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Abstract

This paper documents a novel observation on firm growth in high-quality admin-
istrative data: cumulative sales and employment growth over a firm’s life cycle have
systematically increased since the 1990s, with a disproportionate rise in employment
growth. I study these trends to gain insights into the recent slowdown in TFP growth
using a model of creative destruction that features horizontal and vertical innovation
by incumbent firms that are ex-ante heterogeneous in their productivity. Rising costs
of firm entry and vertical innovation rationalize the observed trends. Rising entry costs
increase incumbents’ expected profits due to falling firm entry, incentivizing them to
expand horizontally into new product markets. Rising vertical innovation costs slow
incumbents’ markup growth, explaining the disproportionate increase in employment
growth. Both forces primarily incentivize more productive incumbents to expand hor-
izontally, generating positive reallocation effects on short- and long-run TFP growth.
The model points to falling firm entry as the source behind the TFP slowdown.
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1 Introduction
Many advanced economies have experienced similar macroeconomic trends over the last
decades: Total Factor Productivity (TFP) growth has declined, sales concentration within
industries has risen, and firm entry has fallen. These trends have attracted considerable at-
tention in the U.S. economy,1 but similar observations have been made for various European
and Asian countries.2 This paper provides new insights into these macroeconomic trends,
particularly the slowdown in TFP growth, based on a novel observation in high-quality
administrative data at the firm level: for the universe of Swedish firms, cumulative sales
and employment growth over the firm’s life cycle (henceforth, firm life cycle growth) have
systematically increased since the late 1990s. Economic theory suggests that firm growth
and productivity growth are directly linked: in models of endogenous growth through cre-
ative destruction, incumbent firms expand into new product markets through innovation,
thereby fostering technological progress. This paper exploits this link to gain insights into
the slowdown in TFP growth from the documented changes in firm growth.

The first contribution of this paper is empirical. I document a new stylized fact about
firm growth using administrative data from tax records: life cycle growth of firm sales and
employment accelerated. Over the first eight years of the firm, sales increased by 55.9
percent for firms established in the late 1990s compared to 67.4 percent for the cohorts of
the early 2010s. For employment growth, these differences are even more pronounced. Firm
employment increased by 28.8 percent over the first eight years for the cohorts of the late
1990s compared to 46.6 percent for the cohorts of the 2010s. What do the changes in firm
growth imply about the slowdown in TFP growth? I view the firm-level changes through
the lens of a structural model and analyze their implications for the macroeconomy.

The model includes the following three elements. First, the model features a link between
firm dynamics and economic growth in the spirit of Schumpeterian growth models (Aghion
and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004): incumbent firms
(and potential entrants) gain market shares by expanding horizontally into new product mar-
kets through creative destruction (expansion R&D).3 Second, in standard models of creative
destruction with constant markups, firm sales and employment growth from horizontal ex-
pansion are identical. In line with the data, I include a second type of product innovation
that permits differential sales and employment growth (and changes therein). This type of
innovation (internal R&D) allows incumbent firms to distance their competitors vertically in

1Autor, Dorn, Katz, Patterson and Van Reenen (2017), Grullon, Larkin and Michaely (2019) and Akcigit
and Ates (2021) document rising sales concentration in the U.S. The decline in firm entry is documented in
Decker, Haltiwanger, Jarmin and Miranda (2016); Gourio, Messer and Siemer (2014); Karahan, Pugsley and
Şahin (2022).

2See Andrews, Criscuolo and Gal (2016); Gopinath, Kalemli-Özcan, Karabarbounis and Villegas-Sanchez
(2017); Autor, Dorn, Katz, Patterson and Van Reenen (2020); Karabarbounis and Neiman (2014); Engbom
(2023).

3These models are analytically tractable yet capture salient features of firm dynamics (Lentz and
Mortensen, 2008; Akcigit and Kerr, 2018).
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the quality space and, in equilibrium, charge a higher product markup as in Peters (2020).4
Markup growth drives a wedge between firm sales and employment growth. Third, the model
includes ex-ante heterogeneity in productivity across incumbents as in Aghion, Bergeaud,
Boppart, Klenow and Li (2023). Potentially, changes in firm life cycle growth differ across
firms that are heterogeneous in their productivity. Changes in the relative growth of incum-
bents that differ in their productivty have redistributive effects that matter for the aggregate
economy: if the observed acceleration in life cycle growth is due to accelerated growth of more
productive incumbents, market shares of these firms rise, increasing aggregate productivity.
Such reallocation even matters for the economy’s long-run growth rate: as an equilibrium
outcome, permanent differences in productivity generate heterogeneity in innovation rates
across incumbents.5 Any reallocation of market shares across incumbents that innovate at
systematically different rates affects long-run growth (Acemoglu, Akcigit, Alp, Bloom and
Kerr, 2018). The model uncovers the heterogeneous changes in firm life cycle growth and
quantifies the effects of reallocation on aggregate productivity and long-run growth.

I estimate the model on a balanced growth path (BGP) matching firm sales and employment
growth of cohorts in the late 1990s and other macroeconomic moments. As a comparative
statics exercise, I re-estimate two parameters of the model to match the acceleration of firm
sales and employment life cycle growth of the latest cohorts in the data. The estimation high-
lights a rise in the cost of entry (+22%) and an increase in incumbents’ internal R&D costs
(+51%) as the cause behind the changes in firm growth. Rising firm entry costs lower firm
entry, raising expected profits per product line and incentivizing incumbents to expand hori-
zontally. The expansion into new product lines increases incumbents’ sales and employment
growth. In contrast, the increase in the internal R&D costs reduces incumbents’ internal
R&D efforts. Falling internal R&D slows incumbents’ markup growth, accelerating their em-
ployment relative to sales growth. Rising internal R&D costs explain the disproportionate
rise in employment life cycle growth.

The rise in the cost of entry raises incumbents’ incentives to expand into new product
markets, but, importantly, the strength of the effect varies across incumbents. In particular,
declining firm entry increases the difference in expected profits per product line between
more and less productive incumbents. Similarly, rising internal R&D costs lower the value of
a product line primarily for less productive incumbents as internal R&D becomes more costly
to mitigate initial productivity disadvantages. As a result, only the more productive firms
find it worthwhile to expand into new product markets, driving the observed acceleration
in firm life cycle growth. The increase in life cycle growth of the more productive firms is
associated with a rise in their market shares in the cross-sectional distribution of firms.

What are the effects on aggregate economic growth associated with the acceleration of incum-
4Similarly, Akcigit and Kerr (2018) features a quality-ladder model with creative destruction and inno-

vation within product markets.
5Other examples of creative destruction frameworks with heterogeneous innovation rates across firms

include Lentz and Mortensen (2008), Acemoglu, Akcigit, Alp, Bloom and Kerr (2018) and De Ridder (2024).
In these models, the heterogeneity arises from systematic differences in the step size of quality improvements
or the firms’ cost structure.
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bents’ life cycle growth? Changes in long-run growth are due to (i) changes in incumbents’
(internal and expansion) innovation rates, holding sales shares constant, (ii) reallocation
of sales shares across incumbents that innovate at different rates, and (iii) changes in en-
trants’ innovation rates (firm entry). I quantify the heterogeneous effects of the three chan-
nels. First, incumbents’ innovation rates have increased. Rising expansion R&D rates by
the more productive incumbents outweigh falling internal R&D rates, raising the long-run
growth rate by 0.22 percentage points (pp.). Second, as more productive incumbents inno-
vate at systematically higher rates in equilibrium, the reallocation of market shares to these
firms increases the aggregate growth rate by 0.27pp. Hence, incumbents have contributed
positively to changes in long-run growth since the 1990s, primarily due to the effects of re-
allocation. These reallocation effects are absent in standard models of creative destruction
in which firms innovate at identical rates. Third, rising entry costs slow firm entry. The
fall in firm entry lowers the long-run growth rate by 1.1pp. Net of the positive contribution
by incumbents, the long-run growth rate declines by 0.62pp. I extend the analysis over the
transition period, which trades off the long-run fall in growth with the positive effects of
reallocation on aggregate productivity. The effects of reallocation are outweighed by the fall
in firm entry, which accounts for the decline in output growth along the transition path,
resulting in a welfare loss. The results of the decomposition are robust to an alternative
estimation, where an increase in the productivity dispersion explains the magnitude of the
decline in U.S. TFP growth as in Aghion, Bergeaud, Boppart, Klenow and Li (2023).

The changes in firm growth are consistent with recent macroeconomic trends observed for
advanced economies: declining firm entry, rising concentration, and falling economic growth.
The implied decline in long-run growth and firm entry account for roughly 60% of the
measured decline in TFP growth and 80% of the decline in the firm entry rate in Sweden
over the last three decades (Engbom, 2023). The reallocation of market shares to more
productive firms that, in the model, feature relatively low labor shares and high markups is
further consistent with Kehrig and Vincent (2021), De Loecker, Eeckhout and Unger (2020),
and Baqaee and Farhi (2020). The richness of the Swedish administrative data, particularly
information on the capital stock and intermediate input usage for the universe of firms, allows
me to test model predictions for firm growth. I provide suggestive evidence that systematic
productivity heterogeneity explains differences in life cycle growth across firms, as suggested
by the model.

Related Literature. The comparative statics exercise is related to studies explaining recent
macroeconomic trends in the U.S. economy. Proposed drivers for these trends are increasing
costs of R&D (Bloom, Jones, Van Reenen and Webb, 2020), increasing barriers to entry
(Davis, 2017; Gutiérrez and Philippon, 2018), or rising productivity dispersion (Aghion,
Bergeaud, Boppart, Klenow and Li, 2023).6 The approach in this paper differs. I interpret

6Further explanations include the increasing importance of intangible capital and information and com-
munications technology (ICT) (Crouzet and Eberly, 2019; Chiavari and Goraya, 2020; De Ridder, 2024;
Hsieh and Rossi-Hansberg, 2023; Weiss, 2019), declining interest rates (Chatterjee and Eyigungor, 2019;
Liu, Mian and Sufi, 2022), changes in the quality of ideas (Olmstead-Rumsey, 2019) or declining imitation
rates (Akcigit and Ates, 2023).
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the changes in firm life cycle growth through a structural model and let the model speak on
the implications of the firm-level changes for the macroeconomy.

Peters and Walsh (2021) further highlight demographic forces behind recent trends in the
U.S. economy.7 In Peters and Walsh (2021), a decline in population growth explains the fall
in productivity growth, the rise in product market concentration, and the fall in the entry
rate. In Sweden, the growth rate of the workforce gradually increased over the last three
decades despite rising concentration, falling firm entry, and declining long-run productiv-
ity growth (Engbom, 2023). This suggests that, at least for the Swedish economy, falling
population growth is not the driving force behind the macroeconomic (or firm-level) trends.
Nevertheless, an increase in firm life cycle growth is also implied in their theory.

The findings further relate to a literature that emphasizes the effects of reallocation on
economic growth. China and East Germany are examples where long-term sustained growth
followed the reallocation of market shares from state-owned enterprises to privately held
companies (Song, Storesletten and Zilibotti, 2011; Findeisen, Lee, Porzio and Dauth, 2021).
This reallocation potentially affects GDP per capita in a static sense through two channels.
First, more productive firms gain market shares, thereby raising average productivity, and
second, by reducing the extent of misallocation of production factors in the spirit of Hsieh and
Klenow (2009). However, the reallocation could also affect the economy’s long-run growth
rate if privately held firms innovate (or imitate) at higher rates than state-owned enterprises
(Acemoglu, Akcigit, Alp, Bloom and Kerr, 2018). The model in this paper accounts for the
effect of reallocation on economic growth through all three channels: over the transition to
the new balanced growth path, the reallocation of sales shares across firms affects aggregate
output growth through changes in average productivity, misallocation, and innovation rates.
I find that these reallocation effects matter, even for long-run economic growth.

Akcigit and Kerr (2018), Garcia-Macia, Hsieh and Klenow (2019), and Peters (2020) decom-
pose economic growth into the contributions by entrants and incumbent firms. These studies
conclude that economic growth is mainly due to incumbent firms rather than entrants. While
this is also the case in the parametrized model of this paper, I show that entrants rather
than incumbents account for the fall in economic growth since the 1990s. This finding is
consistent with the observation in Garcia-Macia, Hsieh and Klenow (2019) that the share of
economic growth accounted for by entrants has declined in the U.S. since the 1990s.8

The empirical results further relate to Karahan, Pugsley and Şahin (2022) and Hopenhayn,
Neira and Singhania (2022), who document that firm employment conditional on age has
been relatively constant in the U.S. since the 1980s. Karahan, Pugsley and Şahin (2022)
report this stability for firms up to age ten, noting that for firms older than ten, firm size

7Bornstein (2018), Engbom (2023), Hopenhayn, Neira and Singhania (2022), Karahan, Pugsley and
Şahin (2022) further emphasize the role of demographic forces behind macroeconomic trends.

8Bartelsman and Doms (2000), Haltiwanger, Foster and Krizan (2001), Lentz and Mortensen (2008) and
Acemoglu, Akcigit, Alp, Bloom and Kerr (2018) decompose productivity growth further into within- and
between firm effects. This paper studies which of these channels explains the changes in productivity growth
since the 1990s.
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(conditional on age) increases significantly over time when holding the industry composition
constant. The increase in firm size conditional on age suggests that growth over the firms’
life cycle has accelerated, as documented in this paper. I report the size-conditional-on-age
patterns in Swedish administrative data. These raw plots already display an increase in
average firm size (conditional on age) over time. The acceleration in growth over the firm’s
life cycle growth becomes even more apparent when controlling for the firm’s industry in
firm-level regressions.9

Sterk, Sedláček and Pugsley (2021) document changes in life cycle growth for U.S. firms
over time. For the cohorts 1979 to 1993, the authors show that employment growth over the
firm’s life cycle slowed. The results presented in this paper are complementary rather than
contradictory to theirs as I document trends for the cohorts from 1997 to 2017. The rise in
industry concentration, and the fall in firm entry accelerated strongly during the turn of the
millennium, as shown by Autor, Dorn, Katz, Patterson and Van Reenen (2020), and Akcigit
and Ates (2021). Firm-level changes during this period are particularly useful to understand
the forces behind these macroeconomic trends.

The paper proceeds as follows. Section 2 documents the acceleration in firm life cycle growth,
and Section 3 lays out the model. In Section 4, I apply the model to study the aggregate
implications of the changes in firm growth. This includes first a balanced growth path
analysis followed by an investigation of the transitional dynamics in Section 5. Section 6
provides robustness, and Section 7 concludes.

2 Changes in firm life cycle growth
This section documents systematic changes in sales and employment growth over the firms’
life cycle. I describe the data in a first step.

2.1 Data
All data is provided by Statistics Sweden (SCB), the official statistical agency in Sweden. The
main data set is Företagens Ekonomi (FEK), which covers information from balance sheets
and profit and loss statements for the universe of Swedish firms. The unit of observation
is the legal unit at an annual frequency covering the period 1997-2017. FEK contains the
main variables of interest: sales and employment (in full-time units). Before 1997, FEK
was a sample covering large Swedish firms. To ensure full representativeness, I focus on
the years 1997 forward. The data further contains information on the firm’s legal type and
industry at the five-digit level. I focus on firms in the private economy. Throughout the

9Van Vlokhoven (2021) further documents that profits and sales of firms in Compustat data have become
more back-loaded. While I share the observation that the sales growth over the firm’s life cycle accelerated,
I find firm size at entry relatively constant over time as Karahan, Pugsley and Şahin (2022) and Hopenhayn,
Neira and Singhania (2022).
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paper, nominal variables are deflated to 2017 Swedish Krona (SEK) using the GDP deflator.
For more details about the data, see Section A in the Appendix.

Table 1: Summary statistics (1997-2017)

25th Pct. 50th Pct. 75th Pct. Mean SD Obs.
Sales* 1.2 2.7 7.8 27.8 568.2 4,918,996
Value added* 0.5 1.1 2.9 7.6 142.3 4,918,996
Employment 1 2 5 9.9 131.1 4,918,996
Wage bill* 0.2 0.6 1.6 3.7 53.0 4,918,996
Capital stock* 0.04 0.2 1.1 9.3 277.0 4,918,996
Intermediate Inputs* 0.4 0.9 2.6 10.8 270.0 4,918,996

Note: variables marked with * are in units of million 2017-SEK (1 SEK ≈ 0.1 US dollars). The capital stock is defined as fixed
assets minus depreciation.

I define the birth year of the firm as the year it hires its first employee. I obtain this
information from the auxiliary data set Registerbaserad Arbetsmarknadsstatistik (RAMS),
containing the universe of employer-employee matches. I further restrict myself to firms that
employ at least one worker, according to RAMS.10

Table 1 reports distributional statistics of firm sales, value added, and production inputs
for the pooled data (1997 to 2017). The median firm lists sales of roughly 2.7 million SEK
(approx. 0.27 million US dollars), value added of 1.1 million SEK, and employs two workers.
The distribution of sales, value added, and all production inputs is highly right-skewed, as
indicated by the mean and the 25th, 50th, and 75th percentiles. Average firm sales are 27.8
million SEK, and average employment is 9.9. In total, the data includes about 4.9 million
firm-year observations. For the age-specific empirical analysis, I focus on firms established
in 1997 or later, which reduces the sample size to 2.2 million firm-year observations. For
these firms, age is not truncated.

2.2 Changes in firm growth
I illustrate the changes in firm growth in two different ways. Karahan, Pugsley and Şahin
(2022) and Hopenhayn, Neira and Singhania (2022) report patterns of average firm size
conditional on age. An increase in average firm size conditional on age over time (while
size at entry remains constant) implies an increase in cumulative size growth over the firm’s
life cycle. I show these size-conditional-on-age patterns in a first step. These averages pool
across all firms in the economy, so they do not consider, e.g., industry composition. As a
second step, I obtain firm life cycle growth (and changes therein) using regression analysis
controlling for detailed industry and cohort fixed effects.

Figure 1 displays average employment conditional on firm age over time. 95% confidence
intervals are included. For ages zero to three, firm size is relatively stable over time in

10The empirical results of this section are very similar when measuring firm employment using RAMS.
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Figure 1: Average firm size (log employment) conditional on age
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Notes: the figure shows avg. firm size (log employment) conditional on firm age over time. 95% confidence intervals are shown.

line with Karahan, Pugsley and Şahin (2022) and Hopenhayn, Neira and Singhania (2022).
Already for firms of age five, comparing firm size in 2002 and 2017 shows a slight increase.
This increase is even more pronounced for older firms (ages 9-11 and 14-16). The average
firm size displays an apparent positive trend for these ages. Karahan, Pugsley and Şahin
(2022) note that, controlling for industry composition, U.S. firms older than age ten display
a significant increase in size-conditional-on-age over time. Such an increase is visible in the
Swedish administrative data even without controlling for the industry composition, as Figure
1 shows. The increase in average firm size for older firms is robust to alternative measures
of firm size: Figure 6 in the Appendix shows the same trends for firm sales.

I use a regression framework to quantify the changes in firm life cycle growth over time.
More specifically, I run the following regression

ln Sizej,t = γ0 +
20∑

af =1
γaf

1Agej,t=af
+ θc + θk + ϵj,t, (1)

where 1Agej,t=af
is an indicator function for firms of age af . θk is a 5-digit industry fixed effect

and as Sterk, Sedláček and Pugsley (2021), I control for cohort fixed effects, θc.11 γ0 picks
11The cohort and industry dependence of the other variables is suppressed for clarity.
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up the average log firm size at entry (age zero) and γaf
capture the log differences in average

firm size between ages af and zero, i.e., γ1 to γ20 provide the non-parametric estimates of
cumulative life cycle growth. I measure firm size using employment and sales.

I run the regression for consecutive cohort groups (each group includes four cohorts) to
capture changes in the growth profile over time. Figure 2 plots the age coefficients, γ1
to γ20, for the different cohort groups with employment as the size measure. Cumulative
employment growth over the firm’s life cycle has systematically increased. Measured over
the first eight years of the firm, employment growth increased from about 29% (cohorts 1997
to 2000) to about 47% (cohorts 2009 to 2012). Figure 2 further shows that the gap opens up
with firm age. This is consistent with the observation in Figure 1 that the average firm size
of older firms increases significantly, whereas for younger firms, it is relatively stable.

Figure 2: Log employment relative to age zero (by cohort)
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Notes: the figure shows cumulative employment growth over the firm’s life cycle, measured as the difference between log
employment at age af and age zero according to eq. (1). Cohorts are pooled as indicated in the legend. Firm employment is
filtered at its 1% tails. The figure includes 95% confidence intervals.

A similar observation holds for sales as the measure of firm size. Figure 7 in the Appendix
shows the same patterns for sales growth over the life cycle. Over the first eight years of the
firm, sales increased by about 56% for the cohorts 1997 to 2000, whereas sales increased by
about 67% for the cohorts 2009 to 2012. The acceleration in sales life cycle growth is smaller
than for employment, but a clear upward shift of the life cycle profile is apparent.
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3 Model
This section outlines an endogenous growth model with firm dynamics. The model allows
for inference about the slowdown in aggregate productivity growth from the documented
changes in firm life cycle growth, which will be the subject of later sections.

3.1 Preferences and aggregate economy
Time is continuous. The economy consists of a representative household that chooses the
path of consumption Ct and wealth At to maximize lifetime utility

U =
∫ ∞

0
exp(−ρt) lnCtdt,

subject to the budget constraint Ȧt = rtAt + wtLt − Ct and a standard no-Ponzi game
condition. ρ denotes the discount factor, rt the interest rate and wt the real wage. The
household supplies one unit of labor inelastically such that Lt = 1. The optimality condition
(Euler equation) for the household problem reads

Ċt
Ct

= rt − ρ.

Aggregate output is produced competitively using a Cobb-Douglas technology over a con-
tinuum of different products indexed by i (time subscripts suppressed)

Y = exp
(∫ 1

0
ln [qiyi] di

)
,

where yi and qi denote the quantity and quality of product i. Output is consumed entirely
such that Y = C. Expenditure minimization leads to the standard demand function

yi = Y P

pi
. (2)

P is defined as the aggregate price index, which I normalize to 1.

3.2 Production
Firms potentially produce in a product market i with the following technology

yij = φjlij,

where yij is the amount of product i produced by firm j, lij is the amount of labor hired,
and φj denotes the productivity of firm j. Firm j produces different products with the same

10



productivity, i.e., φj varies with j, but not with i. As in Aghion, Bergeaud, Boppart, Klenow
and Li (2023), the firm’s productivity is fixed over time, which captures the notion that some
firms are persistently more efficient at producing than others, e.g., due to a better business
plan. For simplicity, firms are of a high or low productivity type, i.e., φj ∈ {φh, φl} where
φh/φl > 1, which I refer to as high- and low-type firms.

3.3 Static allocation
Taking the joint distribution of product qualities and firm productivity as exogenous in this
section, I characterize the static allocations at the product, firm and aggregate levels.

3.3.1 Product level

Firms in product market i compete in prices (Bertrand competition). In equilibrium, only
the firm with the highest quality-adjusted productivity qijφj produces product i (henceforth,
incumbent). Under Bertrand competition, the incumbent firm engages in limit pricing and
sets its price equal to the quality-adjusted marginal costs of the follower (the firm with the
second highest quality-adjusted productivity)

pij = qij
qij′

w

φj′
, (3)

where j′ indexes the follower in product market i. The price that the incumbent sets is
increasing in the quality gap between the incumbent and the follower, as eq. (3) shows. The
equilibrium price-cost markup in market i for producer j is defined as the output price over
marginal costs, hence

µij ≡ pij
w/φj

= qij
qij′

φj
φj′

. (4)

The incumbent’s markup for product i is increasing in the quality and productivity gap.
The price setting of the incumbent gives rise to the following profits for product i

πij = pijyij − wlij = Y

(
1 − 1

µij

)
,

with labor demand for product i

lij = Y

w
µ−1
ij .

Employment in product line i is decreasing in the markup.
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3.3.2 Firm level

Summing employment over the set of product lines where firm j is the incumbent, Nj,

lj =
∑
i∈Nj

lij = Y

w

∑
i∈Nj

µ−1
ij

 .
Firm employment decreases in the markups within each product line but increases in the
total number of lines. As sales are equalized across product lines, firm sales are given by∣∣∣Nj

∣∣∣Y ≡ njY , where nj denotes the number of products firm j is producing.

3.3.3 Aggregate level

Integrating employment across firms or products yields the total workforce in production:

LP =
∫
j
ljdj = Y

w

∫ 1

0
µ−1
ij di. (5)

Taking logs and integrating eq. (4), one obtains an expression for the wage

w = exp
(∫ 1

0
ln qijdi

)
× exp

(∫ 1

0
lnφj(i)di

)
× exp

(∫ 1

0
lnµ−1

ij di
)
. (6)

To find an expression for aggregate output, insert eq. (6) into eq. (5) to obtain

Y = QΦMLP , (7)

where

Q = exp
(∫ 1

0
ln qijdi

)
, Φ = exp

(∫ 1

0
lnφj(i)di

)
, M =

exp
(∫ 1

0 lnµ−1
ij di

)
∫ 1

0 µ
−1
ij di

.

Aggregate output Y depends on geometric averages of quality Q and productivity Φ as well
as on misallocation M and production labor LP . As in Peters (2020), misallocation arises
from markup dispersion that lowers aggregate output (M is bounded by unity from above).
In this model, markup dispersion is due to both quality and productivity heterogeneity. The
product of Q, Φ and M captures aggregate Total Factor Productivity (TFP).

Using again equation (5), the aggregate labor income share is given by

Λ ≡ wLP
Y

=
∫ 1

0
µ−1
ij di.

The aggregate labor income share decreases in the level of markups, whereas aggregate TFP
declines with markup dispersion.
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3.4 Dynamic firm problem
Incumbents continuously improve the quality of products, qi, in the economy through differ-
ent types of R&D. Internal R&D increases the quality of incumbent firm j’s own product,
whereas, through expansion R&D, the incumbent j improves the quality of a random product
of a competing incumbent. Item quality is improved step-wise such that every innovation
(either internal or expansion R&D) increases qi by a factor of λ. As Aghion, Bergeaud,
Boppart, Klenow and Li (2023), I assume that the step size of quality improvements exceeds
the productivity differential, λ > φh/φl. This assumption ensures that the firm with the
highest quality version in a product line is the incumbent producer.12 Denoting by λ∆i the
relative qualities of incumbent and second-best firms within a product line, i.e.,

λ∆i = qij
qij′

and by [µi] the set of markups, where firm j is producing, firm profits can be written as

πjt(n, [µi]) =
n∑
k=1

Yt

(
1 − 1

µk

)
=

n∑
k=1

Yt

1 − 1
λ∆k

1
φjk

φj′k

 ≡
n∑
k=1

π(µk),

where π(µi) are profits in product line i. Incumbent firms choose the rate of internal R&D,
Ii, and the rate of expansion R&D, xi, for each of their product lines, i. When choosing
optimal internal and expansion R&D rates, firms take aggregate output Yt, the real wage wt,
the share of lines operated by high-productivity firms St, the interest rate rt and the rate of
creative destruction τt as given. Denoting the time derivative by V̇ h

t (), the value function of
a high-productivity type firm (indexed by h) satisfies the following HJB equation:

rtV
h
t (n, [µi], St) − V̇ h

t (n, [µi], St) =
n∑
k=1

π(µk)︸ ︷︷ ︸
Flow profits

+
n∑
k=1

τt

[
V h
t (n− 1, [µi]i ̸=k, St) − V h

t (n, [µi], St)
]

︸ ︷︷ ︸
Creative destruction

+ max
[xk,Ik]


n∑
k=1

Ik

[
V h
t (n, [[µi]i ̸=k, µk · λ] , St) − V h

t (n, [µi], St)
]

︸ ︷︷ ︸
Internal R&D

+
n∑
k=1

xk

[
StV

h
t (n+ 1, [[µi], λ] , St) + (1 − St)V h

t

(
n+ 1,

[
[µi], λ · φ

h

φl

]
, St

)
− V h

t (n, [µi], St)
]

︸ ︷︷ ︸
Expansion R&D

− wtΓ ([xi, Ii];n, [µi])︸ ︷︷ ︸
R&D costs

.
12Relaxing this assumption would give room for a race for incumbency between low-productivity entrants

facing a high-productivity incumbent from which I abstract.
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As in Peters (2020), the value of a firm consists of flow profits, research costs, and three parts
related to internal R&D, expansion R&D, and creative destruction. At the rate of creative
destruction τt (determined in equilibrium), the firm loses one of its n products, in which
case, it remains with n − 1 products. At the optimally chosen rate Ik, internal R&D turns
out successful (third row), and the firm charges a λ times higher markup on its product
according to eq. (4). Alternatively, at the optimally chosen rate xk, expansion R&D is
successful (fourth row), and the firm acquires a new product (n increases by one).

Firm-type heterogeneity introduces new elements to the value function. First, the value
function is specific to the productivity type of the firm. Second, the share of product lines
operated by each productivity type is a state variable (with two types, it is sufficient to keep
track of St). When taking over a new product line through expansion R&D (fourth row),
the probability of replacing a high-type incumbent is St, in which case the high-type entrant
charges a markup of λ. With probability 1 − St, the replaced incumbent is of the low type,
and the high-type entrant charges a markup of λ · φh/φl. Firms take St as given; however,
they affect it through their expansion R&D efforts xk in equilibrium. The HJB equation
for a low-productivity firm follows the same structure and is listed in the Appendix, Section
C.1. The term related to expansion R&D (fourth row) varies since low-productivity firms
build different markup expectations when entering a new product line.

Γ ([xi, Ii];n, [µi]) denote the R&D costs. For their R&D activities, firms pay a cost of

Γ ([xi, Ii];n, [µi]) =
n∑
k=1

c (xk, Ik;µk) =
n∑
k=1

µ−1
k

1
ψI

(Ik)ζ + 1
ψx

(xk)ζ


in terms of labor. ζ > 1 ensures convexity of the cost function. R&D costs are additively sep-
arable to render a closed-form solution of the value function along the balanced growth path.
ψI and ψx scale internal and external R&D costs and capture the R&D efficiency.13

Firm entry is determined as follows: using a linear production technology, potential entrants
produce a flow of marketable ideas ψz per unit of labor that improves the quality of a
randomly selected product line. Entrants get assigned the high productivity type with
probability ph and start with a one-step quality gap. The free entry condition requires that
the expected value of firm entry equals the entry costs

phE[V h
t (1, µi)] + (1 − ph)E[V l

t (1, µi)] = 1
ψz
wt, (8)

where the expected value of entering as a high- or low-type firm is

E[V h
t (1, µi)] =StV h

t (1, λ) + (1 − St)V h
t (1, λ× φh/φl)

13The incentives for internal R&D decrease with the quality gap that the firm has accumulated as profits
within a product line are concave in the markup. I scale the internal R&D costs by the inverse markup to
keep internal R&D incentives constant as in Peters (2020).
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E[V l
t (1, µi)] =StV l

t (1, λ× φl/φh) + (1 − St)V l
t (1, λ).

Denoting by zt the equilibrium flow rate of entry, labor market clearing requires that produc-
tion labor LPt and research labor LRt add up to one, the aggregate labor endowment

1 = LPt + LRt =
∫ 1

0

Yt
wt
µ−1
it di+

∫ 1

0

(
µ−1
it

Iζit
ψI

+ xζit
ψx

)
di+ zt

ψz
. (9)

3.5 Cross-sectional distribution of quality and productivity gaps
The joint (cross-sectional) distribution of quality and productivity gaps is the key equilibrium
object that characterizes aggregates in the model. On the one hand, quality and productivity
gaps characterize the markup distribution that determines labor demand. On the other hand,
the distribution keeps track of the share of product lines operated by each productivity type,
which is a state variable in the firm’s optimization problem. This section characterizes the
joint distribution of quality and productivity gaps as a function of firm policies, which allows
the equilibrium distribution to be solved jointly with the policies.

The distribution of quality and productivity gaps ν is characterized by a set of infinitely
many differential equations. For simplicity, I characterize the differential equations for firm-
type specific expansion R&D rates, xht and xℓt, and uniform internal R&D rates, It, as proven
shortly in Proposition 1 for a balanced growth path.14 For product lines where the incumbent
is at least two quality steps ahead of the follower (∆ ≥ 2), the measure ν follows

ν̇t

(
∆, φj

φj′

)
= Itνt

(
∆ − 1, φj

φj′

)
− νt

(
∆, φj

φj′

)
(It + τt). (10)

For product lines where the incumbent is one step ahead (∆ = 1), the measure follows

ν̇t

(
1, φ

l

φh

)
= (1 − St)xltSt + zt(1 − ph)St − νt

(
1, φ

l

φh

)
(It + τt)

ν̇t

(
1, φ

l

φl

)
= (1 − St)xlt(1 − St) + zt(1 − ph)(1 − St) − νt

(
1, φ

l

φl

)
(It + τt)

ν̇t

(
1, φ

h

φh

)
= Stx

h
t St + ztp

hSt − νt

(
1, φ

h

φh

)
(It + τt)

ν̇t

(
1, φ

h

φl

)
= Stx

h
t (1 − St) + ztp

h(1 − St) − νt

(
1, φ

h

φl

)
(It + τt). (11)

Changes in the measure ν̇ are due to inflows and outflows. Outflows arise from successful
internal R&D (quality gap increases from ∆ to ∆ + 1) and creative destruction (quality gap
gets reset to unity). Inflows vary with the quality gap. For ∆ ≥ 2, inflows into state ∆ are due

14The distribution along the transition path is characterized in the Appendix, Section D.
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to successful internal R&D in product lines with a quality gap of ∆ − 1. For ∆ = 1, inflows
result from creative destruction. For example, the measure of products with a low-type
incumbent and high-type second best firm νt

(
1, φl

φh

)
increases due to low-type incumbents

and entrants replacing high-type incumbents, captured by (1 − St)xltSt + zt(1 − ph)St in
eq. (11). From the measure ν, one obtains the share of product lines operated by high-
productivity type firms

St =
∞∑
i=1

[
νt

(
i,
φh

φh

)
+ νt

(
i,
φh

φl

)]
. (12)

3.6 Balanced growth path characterization
I define a balanced growth path of the economy as follows.

Definition 1. A balanced growth path (BGP) is a set of allocations [xit, Iit, ℓit, zt, St, yit, Ct]it
and prices [rt, wt, pit]it such that firms choose [xit, Iit, pit] optimally, the representative house-
hold maximizes utility choosing [Ct, yit]it, the growth rate of aggregate variables is constant,
the free-entry condition holds, all markets clear and the distribution of quality and produc-
tivity gaps is stationary.

Along the balanced growth path, the economy can be characterized in closed form.

Proposition 1. In the above setup, along a balanced growth path:

1. The value function for a firm of productivity type d ∈ {h, l} is given by

V d
t (n, [µi], S) =n 1

(ρ+ τ)
ζ − 1
ψx

(xd)ζwt +
n∑
k=1

π(µk) + ζ−1
ψI
Iζwtµ

−1
k

ρ+ τ
, (13)

where I ≡ Ih = I l and xh > xl.

2. Sφk,φp, the constant share of product lines where the incumbent firm is of productivity
type k and the second-best firm of type p is

Sφl,φh ≡
∞∑
i=1

ν

(
i,
φl

φh

)
=(1 − S)xlS + z(1 − ph)S

τ

Sφl,φl ≡
∞∑
i=1

ν

(
i,
φl

φl

)
=(1 − S)xl(1 − S) + z(1 − ph)(1 − S)

τ

Sφh,φh ≡
∞∑
i=1

ν

(
i,
φh

φh

)
=Sx

hS + zphS

τ

Sφh,φl ≡
∞∑
i=1

ν

(
i,
φh

φl

)
=Sx

h(1 − S) + zph(1 − S)
τ

,
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which defines the share of product lines operated by the high-productivity type

S =Sφh,φh + Sφh,φl = Sxh + zph

τ
. (14)

3. The growth rate of aggregate variables is given by

g = Q̇t

Qt

=
(

I︸︷︷︸
Incumbent internal R&D

+ Sxh + (1 − S)xl︸ ︷︷ ︸
Incumbent expansion R&D

+ z︸︷︷︸
Entry

)
× ln(λ). (15)

Proof. The Appendix, Sections C.1, C.2 and C.3, contains the proofs.

The value function is additive across products. The first part of the value function rep-
resents the option value of expanding into new product markets and scales linearly in the
number of products. This term is productivity-type specific, as expansion R&D rates are
heterogeneous. To see why optimal expansion R&D rates are heterogeneous, note that the
optimality condition for expansion R&D implies that the expected value of a product line
equals the marginal cost of expansion R&D. The value of a product line increases in firm
productivity as profits rise in the markup. Hence, in equilibrium, more productive firms
pay a higher marginal cost of expansion R&D, i.e., xh > xl. The second part of the value
function consists of flow profits and the option value to increase markups in the future. The
value function is scaled by the sum of the rate of creative destruction (the rate at which
incumbents get replaced) and the discount factor.

Proposition 1 further shows that Sφk,φp , the share of products lines where the incumbent
firm is of type k and the second-best firm of type p, is constant along a balanced growth
path. This share equals the fraction of creatively destroyed products at each instant of time,
where the new incumbent is of type k and the replaced firm of type p. The share of product
lines operated by high-productivity type firms S is equal to the sum of Sφh,φh and Sφh,φl . In
particular, eq. (18) can be rearranged to

S = zph

(1 − S)(xl − xh) + z
,

which shows that S depends on the difference in expansion R&D rates between firm types.
With a constant entry rate, an increase in the expansion rate of high-productivity incumbents
must be matched by an equal rise (in absolute terms) in the expansion rate of less-productive
firms for S to remain constant.

The aggregate rate of creative destruction is equal to the sum of firm-type specific expansion
R&D rates weighted by their sales shares and the rate of entry

τ = Sxh + (1 − S)xl + z. (16)
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Long-run growth results from R&D at the product level. This occurs through successful
internal R&D, expansion R&D, or firm entry. The aggregate arrival rate of innovation is,
hence, equal to the sum of the rates of creative destruction τ and internal R&D I. Multiplying
the arrival rate by the step size of innovation delivers the aggregate growth rate g, as shown
in eq. (15) of Proposition 1. Since expansion R&D rates are heterogeneous, changes in the
share of product lines operated by each productivity type, S and 1 −S, affect the aggregate
growth rate. Along the balanced growth path, both τ and g are constant.

The stationary distribution of productivity and quality gaps further characterizes the ag-
gregate labor income share, the TFP misallocation measure that captures the static loss in
output that arises from markup dispersion, and the aggregate markup.

Proposition 2. Let I and τ denote the rates of internal R&D and creative destruction and
θ = ln(1+τ/I)

ln(λ) .

1. The aggregate labor income share Λ = wLP

Y
is given by

Λ = θ

θ + 1
∑

k∈{h,l}

∑
n∈{h,l}

1
φk/φn

Sφk,φn .

2. The misallocation measure M is given by

M = e

∑
k∈{h,l}

∑
n∈{h,l}

[
Sφk,φn

(
ln
(

1
φk
φn

)
− 1

θ

)]
Λ .

3. The aggregate markup E[µ] =
∫ 1

0 µidi is given by

E[µ] = θ

θ − 1
∑

k∈{h,l}

∑
n∈{h,l}

φk
φn

× Sφk,φn .

Proof. The Appendix, Section C.2, contains the proofs.

In Peters (2020), the step size of innovation and the rate of creative destruction relative
to internal R&D, captured by θ, fully characterize the aggregate labor income share, the
misallocation measure, and the aggregate markup. In this model, these statistics further
depend on the size and distribution of the productivity gaps. For example, a rise in the
productivity gap or a reallocation of sales shares towards high-productivity firms lowers the
aggregate labor income share and raises the markup, ceteris paribus.

To find the balanced growth path, I solve the optimality conditions of the firm (derived in
Appendix C.1), the free entry condition, eq. (8), the labor market clearing condition, eq.
(9), and the system of differential equations characterizing the distribution of productivity
and quality gaps jointly. Appendix C.4 contains the details.
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3.6.1 Discussion of the stationary firm-type distribution

Given the systematic heterogeneity in expansion R&D rates, why is the stationary distribu-
tion of firm types along the balanced growth path non-degenerate? Taking the time derivative
of (12) and inserting (10) and (11), one obtains the differential equation for St

Ṡt = Stx
h
t (1 − St) − (1 − St)xltSt + zt

(
ph(1 − St) − (1 − ph)St

)
. (17)

Changes in the sales share of high-productivity type incumbents are due to high-type incum-
bents stealing product lines from low-type ones (first term), low-type incumbents stealing
product lines from high-type ones (second term), high-type entrants replacing low-type in-
cumbents and low-type entrants replacing high-type incumbents (final term). Along the
balanced growth path, Ṡt = 0 such that eq. (17) turns into

z
(
S − ph

)
= S(1 − S)(xh − xl). (18)

With xh > xl, for eq. (18) to hold, S needs to be greater than ph, the share of entrants
of the high-productivity type. In other words, the share of high-type firms among entrants
must be lower than the share of product lines operated by high-type incumbents. In this
case, sufficient entry by low-type firms balances high-type incumbents’ relatively higher
expansion rate, and St remains constant. Eq. (18) highlights the role of firm entry. Without
entry (z = 0), higher expansion rates by high-type incumbents would result in those firms
eventually overtaking all product lines. In the special case where all entrants are of the low
productivity type (ph = 0), eq. (18) can be written as

Sxh(1 − S) − (1 − S)xlS = zS.

Along the balanced growth path where St is constant, at each instant of time, entry by
low-type firms that replace high-type incumbents (zS) makes up precisely for the lost sales
share of low-type incumbents, Sxh(1 − S) − (1 − S)xlS.

3.7 Firm dynamics
Firms lose products according to the same stochastic process as in Klette and Kortum (2004).
However, in this model, firms add products at systematically different rates as optimally
chosen expansion R&D rates vary with the firm’s productivity type.15 As a result, expected

15Therefore, the properties related to firm size growth and survival in Klette and Kortum (2004) hold
conditional on the firm type. In particular, conditional on the type, firm size, and (expected) growth are
unrelated, i.e., Gibrat’s law holds conditionally as in Lentz and Mortensen (2008). For the unconditional
firm size and growth correlation, two forces are at play. On the one hand, young (small) firms tend to grow
quicker due to survival bias. On the other hand, more productive firms (with faster growth rates) are more
likely to end up large. In the estimated (initial) balanced growth path, 74% of the firms are of the high
productivity type. Hence, size is unrelated to growth (in expectation) for the vast majority of firms.
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firm life cycle trajectories differ across firms. This aligns with Sterk, Sedláček and Pugsley
(2021), emphasizing that ex-ante heterogeneity rather than ex-post shocks shape firm life
cycle trajectories. The following section derives firm-type specific sales and employment life
cycle growth that will be mapped to the life cycle profiles obtained in the data.

3.7.1 Firm sales growth

Firm sales are proportional to the number of products a firm produces. As such, successful
expansion R&D increases firm sales. Since optimal expansion R&D rates are productivity-
type specific, so is expected sales growth. Conditional on survival, expected sales growth for
a firm with productivity φj, j ∈ {h, l} between age zero and age af is

E
[
lnnfY |af , φj

]
− E

[
lnnfY |0, φj

]
= g × af︸ ︷︷ ︸

Aggregate growth

+ E
[
lnnf |af , φj

]
︸ ︷︷ ︸

Firm’s product growth

,

where nf is the number of products the firm is producing. To derive E [lnnf |af , φj] note that
the probability of a high-productivity type firm producing n products at age a conditional
on survival is (1 − γj(a)) (γj(a))n−1, where γj(a) = xj 1−e−(τ−xj )a

τ−xje−(τ−xj )a
. Therefore expected sales

growth is given by

E
[
lnnfY |af , φj

]
− E

[
lnnfY |0, φj

]
= g × af︸ ︷︷ ︸

Aggregate growth

+
(
1 − γj(af )

) ∞∑
n=1

lnn×
(
γj(af )

)n−1

︸ ︷︷ ︸
Firm’s product growth

.

(19)

Relative sales growth of the firm is equal to the firm’s product growth.

3.7.2 Firm markup growth

Firm markups are defined as µf = pyf

wlf
. The Appendix, Section C.5 shows that for a high-

productivity type firm, the expected log markup conditional on firm age af is

E
[
lnµf |af , φh

]
= lnλ×

(
1 + I × E[ahP |af ]

)
︸ ︷︷ ︸

Quality improvements

+ (1 − S) × ln
(
φh

φl

)
,︸ ︷︷ ︸

Productivity advantage

(20)

where E[ahP |af ], the average product age of a high-type firm conditional on firm age, is

E[ahP |af ] = 1
xh

 1
τ

(1 − e−τaf )
1

xh+τ

(
1 − e−(xh+τ)af

) − 1
(1 − ϕh(af )

)
+ afϕ

h(af )

ϕh(a) = e−xha 1
γh(a) ln

(
1

1 − γh(a)

)
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γh(a) =
xh
(
1 − e−(τ−xh)a

)
τ − xhe−(τ−xh)a .

The expected firm markup conditional on age consists of two terms. The first term in eq.
(20) is akin to Peters (2020) and, as marvelously illustrated in the paper, reflects that internal
R&D translates quality improvements within a firm’s product line into markup growth at
the firm level as it ages. In Peters (2020), this term holds for all firms, whereas in this
model, this term is specific to the productivity type of the firm, as the average product age
varies by firm type. The second term in eq. (20) captures a level effect that differences in
productivity introduce. The intuition is that if a high-productivity type incumbent faces a
low-type second-best firm in a given line, it can charge a φh/φl higher markup, which occurs
in expectation in 1 − S of the incumbent’s product lines.

The expected markup conditional on firm age for a low-productivity type firm follows

E
[
lnµf |af , φl

]
= lnλ×

(
1 + I × E[alP |af ]

)
︸ ︷︷ ︸

Quality improvements

+ S × ln
(
φl

φh

)
.︸ ︷︷ ︸

Productivity disadvantage

(21)

The first term captures quality improvements through internal R&D, equivalently to eq.
(20). E[alP |af ] follows the same expression as E[ahP |af ] with h replaced by l. The second
term in eq. (21) differs from eq. (20). Low-productivity incumbents face a high-productivity
second-best firm in a share S of their product lines. Since φl < φh, this term is negative.

3.7.3 Firm employment growth

Average employment conditional on age and firm type is equal to

E[ln lf | = af , φ
j] = ln

(
Y

w

)
+ E

[
lnnf |af , φj

]
− E

[
lnµf |af , φj

]
.

Since Y
w

is constant along the balanced growth path, employment growth is given by

E[ln lf |af , φj] − E[ln lf |0, φj] = E
[
lnnf |af , φj

]
︸ ︷︷ ︸

Firm’s product growth

−
(
E
[
lnµf |af , φj

]
− E

[
lnµf |0, φj

])
︸ ︷︷ ︸

Firm’s markup growth

,

(22)

where E [lnnf |af , φj] and E [lnµf |af , φj] −E [lnµf |0, φj] are defined in eqs. (19)-(21). Em-
ployment growth equals product growth minus markup growth as in Peters (2020). In this
model, expected employment growth is productivity type specific.

21



3.7.4 Firm survival and unconditional life cycle growth

Firm size dynamics determine firm survival. Since firm size growth is type-dependent, so is
firm survival. The survival function in Klette and Kortum (2004) holds conditional on the
firm type, i.e., the share of high and low type firms surviving until age af is

χh(af ) = 1 − τ
1 − e−(τ−xh)af

τ − xhe−(τ−xh)af
(23)

χl(af ) = 1 − τ
1 − e−(τ−xl)af

τ − xle−(τ−xl)af
. (24)

The firm survival function can be used to compute firm sales, and employment growth
unconditionally of the firm type. The share of high-type firms among firms at age af is

sh(af ) = phχh(af )
phχh(af ) + (1 − ph)χl(af )

. (25)

The share corresponds to the mass of high-type survivors relative to the total mass of sur-
vivors. Unconditional employment growth between age zero and af is then given by

sh(af )
(
E[ln lf |af , φh] − E[ln lf |0, φh]

)
+
(
1 − sh(af )

) (
E[ln lf |af , φl] − E[ln lf |0, φl]

)
.

(26)

Unconditional sales growth is defined similarly. When estimating the model, I match ob-
served employment growth in the data using eq. (26).

3.7.5 Firm size distribution

The model also makes precise predictions about the firm size distribution. The mass of high-
and low-productivity type firms with n ≥ 2 products follows the differential equations

Ṁh
t (n) = (n− 1)xhtMh

t (n− 1) + (n+ 1)τtMh
t (n+ 1) − n(xht + τt)Mh

t (n)

Ṁ l
t(n) = (n− 1)xltM l

t(n− 1) + (n+ 1)τtM l
t(n+ 1) − n(xlt + τt)M l

t(n), (27)

whereas the mass of firms with one product evolves according to

Ṁh
t (1) = ztp

h + 2τtMh
t (2) − (xht + τt)Mh

t (1)

Ṁ l
t(1) = zt(1 − ph) + 2τtM l

t(2) − (xlt + τt)M l
t(1). (28)

The mass of firms with n products increases through firms with n − 1 products expanding
to size n at rate xht or xlt per product or through firms with n+ 1 products losing a product
at the rate of aggregate creative destruction τt. The mass of firms with n products decreases
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through firms with n products either gaining or losing a product through expansion or
creative destruction. The mass of firms with one product additionally increases through
firm entry.

Proposition 3. The stationary firm size distribution along the balanced growth path is char-
acterized as follows.

1. The mass of high and low productivity firms with n products is

Mh(n) = (xh)n−1zph

nτn
= zph

xh
1
n

(
xh

τ

)n

M l(n) = (xl)n−1z(1 − ph)
nτn

= z(1 − ph)
xl

1
n

(
xl

τ

)n
.

2. The total mass of firms with n products is
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4. The total mass of firms is

M = Mh +M l.

Proof. These results follow from setting the time derivatives in equations (27) and (28) equal
to zero and solving the system of equations.

For each firm type, the share of firms with n products, Mh(n)/Mh and M l(n)/M l, follows the
PDF of a logarithmic distribution with parameter xh/τ and xl/τ as in Lentz and Mortensen
(2008). The firm size distribution is highly skewed to the right.

From the firm size distribution, I obtain the share of high-productivity type firms

SMh = Mh

M
, (29)
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and the firm entry rate

Firm entry rate = z

M
. (30)

4 Comparative statics across balanced growth paths
This section applies the model to gain insights into recent macroeconomic trends from the
documented changes in firm life cycle growth. To this extent, I estimate the model along
two balanced growth paths. The initial balanced growth path captures firm life cycle growth
and aggregate economic conditions during the 1990s. I then re-estimate model parameters
to explain the changes in firm life cycle growth of the latest cohorts in the data.

4.1 Initial balanced growth path
There are, in total, eight parameters in the model. The internal R&D efficiency ψI , the
expansion R&D efficiency ψx, the innovation cost curvature ζ, the entry efficiency ψz, the step
size of innovation λ, the productivity differential φh/φℓ, the share of high-productivity type
firms among entrants ph, and the discount rate ρ. Two parameters are set exogenously, and
the remaining parameters are estimated. I follow Acemoglu, Akcigit, Alp, Bloom and Kerr
(2018) and Peters (2020) that set ζ equal to two based on evidence from the microeconometric
innovation literature (Blundell, Griffith and Windmeijer, 2002; Hall and Ziedonis, 2001). The
discount rate ρ is set to 0.02, resulting in an annual discount factor of roughly 0.97%.

The remaining six parameters are estimated, targeting moments of firm life cycle growth as
well as cross-sectional firm heterogeneity and economic aggregates. In particular, I target
firms’ sales and employment life cycle growth, dispersion in inverse labor shares across en-
trants, the firm entry rate, TFP growth, and the aggregate markup. Despite all parameters
being identified jointly, there is a tight mapping between parameters and targets.

Matching sales and employment growth disciplines the firms’ R&D efficiencies ψx and ψI .
In the model, successful expansion R&D translates into sales growth. In the estimation,
ψx adjusts expansion R&D costs such that sales life cycle growth in the model matches
that in the data. The internal R&D costs govern firms’ markup growth. Since markup
growth drives a wedge between sales and employment growth, targeting employment and
sales growth jointly disciplines markup growth and, hence, the internal R&D efficiency ψI .
The advantage of targeting employment instead of markup growth is that employment is
directly observed in the data. I target sales and employment growth over the first eight
years of the firm. This period is long enough to capture firms’ life cycle growth and still
allows for estimating separate balanced growth paths (one for the early cohorts and one for
the latest cohorts) over the data coverage period from 1997 to 2017. The model matches
growth over the firm’s life cycle well, so the specific age targeted is not consequential. In the
model, sales and employment growth are specific to the productivity type of the firm. In the
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data, the productivity type is unobserved. I match observed sales and employment growth
in the data with unconditional (of the productivity type) firm growth, defined in eq. (26).16

Therefore, the composition of firm types conditional on firm age (an equilibrium outcome) is
such that type specific life cycle growth weighted by the (age-conditional) type composition
matches observed growth in the data. For the initial balanced growth path, I target sales
and employment growth of the cohorts 1997 to 2000. For these cohorts, sales grew by 55.9%
and employment by 28.8% over the first eight years of the firm.

The entry rate helps identify the entry efficiency of firms ψz. I compute the entry rate in the
data as the share of firms equal to or less than one year of age. This results in an average
entry rate over the period 1997-2005 of 14.3%, in line with Engbom (2023). I match this
number with the model-implied entry rate in eq. (30).

Aggregate TFP growth disciplines the step-size improvement of innovation λ: the growth
rate of TFP in eq. (15) directly depends on λ. I obtain TFP growth for the Swedish economy
from Federal Reserve Economic Data (FRED) in labor augmenting terms.17 After suffering
a financial crisis in the early 90s, Sweden’s economy featured strong growth towards the end
of the century. During 1997–2005, TFP grew by 3.02% per year.

To pin down the productivity differential φh/φℓ, I target the aggregate markup. The aggre-
gate markup is a weighted average of product markups that, in return, depend on φh/φℓ.
Sandström (2020) and De Loecker and Eeckhout (2018) report sales-weighted markups for
the Swedish economy. Sandström (2020) computes the markup in Swedish registry data fo-
cusing on firms with at least ten employees, whereas De Loecker and Eeckhout (2018) focus
mainly on publicly listed firms. I target the average of both reported aggregate markups,
resulting in a conservative estimate of 7.5%. Lastly, I target the standard deviation of log
inverse labor shares across entering firms (sales relative to the wage bill). Given φh/φℓ, the
dispersion of labor shares at entry depends on the share of product lines operated by high-
type firms (determined in equilibrium) and the share of high-type firms among entrants (the
parameter ph). The dispersion of inverse labor shares across entrants, hence, disciplines ph.
The standard deviation of log inverse labor shares of entering firms, averaged over 1997-2005,
equals 0.053.18 All targets are summarized in Table 2.

The estimation follows a two-step approach. In the first (global) step, the algorithm computes
the sum of squared percentage deviations from the targeted moments for a large Sobol

16The alternative is to impute the productivity type of a firm in the data and to measure type-specific
sales and employment growth. I match firm life cycle growth, unconditional of the productivity type, to avoid
classifying firms incorrectly into types that would affect the parameter estimates and the firm composition.
Matching type-specific growth would further require setting the productivity threshold exogenously.

17FRED series RTFPNASEA632NRUG. The labor share is obtained from FRED, series LABSH-
PSEA156NRUG, averaged over 1997–2005

18For firms with a low wage bill, inverse labor shares explode. Therefore, I focus on firms with a sales-
to-wage bill ratio between one and three (model implied markups between 0% and 200%). Further, sales
relative to the wage bill in the data may vary for reasons outside the model. I bin firms into equally sized
groups based on their capital and intermediate inputs and compute the dispersion of log inverse labor shares
across firms within these groups.

25



sequence of parameter vectors. All targets receive equal weights. In the second (local) step,
I take the best candidates from the first step and perform a local search. The local search,
again, minimizes the distance from the targets. The best parameter vectors from the second
step converge to the same parameter values.

Table 2: Initial balanced growth path. Moments and parameters

Data Model

Moments
Sales growth by age 8 in % (cohorts 1997–2000) 55.9 55.8
Employment growth by age 8 in % (cohorts 1997–2000) 28.8 28.8
Cross-sectional SD of log labor shares across entrants (1997–2005) 0.053 0.053
TFP growth g in % (1997–2005; FRED) 3.02 3.02
Entry rate in % (1997–2005) 14.3 14.3
Agg. markup µ in % (Sandström, 2020; De Loecker and Eeckhout, 2018) 7.5 7.5

Parameters
ψI Internal R&D efficiency 0.144
ψx Expansion R&D efficiency 0.282
ψz Entry R&D efficiency 1.483
λ Step size of innovation 1.136
φh/φℓ Productivity gap 1.091
ph Share of high type among entrants 0.683
Set exogenously
ρ Discount rate 0.02
ζ R&D cost curvature 2

Notes: except for aggregate productivity (TFP) growth and µ, the moments are computed using Swedish registry data. TFP
growth is obtained from Federal Reserve Economic Data (FRED), series RTFPNASEA632NRUG, in labor augmenting terms
(the labor share is obtained from FRED, series LABSHPSEA156NRUG, averaged over the same period 1997–2005).

Table 2 shows the estimation results. The model replicates all targeted moments well. The
estimated parameters can be interpreted as follows: successful innovation increases product
quality by 13.6%. High and low-type firms’ productivity differs by 9.1%, and 68.3% of firms
enter the economy as high-type firms.

Along the balanced growth path, the constant share of high-productivity type firms in the
cross-section, SMh in eq. (29), equals 74%. This number is larger than their share at entry
(ph = 0.683) due to high-type firms choosing higher expansion R&D rates than low-type
firms: xh − xℓ = 0.075. This is reflected in their life cycle growth. Conditional on survival,
sales grow on average by 63% for high-type firms and 37% for low-type firms over the first
eight years. Weighted by the share of each firm type at age eight as in eq. (26), this results
in sales growth of 55.8%, as reported in Table 2.

Sterk, Sedláček and Pugsley (2021) emphasize the importance of ex-ante heterogeneity in firm
life cycle trajectories. In this model, heterogeneity in expected life cycle trajectories arises
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from heterogeneous expansion R&D rates (xh and xℓ) specific to the firm’s productivity type.
I provide suggestive evidence that firms with permanently higher productivity are associated
with faster life cycle growth in the data, see Section 6.2.

4.2 New balanced growth path
This section estimates the model on a new balanced growth path that replicates the changes
in firm life cycle growth vis-a-vis the initial balanced growth path. To replicate the changes
in firm sales and employment growth, I re-estimate two parameters, particularly the internal
R&D efficiency ψI and the entry efficiency ψz. These two parameters are promising can-
didates because one affects sales and employment growth jointly, whereas the other moves
employment relative to sales growth, as explained shortly.

Table 3: New balanced growth path. Moments and parameters

Data (%) Model (%) ∆BGPs (pp)

Moments
Sales growth by age 8 (cohorts 2009–2012) 67.4 67.4 +11.5
Employment growth by age 8 (cohorts 2009–2012) 46.6 46.6 +17.8

Parameters
ψI Internal R&D efficiency (∆ in %) -51.0
ψz Entry R&D efficiency (∆ in %) -22.0

Notes: the column ∆BGPs reports the difference between ending and initial balanced growth path moments (in percentage
points) and parameters (in percent).

Table 3 shows the changes in the targeted moments and the estimated parameters. For the
cohorts 2009 to 2012, sales growth over the first eight years averaged 67.4% (an increase of
11.5pp relative to the cohorts 1997 to 2000) and employment growth 46.6% (an increase of
17.8pp). The model matches these changes by lowering the internal R&D efficiency by 51%
and the entry efficiency by 22%, i.e., by raising the cost of internal R&D and firm entry.
Rising entry costs are consistent with Davis (2017) and Gutiérrez and Philippon (2018), who
argue that the increasing complexity of regulatory requirements and lobbying expenditures
disadvantage entrants. The increase in internal R&D costs is reminiscent of the observation
in Bloom, Jones, Van Reenen and Webb (2020) that research productivity has fallen in the
U.S. Section 6.3 discusses potential forces behind the rise in the cost of entry and internal
R&D in more detail.

How does the estimated rise in internal R&D and entry costs affect employment and sales life
cycle growth? Table 4 shows the effect of each parameter change on incumbents’ innovation
rates. The rise in the internal R&D costs lowers internal R&D rates by 49.4% relative to
the initial balanced growth path for both productivity types (second column). The fall
in internal R&D rates slows markup growth and accelerates employment life cycle growth
according to eqs. (20) and (22). In contrast, the rise in the entry costs increases expansion
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R&D rates (+32.8% for the high-productivity type and +1.3% for the low type). To see why
expansion R&D rates increase, note that the optimality condition for the expansion R&D
rate equates the (expected) value of a product line (eq. (13) for n = 1) with the marginal
cost of expansion R&D. Firm entry, as part of the rate of creative destruction, deflates the
value of a product line in eq. (13). A fall in firm entry raises the value of a product line,
and for the optimality condition to hold, expansion R&D rates increase. As expansion R&D
results in firm sales and employment growth according to eqs. (19) and (22), the increase in
expansion R&D rates accelerates both sales and employment life cycle growth. Hence, rising
entry costs increase sales and employment life cycle growth while rising internal R&D costs
increase employment relative to sales growth.

Table 4: Changes in innovation rates

Initial BGP ψI ↓ (%) ψz ↓ (%) ψI ↓, ψz ↓ (%)

xh 0.1187 +1.0 +32.8 +35.0
xℓ 0.0439 -5.9 +1.3 -11.5
Ih, Iℓ 0.0367 -49.4 +13.8 -41.9

Notes: the table shows the change in firm expansion R&D rates (by productivity type, xh and xℓ) and internal R&D rates in
percent. ψI ↓ denotes the 51% fall in the internal R&D efficiency and ψz ↓ the 22% fall in the entry efficiency.

Importantly, Table 4 shows that the rise in the entry costs increases the expansion rates for
incumbents of both productivity types, but disproportionately so for the more productive
ones. This asymmetry arises as follows. As discussed before, firm entry deflates the value of
a product line in eq. (13). In the limit where firm entry becomes costless, the payoff from
adding a new product line converges to zero for both high- and low-productivity incumbents,
and productivity differences become irrelevant. Intuitively, the stream of profits in a product
line is higher for more productive firms with larger markups, which becomes inconsequential
if incumbents get replaced instantly by new entrants. Hence, a rise in the entry costs increases
the difference in payoffs from adding a new product line and, according to the optimality
condition, widens the gap in expansion R&D rates between firms with different productivity.
Table 4 shows that the rise in internal R&D costs also has heterogeneous effects on the
expansion R&D rates. To see why this is the case, consider another limiting case, where
expansion and internal R&D costs are prohibitively expensive. In this case, the value of
a product line is equal to the discounted stream of future profits. More productive firms
charge larger markups and enjoy a higher discounted profit stream. Allowing for internal
R&D increases the value of a product line, but, importantly, the continuation value of
internal R&D in eq. (13) is higher for less productive firms that, so far, have accumulated
fewer markups. Increasing markups through internal R&D allows less productive firms to
mitigate their initial markup disadvantage. Hence, the rise in the internal R&D costs renders
initial markup levels more important for the value of a product line, thereby increasing the
difference in product line values between firms of different productivity and, through the
optimality condition, widening the gap in expansion R&D rates. The last column of Table
4 shows that the rise in entry and internal R&D costs together increase the expansion R&D
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rates of high-type firms by 35% while lowering the low-type expansion R&D rates by 11.5%.
Hence, the observed acceleration in sales life cycle growth is due to accelerating life cycle
growth of the more productive incumbents.

Figure 3: Share of high-productivity type firms

Notes: the figure shows the share of high-productivity type firms among firms of age af , sh(af ) in eq. (25), for the initial and
new balanced growth path.

The relative changes in life cycle growth imply changes in firm composition. Figure 3 shows
the share of high-productivity type firms among firms of age af , defined by sh(af ) in eq.
(25), for the initial and new balanced growth path. The share is equal to ph at age zero, the
share of entrants of the high-productivity type, and converges to one with firm age. Among
older firms, only high-type firms are represented as their expansion R&D rates exceed the
ones of low-type firms. Note that the share of high-type firms conditional on age increases
relative to the initial balanced growth path. The increase in expansion R&D rates of more
productive firms increases the share of high-type firms among firms of any age.

Integrating the share of high-type firms conditional on age in Figure 3 over the firm-age
distribution returns the share of high-type firms in the cross-section of firms, defined by
SMh in eq. (29). The cross-sectional share of high-type firms increases by 12pp across the
balanced growth paths. Compositional changes at the product level are even larger than
at the firm level. The cross-sectional sales share of high-type firms, S, increases by 17pp.
The sales share of high-type firms increases by more than their share in the cross-section of
firms, as low-type firms with more than one product lose sales shares without exiting the
economy.
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What are the implications for the aggregate economy? The rise in the cost of entry and
internal R&D cause a long-run fall in the growth rate g and firm entry: the aggregate
growth rate declines by 0.6pp, and the firm entry rate drops by 8pp. In Sweden, average
TFP growth between 2010 and 2015 declined by about 1pp relative to 1997–2005. Further,
Engbom (2023) documents a fall in the entry rate by about 10pp from the early 1990s to the
mid-2010s in the Swedish economy. The comparative statics, therefore, account for roughly
60 percent of the fall in economic growth and 80 percent of the decline in firm entry since
the 1990s. That high-productivity type firms gain sales shares at the expense of low-type
firms is further consistent with a rise in sales concentration that I document within Swedish
industries in the Appendix, Section B.2. Also, the reallocation of sales shares to more
productive firms with relatively low labor shares is qualitatively consistent with Kehrig and
Vincent (2021). Similarly, De Loecker, Eeckhout and Unger (2020) and Baqaee and Farhi
(2020) document a reallocation of sales shares to firms with a high sales-to-cost-of-goods-sold
ratio in Compustat data.19 Hence, the observed acceleration in firm sales and employment
life cycle growth is consistent with recent macroeconomic trends observed for many advanced
economies.

4.3 Incumbent innovation, reallocation, entry and growth
How much of the long-run fall in the aggregate growth rate is due to falling firm entry? How
does the reallocation of sales shares across incumbents that innovate at different rates affect
long-run growth? This section quantifies the different contributions to the fall in long-run
growth. The aggregate growth rate g naturally lends itself to such decomposition. Along a
balanced growth path, the aggregate growth rate defined in eq. (15), in a slightly rewritten
formulation, reads

g = Sgh + (1 − S)gℓ + gz,

where gh ≡ (I + xh) ln(λ), gℓ ≡ (I + xℓ) ln(λ) and gz ≡ z ln(λ) capture contributions by
high-type incumbents, low-type incumbents, and entrants to economic growth. Note that
for the total contribution by incumbents, their innovation rates and the share of product
lines operated by each type matter. Using a shift-share decomposition, I decompose changes
in the growth rate across balanced growth paths, ∆g ≡ gnew − gold, as follows

∆g = Sold∆gh + (1 − Sold)∆gℓ︸ ︷︷ ︸
∆Within

+ ghold∆S − gℓold∆S︸ ︷︷ ︸
∆Between

+ ∆gh∆S − ∆gℓ∆S︸ ︷︷ ︸
∆Cross

+ ∆gz︸︷︷︸
∆Entry

, (31)

19In the estimated model, expected differences in markup growth are small compared to the difference
in markup levels at birth between high- and low-productivity firms, so high-productivity firms remain high-
markup (low-labor share) firms throughout.
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where old and new index balanced growth path variables before and after the parameter
change. Changes in the aggregate growth rate are due to changes in innovation rates holding
the distribution of sales shares constant (∆Within), due to changes in the distribution of
sales shares holding innovation rates constant (∆Between), due to changes in both innovation
rates and sales shares (∆Cross) as well as due to changes in firm entry (∆gz). The ∆Within,
∆Between, and ∆Cross terms capture changes due to incumbents, whereas ∆gz captures
changes due to entrants. Because the ∆Cross term is absent without firm type heterogeneity,
I group the ∆Between and ∆Cross-term into a common ∆Reallocation term.

Table 5: Decomposing the fall in the aggregate growth rate

ψI ↓, ψz ↓ ψI ↓ ψz ↓

∆Within +0.22 -0.23 +0.47
∆Reallocation +0.27 +0.01 +0.20
∆Entry -1.10 -0.11 -0.93
∆g -0.62 -0.33 -0.26

Notes: the table shows the contributions to the change in the aggregate growth rate g across the balanced growth paths
according to the decomposition in eq. (31) in percentage points. ∆Reallocation is the sum of the ∆Between and ∆Cross terms.
g in the initial balanced growth path is equal to 3.02%. ψI ↓ denotes the 51% fall in the internal R&D efficiency and ψz ↓ the
22% fall in the entry efficiency.

Table 5 quantifies the different contributions to the fall in the aggregate growth rate. First,
the ∆Within term is positive at 0.22pp, indicating that incumbents’ innovation rates in-
creased. Second, the reallocation of sales shares to more productive firms that endoge-
nously feature higher innovation rates contributed positively to economic growth. The
∆Reallocation term is positive at 0.27pp. Changes in incumbent innovation (∆Within +
∆Reallocation) raised the aggregate growth rate by a total of 0.49pp. ∆Reallocation ac-
counts for 55% (0.27/0.49) of the total contribution by incumbent firms. Thus, incumbents
mainly contributed to changes in long-run growth through the reallocation of sales shares
to more innovative firms. This channel is absent in standard models of creative destruction
where firms innovate at identical rates. Lastly, falling firm entry lowers the aggregate growth
rate substantially by 1.1pp. The fall in firm entry dominates the positive contribution by
incumbents, resulting in a total decline of the growth rate of 0.62pp. Falling firm entry
squares the rise in incumbent innovation with a fall in aggregate economic growth.

That the ∆Within term is positive may be surprising given that R&D costs of incumbents
have increased. Columns 3 and 4 of Table 5 repeat the decomposition for each parameter
change in isolation. The ∆Within effect of a rise in the internal R&D costs is negative
(-0.23pp). At the same time, the rise in the entry costs generates a positive ∆Within effect.
Rising barriers to entry incentivize incumbent firms to innovate faster. Overall, the positive
∆Within effect following the rise in the entry costs outweighs the negative ∆Within effect
of the rising internal R&D. Note also that the positive ∆Reallocation effect is mainly due to
the rise in the entry costs.
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The results of the decomposition complement the findings in Akcigit and Kerr (2018), Garcia-
Macia, Hsieh and Klenow (2019), and Peters (2020). These studies show that economic
growth is mainly due to incumbent firms.20 The decomposition in this paper suggests that
entrants play a more prominent role when explaining changes in economic growth. That
falling firm entry drives the decline in the aggregate growth rate is consistent with the
observation in Garcia-Macia, Hsieh and Klenow (2019) that the relative contribution to
economic growth by entrants has declined over time.

As a robustness exercise, I show in Section 6.1 that a rise in the productivity differential
φh/φl, recently entertained in Aghion, Bergeaud, Boppart, Klenow and Li (2023) as the cause
behind rising concentration and falling growth, implies very similar ∆Within, ∆Reallocation
and ∆Entry contributions.

5 Transition dynamics
The previous section analyzed the long-run effects associated with the acceleration in firm
life cycle growth. The reallocation of sales shares to more productive incumbents introduces
an interesting tradeoff between rising average productivity, Φ in eq. (7), and the long-run
fall in the aggregate growth rate, which leaves the effect on welfare unclear. I solve the model
numerically over the transition period to study the implications for welfare in this section.
The solution algorithm, outlined in detail in the Appendix, Section D, works as follows. I
solve for policy and value functions from the ending balanced growth path backward for
a guessed sequence of wage growth, interest rates, and distribution of firm types over the
product space (St). I then use the obtained policy functions over the transition period to
simulate the two-dimensional distribution of quality and productivity gaps forward, starting
from the initial balanced growth path. Using the evolution of this distribution over the
transition, I back out the implied sequences of wage growth, interest rates, and St. The
transition path is the fixed point between the guessed and implied sequences.

Starting from the initial balanced growth path, I introduce the estimated rise in entry and
internal R&D costs (Table 3) as shocks, after which no further parameter changes occur.
Figure 4 shows the paths of output (Yt) growth (in %), quality (Qt) growth (in %), changes
in the sales share of high productivity type firms St with respect to the initial balanced
growth path (in pp), the rate of creative destruction (τt), and the rate of entry (zt) over the
transition period. Convergence is relatively quick. Most changes in equilibrium outcomes
occur over the first 20 years of the transition. Both output and quality growth decline on
impact and converge quickly after to their new long-run values, as shown in Panel (a). Along
a balanced growth path, quality and output grow at the same rate. Over the transition,
aggregate quality growth differs from output growth with growth in average productivity,
markup dispersion, and production labor, explaining the residual according to eq. (7).
Output growth declines by less than quality growth on impact as the rising sales share by

20Decomposing growth levels shows that this is also the case in this model in both balanced growth paths.
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Figure 4: Transition dynamics

(a) Output and quality growth (b) Change in concentration, St − Sinitial

(c) Rate of creative destruction, τt (d) Rate of entry, zt

Notes: the figure shows the response in equilibrium outcomes following the increase in the cost of entry and internal R&D as
in Table 3 in period zero. Output and quality growth (Panel a) refer to the growth rate of Yt and Qt in percent. The change in
concentration refers to the change in the sales share of high-productivity type firms relative to the initial balanced growth path
in percentage points. The gray dashed and dash-dotted lines indicate the ending and initial balanced growth paths, respectively.
Aggregate expansion R&D in panel (c) is computed as St × xh

t + (1 − St) × xl
t.

high productivity firms, St, shown in Panel (b), contributes positively to growth in average
productivity and hence aggregate output. Over the entire transition period, St increases by
17pp. However, the rise in average productivity does not suffice to counteract the fall in
quality growth. Panel (a) shows that output growth follows the declining pattern of quality
growth over the transition.21

That quality growth steadily declines over the transition period is not self-evident as con-
trasting forces are at play. On the one hand, firm entry declines over the transition, as shown
in Panel (d), which lowers quality growth. On the other hand, external and internal R&D
efforts by incumbents are also subject to change over the transition. Figure 5 shows the

21Changes in misallocation, Mt, have a negligible effect on output growth during the transition.
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Figure 5: Expansion R&D rates over the transition

(a) High-type firms, xht (b) Low-type firms, xlt

Notes: the figure shows the evolution of the optimal expansion R&D rates by high- and low-type firms following the increase
in the cost of entry and internal R&D as in Table 3 in period zero.

evolution of expansion R&D rates by high- and low-type firms. Consistent with the rise in
concentration, expansion rates of high-type firms increase while the ones of low-type firms
decline over the transition. Aggregate expansion R&D rates (productivity-type specific R&D
rates weighted by their respective sales shares) are, in fact, increasing over the transition as
shown in Panel (c) of Figure 4. That falling entry outweighs the rise in aggregate expansion
R&D becomes evident after looking at the path of the rate of creative destruction τt, also
shown in Panel (c). The rate of creative destruction is the sum of the aggregate expansion
R&D rate and the firm entry rate zt. The rate of creative destruction is strictly falling
over the transition, highlighting that falling firm entry dominates rising aggregate expansion
R&D. Falling firm entry drives the decline in quality and output growth over the transition,
dominating the positive reallocation effects on average productivity.22

What is the effect on welfare? As output growth gradually declines right from the shock
period in Figure 4, the net effect on welfare is negative. To quantify the change in welfare, I
compute the permanent consumption change (in percent) along the initial balanced growth
path that makes the consumer as well off as with the obtained consumption stream over
the transition towards the new balanced growth path. I find that welfare decreases by
23.3%. This number is sizable and should be interpreted with substantial caution. The
initial balanced growth path matches macroeconomic conditions (and firm growth) during
the late 1990s. Aggregate productivity growth averaged about 3% during this period in
Sweden. Therefore, the transition path is compared to a scenario in which the high growth
period of the late 1990s would have continued forever. Targeting a lower aggregate growth
rate in the initial balanced growth path that reflects average growth before the 1990s boom,
as in Aghion, Bergeaud, Boppart, Klenow and Li (2023) or De Ridder (2024), would result
in a lower welfare loss. However, this would introduce an inconsistency in targeted moments:

22Internal R&D also declines over the transition period (not shown). However, this effect is small.
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targeted firm growth reflects conditions during the late 1990s, while aggregate growth refers
to an earlier period. Note also that the decline in output growth is monotone, i.e., there is
no initial burst in output growth as declining firm entry outweighs rising expansion R&D
and average productivity over the entire transition. Given that the initial balanced growth
path reflects the high growth period of the late 1990s, it is consistent with the data that the
transition does not feature a further burst in growth. This does, however, translate into a
larger welfare loss.

If one were to compare welfare of two different balanced growth paths that grow at the rates
of the estimated initial and ending balanced growth paths (without taking the transition nor
any level effects into account) the consumption equivalent change (in percent) ξ is determined
by ln(1 + ξ) = (gending − ginitial)/ρ, where gending and ginitial refer to the growth rates of the
initial and ending balanced growth paths. Given that the growth rate declines by roughly
six percentage points across the balanced growth paths and ρ equals 0.02, the welfare loss
amounts to 26.6% (ξ = −0.266). Comparing this number to the 23.3% welfare loss above
shows again that the fall in output growth during the transition is mainly driven by declining
quality growth and that the transition to the new balanced growth path is fast.

6 Robustness and further model validation
This section provides robustness to the results of the growth decomposition and tests other
model predictions. The section concludes with a discussion on the broader implications of
the changes in firm life cycle growth.

6.1 Reallocation, entry and economic growth revisited
The quantified contributions of incumbent firms and entrants to the fall in economic growth
in Table 5 are potentially sensitive to the parameter change in question. This section shows
that the results of the growth decomposition are similar for an alternative explanation of the
macroeconomic trends.

Aghion, Bergeaud, Boppart, Klenow and Li (2023) explain the fall in economic growth and
the rise in concentration in the U.S. economy through changes in the R&D efficiency and
rising productivity dispersion of incumbents. In line with their story, I estimate an alternative
ending balanced growth path where the parameters subject to change are the productivity
gap φh/φℓ (instead of the entry efficiency) and the internal R&D efficiency ψI (as in the
previous estimation).

Table 6 shows the estimation results. The internal R&D efficiency falls by 54% (compared to
51% in the previous estimation), and the productivity gap increases by 6%.23 The implied

23For this estimation, I assume that entrants always replace incumbents after a successful innovation as
the estimated productivity gap exceeds the step size of innovation λ. Estimating the parameters with the
constraint φh/φℓ < λ results in the constraint binding at φh/φℓ = 1.136, which is the value of λ.
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Table 6: Alternative new balanced growth path. Moments and parameters

∆Data (pp) ∆Model (pp)

Moments
Sales growth by age 8 (cohorts 2009–2012) +11.5 +2.1
Employment growth by age 8 (cohorts 2009–2012) +17.8 +7.4

Parameters
ψI Internal R&D efficiency (∆ in %) -54
φh/φℓ Productivity gap (∆ in %) +6

Notes: the table shows changes in moments (in percentage points) and parameters (in percent) with respect to the initial
balanced growth path.

changes in firm sales and employment growth are qualitatively in line with the data, yet
fall short in explaining them quantitatively.24 Therefore, changes in the productivity gap
cannot fully account for the changes in firm growth. Nevertheless, changes in the aggregate
economy are consistent with recent macroeconomic trends: the long-run aggregate growth
rate falls by 0.49pp, the firm entry rate declines by 3pp, and concentration rises. Therefore,
the increase in the cost of internal R&D and the productivity gap give rise to a similar fall
in the aggregate growth rate as the one targeted in Aghion, Bergeaud, Boppart, Klenow and
Li (2023) (-0.42pp).

Table 7: Decomposing the fall in the aggregate growth rate revisited

ψI ↓, φh/φℓ ↑ ψI ↓ φh/φℓ ↑

∆Within -0.13 -0.24 +0.11
∆Reallocation +0.18 +0.01 +0.13
∆Entry -0.53 -0.12 -0.35
∆g -0.49 -0.35 -0.11

Notes: the table shows the contributions to the change in the aggregate growth rate g across the balanced growth paths
according to the decomposition in eq. (31) in percentage points. ∆Reallocation is the sum of the ∆Between and ∆Cross terms.
g in the initial balanced growth path is equal to 3.02%. ψI ↓ denotes the 54% fall in the internal R&D efficiency and φh/φℓ ↑
the 6% rise in the productivity gap.

I decompose the implied fall in the aggregate growth rate according to eq. (31.) as before.
First, changes in incumbent innovation rates, ∆Within, lower the growth rate slightly (-
0.13pp), whereas the reallocation of sales shares, ∆Reallocation, towards the more productive
firms with higher innovation rates generates a positive growth effect (+0.18pp), shown in
Table 7. ∆Reallocation outweighs ∆Within, as in the previous estimation. Second, the fall
in firm entry more than explains the fall in the aggregate growth rate: -0.53pp compared to -

24For a large enough productivity disadvantage, low-type firms stop expanding into new product markets
and remain one-product firms, which reduces the degrees of freedom in the model to match the increase in
sales and employment life cycle growth.
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0.49pp. Therefore, the two findings that incumbent firms have mainly contributed to changes
in long-run growth through reallocation effects and that the decline in the aggregate growth
rate is driven by a fall in firm entry even hold for an alternative estimation, in which the entry
costs remain unchanged. Comparing the last column of Table 5 and Table 7 shows that the
rising productivity gap works similarly as rising entry costs on growth: both generate positive
∆Within and ∆Reallocation effects that are dominated by a negative ∆Entry effect. As for
the rise in entry costs, an increase in the productivity gap widens the gap in expected profits
per product line across incumbents, incentivizing the more productive firms to expand faster.
The faster expansion of the more productive firms generates the ∆Reallocation effect. The
∆Within, ∆Reallocation, and ∆Entry contributions resulting from the rise in the internal
R&D costs are quantitatively almost identical to the previous estimation.

In Aghion, Bergeaud, Boppart, Klenow and Li (2023), all firms innovate at the same rate,
and there is no firm entry such that changes in within-firm innovation rates, ∆Within, fully
explain the decline in the aggregate growth rate. Table 7 suggests that reallocation effects
and firm entry matter for changes in long-run growth. The ∆Reallocation effect outweighs
the ∆Within effect, and ∆Entry dominates both.

Would the role of entry change when relaxing the assumption of a unitary demand elasticity?
With a demand elasticity greater than one, firms also gain market shares through successful
internal R&D. This suggests that, ceteris paribus, an even larger rise in firm entry costs
would be required to offset the negative size-growth effect from rising internal R&D costs
when matching the increase in firm life cycle growth.

6.2 Firm productivity and life cycle growth
Sterk, Sedláček and Pugsley (2021) highlight the importance of ex-ante heterogeneity in
firm life cycle trajectories. In this model, heterogeneity in expected life cycle profiles arises
endogenously through heterogeneous innovation rates related to ex-ante heterogeneity in
firm productivity. This section provides suggestive evidence that firms born with relatively
higher productivity are associated with faster life cycle growth in the data.

Firm productivity is generally unobserved in the data. I use a model-based approach to
infer the firms’ productivity. As firms enter the model economy with one product, eq. (4)
captures firm markups upon entry. Eq. (4) implies that their productivity advantage allows
more productive firms to charge higher markups in equilibrium. Guided by the theory, I
proxy firm productivity by its markup (sales relative to wage bill) at age zero, and regress
observed firm life cycle growth on the productivity proxy.

ln SizeAgej,t=af
− ln SizeAgej,t=0 = β0 + β1 log

(
py

wl

)
Agej,t=0

+ θc + θk + ϵj,t (32)
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Table 8: Firm productivity and size growth

∆ ln SizeAge=8 ∆ ln SizeAge=8 ∆ ln SizeAge=8 ∆ ln SizeAge=8
log

( py
wl

)
Age=0 0.130 0.198 0.222 0.237

(0.006) (0.005) (0.005) (0.006)
logKAge=0 -0.041 0.003

(0.003) (0.003)
logMAge=0 -0.107

(0.004)
Cohort fixed effects ✓ ✓ ✓ ✓
Industry fixed effects ✓ ✓ ✓ ✓
log

( py
wl

)
Age=0 > 0 ✓ ✓ ✓

N 66,817 65,875 60,950 60,832
R2 0.06 0.08 0.08 0.10

Notes: the table reports the regression coefficient β1 of eq. (32). Firm size growth over the first eight years, ∆ ln SizeAgej,t=8 ≡
ln SizeAgej,t=8 − ln SizeAgej,t=0, is measured using firm employment. log (py/wl)Agej,t=0 denotes the log inverse labor share
at age zero, the proxy of firm productivity, as explained in the main text. logK and logM denote the firm’s capital stock and
intermediate inputs, respectively. Robust standard errors are in parentheses.

py/wl denotes sales relative to the wage bill of the firm (inverse labor share). Otherwise, the
notation follows eq. (1). As in the model estimation, I focus on firm size growth over the
first eight years, i.e., af = 8. I use employment as the measure of firm size to avoid sales at
age zero on both sides of eq. (32).

Table 8 shows the results. The regression coefficient of interest, β1, stands at 0.13, i.e., within
the same industry and cohort, firms with 1% higher inverse labor shares at entry are associ-
ated with approximately 0.13pp faster employment growth over the first eight years. For the
model-relevant subsample of firms with positive markups (firms with inverse labor shares
larger than one), the regression coefficient increases to 0.198 (column two). One strength of
the Swedish data is that it contains information on the capital stock and intermediate input
usage. Higher inverse labor shares at entry are positively related to firm life cycle growth,
even when controlling for capital and intermediate inputs. Including capital or intermediate
inputs at age zero in the regression increases β1 to 0.222 and 0.237, respectively (third and
fourth column).25 Across all specifications, β1 remains highly significant, with an almost con-
stant (robust) standard error of 0.005. The data confirms that firms with relatively higher
inverse labor shares at entry, perhaps due to systematically higher productivity as suggested
by the model, display faster life cycle growth.

6.3 Discussion
Section 4.2 established that rising internal R&D and entry costs are the driving force behind
the acceleration of employment relative to sales life cycle growth and the recent macroeco-

25I obtain similar results when using TFPR at age zero instead of labor productivity as the markup
measure, where TFPR ≡ py

Kα(wl)1−α with α estimated at the industry level using cost shares.

38



nomic trends. A natural follow-up question is what the rise in the internal R&D and entry
costs are caused by. A thorough analysis of the cause is outside the scope of the paper. How-
ever, the estimated cost changes relate to evidence in other studies. In light of this evidence,
the acceleration of employment relative to sales growth provides new insights.

What is driving the increase in entry costs? Davis (2017) and Gutiérrez and Philippon
(2018) argue that the increasing complexity of regulatory requirements and the tax system,
as well as rising lobbying expenditures disproportionately affect entrants. As another exam-
ple, De Ridder (2024) documents the rising importance of intangible capital in production.
Competing with incumbents becomes increasingly difficult for entrants or young firms with
little or no stock of intangible capital.

One force that potentially contributed to increasing internal R&D costs is related to the
rising importance of the service sector. Firms commonly operate in multiple industries
simultaneously, and the composition of industries in which they operate has changed over
time. Consider, for example, the car manufacturer Volvo. Over time, Volvo has added the
following services to its portfolio: car maintenance, insurance, leasing, and, most recently,
car sharing. Similarly, the clothing manufacturer H&M now offers repair and recycling
services or even clothing rentals. Arguably, services are generally more difficult to patent
than manufactured products, i.e., it is harder to distance competitors in the quality space for
services than for goods. To the extent that manufacturing firms offer more and more of such
services (or service firms that manufacture a product reduce their manufacturing activities),
this implies that the average internal R&D efficiency of a firm (the internal R&D efficiency
in a product or service line averaged over the firm’s products and services) has declined.
The aggregate-level evidence of a rise in the share of the workforce employed in the service
sector (72% in 1997 to 79% in 2012 in Sweden) is in line with the above examples.26 A
rising share of services in a firm’s portfolio could also explain why, despite the convincing
evidence in Akcigit and Ates (2023) of incumbents using patents more strategically (for the
set of patentable products), for the firm’s average line, it has become harder to prevent
competitors from catching up.

Bloom, Jones, Van Reenen and Webb (2020) document that research productivity has de-
clined in the U.S. The notion of ideas getting harder to find is consistent with rising internal
R&D costs, as estimated in section 4.2.27 While rising expansion R&D costs are also consis-
tent with declining research productivity in theory, the data speaks against rising expansion
R&D costs and in favor of increasing internal R&D costs: rising expansion R&D costs coun-
terfactually slow down both sales and employment life cycle growth. In contrast, rising
internal R&D costs accelerate employment relative to sales life cycle growth, as I document
in the Swedish data.

Whether rising internal or expansion R&D costs contribute to falling research productivity
26Data from FRED, series SWEPESANA.
27Their main example of rising research labor required by incumbent firms to keep growth in the number

of transistors on microchips constant can be interpreted as evidence of rising internal R&D costs.
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has broader implications for the observed fall in TFP growth: the comparative statics in
Section 4.2 highlight the reallocation of market shares to more productive incumbents that
innovative at higher rates in equilibrium. The reallocation increases average productivity
and long-run growth. This suggests that the observed fall in TFP growth is instead due
to falling innovation rates (e.g., by entrants as the decomposition in Section 4.3 revealed).
Rising expansion R&D costs, on the other hand, would lower the market shares by the
more productive and innovative firms.28 In this case, reallocation of market shares decreases
average productivity and long-run growth, which would be part of the story behind the
observed decline in TFP growth. To which extent reallocation contributed to or mitigated
the fall in TFP growth depends on the nature of the decline in research productivity. The
observed changes in sales and employment life cycle growth point to rising internal R&D
costs as the more likely cause behind falling research productivity. Future research could
provide more direct evidence and study trends in research output relative to research inputs
as in Bloom, Jones, Van Reenen and Webb (2020) by the type of innovation.

This paper focuses on economic growth, but the acceleration in employment relative to sales
life cycle growth has further implications for the aggregate markup. According to standard
theory, rising employment relative to sales growth implies a decrease in firm markup growth.
Consistent with this hypothesis, Autor, Dorn, Katz, Patterson and Van Reenen (2020) find
increasing within-firm labor shares in most U.S. sectors. This suggests that explanations for
rising aggregate markups should feature reallocation effects between high- and low-markup
firms as in Aghion, Bergeaud, Boppart, Klenow and Li (2023) or De Ridder (2024) rather
than rising markups within firms.

7 Conclusion
Sales and employment growth over the firm’s life cycle have accelerated. For firms established
in the late 1990s, sales grew by 55.9 percent over the first eight years compared to 67.4 percent
for firms established in the early 2010s. Similarly, employment growth increased from 28.8
percent to 46.6 percent. I view these trends at the firm level through the lens of a model
of creative destruction to study their implications for economic aggregates, in particular
TFP growth. Changes in the cost of entry and incumbent R&D explain the changes in
firm growth, which mainly incentivize the growth of relatively productive firms. The model
suggests that the observed acceleration of firm life cycle growth is due to accelerated growth
of more productive incumbents.

The acceleration of firm growth of productive incumbents is associated with a rise in the mar-
ket shares of these firms in the cross-section, increasing aggregate productivity and long-run
economic growth. These effects matter quantitatively: incumbents have mainly contributed
to changes in long-run economic growth since the 1990s through reallocation effects, high-
lighting the importance of changes in industry concentration for long-run growth. Policy-

28In the limit where expansion R&D costs go to infinity, their sales share converges to ph from above.

40



makers should trade off the dynamic effects of reallocation with the usual static efficiency
losses when evaluating antitrust policies. Instead, the model points to falling firm entry,
caused by rising entry costs, as the driver behind the slowdown in TFP growth. This sug-
gests a promising role for policies that support new firm formation to reverse the trends in
TFP growth.

How do the results of the growth decomposition compare to other, more severe, episodes
of reallocation? Over the last decades, many Western economies privatized their education,
health care, transportation, or communication sectors. It would be interesting to decompose
changes in long-run growth following these events into changes in innovation rates, reallo-
cation, and firm entry, as in this paper. To disentangle how reallocation ultimately affects
short and long-run economic growth following privatization, one could further compare the
effect of reallocation on innovation to the effects of reallocation on average productivity and
misallocation. The quantitative framework in this paper, disciplined by changes in firm
dynamics, could separate these forces.
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Appendices

A Data

The main data set, Företagens Ekonomi (FEK), covers information from balance sheets and
profit and loss statements for the universe of Swedish firms. From this data, I obtain the
main variables of interest, namely sales (Nettoomsättning, variable name: Nettoomsattning)
and employment (Antal anställda, variable name: MedelantalAnstallda). In the FEK code-
book by Statistics Sweden, these variables are defined as follows.29 Sales refer to income
from the companies’ main business for goods sold and provided services. Employment refers
to the average number of employees in full-time units in accordance with the company’s
annual report. As described in the main text, I focus on firms in the private sector. These
firms have a legal type (variable name: JurForm) less than 50 or equal to 96.

The 5-digit industry classification (SNI codes) changed twice between 1997 and 2017, once in
2002 and once in 2007. I ensure a consistent industry classification using the following steps.
During the year of the change, I observe both the old and the new industry classifications.
For the firms present in the data in the year of the classification change, extending the new
industry classification further back in time before the change is straightforward. This way,
the industry codes of almost all firms are updated. A firm might be in the data before
and after the classification change but not for the year of the change. For these firms, the

29https://www.scb.se/contentassets/9dd20ce462644cc19f6f04eb2edbbe28/nv0109_kd_2017_bv_
190508_v2.pdf, accessed 07.02.2024.
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above method does not work. If the firm appears in the data one year after the classification
change, I use the observed classification after the change to update the classification before
the change. For firms that are absent for several years around the year of change, I use
industry mappings provided by Statistics Sweden. These mappings do not always provide a
1:1 mapping between industries before and after the classification change, so I use the most
common transitions for the m:m mappings.

One concern is that changes in the firm structure, e.g., when firms merge with other firms,
change the firm ID. To address this concern, I impute changes in firm IDs using worker
flows between firms. The auxiliary data set Registerbaserad Arbetsmarknadsstatistik (RAMS)
contains the universe of employer-employee matches. I impute changes in the firm ID of firms
with at least five employees as follows: if more than 50% of the workforce of firm A in year
t makes up for more than 50% of the workforce of firm B in year t+ 1, I substitute firm B’s
firm ID by firm A’s firm ID following t+1. The empirical results remain virtually unchanged
when excluding firms for whom the imputed firm ID differs from the observed firm ID.

B Trends in the Swedish economy

B.1 Changes in firm life cycle growth

Figure 6 shows the patterns of firm size conditional on age for sales as the measure of firm
size. Similarly to the patterns for employment, average firm sales are relatively stable for
young firms, whereas a positive trend is apparent for older firms. The increase in firm size
for older ages, while size at entry remains constant, implies that cumulative sales growth
over the firm’s life cycle has accelerated.

I run regression (1) using sales as the firm size measure to quantify the changes in firm life
cycle growth. Figure 7 plots the age coefficients for the different cohorts. As for employment,
sales life cycle growth has accelerated over time. Over the first eight years of the firm, sales
increased by 55.9 percent for firms established between 1997 and 2000 compared to 67.4
percent for the cohorts from 2009 to 2012.

B.2 Changes in industry concentration

I compute the standard deviation of log sales within industries to measure industry concen-
tration. Note that this measure coincides with the standard deviation of log sales shares.
The more dispersed sales (or sales shares), the more concentrated the industry. I filter firm
sales at the 1% tails for each year and compute the standard deviation for industries with
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Figure 6: Average firm size (log sales) conditional on age
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Notes: the figure shows avg. firm size (log sales) conditional on firm age over time. Sales are deflated to 2017 Swedish Krona
(SEK) using the GDP deflator. 95% confidence intervals are shown.

at least 50 firms to avoid changes in industry size affecting the concentration measure. Fig-
ure 8 shows the standard deviation, averaged across all industries. Concentration displays
a positive time trend. Only the crisis episodes of the early 2000s and the financial crisis
temporarily put rising concentration on hold. From 1997 to 2017, the standard deviation of
log sales increased by roughly eleven percent.
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Figure 7: Log sales relative to age zero (by cohort)
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Notes: the figure shows cumulative sales growth over the firm’s life cycle, measured as the difference between log sales at age
af and age zero according to eq. (1). Cohorts are pooled as indicated in the legend. Firm sales are filtered at their 1% tails.
The figure includes 95% confidence intervals.

Figure 8: Within-industry sales concentration
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Notes: the figure shows the within-industry standard deviation of log sales, averaged over all industries with at least 50 firms.
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C Model

C.1 Solving the dynamic firm problem

The HJB for a high productivity-type firm h reads30

rtV
h
t (n, [µi], St) − V̇ h

t (n, [µi], St) =
n∑
k=1

π(µk) +
n∑
k=1

τt

[
V h
t (n− 1, [µi]i ̸=k, St) − V h

t (n, [µi], St)
]

+ max
[xk,Ik]


n∑
k=1

Ik

[
V h
t (n, [[µi]i ̸=k, µk × λ] , St) − V h

t (n, [µi], St)
]

+
n∑
k=1

xk

[
StV

h
t (n+ 1, [[µi], λ] , St) + (1 − St)V h

t

(
n+ 1,

[
[µi], λ× φh/φl

]
, St

)
− V h

t (n, [µi], St)
]

− wt

µ−1
k

1
ψI

(Ik)ζ + 1
ψx

(xk)ζ


The HBJ for a low productivity-type firm l reads

rtV
l
t (n, [µi], St) − V̇ l

t (n, [µi], St) =
n∑
k=1

π(µk) +
n∑
k=1

τt

[
V l
t (n− 1, [µi]i ̸=k, St) − V l

t (n, [µi], St)
]

+ max
[xk,Ik]


n∑
k=1

Ik

[
V l
t (n, [[µi]i ̸=k, µk × λ] , St) − V l

t (n, [µi], St)
]

+
n∑
k=1

xk

[
StV

l
t

(
n+ 1,

[
[µi], λ× φl/φh

]
, St

)
+ (1 − St)V l

t (n+ 1, [[µi], λ] , St) − V l
t (n, [µi], St)

]

− wt

µ−1
k

1
ψI

(Ik)ζ + 1
ψx

(xk)ζ
.

I solve for the value function of a high-type firm, however the steps for the low-type firm
are equivalent. For clarity, I suppress the dependence of the value function on St in the
following. Guess that the value function of the firm consists of a component that is common
to all lines and a line-specific component

V h
t (n, [µi]) = V h

t,P (n) +
n∑
k=1

V h
t,M(µk).

30The notation follows Peters (2020) where possible.
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Substituting the guess into the HJB, V h
t,P (n) and V h

t,M(µk) solve the following differential
equations

rtV
h
t,M(µi) − V̇ h

t,M(µi) =π(µi) − τtV
h
t,M(µi)

+ max
Ii

{
Ii

[
V h
t,M(µi × λ) − V h

t,M(µi)
]

− wtµ
−1
i

1
ψI

(Ii)ζ
}

(33)

and

rtV
h
t,P (n) − V̇ h

t,P (n) =
n∑
k=1

τt

[
V h
t,P (n− 1) − V h

t,P (n)
]

+ max
[xk]

{ n∑
k=1

xk

[
V h
t,P (n+ 1) − V h

t,P (n) + StV
h
t,M(λ) + (1 − St)V h

t,M(λ× φh/φl)
]

− wt
1
ψx

(xk)ζ
}
.

(34)

Assume that in steady-state V h
t,P and V h

t,M grow at the constant rate g. Using this guess in
eq. (33) and following Peters (2020), we obtain for V h

t,M(µi)

V h
t,M(µi) =

π(µi) + ζ−1
ψI

(Ii)ζwtµ−1
i

ρ+ τ
,

where Ii solves

Ii =
((

Yt
wt

− ζ − 1
ψI

(Ii)ζ
)(

1 − 1
λ

)
ψI

ζ(ρ+ τ)

) 1
ζ−1

. (35)

Eq. (35) shows that internal innovation rates Ii are time invariant, and independent of the
product line and the productivity type of the firm, I ≡ Ih = I l.

With this at hand, we can turn back to the differential equation for V h
t,P (n) in eq. (34).

In addition to the guess that V h
t,P (n) grows at rate g, conjecture that V h

t,P (n) = n × vht .
Combined with the Euler we get

(ρ+ τ)nvht = max
[xk]

{ n∑
k=1

xk

[
vht + StV

h
t,M(λ) + (1 − St)V h

t,M(λ× φh/φl)
]

− wt
1
ψx

(xk)ζ
}
. (36)

The optimality condition for xk is given by

vht + StV
h
t,M(λ) + (1 − St)V h

t,M(λ× φh/φl) = wt
ζ

ψx
(xk)ζ−1. (37)

Several observations are noteworthy. First, eq. (37) shows that optimal expansion rates
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are independent of quality and productivity gaps in line k. We can hence drop the item
indexation: xk = xd, where d ∈ {h, ℓ}. Second, vt, V h

t,M , wt all grow at the same rate g,
which implies that expansion rates are constant over time. We can hence write eq. (36)
as

vht = 1
(ρ+ τ)

ζ − 1
ψx

(xh)ζwt.

Gathering all terms, the value function is given by

V h
t (n, [µi]) =V h

t,P (n) +
n∑
k=1

Vt,M(µk)

=nvht +
n∑
k=1

Vt,M(µk)

=n 1
(ρ+ τ)

ζ − 1
ψx

(xh)ζwt +
n∑
k=1

π(µk) + ζ−1
ψI
Iζwtµ

−1
k

ρ+ τ
, (38)

which is the expression for the value function stated in the main text, Proposition 1. To
see that high-type firms expand at different rates than low-type firms, assume that xh = xℓ.
In this case, vht = vℓt , however E[V h

t (1, µi)] > E[V ℓ
t (1, µi)], because the value function is

increasing in the markup. This is true because Y − ζ−1
ψI
Iζw > 0, otherwise the optimal

internal R&D rate defined in eq. (35) would be negative (or zero). The optimality condition
for expansion R&D in eq. (37) relates the expected value of expanding into a new product
market to the marginal cost of expanding. Given E[V h

t (1, µi)] > E[V ℓ
t (1, µi)], the marginal

cost of expansion R&D (the right hand side of eq. (37)) must be larger for high-type than
for low-type firms, which implies xh > xℓ. As in Lentz and Mortensen (2008), the fact that
the marginal value of a product line increases in profits per line implies that firms’ expansion
rates increase with profitability (productivity).

Using the expression for vht , write the optimality condition in eq. (37) as

ζ − 1
ψx

(xh)ζ + St

(
Yt
wt

(
1 − 1

λ

)
+ ζ − 1

ψI
Iζλ−1

)
+ (1 − St)

(
Yt
wt

(
1 − φl

φh
1
λ

)
+ ζ − 1

ψI
Iζλ−1 φ

l

φh

)

= (ρ+ τ) ζ
ψx

(xh)ζ−1.
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Following the same steps for low-productivity firms, we obtain the optimality condition

ζ − 1
ψx

(xl)ζ + St

(
Yt
wt

(
1 − 1

λ

φh

φl

)
+ ζ − 1

ψI
Iζλ−1φ

h

φl

)
+ (1 − St)

(
Yt
wt

(
1 − 1

λ

)
+ ζ − 1

ψI
Iζλ−1

)

= (ρ+ τ) ζ
ψx

(xl)ζ−1.

C.2 Joint distribution of quality and productivity gaps

I characterize the two-dimensional distribution of quality and productivity gaps along the
BGP as a function of firm policies. This allows for optimal policies and the distribution to
be solved jointly. I solve for the steady state distribution over quality and productivity gaps
by setting the differential equations characterizing the law-of-motion in eq. (10) and (11)
equal to zero. From this, one obtains the stationary mass of product lines with quality gap
λ∆ and productivity gap φi/φj

ν

(
∆, φ

l

φh

)
=
(

I

I + τ

)∆ (1 − S)xlS + z(1 − ph)S
I

ν

(
∆, φ

l

φl

)
=
(

I

I + τ

)∆ (1 − S)xl(1 − S) + z(1 − ph)(1 − S)
I

ν

(
∆, φ

h

φh

)
=
(

I

I + τ

)∆ SxhS + zphS

I

ν

(
∆, φ

h

φl

)
=
(

I

I + τ

)∆ Sxh(1 − S) + zph(1 − S)
I

.

Summing over all ∆ for a given productivity gap gives Sφl,φh , Sφl,φl , Sφh,φh , Sφh,φl as stated
in Proposition 1 in main text. It follows that

Pr
(

∆ ≤ d,
φl

φh

)
=

d∑
i=1

ν

(
i,
φl

φh

)
= Sφl,φh

(
1 −

(
I

I + τ

)d)

Pr
(

∆ ≤ d,
φl

φl

)
=

d∑
i=1

ν

(
i,
φl

φl

)
= Sφl,φl

(
1 −

(
I

I + τ

)d)

Pr
(

∆ ≤ d,
φh

φh

)
=

d∑
i=1

ν

(
i,
φh

φh

)
= Sφh,φh

(
1 −

(
I

I + τ

)d)

Pr
(

∆ ≤ d,
φh

φl

)
=

d∑
i=1

ν

(
i,
φh

φl

)
= Sφh,φl

(
1 −

(
I

I + τ

)d)
.
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Focusing on product lines where a low-productivity incumbent faces a high-productivity
second-best firm:

P

(
∆ ≤ d,

φl

φh

)
= Sφl,φh

(
1 − e−d[ln(I+τ)−ln I]

)
or

P

(
ln
(
λ∆
)

≤ d,
φl

φh

)
= Sφl,φh

(
1 − e− ln(I+τ)−ln I

ln(λ) d
)
.

Conditional on the productivity gap, ln
(
λ∆
)

is exponentially distributed with parameter
ln(I+τ)−ln I

ln(λ) . Further

P

(
λ∆ ≤ d,

φl

φh

)
= Sφl,φh

(
1 − d− ln(I+τ)−ln I

ln(λ)

)
.

Conditional on the productivity gap, quality gaps follow a Pareto distribution with parameter
ln(I+τ)−ln I

ln(λ) . Denote θ = ln(I+τ)−ln I
ln(λ) . We then have

P

(
λ∆ ≤ m,

φl

φh

)
= Sφl,φh

(
1 −m−θ

)
.

Conditional on the productivity gap, quality gaps follow a Pareto distribution with parameter
θ. As in Peters (2020), θ is affected by the rate of internal R&D I relative to creative
destruction τ . The higher the rate of internal R&D, the more mass is in the tail of the
quality gap distribution. The difference to Peters (2020) is that, in this model, quality gaps
conditional on the productivity gap are Pareto distributed.

After repeating the same steps for lines with different productivity gaps, we obtain the
aggregate labor share as follows31

Λ =
∑

k∈{h,l}

∑
n∈{h,l}

∫ ∞

1

1
φk/φn

1
m
Sφk,φnθm

−(θ+1)dm

= θ

θ + 1
∑

k∈{h,l}

∑
n∈{h,l}

1
φk/φn

Sφk,φn .

31For the derivation, I assume a continuous distribution of quality gaps.
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The TFP misallocation statistic M is then given by

M =e
∑

k∈{h,l}

∑
n∈{h,l}

∫ [
ln
(

1
φk
φn

1
m

)
Sφk,φnθm

−(θ+1)

]
dm

Λ

=e
∑

k∈{h,l}

∑
n∈{h,l}

[
Sφk,φn

(
ln
(

1
φk
φn

)
− 1

θ

)]
Λ ,

where I have made use of
∫ ∞

1
ln
( 1
m

)
Sφk,φnθm

−(θ+1)dm =
[
θ ln(m) + 1

θmθ
+ C

]∞

1
= −1

θ
.

Alternatively note that this expression is equal to −Sφk,φnE[ln(λ∆)|φk, φn]. I have shown
above that ln(λ∆) conditional on the productivity gap is exponentially distributed with
parameter θ. From the characteristics of an exponential distribution, its expected value is
1/θ.

The aggregate markup is then given by

E[µ] =
∑

k∈{h,l}

∑
n∈{h,l}

∫ ∞

1

φk
φn
mSφk,φnθm

−(θ+1)dm

= θ

θ − 1
∑

k∈{h,l}

∑
n∈{h,l}

φk
φn
Sφk,φn .

These are the expressions for the aggregate labor income share, TFP misallocation statistic
and aggregate markup stated in the main text in Proposition 2.

C.3 Deriving the steady-state growth rate of aggregate variables

The growth rate of Qt determines the growth rate of aggregate variables

g = Q̇t

Qt

= ∂ ln(Qt)
∂t

.

Quality of a product in a given product line increases through internal R&D, expansion R&D
or firm entry. For the growth rate of Qt over a discrete time interval ∆, we have

ln(Qt+∆) =
∫ 1

0

[
(∆I + ∆Sxh + ∆(1 − S)xl + ∆z) ln(λ) + ln(qt,i)

]
di
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so that

ln(Qt+∆) − ln(Qt)
∆ =

(
I + Sxh + (1 − S)xl + z

)
ln(λ).

For ∆ → 0, g =
(
I + Sxh + (1 − S)xl + z

)
ln(λ) as stated in Proposition 1.

C.4 Solving for the steady state equilibrium

In the model, there are the seven unknown variables xh, xl, I, z, τ, Yt

wt
, S and the markup

distribution ν() in seven equations plus the system of differential equations characterizing
ν().

Optimality condition for the internal innovation rate

I =
((

Yt
wt

− ζ − 1
ψI

Iζ
)(

1 − 1
λ

)
ψI

ζ(ρ+ τ)

) 1
ζ−1

Optimality condition for high-productivity type expansion rate

ζ − 1
ψx

(xh)ζ + S

(
Yt
wt

(
1 − 1

λ

)
+ ζ − 1

ψI
Iζλ−1

)
+ (1 − S)

(
Yt
wt

(
1 − φl

φh
1
λ

)
+ ζ − 1

ψI
Iζλ−1 φ

l

φh

)

= (ρ+ τ) ζ
ψx

(xh)ζ−1

Optimality condition for low-productivity type expansion rate

ζ − 1
ψx

(xl)ζ + S

(
Yt
wt

(
1 − 1

λ

φh

φl

)
+ ζ − 1

ψI l
Iζλ−1φ

h

φl

)
+ (1 − S)

(
Yt
wt

(
1 − 1

λ

)
+ ζ − 1

ψI l
Iζλ−1

)

= (ρ+ τ) ζ
ψx

(xl)ζ−1

Free entry condition

ph
(
SV h

t (1, λ) + (1 − S)V h
t (1, λ× φh/φl)

)
+ (1 − ph)

(
SV l

t (1, λ× φl/φh) + (1 − S)V l
t (1, λ)

)
= 1
ψz
wt,

where

V d
t (1, µ) = 1

(ρ+ τ)
ζ − 1
ψx

(xd)ζwt +
Yt
(
1 − 1

µ

)
+ ζ−1

ψI
Iζwtµ

−1

ρ+ τ
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Labor market clearing condition

1 = Yt
wt

∑
φj
φj′

∑
i

1
λi φj

φj′

ν

(
i,
φj
φj′

)
+ 1
ψI
Iζ
∑
φj
φj′

∑
i

1
λi φj

φj′

ν

(
i,
φj
φj′

)
+ S

1
ψx

(xh)ζ + (1 − S) 1
ψx

(xl)ζ + z

ψz

Creative destruction

τ = z + Sxh + (1 − S)xl

Share of high productivity type

S =
∞∑
i=1

[
ν

(
i,
φh

φh

)
+ ν

(
i,
φh

φl

)]
,

where ν, the stationary distribution of quality and productivity gaps, is characterized by

0 = ν̇

(
∆, φj

φj′

)
= Iν

(
∆ − 1, φj

φj′

)
− ν

(
∆, φj

φj′

)
(I + τ) for ∆ ≥ 2

and for the case of a unitary quality gap

0 = ν̇

(
1, φ

l

φh

)
= (1 − S)xlS + zt(1 − ph)S − ν

(
1, φ

l

φh

)
(I + τ)

0 = ν̇

(
1, φ

l

φl

)
= (1 − S)xl(1 − S) + zt(1 − ph)(1 − S) − ν

(
1, φ

l

φl

)
(I + τ)

0 = ν̇

(
1, φ

h

φh

)
= SxhS + ztp

hS − ν

(
1, φ

h

φh

)
(I + τ)

0 = ν̇

(
1, φ

h

φl

)
= Sxh(1 − S) + ztp

h(1 − S) − ν

(
1, φ

h

φl

)
(I + τ).

To simplify the system of equations, first rewrite the rate of creative destruction

z = (τ − Sxh − (1 − S)xl)

such that z can be substituted out from the remaining equations. Second, based on Propo-
sition 1, we know

S =Sφh,φh + Sφh,φl = Sxh + zph

τ
.

Third, the optimality conditions for expansion rates (multiplied by ph and (1 − ph)) and the
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free entry condition together imply

1
ψx
ph(xh)ζ−1 + 1

ψx
(1 − ph)(xl)ζ−1 = 1

ψzζ
.

The system of equilibrium conditions can hence be reduced to:

Optimality condition for the internal innovation rate

I =
(Yt

wt
ψI − (ζ − 1)Iζ

) (1 − 1
λ

)
ζ(ρ+ τ)


1

ζ−1

Optimality condition for high-productivity type expansion rate

ζ − 1
ψx

(xh)ζ + S

(
Yt

wt

(
1 − 1

λ

)
+ (ζ − 1)Iζλ−1 1

ψI

)
+ (1 − S)

(
Yt

wt

(
1 − φl

φh

1
λ

)
+ (ζ − 1)Iζλ−1 φl

ψIφh

)
= (ρ+ τ) ζ

ψx
(xh)ζ−1

Optimality condition for low-productivity type expansion rate

ζ − 1
ψx

(xl)ζ + S

(
Yt

wt

(
1 − 1

λ

φh

φl

)
+ (ζ − 1)Iζλ−1 φh

ψI lφl

)
+ (1 − S)

(
Yt

wt

(
1 − 1

λ

)
+ (ζ − 1)Iζλ−1 1

ψI l

)
= (ρ+ τ) ζ

ψx
(xl)ζ−1

Free entry

ph
(xh)ζ−1

ψx
+ (1 − ph)(xl)ζ−1

ψx
= 1
ψzζ

Labor market clearing condition

1 = Yt
wt

Λ + ΛI + S
1
ψx

(xh)ζ + (1 − S) 1
ψx

(xl)ζ + τ − Sxh − (1 − S)xl
ψz

,

where

Λ = θ

θ + 1
∑

k∈{h,l}

∑
n∈{h,l}

1
φk/φn

Sφk,φn

ΛI = 1
ψI
Iζ

θ

θ + 1
∑

k∈{h,l}

∑
n∈{h,l}

1
φk/φn

Sφk,φn

θ =ln(I + τ) − ln(I)
ln(λ)
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Share of high productivity type

S = Sxh + (τ − Sxh − (1 − S)xl)ph
τ

The expressions related to the labor market clearing condition are derived in Section C.2.
This constitutes a system of seven equations in seven unknowns (xh, xl, I, τ, Yt

wt
, S), which I

solve using a root finder.

C.5 Firm markups

Firm markups are defined by µf = pyf

wlf
=
(

1
n

∑n
k=1 µ

−1
kf

)−1
. Therefore

lnµf = − ln
(

1
n

n∑
k=1

µ−1
k

)
.

Rewrite the term in brackets (for a high-productivity firm) as

1
n

n∑
k=1

µ−1
k = 1

n

n∑
k=1

e− lnµk = 1
n

 ni∑
i=1

e
− ln φh

φl −∆i lnλ +
nj∑
j=1

e−∆j lnλ

 , (39)

where i indexes the product lines where the high productivity firm faces a low productivity
second best producer, j the lines where it faces a high productivity second best producer
and ni + nj = n. A two-dimensional linear Taylor expansion around ln λ = 0 and ln φh

φl = 0
gives

1
n

 ni∑
i=1

e
− ln φh

φl −∆i lnλ +
nj∑
j=1

e−∆j lnλ

 ≈ 1 −
(

1
n

n∑
k=1

∆k

)
ln λ− ni

n
ln
(
φh

φl

)

such that

E
[
lnµf |firm age = af , φ

h
]

≈ E

[
1
n

n∑
k=1

∆k|firm age = af , φ
h

]
ln λ+ (1 − S) ln

(
φh

φl

)
,

where I have used the fact that (in expectation) the share of the firm’s product lines with a
low productivity second best producer is equal to the aggregate share of product lines where
the incumbent is of the low productivity type. From Peters (2020), we know that

E

[
1
n

n∑
k=1

∆k|firm age = af , φ
h

]
ln λ =

(
1 + I × E[ahP |af ]

)
ln λ,
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where E[ahP |af ] denotes the average product age of a high-productivity type firm conditional
on firm age af and

E[ahP |af ] = 1
xh

 1
τ

(1 − e−τaf )
1

xh+τ

(
1 − e−(xh+τ)af

) − 1
(1 − ϕh(af )

)
+ afϕ

h(af )

ϕh(a) = e−xha 1
γh(a) ln

(
1

1 − γh(a)

)

γh(a) =
xh
(
1 − e−(τ−xh)a

)
τ − xhe−(τ−xh)a ,

which gives the expression in the main text.

For a firm of the low-productivity type, the last term in eq. (39) reads

1
n

 ni∑
i=1

e− ln ∆i lnλ +
nj∑
j=1

e
− ln φl

φh −ln ∆j lnλ
 ,

where i indexes the product lines where the low-productivity producer faces a low-productivity
second best producer, j the lines where it faces a high-productivity second best producer and
ni + nj = n. Following the same steps as for a high-productivity firm, this time linearizing
around ln φl

φh = 0 (and ln λ = 0) gives

E
[
lnµf |firm age = af , φ

l
]

≈
(
1 + I × E[alP |af ]

)
ln λ+ S ln

(
φl

φh

)
,

where again I have made use of the fact that (in expectation) the share of the firm’s product
lines with a high-productivity second best producer is equal to the aggregate share of product
lines where the incumbent is of the high-productivity type. E[alP |af ] is exactly defined as
E[ahP |af ] with xh replaced by xl in the above expressions.

D Computation of transition dynamics

In this section, I lay out the numerical procedure to solve for the transition path. Since
time is continuous, I solve a discretized version of the model where the solution converges
to the one in continuous time for small enough time intervals. As shown in Appendix C,
value functions are additive across product lines. Therefore, I solve the problem of two
representative one-product firms: one of the high productivity type and one of the low
productivity type.
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I normalize the value function by the wage wt to obtain a stationary problem. The value
function for the high-type firm (in discrete time) reads

V h
t (1, µi, St)

wt
= Yt

wt

(
1 − 1

µi

)
dt

− τt exp(−rtdt)
V h

t+dt(1, µi, St+dt)
wt+dt

wt+dt

wt
dt

+ max
xh

t

xh
t exp(−rtdt)

St+dt

V h
t+dt(1, λ, St+dt)

wt+dt
+ (1 − St+dt)

V h
t+dt(1, λ

φh

φl , St+dt)
wt+dt

 wt+dt

wt
dt− 1

ψx
(xh

t )ζdt


+ max

Ih
t

{
Ih

t exp(−rtdt)
(
V h

t+dt(1, µiλ, St+dt)
wt+dt

−
V h

t+dt(1, µi, St+dt)
wt+dt

)
wt+dt

wt
dt− 1

ψI
µ−1

i (Ih
t )ζdt

}

+ exp(−rtdt)
V h

t+dt(1, µi, St+dt)
wt+dt

wt+dt

wt
. (40)

The value function for the low-type firm reads

V l
t (1, µi, St)

wt
= Yt

wt

(
1 − 1

µi

)
dt

− τt exp(−rtdt)
V l

t+dt(1, µi, St+dt)
wt+dt

wt+dt

wt
dt

+ max
xl

t

xl
t exp(−rtdt)

St+dt

V l
t+dt(1, λ

φl

φh , St+dt)
wt+dt

+ (1 − St+dt)
V l

t+dt(1, λ, St+dt)
wt+dt

 wt+dt

wt
dt− 1

ψx
(xl

t)ζdt


+ max

Il
t

{
I l

t exp(−rtdt)
(
V l

t+dt(1, µiλ, St+dt)
wt+dt

−
V l

t+dt(1, µi, St+dt)
wt+dt

)
wt+dt

wt
dt− 1

ψI
µ−1

i (Ih
t )ζdt

}

+ exp(−rtdt)
V l

t+dt(1, µi, St+dt)
wt+dt

wt+dt

wt
. (41)

From this, one obtains the first order conditions for the policy functions. For the optimal
expansion R&D rate of the high type firm xht (again suppressing the dependence of the value
function on St):

exp(−rtdt)
St+dtV h

t+dt(1, λ)
wt+dt

+ (1 − St+dt)
V h
t+dt(1, λφ

h

φl )
wt+dt

 wt+dt
wt

= ζ

ψx
(xht )ζ−1 (42)

and for the low type firm xlt:

exp(−rtdt)
St+dtV l

t+dt(1, λ φl

φh )
wt+dt

+ (1 − St+dt)
V l
t+dt(1, λ)
wt+dt

 wt+dt
wt

= ζ

ψx
(xlt)ζ−1. (43)

Both are independent of the markup µi. For the optimal internal R&D rates of the high
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type, Iht , one obtains

exp(−rtdt)
(
V h
t+dt(1, µiλ)
wt+dt

−
V h
t+dt(1, µi)
wt+dt

)
wt+dt
wt

= ζ

ψI
µ−1
i (Iht )ζ−1 (44)

and similarly for I lt

exp(−rtdt)
(
V l
t+dt(1, µiλ)
wt+dt

−
V l
t+dt(1, µi)
wt+dt

)
wt+dt
wt

= ζ

ψI
µ−1
i (I lt)ζ−1. (45)

Equations (40) to (45) characterize the firm problem in discrete time. These equations
are supplemented by the law of motion for the two dimensional distribution of quality and
productivity gaps

νt+dt

(
∆, φj

φj′

)
− νt

(
∆, φj

φj′

)
= dt

[
Iµi,tνt

(
∆ − 1, φj

φj′

)
− νt

(
∆, φj

φj′

)
(Iµi,t + τt)

]
for ∆ ≥ 2

(46)

and for product lines with a unitary quality gap, ∆ = 1,

νt+dt

(
1, φ

l

φh

)
− νt

(
1, φ

l

φh

)
= dt

[
(1 − St)xltSt + zt(1 − ph)St − νt

(
1, φ

l

φh

)
(Iµi,t + τt)

]

νt+dt

(
1, φ

l

φl

)
− νt

(
1, φ

l

φl

)
= dt

[
(1 − St)xlt(1 − St) + zt(1 − ph)(1 − St) − νt

(
1, φ

l

φl

)
(Iµi,t + τt)

]

νt+dt

(
1, φ

h

φh

)
− νt

(
1, φ

h

φh

)
= dt

[
Stx

h
t St + ztp

hSt − νt

(
1, φ

h

φh

)
(Iµi,t + τt)

]

νt+dt

(
1, φ

h

φl

)
− νt

(
1, φ

h

φl

)
= dt

[
Stx

h
t (1 − St) + ztp

h(1 − St) − νt

(
1, φ

h

φl

)
(Iµi,t + τt)

]
(47)

and a standard Euler equation

Ct+dt
Ct

= exp(−ρdt)(1 + rt+dtdt). (48)

Further, the (static) free entry and labor market clearing conditions remain unchanged and
are characterized in the main text by equations (8) and (9).
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The algorithm to compute the transition path assumes that an initial and ending balanced
growth path has been solved for including the (stationary) two-dimensional distribution of
quality and productivity gaps. I choose dt = 0.02 and set the transition period to 100 years
(T ), after which I assume the economy has reached its new balanced growth path. I further
truncate the two dimensional distribution of quality and productivity gaps along the quality
dimension at ∆ = 30, implying a maximum quality gap of λ30. No mass reaches this state
during the transition such that this assumption is satisfied. I then compute the transition
path as follows:

1. Guess a path of interest rates rt and wage growth wd+dt

wt
over the transition (equal to

their values in the final balanced growth path)

(a) Guess a path for St over the transition (equal to its value in the final balanced
growth path).

i. Starting backwards in period T , solve for optimal policy functions in T − dt

using equations (42)-(45).32

ii. Solve for τT−dt that ensures that the free entry condition (8) holds.

iii. Compute the value function in T − dt using equations (40) and (41).

iv. Iterate backwards until the first time period.

v. Starting from the initial balanced growth path, simulate St forward using33

St+dt = St + dt
[
Stx

h
t (1 − St) − (1 − St)xltSt + zt(ph(1 − St) − (1 − ph)St)

]
,

where zt can be substituted out by equation (16).

(b) Update the guess for St from step v and go back to step i. Iterate until the guessed
path for St converges to the implied one.

2. Starting from the initial balanced growth path, simulate the two dimensional distribu-
tion of quality and productivity gaps forward using equations 46 and 47.

3. Solve for the sequence of Yt

wt
from the labor market clearing condition.

32I solve for the optimal Ii (at each point in time) over a two-dimensional grid of quality and productivity
gaps.

33One could already simulate the entire two-dimensional distribution forward here. However, for the inner
loop, it is sufficient to iterate on St.
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4. Compute the sequence of quality growth using

Qt+dt

Qt

= exp
([∫ 1

0
Iµi,tdi+ Stx

h
t + (1 − St)xlt + zt

]
dt ln(λ)

)
.

5. Compute the sequence of aggregate productivity growth using

Φt+dt

Φt

=
(
φh

φl

)St+dt−St

.

6. Using the two dimensional distribution of quality and productivity gaps, compute the
sequence of Mt defined in equation (7).

7. Compute the sequence of production labor LPt using equation (5).

8. Compute the sequence of aggregate output growth Yt+dt

Yt
using equation (7).

9. With the path of aggregate output growth, obtain the implied path of interest rates
from the Euler equation (48).

10. With the paths of aggregate output growth and Yt/wt, obtain the implied path of wage
growth wd+dt

wt
.

11. Update the guesses for the interest rate and wage growth and go back to step (a).
Iterate until the guessed and implied paths converge.
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