IC hold.
Intuitively, if a firm has no incentive to mimic its neighboring types along p(θ), then it
does not mimic any other type beyond the neighborhood, given that the interim profit
has the single-crossing property, Π12 > 0.8 Moreover, if no firm gains by mimicking any
other type along p(θ), then no firm gains by deviating to a price above p(θ) or below p(θ).
Figure 1 illustrates an example of two price functions that solve (2) and have the highest
and lowest possible boundary values, p(θ) = pm(θ) and p(θ) = θ, respectively.

8The single-crossing property, Π12 = − ∂
∂θD(p(θ))M(θ) > 0, means that the increase in D(p(θ))M(θ)

that accompanies a price reduction is more appealing for a firm with lower θ than with higher θ. For
the results that given the boundary condition, the first-order condition is necessary and also sufficient for
On-IC, we rely on Lemma 1 in Bagwell and Lee (2014).
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Figure 1: Illustrations of p(θ) with p(θ) = pm(θ) and with p(θ) = θ.

3.2 Existence of RE

Lemma 2 shows that if ρ ≥ θ, then incentive compatibility of firms restricts pricing
strategy to p(θ) ∈ PD for θ ∈ (θ, θ) with the boundary prices ranging from p(θ) = pm(θ)
to p(θ) = θ. Focusing on this set of functions, we introduce consumer search. To this
end, we select a price function and define the expected utility gain from search at the
boundary price p(θ). Specifically, we use the price function with p(θ) = pm(θ) to define

v ≡
∫ θ

θ
[u(p(θ))− u(pm(θ))]dF (θ), (3)

and use the price function with p(θ) = θ to define

v ≡
∫ θ

θ
[u(p(θ))− u(θ)]dF (θ). (4)

The values v and v are above zero. For any price function in the set, we can rewrite the
expected utility gain from search at p(θ) as

∫ θ

θ
[u(p(θ))− u(p(θ))]dF (θ) =

∫ θ

θ

∫ p(θ)

p(θ)
D(x)dxdF (θ) =

∫ θ

θ
F (θ)D(p(θ))p′(θ)dθ.
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It follows from (2) that the term D(p(θ))p′(θ) in the integrand becomes

D(p(θ))p′(θ) = π(p(θ), θ)D(p(θ))
πp(p(θ), θ)

(
−∂M(θ)/∂θ

M(θ)

)
.

Assumption 1 comes into play here to ensure that the price function with a higher p(θ)
has a larger value of the term π(p(θ),θ)D(p(θ))

πp(p(θ),θ) for each θ ∈ (θ, θ) and thus generates a higher
expected utility gain from search at p(θ). Intuitively, if a price function shifts upward,
its slope becomes steeper since firms get more tempted to mimic lower types when prices
go up. For the demand functions that satisfy Assumption 1, prices then become more
distant from the new boundary value p(θ) in terms of consumer’s expected utility.

We now use Lemma 2 and identify the price functions from PIC for s ≥ v and s ∈ [v, v),
by showing that the boundary values that are conditional on ρ ≥ pm(θ) and ρ ∈ [θ, pm(θ))
are determined by s ≥ v and s ∈ [v, v), respectively. We can describe any reservation
price ρ ≥ θ by an equation:

u(ρ) = max{
∫ θ

θ
u(p(θ))dF (θ)− s, 0}. (5)

The right-hand side represents the expected utility from incurring the search cost and
finding a price below p(θ), including the scenario where u(ρ) = 0 and ρ = r for s sufficiently
large. The equation (5) indicates that ρ is determined by which function is used by firms
in their price-setting given the search cost. If s ≥ v, then firms use the price function
with the boundary value p(θ) = pm(θ). This is true because we can use (5) and s ≥ v

to find ρ ≥ pm(θ), and given ρ ≥ pm(θ), Lemma 2 confirms that the function satisfies
On-IC and Off-IC. If s ∈ [v, v), then firms use the price function with the boundary value
p(θ) ∈ [θ, pm(θ)) that satisfies

s =
∫ θ

θ
[u(p(θ))− u(p(θ))]dF (θ). (6)

We can use (5) and (6) to find ρ = p(θ) and thus ρ ∈ [θ, pm(θ)). Lemma 2 confirms
that the function satisfies On-IC and Off-IC. In Appendix A.1, we present the uniqueness
result by further showing that the differential equation in (2) has a unique solution and
that there is no alternative function that satisfies On-IC and Off-IC.

Lemma 3. For any s ≥ v and s ∈ [v, v), there is a unique price function that satisfies
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On-IC and Off-IC.

We clear the remaining requirements of equilibrium with two findings. First, for price
functions with p(θ) = pm(θ) and p(θ) ∈ [θ, pm(θ)), purchasing from a first firm is optimal
for uninformed consumers with s ≥ v and s ∈ [v, v), respectively. Second, we apply the
envelope theorem and derive the interim profit:9

Π(θ, θ; p) = π(p(θ), θ)U
N

+
∫ θ

θ
D(p(x))M(x)dx. (7)

The first term π(p(θ), θ)U
N

is common for all θ and the second term is information rents
that are greater for lower θ. Given p(θ) ∈ [θ, pm(θ)], the participation constraints, IR,
hold.

Proposition 1. For any s ≥ v, there exists a unique symmetric pure-strategy equilibrium.
If s ≥ v, then the equilibrium is RE with ρ ≥ pm(θ), and if s ∈ [v, v), then it is RE with
ρ ∈ [θ, pm(θ)).

Proposition 1 shows the existence of a unique symmetric pure-strategy equilibrium
in which search is inactive: firms select prices lower than ρ and uninformed consumers
make immediate purchases. The equilibrium has some notable features. First, transaction
prices are just as dispersed as posted prices: since search is inactive, transactions can take
place at any posted price between p(θ) and p(θ). Second, the margin, p(θ) − θ, is non-
monotonic with respect to θ: using (7), we can show that for any N > 2, the margin is
strictly decreasing in θ for θ close to θ, but for N sufficiently large, there is a wide range
of θ in which p(θ) − θ > p(θ) − θ. The intuition for this result is that the slope of p(θ)
becomes flatter when θ gets close to θ, since firms are then little tempted to mimic lower
cost types, but rather focus on the profit from uninformed consumers with little chance
of winning informed consumers. As we show in Section 5, when N is large, firms have
such tendency in a wide range of θ below θ, whereas they compete intensely for informed
consumers for θ close to θ.

9We derive the interim profit by using dΠ(x,x;p)
dx = −D(p(x))M(x) given Π1(x, x; p) = 0 and taking

the integral on both sides. See Milgrom and Segal (2002) for more details about the envelope theorem.
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4 Search Equilibrium

In this section, we characterize SE and establish its existence. Lemma 2 shows that if
ρ ≥ θ, then a firm with θ selects p(θ) to deter consumer search. Thus, this section
focuses on the reservation price ρ < θ, which implies ρ < p(θ) given the boundary-value
requirement, p(θ) ≥ θ, in Lemma 1 (ii).

4.1 Characterization of SE

If ρ < θ, then there is a cut-off type θc such that p(θ) is continuous on [θ, θc] and (θc, θ]
with the boundary values, p(θc) = ρ and p(θ) = θ. The cut-off type is an interior point,
θc ∈ (θ, θ), given s > 0 and ρ < p(θ). If p(θ) has a jump at any point on the subintervals,
or if p(θc) 6= ρ, then there is a firm that can increase its price while keeping its original
expected market share. The boundary condition p(θ) = θ prevents a firm with θ from
mimicking firms with θ < θ which set p(θ) < p(θ) = θ.

Lemma 4. If ρ < θ, there exists a cut-off type θc ∈ (θ, θ) such that p(θ) is continuous on
[θ, θc] and (θc, θ] with p(θc) = ρ and p(θ) = θ.

We can now describe the reservation price p(θc) by an equation:

u(p(θc)) = [1− F (θc)]u(p(θc)) +
∫ θc

θ
u(p(θ))dF (θ)− s. (8)

The left-hand side of (8) is the utility from purchasing at p(θc), and the right-hand side
is the expected utility from incurring the search cost s and either reverting to p(θc) or
finding a price below p(θc). We define an implicit function to rewrite (8) as

∆(θc) ≡
∫ θc

θ
[u(p(θ))− u(p(θc))]dF (θ)− s = 0, (9)

which shows that the expected utility gain from search at p(θc) equals the search cost.
We next derive the market-share function M(θ). A firm with θ ≤ θc sets its price

p(θ) ≤ p(θc) and captures informed consumers if and only if it has the lowest cost type.
The firm equally shares uninformed consumers with other j ∈ {0, 1, ..., N−1} firms in the
event that these j firms also have cost types lower than θc and the remaining N − j − 1
firms have cost types above θc. A firm with θ > θc has its price above p(θc) and takes a
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positive expected market share if and only if it has the lowest cost type and capture the
entire consumers.

Lemma 5. (i) If ρ < θ, the interim market-share function is

M(θ) =

 [1− F (θ)]N−1I + µ(θc)U for θ ≤ θc

[1− F (θ)]N−1 for θ > θc,
(10)

where

µ(θc) ≡
N−1∑
j=0

(
N − 1
j

)
1

j + 1 [F (θc)]j [1− F (θc)]N−j−1 = 1− [1− F (θc)]N
N · F (θc)

. (11)

(ii) For all θc > θ, µ(θc) > [1− F (θc)]N−1 and µ(θc) is strictly decreasing in θc.

A firm with θ ≤ θc has the expected market share µ(θc) for uninformed consumers. In
Appendix A.1, we simplify µ(θc) to derive the last term in (11). Using this term, we can
show that if θc → θ, then µ(θc) → 1 and if θc → θ, then µ(θc) → 1

N
. For all θc > θ, we

can also verify µ(θc) > [1− F (θc)]N−1 and show how µ(θc) decreases in θc,

∂µ(θc)
∂θc

= − f(θc)
F (θc)

[
µ(θc)− [1− F (θc)]N−1

]
. (12)

The market-share function M(θ) in (10) implies that

M(θc) = [1− F (θc)]N−1I + µ(θc)U and M+(θc) = [1− F (θc)]N−1,

where M+(θc) represents the limit from the right. Since µ(θc) > [1−F (θc)]N−1 for θc > θ,
M(θ) has a discontinuity at θc, M(θc) > M+(θc). Consistent with this, the price function
has a jump at θc, which can be described as a gap between p(θc) = ρ and p+(θc), where
p+(θc) denotes the limit from the right. To prevent any deviation, the jump requires that
a firm with θc should be indifferent between the two prices:

π(p(θc), θc)M(θc) = π(p+(θc), θc)M+(θc). (13)

The jump at θc is thus determined by (13), and if θc → θ or θc → θ, then it dissipates.10

10If θc → θ, then p(θc) and p+(θc) converge to p(θ) = θ since M(θc)→ U
N and M+(θc)→ 0. If θc → θ,

then p(θc) and p+(θc) approach the same price p(θ) since M(θc)→ 1 and M+(θc)→ 1.
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Figure 2: An illustration of p(θ) in SE.

In the following lemma, we characterize PIC that represents the set of all price func-
tions that satisfy On-IC and Off-IC. The boundary values, p(θc) = ρ and p(θ) = θ, and
the jump at θc are necessary for incentive compatibility of p(θ). The first-order condition,
Π1(θ̂, θ; p) = 0 for θ̂ = θ, is also necessary for a local optimality under which no firm
with θ ∈ {(θ, θc), (θc, θ)} gains by mimicking other types in the neighborhood of θ. This
first-order condition corresponds to the differential equation in (2), but withM(θ) in (10).
Suppose PD represents the set of price functions that solve the differential equation for
θ ∈ {(θ, θc), (θc, θ)} with the boundary values and the only jump at θc. The following
lemma shows that these necessary conditions are sufficient for incentive compatibility of
firms and thus, PD and PIC are equivalent. Figure 2 illustrates an example of p(θ).

Lemma 6. If ρ < θ, then PIC consists of the functions, p(θ) ∈ PD for θ ∈ {(θ, θc), (θc, θ)}
with the boundary values, p(θc) = ρ and p(θ) = θ, and the only jump at θc that satisfies
(13).

4.2 Existence of SE

Although Lemma 6 simplifies our analysis, there still is a difficulty from the differential
equation and jump. For additional convenience, we thus use the interim profits to analyze
the price functions in Lemma 6. If ρ < θ, the interim profits consist of only information
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rents given p(θ) = θ and M(θ) = 0. The interim profit for θ > θc is independent of θc,

π(p(θ), θ)M(θ) =
∫ θ

θ
D(p(x))[1− F (x)]N−1dx, (14)

which shows that θc determines the length of the interval (θc, θ], but not p(θ) for θ > θc.
On the contrary, p(θ) for θ ≤ θc is determined by θc. If θc is determined, then p(θc) follows
from the interim profit for θc,

π(p(θc), θc)M(θc) =
∫ θ

θc

D(p(x))[1− F (x)]N−1dx. (15)

Note that this interim profit for θc takes the jump into account, since the right-hand side
of (15) equals π(p+(θc), θc)M+(θc) in (13). If θc and p(θc) are determined, then p(θ) for
θ < θc is given by the interim profit for θ < θc,

π(p(θ), θ)M(θ) =
∫ θc

θ
D(p(x))M(x)dx+ π(p(θc), θc)M(θc). (16)

We now introduce consumer search and show that the price functions that are con-
ditional on θc ∈ (θ, θ) are determined by s ∈ (0, v). The following lemma presents the
monotonicity result that allows us to identify a unique θc ∈ (θ, θ) for any s ∈ (0, v).

Lemma 7. If ρ < θ, then (i) p(θc) strictly increases in θc, (ii) an increase in s within
the range of (0, v) raises θc, and (iii) if s→ 0, then θc → θ, and if s→ v, then θc → θ.

Lemma 7 shows that if the search cost increases within the range of (0, v), then search
becomes less active with higher θc and p(θc). Our proof is structured by two main findings.
We first use the interim profit for θ ≤ θc and find that an increase in θc raises p(θc) and
entails a price-increasing interval below p(θc), and if the new price function crosses the
original function, it does so only once.11 We next use the implicit function (9), ∆(θc) = 0,
and obtain the result (ii), ∂θc

∂s
> 0, by showing that an increase in θc raises the expected

utility gain from search at p(θc),

∂

∂θc

∫ θc

θ
[u(p(θ))− u(p(θc))]dF (θ) > 0. (17)

11We allow that an increase in θc may entail a price-decreasing interval, since firms with θ close to
θ may compete more aggressively for winning informed consumers when the expected market share for
uninformed consumers, µ(θc), gets smaller with higher θc.
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This inequality follows from how an increase in θc shifts p(θ) for θ ≤ θc: the expected
utility gain from search at p(θc) increases on the price-increasing interval for the demand
functions that satisfy Assumption 1 and on the price-decreasing interval because search
at p(θc) becomes more attractive with price reductions if such interval exists.

We finally identify the price function from PIC for each s ∈ (0, v). Lemma 7 makes
this simple by showing that for any s ∈ (0, v), there is a unique θc ∈ (θ, θ) such that
∆(θc) = 0. Given p(θ) = θ, once θc is determined, the price function that satisfies On-IC
and Off-IC can also be identified: we can obtain p(θ) for θ > θc from (14), p(θc) and
the jump from (15), and p(θ) for θ < θc from (16). The uniqueness result follows since
the differential equation in Lemma 6 has a unique solution for any θc ∈ (θ, θ).12 The
remaining requirements of equilibrium are also cleared. First, the interim profits in (14)-
(16) show that IR holds. Second, given the price function with θc, sequential search with
the reservation price p(θc) is optimal for uninformed consumers whose search cost satisfies
∆(θc) = 0.

Proposition 2. For any s ∈ (0, v), there exists a unique symmetric pure-strategy equilib-
rium, and this equilibrium is SE with ρ < θ.

Proposition 2 shows the existence of a unique symmetric pure-strategy equilibrium
in which the market is divided into the lower-price and higher-price segments, in that
each firm selects a price in one segment. The equilibrium has distinct features as follows.
First, the higher-price segment induces active search and captures the transactions that
are made at one price after all prices are observed with none of them at the lower-price
segment. Second, consumer search is monotonic with respect to the search cost: if the
search cost decreases within the range of (0, v), then search tends to become more active,
since the higher-price segment expands and likely includes more prices. Third, except in
the event that all firms have θ ≤ θc and their prices belong to the lower-price segment,
transaction prices are less dispersed than posted prices: transactions can take place either
at any price of the lower-price segment or at only one price of the higher-price segment.
For any given N , more active search must accompany a decrease in transaction price
dispersion, since search can become more active only if the higher-price segment expands
and includes more prices. Fourth, the margin, p(θ) − θ, is discrete and non-monotonic
with respect to θ, since it shows a jump between the two segments and then approaches

12Once θc is determined, M(θ) in (10) is determined, and given M(θ), the conditions we used in
Lemma 3 for the unique solution remain the same.
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zero as θ → θ.
We conclude this section by noting that the heterogeneity of production costs and the

search cost are critical in determining whether the equilibrium is RE or SE. For any s > 0,
if the heterogeneity of production costs decreases such that the interval of possible cost
types, θ − θ, is sufficiently narrow, then the equilibrium is RE. This is because if θ − θ
becomes sufficiently small, the cut-off value v approaches zero as the expected utility gain
from search at the boundary price p(θ) approaches zero. However, for any length of the
interval, θ − θ, if s is sufficiently small, then the equilibrium is SE since s < v is true.

5 Competition, Pricing, and Search

In this section, we investigate how firms and consumers interact in determining pricing
and active-or-inactive search when competition becomes more intense with more firms in
the market. We also analyze pricing in the environment where the search cost declines.

5.1 Price-Increasing and Price-Decreasing Competition

We characterize pricing in the market where the number of competing firms, N , increases.
If ρ is higher than the highest possible boundary value, ρ ≥ pm(θ), then the price function
with p(θ) = pm(θ) conveys the same result as in Bagwell and Lee (2014). Specifically, an
increase in N has the price-increasing and price-decreasing effects: if N rises, there is a
unique x∗ ∈ (θ, θ) such that p(θ) decreases for θ ∈ [θ, x∗) and increases for θ ∈ (x∗, θ)
while p(x∗) and p(θ) are unchanged. With more rivals, firms with lower θ compete more
aggressively for informed consumers, whereas firms with higher θ focus on the profit from
uninformed consumers with less prospect of winning informed consumers. In this pricing,
however, consumer search has no role.

If ρ ∈ [θ, pm(θ)), then consumer search and pricing interact each other although search
is inactive. The interaction can be found by using two implicit functions: how firms with
θ < θ select prices given the boundary price p(θ) = ρ is determined by

π(p(θ), θ)M(θ)− π(ρ, θ)U
N
−
∫ θ

θ
D(p(x))M(x)dx = 0, (18)
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and the level of ρ is determined by

∆(θ) =θ
θ [u(p(θ))− u(ρ)]dF (θ)− s = 0. (19)

Using (18) and (19), we can identify two separate effects:

∂p(θ)
∂N

= ∂p(θ)
∂N

∣∣∣∣∣
dρ=0

+ ∂p(θ)
∂ρ

∂ρ

∂N
. (20)

The first term in (20) represents the competition effect that captures how an increase
in N affects prices when ρ is held constant. We use (18) and find that the competition
effect preserves the same result as in Bagwell and Lee (2014). The second term in (20)
represents the search effect that captures how an increase in N affects prices through the
change in ρ. Our emphasis here is that inactive search may amplify the price-increasing
force in the competition effect. To deliver this simply, we focus on ρ > θ and inelastic
demand.13 We can then calculate the search effect:

∂p(θ)
∂ρ

∂ρ

∂N
= U/N

M(θ)

∫ θ
θ
∂p(θ)
∂N

∣∣∣
dρ=0

dF (θ)

1−
∫ θ
θ
U/N
M(θ)dF (θ)

. (21)

The term
∫ θ
θ
∂p(θ)
∂N

∣∣∣
dρ=0

dF (θ) represents the expected competition effect, and if the price-
increasing force in the competition effect is sufficiently strong, this term is positive and
so is the search effect. Given inelastic demand, we can also identify p(θ) from (18),

p(θ) = θ + π(ρ, θ) U/N
M(θ) +

∫ θ

θ

M(x)
M(θ)dx, (22)

and integrate it to find the expected price, Eθp(θ) =
∫ θ
θ p(θ)dF (θ). We now find that if

θ − θ is sufficiently small, then an increase in N raises the expected price beyond the
expected competition effect:

∂Eθp(θ)
∂N

=
∫ θ

θ

∂p(θ)
∂N

dF (θ) >
∫ θ

θ

∂p(θ)
∂N

∣∣∣∣∣
dρ=0

dF (θ) > 0. (23)

The first inequality in (23) follows from the last inequality. This is because in response

13In later analysis, we obtain the results when demand is sufficiently inelastic.
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to such positive expected competition effect, the reservation price is adjusted to increase,
∂ρ
∂N

> 0, and the search effect therefore causes an additional price increase beyond the
competition effect in (20). To obtain the last inequality in (23), we note that the interim
profit has the term π(ρ, θ)U

N
that is common for all θ. Due to this common term, when

ρ > θ is held constant, the expected price Eθp(θ) includes the term,

π(ρ, θ)
∫ θ

θ

U/N

M(θ)dF (θ) = π(ρ, θ)
∫ 1

0

1
1 + I

1−INx
N−1dx,

which is independent of θ − θ and strictly increasing in N . If θ − θ is sufficiently small,
this term is dominant in the expected competition effect. Similarly, in the previous case
of ρ ≥ pm(θ) where consumer search has no role and the boundary price p(θ) = pm(θ),
if θ − θ is sufficiently small, then an increase in N raises the expected price through the
term π(pm(θ), θ)

∫ θ
θ
U/N
M(θ)dF (θ).

Taken together, if ρ > θ, the expected price is higher in the market with larger N
under the assumption that θ − θ is sufficiently small and demand is sufficiently inelastic.
Two factors contribute to this result. One is that an increase in N has the price-increasing
effect on a range of higher prices: firms with higher θ raise prices since they focus on the
profit from uninformed consumers with less prospect of winning informed consumers. The
other is that the price-increasing effect is strong enough that the expected price rises. The
assumption on θ − θ and demand function works for strengthening the price-increasing
effect by increasing the proportion of the common term π(p(θ), θ)U

N
relative to information

rents in the interim profit. In addition, we note that the condition ρ > θ is redundant for
the result, because if θ − θ is sufficiently small, then s > v is true and the equilibrium is
RE with ρ > θ.

If ρ < θ, then pricing response to competition depends on whether firms belong to the
lower-price or higher-price segment. Firms at the lower-price segment can focus on the
profit from uninformed consumers, but a formal analysis of their pricing is elusive since
their pricing also interacts with how the lower-price segment expands or shrinks with
N .14 On the contrary, we can clearly show that an increase in N has the price-decreasing
effect on the original higher-price segment: firms remaining at the higher-price segment
decrease prices except p(θ), and any firm’s move to the lower-price segment causes its
price decrease. Suppose a firm with θ̂ at the higher-price segment increases its price p(θ̂)

14In the next subsection, their pricing is elaborated for N sufficiently large.
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or keeps it the same when there are more rivals. We use the interim profit for θ ∈ (θc, θ)
and find that the firm can do so only if a range of rival prices on (θ̂, θ) also goes up. The
lowered demand for those rivals and the increase in N decrease the information rents and
profit-if-win for the firm,

π(p(θ̂), θ̂) =
∫ θ

θ̂
D(p(x))

(
1− F (x)
1− F (θ̂)

)N−1

dx,

which contradicts the firm’s choice to increase p(θ̂) or keep it the same. We lastly note
that the condition ρ < θ is redundant if the search cost is sufficiently small, because s < v

is then true and the equilibrium is SE with ρ < θ.

Proposition 3. (i) If θ− θ is sufficiently small and demand is sufficiently inelastic, then
the expected price goes up when N increases. (ii) If the search cost is sufficiently small,
then all prices at the original higher-price segment except p(θ) decrease when N increases.

Proposition 3 considers the market where competition becomes more intense with more
rivals, and shows that whether search is active or inactive makes a difference in pricing
reaction to competition. The difference is particularly pronounced in higher prices in the
market: if search is inactive (i.e., in RE), then a range of higher prices may go up to the
extent that the expected price becomes higher, but if search is active (i.e., in SE), then
prices go down at the original higher-price segment.

5.2 Search-Inactivating Competition

In this subsection, we show that pricing response to competition can inactivate search in
the market with a sufficiently large N . We first characterize pricing in the limit where N
goes to infinity. We find that in the limit, the price-increasing effect is dominant for all
prices lower than ρ, except the lowest possible price p(θ) that approaches the marginal cost
θ. If ρ ∈ [θ, pm(θ)), then all prices are lower than ρ and p(θ) approaches min{ρ, pm(θ)} for
θ > θ in the limit. If ρ ≥ pm(θ), then p(θ) converges to pm(θ) for θ > θ in the limit. This
approximation is a pure-strategy version of the mixed-strategy result in Rosenthal (1980)
and Stahl (1989).15 In contrast, if ρ < θ, then the price-decreasing and price-increasing
effects coexist in the limit: p(θ) approaches marginal costs at the higher-price segment,

15The mixed-strategy equilibrium in Rosenthal (1980) and Stahl (1989) approaches the degenerate
distribution at the monopoly price when N goes to infinity.
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and p(θ) converges to min{θc, pm(θ)} at the lower-price segment where firms can focus on
the profit from uninformed consumers.16

Lemma 8. Suppose N →∞. (i) If ρ ≥ pm(θ), then p(θ) converges to

p̃(θ) =

 pm(θ) for θ ∈ (θ, θ]
θ for θ = θ.

(24)

(ii) If ρ ∈ [θ, pm(θ)), then p(θ) converges to

p̃(θ) =

 min{ρ, pm(θ)} for θ ∈ (θ, θ]
θ for θ = θ.

(25)

(iii) If ρ < θ, then p(θ) converges to

p̃(θ) =


θ for θ ∈ (θc, θ]
min{θc, pm(θ)} for θ ∈ (θ, θc]
θ for θ = θ.

(26)

Lemma 8 shows that pricing response to extreme competition differs depending on
whether search is active or inactive. If ρ ≥ θ, then discounts are rare: a sharp price drop
occurs only near the lowest possible price p(θ). If ρ < θ, then discounts are not necessarily
rare: a sharp price drop also occurs at the higher-price segment. If ρ ≥ θ, there is a wide
range of p(θ) − θ > p(θ) − θ below p(θ), but if ρ < θ, the margin drops quickly close to
zero at the higher-price segment.

We proceed to show that a sufficiently large N does not allow a switch from inactive
to active search: in RE, for any price function with the boundary price p(θ) ∈ [θ, pm(θ)],
prices remain sufficiently close to p(θ) in terms of consumer’s expected utility, when the
market has a sufficiently large N . On the contrary, in SE, there is a search-inactivating
increase in N . Recall that active search arises when the market is segmented based on
p(θc) at which the search cost equals the expected utility gain from search:

s =
∫ θc

θ
[u(p(θ))− u(p(θc))]dF (θ). (27)

16As the higher-price segment approaches marginal costs, the jump at θc dissipates and p(θc) ap-
proaches θc in the limit.
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If θc → θ, then p(θ) for θ ≤ θc approaches the price function with the boundary value
p(θ) = θ in RE, and the monotonicity result in Lemma 7 shows that the right-hand side
of (27) approaches its upper bound:

v =
∫ θ

θ
[u(p(θ))− u(θ)]dF (θ).

Suppose the market has a sufficiently large N . If pm(θ) ≥ θ, then v approaches zero.
This is because the price function is almost flat on (θ, θc] and thus prices on (θ, θc] are
concentrated near p(θc) even when θc → θ. If pm(θ) < θ, then given θ < pm(θ), there is a
unique θ∗ ∈ (θ, θ) such that pm(θ∗) = θ. For θc → θ, the price function is almost flat on
(θ∗, θc], but not on (θ, θ∗], and hence v persists and approaches

v∗ ≡
∫ θ∗

θ
[u(pm(θ))− u(pm(θ∗))]dF (θ). (28)

This limiting cut-off value v∗ is always below v since pm(θ∗) = θ, θ∗ < θ, and pm(θ) > p(θ)
for all θ ∈ (θ, θ∗). In sum, if pm(θ) ≥ θ, then v approaches zero, and if pm(θ) < θ, then v
converges to v∗.

Proposition 4. If pm(θ) ≥ θ, then for any s > 0, there is a sufficiently large N for which
search is inactive, and if pm(θ) < θ, then for any s > v∗, there is a sufficiently large N
for which search is inactive.

Proposition 4 shows that a sufficiently largeN has the search-inactivating effect: prices
are distributed in favor of inactive search in the market with a sufficiently large N . In
SE, an increase in N has the price-decreasing effect on the higher-price segment since the
segment approaches marginal costs whenN rises. This effect generates the price dispersion
above p(θc). However, a more critical factor for active search is the price dispersion below
p(θc): if prices are not sufficiently distant from p(θc) in terms of consumer’s expected
utility, then the market fails to be segmented since firms at the lower-price segment can
increase prices above p(θc) while deterring search. We find that a sufficiently large N has
the price-increasing effect on the lower-price segment, and this effect discourages active
search by causing the segment’s prices to be more concentrated near p(θc). We also find
that a sufficiently large N does not allow a switch from inactive to active search: in any
RE, prices remain sufficiently close to p(θ) in terms of consumer’s expected utility, when
the market has a sufficiently large N .
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5.3 Pricing with Decreasing Search Cost

In this subsection, we analyze pricing in the environment where the search cost declines,
for instance, with the development of online search.

There is no impact on pricing if the decreased search cost is still higher than v. A
decrease in s within the range of (v, v) causes non-uniform price reductions: the price
function shifts downward with greater reductions in higher prices. Firms truthfully select
prices on the new price function since they get less tempted to mimic lower types when
prices go down, and consumer search remains inactive since prices are less distant from
the new boundary price p(θ) in terms of consumer’s expected utility. On the other hand,
a decrease in s within the range of (0, v) has two opposing effects on prices: the higher-
price segment expands as θc decreases, and the lower-price segment includes a price-
decreasing interval below p(θc) as search becomes more active. This lower-price segment
may also include a price-increasing interval since the expected market share for uninformed
consumers, µ(θc), becomes larger as θc decreases. We find that if the density f(θc) is
sufficiently small, then all firms remaining at the lower-price segment decrease prices. This
restriction on f(θc) limits the extent to which µ(θc) increases with lower θc, ∂µ(θc)

∂θc
< 0, as

can be shown by (12).

Proposition 5. (i) A decrease in s within the range of (v, v) lowers all prices with greater
reductions in higher prices. (ii) Suppose s decreases within the range of (0, v). The higher-
price segment expands and the lower-price segment includes a price-decreasing interval.
If f(θc) is sufficiently small, then all firms remaining at the lower-price segment decrease
prices.

Proposition 5 analyzes pricing in the environment where the search cost declines. If
search is inactive, then greater price reductions arise in higher prices. If search is active,
then price reductions arise only from firms remaining at the lower-price segment. The
difference in price reductions may lead to opposite impacts on the price range, p(θ)−p(θ):
if search is inactive, the range falls, but if search is active and f(θc) is sufficiently small,
the range increases.

We conclude this section by claiming that our model captures some features of existing
models as its limiting cases. First, the heterogeneity of production costs is crucial for our
model to have active search and the competition-induced search-inactivating effect and
price-decreasing effect on the higher-price segment. If θ − θ approaches zero, then firms
deter consumer search and an increase in N has a dominant price-increasing effect, as in
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Rosenthal (1980) and Stahl (1989). Second, the existence of informed consumers is critical
for uninformed consumers to actively engage in search. A sufficiently large U causes the
search-inactivating effect as a sufficiently large N does: for any fixed N ≥ 2, if U → 1,
then firms focus on uninformed consumers and select prices to maximize profits from
them. Assuming pm(θ) ≥ θ, we can show that if U → 1, then search is inactive and p(θ)
approaches the equilibrium in Reinganum (1979) where all consumers are uninformed,
U = 1. Third, our model captures the Spulber (1995) model as an extreme case of
active search. If s → 0, then the lower-price segment vanishes and p(θ) approaches the
equilibrium in Spulber (1995) where all consumers are informed, I = 1.

6 Conclusion

In this paper, we propose a price-competition model in which prices are dispersed and a
subset of consumers decide whether to make immediate purchases with no active price
search or search sequentially. We adopt an incomplete-information setting with produc-
tion heterogeneity and information friction: firms’ production cost types are drawn from
an interval and privately observed. We find that any symmetric pure-strategy equilibrium
is classified into either Random Equilibrium in which search is inactive, or Search Equi-
librium in which search is active. We then analyze how firms and consumers interact in
determining pricing and active-or-inactive search when competition becomes more intense
as the number of firms, N , increases. We show that whether search is active or inactive
makes a difference in pricing response to competition, and the difference is pronounced
in higher prices. We then show that a sufficiently large N has the search-inactivating
effect: prices are distributed in favor of inactive search in the market with a sufficiently
large N . We also analyze pricing in the environment where the search cost declines. We
find that if search is inactive, then greater price reductions arise in higher prices, and if
search is active, then price reductions arise only from firms remaining at the lower-price
segment. The difference in price reductions implies that if search is inactive, the possible
price range may fall, but if search is active, it may increase.

Several possible extensions for future work may be considered. One can assume that
prices are observable and product quality consists of the firm-specific component that
is private information and iid and the common component that is publicly observed.
This would allow us to analyze pricing and consumer search in the presence of vertical
product differentiation. In addition, our model suggests an empirical analysis of the
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following relationships: (i) the degree of active search and transaction price dispersion, (ii)
competition and transaction price dispersion, (iii) competition and the degree of inactive
search, and (iv) search cost and price distribution. Given the difficulty of obtaining offline
sales data and information on consumer search, we may alternatively use clickstream data
from online retailers to capture empirical patterns.

A Appendices

A.1 Proofs

Proof of Lemma 2. We begin by showing that the boundary value p(θ) = min{ρ, pm(θ)}.
Suppose first ρ ≥ pm(θ). A firm with θ has no chance of winning informed consumers,
[1 − F (θ)]N−1 = 0, and if p(θ) 6= pm(θ), the firm can increase its interim profit from
uninformed consumers by deviating to pm(θ). Hence, if ρ ≥ pm(θ), then p(θ) = pm(θ).
Suppose next ρ ∈ (θ, pm(θ)). If p(θ) > ρ, then a firm with θ makes no interim profit
with no expected market share, but given ρ > θ, this firm can earn a positive interim
profit from uninformed consumers by deviating to ρ. If p(θ) < ρ, then since ρ < pm(θ),
a firm with θ can earn more from uninformed consumers by deviating to ρ. Hence, if
ρ ∈ (θ, pm(θ)), then p(θ) = ρ. Suppose lastly ρ = θ. Lemma 1 (ii) shows that p(θ) ≥ ρ

is necessary, and for the same reason, p−(θ) ≥ ρ is necessary, where p−(θ) is the limit
from the left. We also recall p(θ) is nondecreasing on [θ, θ] as shown in Lemma 1 (ii). We
obtain two findings. First, p−(θ) = ρ: if p−(θ) > ρ, there is θ̂ < θ such that p(θ̂) > θ and
M(θ̂) > 0, and a firm with θ can mimic θ̂ and earn π(p(θ̂), θ)M(θ̂) > 0. Second, p(θ) has
no jump at θ, p(θ) = p−(θ) = ρ. If p(θ) has a jump at θ, p(θ) > p−(θ) = ρ, then there
is a firm that can increase its price to ρ while keeping its original expected market share.
Hence, if ρ = θ, then p(θ) = ρ.

Now, given the boundary value, we have M(θ) = U
N

+ [1 − F (θ)]N−1I in hand. We
establish three findings. First, p(θ) is continuous on [θ, θ]. If p(θ) includes a jump on (θ, θ),
then a firm can increase its price without affecting the probability of winning informed
consumers. To show that there is no jump at {θ, θ}, we recall p(θ) is nondecreasing on
[θ, θ]. If p(θ) has a jump at θ, p−(θ) < p(θ), then a firm whose type is near θ can increase
its interim profit from uninformed consumers by deviating to p(θ). If p(θ) has a jump at
θ, p+(θ) > p(θ), where p+(θ) is the limit from the right, then a firm with θ can increase
its interim profit by deviating to p+(θ) while capturing the entire informed consumers.
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Second, the first-order condition, Π1(θ̂, θ; p) = 0 for θ̂ = θ on (θ, θ), is necessary, and given
the boundary value and no jump at {θ, θ}, this first-order condition is sufficient to ensure
that On-IC holds. The proof for this part is provided by Lemma 1 in Bagwell and Lee
(2014). Third, if p(θ) satisfies On-IC, it also satisfies Off-IC. If a firm with θ < θ does not
mimic θ, it will not select a price above p(θ) since p(θ) = pm(θ) > pm(θ), and if a firm with
θ > θ does not mimic θ, it will not select a price below p(θ) since p(θ) < pm(θ) < pm(θ).
Likewise, a firm with θ will not select a price above p(θ), and the firm with θ that already
captures all informed consumers with p(θ) and will not select a price below p(θ). Overall,
the results can be summarized as follows: the boundary value, the continuity on [θ, θ],
and the first-order condition on (θ, θ) are necessary for incentive compatibility of p(θ),
and these necessary conditions are sufficient for On-IC and Off-IC. �

Proof of Lemma 3. We present two results for the uniqueness result. First, we
rewrite the differential equation in (2) as

dy

dθ
= φ(y, θ) where φ(y, θ) ≡ −π(y, θ)[∂M(θ)/∂θ]

πy(y, θ)M(θ) ,

and find that two functions, φ(y, θ) and ∂φ(y,θ)
∂y

, are continuous everywhere in the relevant
region of (θ, y) where θ < θ < θ and θ < y < pm(θ). The continuity of ∂φ(y,θ)

∂y
holds since

demand function is assumed to be twice continuously differentiable. Given the continuity
of these two functions, we can apply Picard-Lindelöf Theorem and conclude that for any
point (θ0, y0) in the relevant region of (θ, y), the equation has a unique solution defined
on some interval around θ0. Second, we verify that the set in Lemma 2 contains no
alternative function that satisfies On-IC and Off-IC. For s ≥ v, consider an alternative
function with a boundary price p(θ) < pm(θ) such that

s >
∫ θ

θ
[u(p(θ))− u(p(θ))]dF (θ). (29)

This function violates Off-IC since a firm with θ can gain by deviating to a price above
p(θ) while deterring search. Next, for s ∈ (v, v), consider an alternative function with a
boundary price p(θ) such that

s <
∫ θ

θ
[u(p(θ))− u(p(θ))]dF (θ). (30)
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A firm with θ then has no expected market share, M(θ) = 0. If M(θ) = 0, Lemma 1
(iii) requires p(θ) ≤ min{θ, pm(θ)} for all θ < θ, which means that the right-hand side
of (30) cannot be above v among the functions in Lemma 2. Thus, the inequality (30)
contradicts s ∈ (v, v). For s ∈ (v, v), there is another alternative function that causes the
same Off-IC violation as in (29). For s = v, an alternative function with p(θ) > θ causes
the same contradiction as in (30). �

Proof of Lemma 4. We establish five results: (i) p(θ) = θ, (ii) p(θ) has no jump at
{θ, θ}, (iii) the cut-off type is an interior point, θc ∈ (θ, θ), (iv) p(θc) = p−(θc) = ρ, and
(v) p(θ) is continuous on [θ, θc] and on (θc, θ]. For (i), recall that p(θ) ≥ θ from Lemma 1
(ii) and ρ < p(θ) from the text, and note that a firm with θ makes no expected profit since
ρ < p(θ) and [1−F (θ)]N−1 = 0. We first show that p−(θ) = θ. If p−(θ) < θ, there is θ̂ < θ

such that p(θ̂) < θ̂, which contradicts Lemma 1 (i). If p−(θ) > θ, there is θ̂ < θ such that
p(θ̂) > θ and M(θ̂) > 0 and a firm with θ would mimic θ̂ and earn π(p(θ̂), θ)M(θ̂) > 0.
Now, given p−(θ) = θ, if p(θ) > θ, then p(θ) has a jump at θ, p(θ) > p−(θ) = θ, and a
firm near θ can then increase its price to θ while keeping the original expected market
share. Hence, p−(θ) = p(θ) = θ. For (ii), suppose p(θ) has a jump at θ, p(θ) < p+(θ).
The firm with θ can then increase its price to p̂ ∈ (p(θ), p+(θ)) while remaining as the
lowest-price firm and keeping uninformed consumers with any s > 0. Hence, p(θ) has no
jump at θ. It also has no jump at θ as shown by (i).

Given no jump at {θ, θ}, we prove (iii). We use s > 0 and ρ < p(θ) to rule out the
possibility that θc = θ or θc = θ. For any s > 0, there is θ̂ > θ such that p(θ̂) is sufficiently
close to p(θ) and deters search. Given ρ < p(θ) from the text, there is θ̂ < θ such that
p(θ̂) is sufficiently close to p(θ) and induces search. Hence, θc ∈ (θ, θ). For (iv), we find
that if p−(θc) > ρ, then θc cannot be the cut-off type since there is θ̂ < θc such that
p(θ̂) > ρ. If p−(θc) < ρ, then a firm near θc can make a discrete price increase to ρ while
keeping its expected market share approximately at the original level. Hence, p−(θc) = ρ.
If p(θ) has a jump at θc, p(θc) > p−(θc) = ρ, then a firm near θc can increase its price to
ρ while keeping the original expected market share. Therefore, p(θc) = p−(θc) = ρ. For
(v), we note that p(θ) has no jump at {θ, θc, θ} and p(θc) = ρ. It is also evident that p(θ)
is continuous on (θ, θc) and (θc, θ) since any jump at θ̂ ∈ (θ, θc) or at θ̂ ∈ (θc, θ) implies
that a firm can increase its price while keeping the original expected market share. �
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Proof of Lemma 5. (i) We simplify µ(θc) by rearranging it as follows:

µ(θc) ≡
N−1∑
j=0

(
N − 1
j

)
1

j + 1 [F (θc)]j [1− F (θc)]N−j−1

= 1
N · F (θc)

N−1∑
j=0

(
N − 1
j

)
N

j + 1 [F (θc)]j+1 [1− F (θc)]N−j−1

= 1
N · F (θc)

N−1∑
j=0

(
N

j + 1

)
[F (θc)]j+1 [1− F (θc)]N−j−1

= 1
N · F (θc)

N∑
k=1

(
N

k

)
[F (θc)]k [1− F (θc)]N−k .

For the first equality, we multiply N · F (θc) and divide it. The second equality is given
by (

N − 1
j

)
N

j + 1 =
(

N

j + 1

)
.

Letting k = j + 1, we derive the third equality. Next, we use the probability that at least
one firm has the cost type lower than θc,

N∑
k=1

(
N

k

)
[F (θc)]k [1− F (θc)]N−k = 1− [1− F (θc)]N .

Hence, µ(θc) equals the last term in (11).
(ii) We focus on θc > θ and observe that µ(θc) > [1− F (θc)]N−1 is equivalent to

1
[1− F (θc)]N−1 > 1 + (N − 1)F (θc).

This inequality holds, since both sides are equal to 1 at θc = θ and are strictly increasing
in θc, and at the same time, the left-hand side has a steeper slope for all θc > θ. For all
θc > θ, ∂µ(θc)

∂θc
< 0 is immediate from (12). �

In the following Lemma 9 and 10, we report the preliminary results to simplify the
proof of Lemma 6.

Lemma 9. For any given p1 and p2 below r, if p2 > p1, then π(p2,θ)
π(p1,θ) is strictly increasing

in θ.
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Proof. The result follows from

∂

∂θ

π(p2, θ)
π(p1, θ)

= πθ(p2, θ)π(p1, θ)− π(p2, θ)πθ(p1, θ)
[π(p1, θ)]2

= D(p1)D(p2)[p2 − p1]
[π(p1, θ)]2

. �

Lemma 10. If p(θ) ∈ PD for θ ∈ {(θ, θc), (θc, θ)}, then Π(θ, θ; p) > Π(θ̂, θ; p) for all θ
and θ̂ 6= θ on (θc, θ) and for all θ and θ̂ 6= θ on (θ, θc).

Proof. We first consider θ and θ̂ on the interval (θc, θ). If θ̂ > θ, we find that

Π(θ, θ; p)− Π(θ̂, θ; p) = −
∫ θ̂

θ
Π1(x, θ; p)dx

=
∫ θ̂

θ
[Π1(x, x; p)− Π1(x, θ; p)] dx

=
∫ θ̂

θ

∫ x

θ
Π12(x, y; p)dydx > 0,

where the second equality holds given the necessary condition Π1(x, x; p) = 0, while the
inequality holds given θ̂ > θ and x ∈ (θ, θ̂) and given the single-crossing property,

Π12(x, y; p) = − ∂

∂x
D(p(x))M(x) > 0.

Thus, for θ̂ > θ, we have Π(θ, θ; p) > Π(θ̂, θ; p). We also find that given θ̂, if θ is more
distant from θ̂, the gap between the two interim profits is greater. Next, if θ̂ < θ, we also
find that

Π(θ, θ; p)− Π(θ̂, θ; p) =
∫ θ

θ̂
Π1(x, θ; p)dx

=
∫ θ

θ̂
[Π1(x, θ; p)− Π1(x, x; p)] dx

=
∫ θ

θ̂

∫ θ

x
Π12(x, y; p)dydx > 0,

where the inequality holds given θ̂ < θ and x ∈ (θ̂, θ). The proof for θ and θ̂ on the other
interval (θ, θc) is analogous. �

Proof of Lemma 6. We first show that the jump at θc must satisfy the equation
(13). If the jump at θc is made such that

π(p(θc), θc)M(θc) > π(p+(θc), θc)M+(θc),
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then a firm with x ∈ (θc, θ] can increase its interim profit by mimicking θc and selecting
p(θc): if x ∈ (θc, θ] is sufficiently close to θc, then π(p(θc), x)M(θc) → π(p(θc), θc)M(θc)
and π(p(x), x)M(x)→ π(p+(θc), θc)M+(θc).

In the remaining proof, we show that On-IC and Off-IC hold given the necessary
conditions: the boundary values, p(θc) = ρ and p(θ) = θ, the jump at θc that satisfies
(13), and the first-order condition for θ ∈ {(θ, θc), (θc, θ)}. Our proof has three parts: (a)
(On- and Off-) IC for θc, (b) IC for θ ∈ (θc, θ), and (c) IC for θ ∈ [θ, θc). To verify Off-IC
in (a)-(c), we focus on deviations to p̂ ∈ (p(θc), p+(θc)), since we can easily show that
other off-schedule deviations have no gains as follows. As for an off-schedule deviation
to p̂ < p(θ), if a firm with θ > θ does not mimic θ, it will not select p̂ < p(θ) since
p(θ) < pm(θ) < pm(θ). The firm with θ that captures all informed consumers will not
select a price below p(θ) since p(θ) < pm(θ). As for an off-schedule deviation to p̂ > p(θ),
a firm with θ < θ will not undertake the deviation that makes zero expected profits, and
a firm with θ gains nothing from this deviation. Next, to verify On-IC in (a)-(c), we focus
on On-IC for θ < θ and on-schedule deviations p(θ̂) for θ̂ < θ, because it is obvious that
a firm with θ < θ will not mimic θ since M(θ) = 0 and that a firm with θ will not mimic
θ < θ since p(θ) < p(θ) = θ for all θ < θ.

(a) IC for θc: Recall that a firm with θc is indifferent between p(θc) and p+(θc),

π(p(θc), θc)M(θc) = π(p+(θc), θc)[1− F (θc)]N−1. (31)

A firm with θc has the following preferences. First, p(θc) is preferred to p̂ ∈ (p(θc), p+(θc)).
Since p+(θc) > p̂, the equality (31) leads to the result:

π(p(θc), θc)M(θc) > π(p̂, θc)[1− F (θc)]N−1. (32)

Second, p(θc) is preferred to p(θ̂) whether θ̂ ∈ (θc, θ) or θ̂ ∈ [θ, θc). We first consider
θ̂ ∈ (θc, θ) and show that a firm with θc prefers p+(θc) to p(θ̂) since the firm is indifferent
between p(θc) and p+(θc). As shown in the proof of Lemma 10, for any θ̂ ∈ (θc, θ), there
is x ∈ (θc, θ̂) such that Π(x, x; p) > Π(θ̂, x; p), and given θ̂, if x is more distant from θ̂,
the gap between the two interim profits is greater. The inequality Π(x, x; p) > Π(θ̂, x; p)
therefore holds in the limit where x → θc, Π(x, x; p) → π(p+(θc), θc)[1 − F (θc)]N−1 and
Π(θ̂, x; p)→ π(p(θ̂), θc)[1− F (θ̂)]N−1. We next consider θ̂ ∈ [θ, θc). The proof of Lemma
10 indicates that for any θ̂ ∈ [θ, θc), there is x ∈ (θ̂, θc) such that Π(x, x; p) > Π(θ̂, x; p)
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and that this inequality holds in the limit where x → θc, Π(x, x; p) → π(p(θc), θ)M(θc)
and Π(θ̂, x; p)→ π(p(θ̂), θc)M(θ̂). In sum, a firm with θc has no gain from any deviation.

(b) IC for θ ∈ (θc, θ): A firm with θ ∈ (θc, θ) has the following preferences. First, p+(θc)
is preferred to p(θc). Since p+(θc) > p(θc) and θ > θc, we can use Lemma 9 and find that

π(p+(θc), θ)
π(p(θc), θ)

>
π(p+(θc), θc)
π(p(θc), θc)

= M(θc)
[1− F (θc)]N−1 ,

where the equality is from (31). We then obtain the result:

π(p+(θc), θ)[1− F (θc)]N−1 > π(p(θc), θ)M(θc) for θ ∈ (θc, θ).

Second, p+(θc) is preferred to p̂ ∈ (p(θc), p+(θc)). Since p+(θc) > p̂, we obtain the result:

π(p+(θc), θ)[1− F (θc)]N−1 > π(p̂, θ)[1− F (θc)]N−1 for θ ∈ (θc, θ).

Third, p(θc) is preferred to p(θ̂) for θ̂ ∈ [θ, θc). Since p(θc) > p(θ̂) and θ > θc, Lemma 9
shows that

π(p(θc), θ)
π(p(θ̂), θ)

>
π(p(θc), θc)
π(p(θ̂), θc)

≥ M(θ̂)
M(θc)

,

where the second inequality is from the last result in (a). These inequalities obtain the
result:

π(p(θc), θ)M(θc) > π(p(θ̂), θ)M(θ̂) for θ̂ ∈ [θ, θc).

In sum, the three results show that a firm with θ ∈ (θc, θ) prefers p+(θc) to p(θc) and
p̂ ∈ (p(θc), p+(θc)) and prefers p(θc) to p(θ̂) for θ̂ ∈ [θ, θc). It thus suffices to show that
a firm with θ ∈ (θc, θ) prefers p(θ) to p+(θc). As shown in the proof of Lemma 10, for
any θ ∈ (θc, θ), there is x ∈ (θc, θ) such that Π(θ, θ; p) > Π(x, θ; p), and this inequality
holds in the limit where x → θc and Π(x, θ; p) → π(p+(θc), θ)[1 − F (θc)]N−1. Therefore,
we conclude that a firm with θ ∈ (θc, θ) has no gain from any deviation.

(c) IC for θ ∈ [θ, θc): A firm with θ ∈ [θ, θc) has the following preferences. First, p(θc)
is preferred to p+(θc). Since p+(θc) > p(θc) and θc > θ, Lemma 9 shows that

π(p+(θc), θ)
π(p(θc), θ)

<
π(p+(θc), θc)
π(p(θc), θc)

= M(θc)
[1− F (θc)]N−1 ,
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where the equality is from (31). We thus obtain the result:

π(p(θc), θ)M(θc) > π(p+(θc), θ)[1− F (θc)]N−1 for θ ∈ [θ, θc).

Second, p(θc) is preferred to p̂ ∈ (p(θc), p+(θc)). Given p̂ > p(θc) and θc > θ, we use
Lemma 9 and establish that

π(p̂, θ)
π(p(θc), θ)

<
π(p̂, θc)

π(p(θc), θc)
<

M(θc)
[1− F (θc)]N−1 ,

where the second inequality is from (32). We thus obtain the result:

π(p(θc), θ)M(θc) > π(p̂, θ)[1− F (θc)]N−1 for θ ∈ [θ, θc).

Third, p(θc) is preferred to p(θ̂) for θ̂ ∈ (θc, θ). Given p(θ̂) > p(θc) and θc > θ, it follows
from Lemma 9 that

π(p(θ̂), θ)
π(p(θc), θ)

<
π(p(θ̂), θc)
π(p(θc), θc)

≤ M(θc)
[1− F (θ̂)]N−1

,

where the second inequality is from the second result in (a). We thus obtain the result:

π(p(θc), θ)M(θc) > π(p(θ̂), θ)[1− F (θ̂)]N−1 for θ̂ ∈ (θc, θ).

Given the three results, it suffices to show that a firm with θ ∈ [θ, θc) prefers p(θ) to
p(θc). For any θ ∈ [θ, θc), there is x ∈ (θ, θc) such that Π(θ, θ; p) > Π(x, θ; p). This
inequality holds in the limit where x→ θc and Π(x, θ; p)→ π(p(θc), θ)M(θc). Therefore,
we conclude that a firm with θ ∈ [θ, θc) has no gain from any deviation. �

Proof of Lemma 7. (i) We use the interim profit for θ ≤ θc and define an implicit
function:

η(θ) ≡ π(p(θ), θ)M(θ)−
∫ θc

θ
D(p(x))M(x)dx−

∫ θ

θc

D(p(x))[1− F (x)]N−1dx = 0.

If θ = θc, then the implicit function η(θc) has no second term. We find

∂p(θ)
∂θc

= − ∂η(θ)/∂θc
πp(p(θ), θ)M(θ) . (33)
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The denominator of (33) is positive and the numerator is

∂η(θ)
∂θc

= π(p(θ), θ)∂µ(θc)
∂θc

U −
∫ θc

θ
D′(p(x))∂p(x)

∂θc
M(x)dx (34)

−
∫ θc

θ
D(p(x))∂µ(θc)

∂θc
Udx− [D(p(θc))M(θc)−D(p+(θc))[1− F (θc)]N−1].

From (12) and Lemma 5 (ii), we know that

∂µ(θc)
∂θc

< 0 and D(p(θc))M(θc) > D(p+(θc))[1− F (θc)]N−1.

We differentiate (34) with respect to θ,

∂2η(θ)
∂θ∂θc

= πp(p(θ), θ)p′(θ)
∂µ(θc)
∂θc

U − D′(p(θ))
πp(p(θ), θ)

∂η(θ)
∂θc

. (35)

Since ∂η(θc)
∂θc

< 0 in (34), we find that ∂p(θc)
∂θc

> 0. We report further results in (a)-(c) for
later use:

(a) If ∂η(θ̂)
∂θc

= 0 or ∂η(θ̂)
∂θc

< 0 for any θ̂ < θc, then ∂η(θ)
∂θc

< 0 for all θ ∈ (θ̂, θc]. This is
immediate from (35): if ∂η(θ̂)

∂θc
= 0 or ∂η(θ̂)

∂θc
< 0, then ∂η(θ)

∂θc
is strictly decreasing in θ

at θ̂, ∂
2η(θ̂)
∂θ∂θc

< 0.

(b) There exists an interval (θ̂, θc] on which ∂p(θ)
∂θc

> 0. If θ̂ is sufficiently close to θc,
then ∂η(θ̂)

∂θc
< 0, since the second and third terms in (34) approach zero while the

remaining terms are negative. From (a), we know that ∂η(θ̂)
∂θc

< 0 implies ∂η(θ)
∂θc

< 0
for all θ ∈ (θ̂, θc].

(c) For an increase in θc, if the new price function crosses the original price function,
it does so only once. If there is any crossing point x∗ such that ∂η(x∗)

∂θc
= 0 (i.e.,

∂p(x∗)
∂θc

= 0), then ∂η(θ)
∂θc

< 0 (i.e., ∂p(θ)
∂θc

> 0) for all θ ∈ (x∗, θc].

(ii) For the result ∂θc

∂s
> 0, we show that

∂

∂θc

∫ θc

θ
φ(θ)dF (θ) > 0 where φ(θ) ≡ u(p(θ))− u(p(θc)). (36)

The results in (a)-(c) in (i) show that an increase in θc has two scenarios: the new function
crosses the original function once, or there is only the price-increasing interval. We first
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assume that for an increase in θc, there is a unique crossing point x∗ ∈ (θ, θc) such that
∂p(x∗)
∂θc

= 0. Given x∗, we decompose (36) into two terms:

∂

∂θc

∫ x∗

θ
φ(θ)dF (θ) + ∂

∂θc

∫ θc

x∗
φ(θ)dF (θ). (37)

The first term in (37) is positive on the price-decreasing interval (θ, x∗),

∂

∂θc

∫ x∗

θ
φ(θ)dF (θ) =

∫ x∗

θ

(
D(p(θc))

∂p(θc)
∂θc

−D(p(θ))∂p(θ)
∂θc

)
dF (θ) > 0,

where D(p(θc))∂p(θc)
∂θc

> 0 is implied by (i) and D(p(θ))∂p(θ)
∂θc

< 0 is assumed for θ ∈ (θ, x∗).
We next show the second term in (37) is also positive on the price-increasing interval
(x∗, θc). We rewrite the term as

∫ θc

x∗
φ(θ)dF (θ) = −[u(p(x∗))− u(p(θc))]F (x∗) +

∫ θc

x∗
F (θ)D(p(θ))p′(θ)dθ. (38)

We then differentiate the last term in (38) with respect to θc,

∂

∂θc

∫ θc

x∗
F (θ)D(p(θ))p′(θ)dθ = F (θc)D(p(θc))p′(θc) (39)

+
∫ θc

x∗

∂

∂θc
F (θ)D(p(θ))p′(θ)dθ.

Combining (38) and (39), we rewrite the second term in (37) as

∂

∂θc

∫ θc

x∗
φ(θ)dF (θ) = D(p(θc))p′(θc)[F (θc)− F (x∗)] (40)

+
∫ θc

x∗

∂

∂θc
F (θ)D(p(θ))p′(θ)dθ.

The first term on the right-hand side is positive since F (θc) > F (x∗). The second term
is also positive since Assumption 1 ensures that the term D(p(θ))p′(θ) = π(p(θ),θ)D(p(θ))

πp(p(θ),θ)

becomes greater for each θ on the price-increasing interval (x∗, θc).
Supposing next that there is only the price-increasing interval, we find that

∂

∂θc

∫ θc

θ
φ(θ)dF (θ) = ∂

∂θc

∫ θc

θ
F (θ)D(p(θ))p′(θ)dθ > 0, (41)

where the inequality is directly implied by Assumption 1. Note that (40) approaches (41)
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if x∗ → θ and thus F (x∗)→ 0. In sum, the inequality in (36) holds.
(iii) Since u(p(θ)) > u(p(θc)) for all θ ∈ [θ, θc), we have

∫ θc

θ
[u(p(θ))− u(p(θc))]dF (θ) > 0. (42)

Thus, if s→ 0, then θc → θ is necessary to satisfy ∆(θc) = 0. Indeed, if θc → θ, the value
in (42) approaches zero given

∫ θc

θ
[u(p(θ))− u(p(θc))]dF (θ) < [u(p(θ))− u(p(θc))]F (θc).

Given the inequality (36), if s→ v, then θc → θ is necessary to satisfy ∆(θc) = 0. Indeed,
if θc → θ, the value in (42) approaches v, because p(θ) for θ ≤ θc approaches the price
function with the boundary value p(θ) = θ in RE. This approximation of p(θ) holds since
if θc → θ, then M(θ) in (10) approaches U

N
+ [1− F (θ)]N−1I and p(θc) in (13) converges

to p(θ) = θ. �

Proof of Proposition 2. For any given s ∈ (0, v), we consider the unique function
that satisfies ∆(θc) = 0. At the observed price p(θ̂), uninformed consumers have the net
gain from search:

∆(θ̂) =
∫ θ̂

θ
[u(p(θ))− u(p(θ̂))]dF (θ)− s =

∫ θ̂

θ
u(p(θ))dF (θ)− F (θ̂)u(p(θ̂))− s.

Using integration by parts, we rewrite it as

∆(θ̂) = −
∫ θ̂

θ
F (θ)u′(p(θ))p′(θ)dθ − s,

and find that
∂∆(θ̂)
∂θ̂

= −F (θ̂)u′(p(θ̂))p′(θ̂) > 0.

Since ∆(θc) = 0 and ∂∆(θ̂)
∂θ̂

> 0, it follows that ∆(θ̂) < 0 for θ̂ < θc. Next, focusing on
θ̂ > θc, we use ∆(θc) = 0 and rewrite ∆(θ̂) as

∆(θ̂) =
∫ θ̂

θc

u(p(θ))dF (θ)− F (θ̂)u(p(θ̂)) + F (θc)u(p(θc)).
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Given the jump at θc, we find that

lim
θ̂→θc

∆(θ̂) = F (θc)[u(p(θc))− u(p+(θc))] > 0.

Since ∂∆(θ̂)
∂θ̂

> 0, it follows that ∆(θ̂) > 0 for θ̂ > θc. Hence, ∆(θ̂) ≤ 0 for θ̂ ≤ θc and
∆(θ̂) > 0 for θ̂ > θc. This result verifies optimality of sequential search with p(θc): with
the search cost that satisfies ∆(θc) = 0, uninformed consumers purchase at the observed
price p(θ̂) if p(θ̂) ≤ p(θc) and search again if p(θ̂) > p(θc). The remaining proofs are
immediate from the text. �

Proof of Proposition 3. (i) We use the implicit function (19) and find that

∂ρ

∂N
= −∂∆(θ)/∂N

∂∆(θ)/∂ρ
=

∫ θ
θ D(p(θ))∂p(θ)

∂N

∣∣∣
dρ=0

dF (θ)∫ θ
θ

(
D(ρ)−D(p(θ))∂p(θ)

∂ρ

)
dF (θ)

. (43)

We fix ρ > θ (i.e., dρ = 0) and rearrange the interim profit in (18) by dividing M(θ) on
both sides. By taking integral of the equation and differentiating it with respect to N ,
we find that

∫ θ

θ
D(p(θ))∂p(θ)

∂N

∣∣∣∣∣
dρ=0

(
1 + εD(p(θ)) − θ

D′(p(θ))
D(p(θ))

)
dF (θ) (44)

= π(ρ, θ) ∂

∂N

∫ θ

θ

U/N

M(θ)dF (θ) + ∂

∂N

∫ θ

θ

∫ θ

θ
D(p(x))M(x)

M(θ)dxdF (θ),

where εD(p(θ)) is the price elasticity of demand at p(θ). If demand is inelastic, then we
obtain ∂p(θ)

∂ρ
= U/N

M(θ) from (18) and in turn use (43) to derive (21). In addition, if θ − θ is
sufficiently small, then

∫ θ
θ
∂p(θ)
∂N

∣∣∣
dρ=0

dF (θ) > 0 follows from Bagwell and Lee (2014) since
their Proposition 6 shows that

∂

∂N

∫ θ

θ

U/N

M(θ)dF (θ) = ∂

∂N

∫ 1

0

1
1 + I

1−INx
N−1dx > 0

and that ∂
∂N

∫ θ
θ

∫ θ
θ
M(x)
M(θ)dxdF (θ) approaches zero for θ − θ sufficiently small. Next, sup-

pose downward-sloping demand becomes sufficiently inelastic. The left-hand side of (44)
approximates the numerator of (43). In addition, if θ − θ is sufficiently small, then only
the first term on the right-hand side of (44) persists. The denominator of (43) is positive
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under Assumption 1 since an increase in the boundary price raises p(θ) for all θ. This is
because the uniqueness result in Lemma 3 shows that different price functions do not cross
at any point in the relevant region of (θ, p(θ)) where θ < θ < θ and θ < p(θ) < pm(θ). If
two functions cross only at θ and have the same p(θ), they have the same first and second
derivatives at θ̂ in the limit where θ̂ → θ, which can be verified by dy

dθ
and d2y

dθ2 in the proof
of Lemma 3. This contradicts the supposition that two functions cross only at θ.

(ii) We use the interim profit for θ ∈ (θc, θ),

ϕ(θ) = π(p(θ), θ)[1− F (θ)]N−1 −
∫ θ

θ
D(p(x))[1− F (x)]N−1 = 0,

and find
∂p(θ)
∂N

= − ϕN(θ)
πp(p(θ), θ)[1− F (θ)]N−1 ,

where ϕN(θ) ≡ ∂ϕ(θ)
∂N

. The sign of ∂p(θ)
∂N

is opposite to the sign of the numerator:

ϕN(θ) = π(p(θ), θ)[1− F (θ)]N−1 ln[1− F (θ)]

−
∫ θ

θ
D(p(x))[1− F (x)]N−1 ln[1− F (x)]dx

−
∫ θ

θ
D′(p(x))∂p(x)

∂N
[1− F (x)]N−1dx.

We differentiate the numerator with respect to θ,

∂ϕN(θ)
∂θ

= πp(p(θ), θ)p′(θ)[1− F (θ)]N−1 ln[1− F (θ)]

− π(p(θ), θ)(N − 1)[1− F (θ)]N−2f(θ)
(

ln[1− F (θ)] + 1
N − 1

)
− D′(p(θ))
πp(p(θ), θ)

ϕN(θ).

We then use the first-order condition,

πp(p(θ), θ)p′(θ)[1− F (θ)]N−1 = π(p(θ), θ)(N − 1)[1− F (θ)]N−2f(θ),

and simplify the earlier differentiation to

∂ϕN(θ)
∂θ

= −π(p(θ), θ)[1− F (θ)]N−2f(θ)− D′(p(θ))
πp(p(θ), θ)

ϕN(θ). (45)
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We finally show that ϕN(θ) > 0 (i.e., ∂p(θ)
∂N

< 0) for all θ ∈ (θc, θ). Suppose there is
θ̂ ∈ (θc, θ) such that ϕN(θ̂) ≤ 0 (i.e., ∂p(θ̂)

∂N
≥ 0). From (45), we obtain ∂ϕN (θ̂)

∂θ
< 0. Now,

given ϕN(θ̂) ≤ 0 and ∂ϕN (θ̂)
∂θ

< 0, it follows that ϕN(θ) < 0 for all θ ∈ (θ̂, θ). From the
interim profit for θ̂, we obtain the profit-if-win for θ̂,

π(p(θ̂), θ̂) =
∫ θ

θ̂
D(p(x))

(
1− F (x)
1− F (θ̂)

)N−1

dx. (46)

The right-hand side of (46) is strictly decreasing in N , since for x ∈ (θ̂, θ), we have
1−F (x)
1−F (θ̂)

< 1 and

∂D(p(x))
∂N

= −D′(p(x)) ϕN(x)
πp(p(x), x)[1− F (x)]N−1 < 0.

Hence, the left-hand side of (46) must strictly decrease in N , ∂p(θ̂)
∂N

< 0, which contradicts
the supposition, ϕN(θ̂) ≤ 0. �

Proof of Lemma 8. (i) If ρ ≥ pm(θ), then p(θ) = pm(θ) for any N , and the interim
profit implies

π(p(θ), θ) = π(pm(θ), θ) U/N
M(θ) +

∫ θ

θ
D(p(x))M(x)

M(θ)dx.

This equation shows that p(θ) approaches θ in the limit since the right-hand side at θ
approaches zero in the limit given

U/N

M(θ) = U

U +NI
and M(x)

M(θ) = U +N [1− F (x)]N−1I

U +NI
.

For θ ∈ (θ, θ), the price function in the limit, p̃(θ), satisfies p̃(θ) ≤ min{pm(θ), pm(θ)}
since p(θ) < p(θ) = pm(θ) and p(θ) < pm(θ) for any N . We show further that p̃(θ) =
min{pm(θ), pm(θ)}. For θ ∈ (θ, θ), if N → ∞, then On-IC holds only if p(θ) approaches
either the boundary value pm(θ) or the monopoly price pm(θ), since On-IC implies

π(p(θ), θ)[U +N [1− F (θ)]N−1I] ≥ π(p(θ̂), θ)[U +N [1− F (θ̂)]N−1I] for all θ̂ > θ,

where N [1 − F (θ)]N−1I and N [1 − F (θ̂)]N−1I approach zero in the limit. Note also
that a firm with θ ∈ (θ, θ) will not mimic type θ since p(θ) → θ. Thus, p̃(θ) =
min{pm(θ), pm(θ)} = pm(θ) for θ ∈ (θ, θ). Therefore, we conclude that if N → ∞,
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then p(θ) converges to p̃(θ) in (24).
(ii) If ρ ∈ [θ, pm(θ)), then p(θ) = ρ for any N . The same procedure used in (i) shows

that if N →∞, then p(θ) converges to p̃(θ) in (25).
(iii) If ρ < θ, then p(θ) = θ for any N . We can rewrite the interim profit for θ > θc as

we did in (46). It is then clear that if N →∞, then p(θ)→ θ for θ > θc. The jump at θc
dissipates, p(θc)→ θc, in the limit since the interim profit for θc implies

π(p(θc), θc)NM(θc) =
∫ θ

θc

D(p(x))N [1− F (x)]N−1dx,

where NM(θc) persists and N [1 − F (x)]N−1 approaches zero in the limit. The interim
profit for θ < θc becomes

π(p(θ), θ) = π(p(θc), θc)
M(θc)
M(θ) +

∫ θc

θ
D(p(x))M(x)

M(θ)dx.

If N → ∞, then p(θ) → θ since the right-hand side at θ approaches zero given that
M(θ) = I + µ(θc)U and µ(θc) → 0 in the limit. For θ ∈ (θ, θc), we first observe that
p(θ) < pm(θ) and p(θ) < p(θc) for any N . Recall that p(θc) → θc in the limit. We next
verify that p̃(θ) = min{θc, pm(θ)}. For θ ∈ (θ, θc), if N → ∞, then On-IC holds only if
p(θ) approaches either θc or pm(θ), since On-IC implies that for θ̂ ∈ (θ, θc),

π(p(θ), θ)[N [1− F (θ)]N−1I +Nµ(θc)U ] ≥ π(p(θ̂), θ)[N [1− F (θ̂)]N−1I +Nµ(θc)U ],

where N [1 − F (θ)]N−1I and N [1 − F (θ̂)]N−1I approach zero and Nµ(θc) persists in the
limit. Hence, we conclude that if N →∞, then p(θ) converges to p̃(θ) in (26). �

Proof of Proposition 5. (i) The proof follows from two results. First, price functions
in RE do not cross, as shown in the proof of Lemma 3. Second, it follows from (2) that
the price function with a lower boundary value has a smaller slope p′(θ) for any θ ∈ (θ, θ),
since it conveys a smaller value of π(p(θ),θ)

πp(p(θ),θ) for each θ ∈ (θ, θ) while all price functions in
RE have the same M(θ).

(ii) The first part of (ii) is provided by the proof of Lemma 7: ∂θc

∂s
> 0 and ∂p(θ)

∂θc
> 0

on (θ̂, θc]. For the second part of (ii), suppose f(θc) is sufficiently small and an increase
in θc shifts the price function such that ∂p(θ)

∂θc
< 0 on (θ, x∗) and ∂p(θ)

∂θc
> 0 on (x∗, θc).

This supposition implies ∂η(θ)
∂θc

> 0 on (θ, x∗) in (33), which in turn implies ∂2η(θ)
∂θ∂θc

> 0 on
(θ, x∗) in (35). This is because the first term in (35) vanishes since it includes ∂µ(θc)

∂θc
that
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vanishes for f(θc) sufficiently small, regardless of how p′(θ) changes with f(θc), whereas
the second term persists for any f(θc). Now, given ∂η(θ)

∂θc
> 0 and ∂2η(θ)

∂θ∂θc
> 0 on (θ, x∗), it

is impossible to satisfy ∂η(θ)
∂θc

< 0 on (x∗, θc) and hence the supposition is contradicted. �
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