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Abstract

We analyze optimal relational contracts for a group (team) of mul-

titasking agents with hidden actions. Contracts are based on noisy

signals that may be correlated across agents and between tasks. The

optimal contract de�nes a performance measure in the form of an in-

dex (a scorecard) for each agent, and awards a bonus to the highest-

performing agent, provided his or her index exceeds a hurdle. An

optimal index generally involves benchmarking against other agents,

and this may, in combinantion with the hurdle requirement, introduce

a cooperative element in the otherwise competitive incentive structure.

For agents with separate tasks and normally distributed signals, we

�nd that strong correlation (either positive or negative) across agents

is bene�cial, while larger correlation within each agent�s tasks is detri-

mental for e¢ ciency, and that this has implications for optimal orga-

nization of tasks. For agents with common tasks the optimal contract

may have features of both tournament and team incentives. The tour-

nament aspect incentivizes an agent to exert e¤ort on his own task,

while the hurdle necessary to receive a bonus also incentivizes an agent

to help his peers. In our setting this hybrid scheme can only be optimal

if signals from agents�tasks are negatively correlated. Otherwise pure

team incentives are optimal.
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1 Introduction

Most employment relationships can be characterized as follows: 1. They

are long term. Employer and workers engage in repeated interaction. 2.

Workers do many tasks, and so their performance is not only measured

along one dimension. 3. Performances are not always easy to measure in

a clear and transparent way, which implies that one cannot (solely) rely on

legally binding incentive contracts. And 4, workers have peers, who they

sometimes compete against and sometimes cooperate with.

In the by now rich literature on incentives in organizations, all these ingredi-

ents have been extensively analyzed, either in isolation, but sometimes also

partly in combinations. To our knowledge, however, all these ingredients

have not been analyzed in the same model. We think this is important.

Incentive design is notoriously complicated, and the empirical support for

many theoretical models is limited. While models analyzing single agent

and/or single task and/or veri�able outputs can highlight important dimen-

sions of incentive design, they also miss out on several key characteristics of

modern employment relationships.

Hence, in this paper we make an attempt to incorporate all four dimensions

listed above. We consider a repeated interaction between a principal and

multiple agents who each take a number of actions which a¤ect a number of

noisy non-veri�able performance measures (signals). Obviously, we need to

make some simplifying assumptions in order to make the model tractable.

We assume risk neutrality both for principal and agents, and for the most

part, we assume a multinormal distribution of the signals. We also some-

times restrict attention to two agents and two tasks and consider explicitly

the case where one of the tasks is to provide help to a peer.

Interestingly, the model delivers a variation of incentive regimes that �ts

well with the rich practices observed in the �eld.1 The optimal contract can

entail team incentives or tournament incentives, and even a combination

of the two. Moreover, the bonuses are typically based on an index, i.e.

a weighted sum of performance outcomes on the various tasks, similar to

1As documented by e.g. Bloom and van Reenen (2010) and Bloom et al (2019) there is
a rich variation in management practices, including di¤erences inincentive design, across
countries and companies.
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so-called balanced scorecards.2

A key ingredient in the analysis is stochastic properties of the available sig-

nals, including stochastic dependencies which make one agent�s performance

informative about other agents�actions. Such properties have been of cen-

tral importance in the classical agency literature with veri�able outputs (e.g.

Holmström 1979, 1982), but they have received relatively little attention in

the relational contracting literature. This may be due to the fact that rela-

tional contracting models often avoid risk averse agents - making stochastic

properties seemingly less important. However, as we demonstrate in Kvaløy

and Olsen (2019, 2022), such properties �like signal variances and correla-

tions �are important even without risk considerations because they a¤ect

marginal e¤ort incentives. Analyzing stochastic properties is also interesting

from a more practical viewpoint, as �rms are getting better access to high

quality performance data. Knowledge about the implications of statistical

properties of performance data can both guide practitioners in implementing

optimal incentives, and also help researchers who want to better understand

real world incentive contracts.

The main driver of the incentive variation in our model is noise, and how the

noisy signals are correlated. Generally, for agents with separate tasks strong

correlation (either positive or negative) across agents strengthens incentives,

while larger correlation within each agent�s tasks weakens incentives. The

latter e¤ect is due to lower precision of the agent�s performance index, as this

dampens incentives. The former e¤ect comes from the e¤ects of stronger cor-

relations on the competition among agents in the optimal incentive scheme.

This competition is generated by the fact that for agents with separate tasks

(where helping e¤ort is not possible), the optimal scheme is a tournament

based on the agents�performance indexes, and where only one agent (the

winner) is paid a bonus, provided his performance index exceeds a hurdle.

We point out that these e¤ects can have interesting implications for the

organization of tasks. For example, if task allocation is �exible, and if

signals from tasks are positively correlated, it will be advantageous to assign

2The concept of a balanced scorecard was introduced by Kaplan and Norton (1992) as a
means to measure and evaluate performance based on non-veri�able relevant information.
It has been highly in�uential (see e.g.Hogue, 2014) and scorecards in various forms are
extensively used (see e.g. Kvaløy-Olsen 2022 and references therein).
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tasks such that �internal� correlation (within an agent�s tasks) is low and

�external� correlation (across agents�tasks) is high. In some cases it may

also be optimal to abandon tasks that would not be abandoned in a �rst-best

setting.

When agents have common tasks, and hence helping e¤ort is possible, the

tournament scheme incentivizes an agent to exert e¤ort on his own task,

and neglect helping e¤ort, while the hurdle necessary to receive a bonus also

incentivizes the agent to help his peers. We show that the demotivating

element of the tournament scheme necessarily dominates in situations with

positive correlation, while this is not necessarily the case for negative correla-

tion. For positive correlation, the optimal incentive system will therefore be

a pure team incentive scheme, while for negative correlation, a combination

of both tournament and team incentives may be optimal.

Our paper builds on a rich literature on the economics of relational contract-

ing, starting with Klein and Le­ er (1981), Shapiro and Stiglitz (1984) and

Bull (1987). MacLeod and Malcomson (1989) generalize the case of symmet-

ric information, while Levin (2003) provides a general treatment of relational

contracts with asymmetric information. These papers restrict attention to

the single agent / single task case.

Relational contracting papers considering multiple agents also restrict at-

tention to the single task case. They include Levin (2002) Kvaløy and

Olsen (2006, 2019), Rayo (2007), Glover and Xue (2016) Baldenius et al.

(2016) and Deb et al, (2016). The few papers analyzing relational contracts

with multitasking agents include Baker, Gibbons and Murphy (2002), Budde

(2007) Schottner (2008) Mukerjee and Vasconcelos (2011), Ishihara (2016)

and Kvaløy and Olsen (2022). However, these papers do not consider mul-

tiple agents. In this paper we combine and extend Kvaløy and Olsen (2008,

2019, 2022) to analyze the more realistic case with multiple agents having

multiple tasks.

The rest of the paper is organized as follows. Section 2 presents a general

model and a result establishing the structure of the optimal incentive system.

An agent�s performance is optimally assessed by an index; a function of the

signals, and the agents compete for a bonus on the basis of these indexes. An

agent�s index is a weighted sum of the likelihood ratios for her actions. The

4



remaining sections con�ne attention to normal distributions for the signals,

where the relevant indexes are linear functions, and hence quite tractable

analytically. Section 3 deals with agents having separate tasks, where no

signal is a¤ected by more than one agent�s actions. Section 4 considers

common tasks, where signals are a¤ected by the actions of more than one

agent, which is typically the case when agents can help each other. Section

4 concludes.

2 Model

We consider an ongoing relationship between a principal and n � 2 multi-
tasking agents. Each period agent i performs a number ni � 2 of actions

(ai1; ::; a
i
ni) = ai which a¤ect a number m � 2 of signals (x1; :::; xm) = x

that are informative about the actions.3 The joint distribution of signals is

given by a density f(x; a) with a = (a1; :::; an), and the density is assumed

to be positive on the set of feasible realizations. The signals, some of which

may be outputs, are observable, but not veri�able.They are stochastically

independent across periods. Actions are hidden, in the sense that only agent

i observes ai.

Action ai generates a private cost ci(ai) for agent i, and the ensemble a of

actions generates a gross value v(a) for the principal. The gross value v(a) is

not observed (as is the case if this is e.g. expected revenue for the principal,

conditional on the agents� actions). We assume v(a) to be increasing in

each variable (aik � 0) and concave, and ci(ai) to be increasing in each

variable and strictly convex with ci(0) = 0 and gradient (marginal costs)

rci(0) = 0 All parties are risk neutral, and the total surplus (per period)

in the relationship is v(a) � �ni=1ci(ai). Outside options are normalized to
zero. All parties have the same discount factor � 2 (0; 1).

Given observable (but not veri�able) signals, the principal o¤ers in each

period a non-conditional payment (wi) and a discretionary bonus (�i(x))

conditional on the signals to agent i, i = 1; :::; n.. As in Levin (2002) we

consider a multilateral punishment structure where a deviation by one party

3For notational simplicity we drop a time index on signals, actions and payments, as
optimal contracts in our setting are wlog stationary, see below.
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triggers a punishment by all parties in the form of breaking up the rela-

tionship and taking the respective outside options. In this setting optimal

contracts can be taken to be stationary (Levin 2002, 2003).

An optimal contract maximizes the total surplus subject to incentive con-

straints (IC) for the agents�choice of actions and self-enforcement constraints

(EC) for payments of discretionary bonuses. Agent i0s IC for choice of action

is

ai 2 argmax~ai E(�i(x)j ~ai; a�i)� ci(~ai)

with �rst-order conditions (FOCs)

raiE(�i(x)j ai; a�i)�rci(ai) = 0.

As is well known (Levin 2002, 2003) all enforcement constraints can be satis-

�ed i¤ the following constraint for the aggregate bonus payment is satis�ed:

�ni=1�i(x) � �
1�� (v(a)� �

n
i=1c

i(ai)); �i(x) � 0; i = 1; :::; n

We con�ne attention to situations where the �rst-best is not attainable,

and hence the (upwards) EC constraint is binding. We also assume that

the �rst-order approach (FOA) is valid, and thus consider only the FOCs

for incentive compatibility. The incentive constraints are then linear in the

bonuses, and since the EC constraint is also linear in those variables, it

follows that the optimal bonuses have a bang-bang structure.

Speci�cally, from the Lagrangian for the problem we see that there are

indexes of the form �n
i

k=1�
i
k
@
@aik
f(x; a), one for each agent, such that the the

agent who realizes the highest index value will be awarded a bonus, provided

her index value is positive. If equal index values is a zero probability event,

then at most one agent will be awarded a bonus, and this occurs when at

least one index is positive.

The bonus scheme is then a form of a tournament, where only a "winner" is

awarded a bonus, but the bonus is also conditional on the winner�s perfor-

mance index exceeding a hurdle (here zero). Since the index may in principle

depend on all signals, the hurdle requirement may entail a form of bench-

marking vis-a-vis the other agents. If equal and positive index values can

occur with positive probability, then more than one agent can be awarded

a bonus in such an event. We have the following result.
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Lemma 1 There are vectors (multipliers) �i 2 Rni, such that the optimal
solution entails �i(x) > 0 if and only if the expression

�iraif(x; a) � �n
i

k=1�
i
k

@

@aik
f(x; a);

evaluated at the optimal action, is positive, and this expression for agent i

is maximal among the corresponding expressions for all agents:

�iraif(x; a) � �jrajf(x; a); j 6= i

If the inequality is strict, then only agent i receives a bonus, while otherwise

an agent j whose expression is also maximal may also receive a bonus..

In any case, if at least one bonus is positive, then: �i�i(x) =
�
1�� (v(a) �

�ic
i(ai)).

Since we have assumed f(x; a) > 0 for all feasible realizations, we may

equivalently state the conditions in the lemma in terms of likelihood ratios
@
@aik
f(x; a)=f(x; a). Thus there is for each agent i an index

yi(x) = �
irai ln f(x; a) � �n

i

k=1�
i
k

@

@aik
ln f(x; a); (1)

i.e. a weighted sum of the likelihood ratios for the actions of agent i, such

that the agent is paid a bonus for an outcome x i¤ this index value at x

is (i) positive and (ii) is maximal among the agents. This index can be

interpreted as a (optimal) performance index, and agents are then rewarded

in a tournament-like scheme based on these indexes. Note that the indexes

are de�ned with a being the optimal (equilibrium) action vector.

This characterization of the optimal bonus scheme has similar features to

that given by Levin (2002 ) for the single-task case with stochastically inde-

pendent signals. In his case the equality condition for the indexes is a zero

probability event. In such cases only one agent is given a bonus, namely

the agent with the highest "performance index", provided that this index

in addition exceeds a hurdle (zero). The scheme outlined here has similar

features as Levin�s, but covers multi-dimensional actions and stochastic de-

pendencies. Kvaløy and Olsen (2019) analysed a case of single-task agents
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with correlated signals, while Kvaløy and Olsen (2022) analysed a single

multi-tasking agent, and pointed out that the performance index can be

seen as an optimal balanced scorecard for the agent. In light of this, the

bonus structure oulined in the lemma can be seen as a form of a tournament

based on these scorecards.

In the remainder of this paper we will (as in Kvaløy-Olsen 2019, 2022) invoke

the assumption of a multinormal distribution for the signals. This leads to

a tractable model which enables us to derive some interesting properties of

the optimal bonus scheme, in particular with respect to how it depends on

correlations among the signals. So in the following we will assume that x

is multinormal with a given covariance matrix (�) and expectations that

depend linearly on actions, thus

x � N(Qa;�)

Here Q is a matrix of dimension m � N , where N = n1 + ::: + nn is the

total number of actions. An analytically convenient property of the normal

distribution is that the likelihood ratios are linear functions of the signals,

and hence it follows that the performance indexes de�ned above are also

linear in the signals. The linear form of the likelihood ratios follows because

ln f(x; a) is a quadratic form; ln f(x; a) = �(x�Qa)0��1(x�Qa)=2+const,
and any derivative @

@aik
ln f(x; a) is then linear, implying that the index, being

a linear combination of linear expressions, is also linear.

The index yi(x) in (1) will thus here be of the form

yi(x) = �
i(x�Qa) � �mk=1� ik(xk � (Qa)k); (2)

for some vector � i, and where (Qa)k is the k0th element of the vector of

expectations. We may note that the incentive scheme can then equivalently

be formulated in terms of indexes

~yi(x) = �
ix � �mk=1� ikxk;

where agent i then gets a bonus only if her (scorecard) index ~yi(x) ecxeeds

its expectation E( ~yi(x)j a) � ~yi0, and her "overperformance" ~yi(x) � ~yi0 is
maximal among the agents. The expected performance ~yi0 = E( ~yi(x)j a) is
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here evaluated at the targeted (optimal) action a.

In addition to the index here being linear, the form of the likelihod ratio will

generally also have implications for the coe¢ cients � i that de�ne the index.

In the following we will explore this in more detail for two environments: (i)

where agents multitask, but on separate tasks, and (ii) where multitasking

involves common tasks.

3 Separate tasks.

We will say that the agents work on separate tasks when it is the case that

the signals that are in�uenced by one agent�s actions are not in�uenced by

any of the other agents�actions. There is thus for each agent i a subset of

signals xi that are in�uenced by agent i0s own actions ai, but not by any

other agent�s actions aj . For instance, xi may consist of two variables that

measure quantity and quality aspects, respectively, of the output delivered

by agent i, and which she may a¤ect by her actions ai, but which is not

a¤ected by the actions of other agents. Under the multinormal speci�cation

we then have

E(xi
�� a) = E(xi�� ai) = Qiai

where Qi is a matrix of dimension mi � ni, where mi is the dimension of

vector xi.

It now turns out that the indexes derved in Lemma 1, and which are the basis

for an optimal bonus scheme, take a form where each agent�s performance

is benchmarked against all other agent�s performances, as speci�ed in the

following proposition.

Proposition 1 When signals are multinormal and agents have separate
tasks, there are vectors �i such that the optimal index derived in Lemma

1 for agent i takes the form

�i(xi � E(xi
��x�i; a)) = �mi

k=1�
i
k(x

i
k � E(xik

��x�i; a)); i = 1; :::; n: (3)

The index for agent i is thus a weighted sum of her performance signals (xik),

adjusted for the expected perfomance, conditional on the performances of
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other agents. Agent i gets a bonus �i(x) > 0 only if (i) her index value is

maximal among all agents at the signal outcome x, and (ii) the index value

is positive.

In this incentive scheme the agents compete on the basis of their individual

indexes (scorecards) to obtain the bonus.The scheme has thus clear elements

of relative performance evaluation, in the sense that an agent is made worse

o¤ if, all else equal, another agent performs better.

The scheme may also, however, have elements of joint (or collective) per-

formance evaluation, where an agent is made better o¤ if, all else equal,

another agent performs better. This element may be present when signals

from di¤erent agents are negatively correlated. To see this, suppose signal

xik for agent i is negatively correlated with signal x
j
l for agent j, and consider

a signal realization x where i0s index is stricly maximal among the agents,

but its value is slightly negative, so that i doesn�t get a bonus. A higher

realization of signal xjl from agent j will then reduce agent i0s expected per-

formance E(xik
��x�i; a) on signal xik, and hence increase the index value for

agent i (when �ik > 0). If this increase resulting from a higher xjl is enough

to make i0s index value positive, but without a¤ecting the ordering of index

values, then i will get the bonus. In such a case a better performance from

agent j makes agent i better o¤, and hence there is then an element of joint

performance evaluation in the incentive scheme.

Some signals from an agent�s tasks may be negatively correlated with sig-

nals from other agents�tasks, and some signals from his or her tasks may be

positively correlated with other agents�signals. Thus there may be elements

of joint as well as relative performance evaluation in an agent�s performance

index. This doesn�t occur in the case of single-tasking agents, but the over-

all incentive scheme may nevertheless contain both elements if signals are

negatively correlated. This was pointed out in the analysis of the single-task

case in Kvaløy-Olsen (2019), and further discussed in Kvaløy-Olsen (2022b),

also for the single-task case.
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3.1 Two agents and two tasks

To simplify and gain some speci�c insights, we will now consider the case

of two agents working on two tasks each (e.g. teaching and research) with

e¤orts denoted ai = (ei; hi), i = 1; 2: We will here moreover assume that

there are 4 signals, one for each activity. Index the signals such that x =

(x11; x12; x21; x22), and assume x � N(:; �) with

Exi1 = ei; Exi2 = hi.

Thus xi1 is a noisy signal about e¤ort ei, and xi2 is a noisy signal about

e¤ort hi for agent i. We assume that the agents are symmetrically placed

from the outset, and hence that the signal structure is symmetric for the

two agents (to be speci�ed below). In line with this, all signals are assumed

to have the same variance: var(xij) = s2. Given symmetry among agents,

we consider also symmetric incentive schemes, and hence symmetric indexes

in the bonus scheme.

Before specifying the structure of correlations among signals, we exploit the

fact that indexes in the current setting are in any case linear (as in (2)), and

hence that (symmetric) indexes can be written in the following form

y1 = �11(x11 � e1) + �12(x12 � h1) + �21(x21 � e2) + �22(x22 � h2)

y2 = �11(x21 � e2) + �12(x22 � h2) + �21(x11 � e1) + �22(x12 � h1)

Here �11 is the weight on agent 1�s "e1 -signal", �12 the weights on her "h1�
signal" etc. By symmetry agent 2 has the same weights on her corresponding

signals. Both indexes are de�ned with e¤orts set at their equilibrium levels.

Provided the coe¢ cients �kl are such that Pr(y1 = y2j e; h) = 0, agent 1 will
get a bonus (�i(x) = b > 0) i¤ y1 > y2 and y1 > 0. We will subsequently

invoke assumptions which ensure that this property (of y1 and y2 almost

surely being unequal) holds.

Remark. As observed in Section 2, the bonus scheme can equivalently be de-

�ned in terms of indexes which for agent 1 takes the form ~y1(x) = �kl�klxkl,

and with a similar expression ~y2(x) for agent 2. Since by symmetry equi-

librium e¤orts will be equal across agents here (e1 = e2; h1 = h2), these

indexes have equal expectations for equilibrium e¤orts: E( ~y1(x)j e; h) =
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E( ~y2(x)j e; h) � ~y0. Agent i will then get a bonus i¤ ~yi(x) > ~y�i(x) and

~yi(x) > ~y0.

We now turn to a characterization of the incentives provided by the bonus

scheme. We then return to the FOCs for optimal e¤orts, of which there are

two for each agent. In particular for agent i:

cei(ei; hi) =
R
�i(x)fei(x; e; h)dx

chi(ei; hi) =
R
�i(x)fhi(x; e; h)dx

where by symmetry e1 = e2; h1 = h2, and the agents are symmetric in all

respects. Using again the multinormal distribution, we can then show that

the FOCs for agent 1�s e¤orts, and symmetrically for agent 2�s e¤orts, are

given as follows

Lemma 2 Provided Pr(y1 = y2j e; h) = 0, the bonus scheme yields the fol-
lowing FOCs for (symmetric and positive) e¤orts

cei(ei; hi)i=1 = (�11 +
�11 � �21p
2(1� ~�)

)b
�0
2~s

chi(ei; hi)i=1 = (�12 +
�12 � �22p
2(1� ~�)

)b
�0
2~s

where ~s(�) = SD(yi), ~�(�) = corr(y1; y2), �0 =
1p
2�
and b is the optimal

bonus level.

If agent 1 deviates to some e¤ort e01 she will a¤ect the signal x11 (by chang-

ing its mean) and by that a¤ect her own index y1, but also a¤ect the other

agent�s index y2 if �21 6= 0. The terms in the �rst formula in the lemma ac-
count for these two e¤ects. The second formula has a similar interpretation.

The principal�s problem can now be seen as to maximize the surplus v(e; h)�
�ic(ei; hi), given the incentive constrants in the lemma and the enforcement

constraint. This will endogenously determine e¤orts, bonus level b, and the

weights � in the bonus scheme.

We see immediately from the formulas in the lemma that a lower standard

deviation ~s for the indexes will, all else equal, strenghten incentives, and

that a lower variance s2 = var(xkl) will have this e¤ect. More precise signals
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xkl will thus boost incentives This will, moreover, increase the achieveable

surplus and thus be overall bene�cial. The latter e¤ect follows because, if

a certain surplus S can be achieved with the combination � ; b; s, then the

same surplus can be achieved with a combination � ; b0; s0 where b0 < b if

s0 < s. The lower bonus b0 will yield slack in the enforcement constraint

under s0, and thus allow for adjustments to further increase the surplus.

From the lemma we see that incentives will also be a¤ected by the correlation

(~�) between the indexes. These e¤ects cannot, however, be assessed without

knowing more about the structure of the (optimal) weights � . Proposition

1 gives us some information of this structure, and we will now exploit this

insight.

To simplify somewhat, but yet illustrate some basic points, we will in the

following analysis assume that there is pairwise correlation between the "e-

tasks" (x11; x21), between the "h-tasks" (x12; x22) and between the two tasks

operated by each agent, but that the signals are otherwise uncorrelated. The

relevant correlation coe¢ cients are thus4

�1 = corr(x11; x21), �2 = corr(x12; x22), (4)

�a = corr(x11; x12) = corr(x21; x22) (5)

The last equality re�ects that agents are supposed to be symmetric, and

hence must have the same correlation between the signals from "internal"

tasks. Recall moreover that all signals have the same variance, var(xkl) = s2.

Given these assumptions about correlations, we can now see that the result

in Proposition 1 implies the following relations between the coe¢ cients �kl
in the indexes:

�21 = ��1�11 and �22 = ��2�12 (6)

This is so because with these coe¢ cients we can write the index for e.g agent

4The coe¢ cients must satisfy restrictions ensuring that the covariance matrix is positive
de�nite. These are stated in the appendix where needed.
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1 as

y1 = �11(x11 � e1 � �1(x21 � e2)) + �12(x12 � h1 � �2(x22 � h2))

= �11(x11 � E(x11jx21)) + �12(x12 � E(x12jx22)); (7)

where the last equality follows because the conditional expectation ot two

normally distributed variables with identical variances is of the form E(xij jxkl) =
Exij + �(xkl � Exkl), with � = corr(xij ; xkl). For coe¢ cients satisfying (6)
the index can thus be written in the form with conditional expectations

given in (3), with �11 = �11 and �
1
2 = �12.

The index y1 is thus a weighted sum of two terms, where the �rst measures

agent 1�s performance on her e-task compared to what would be expected,

given agent 2�s performance on her e-task The latter is informative about

agent 1�s e-e¤ort, since the signals are correlated, and it is here taken into the

index as a benchmark, to which agent 1�s performance is compared. The sec-

ond term in the index is similarly a measure of agent 1�s perfomance on the

h-task, compared to its conditional expectation, given agent 2�s performance

on her h-task. The index for agent 2 will have a similar representation,

It is straightforward to verify that we now have corr2(y1; y2) < 1, and hence

that Lemma 2 applies. The marginal e¤ort incentives are thus given by the

formulas in the lemma, and with coe¢ cients �kl satisfying (6). We can then

state the following proposition.

Proposition 2 With noisy signals from separate tasks, and signals from

each type of e¤ort being correlated as speci�ed in (4) the optimal perfomance

indexes are of the form given in (7) for agent 1, and a similar expression for

agent 2. An agent�s performance on each task is then benchmarked against

the other agent�s performance on the correlated task, and the index is a

weighted sum of these benchmark-adjusted performances. The agent that

realizes the highest index value is awarded the maximal bonus (b), provided

that the index value exceeds zero. This incentive scheme leads to marginal

e¤ort incentives (at equilibrium e¤orts) given by the formulas in Lemma 2,

and with coe¢ cients �kl satisfying (6).

We will now examine the e¤ort incentives in more detail. First note that a
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scheme that awards a bonus for yi > max fyj ; 0g is equivalent to a scheme
that awards a bonus for kyi > max fkyj ; 0g with k > 0, hence we may

normalize and set �11 = 1. To simplify further, we will invoke the assumtion

of identical correlations, i.e. that �1 = �2 � �. The expressions in Lemma
2 are evaluated (with �21 = ���11, �22 = ���12 and �11 = 1) and displayed
in the appendix. Here we will �rst consider the case �a = 0, i.e. the case

where the two tasks operated by the same agent are uncorrelated. We then

obtain the following

~s2 = varyi = s
2(1 + �212)(1� �2); cov(y1; y2) = s

2�(�2 � 1)(1 + �212);

and hence ~� = corr(y1; y2) = ��. Inserting these expressions into the

formulas in Lemma 2, we �nd by straightforward calculations that they

yield the following conditions

cei(ei; hi)i=1 = R0(�)
�0b

s
=
q
1 + �212 (8)

cei(ei; hi)i=1 = R0(�)
�0b

s
(�12=

q
1 + �212); (9)

where

R0(�) = (1=
p
1� �2 + 1=

p
2(1� �))=2 (10)

The principal�s problem can now be seen as to maximize the surplus v(e; h)�
�ic(ei; hi), given the incentive constrants in (8)-(9) and the enforcement

constraint. This will endogenously determine e¤orts, bonus level b, and the

weight �12 in the bonus scheme.

We see that, all else equal, the weight �12 in the index motivates h-e¤ort

and demotivates e-e¤ort, which is as expected of course. For given �12, the

e¤ect of correlation on the incentives for e¤ort are captured in the function

R0(�) This function is U-shaped, as shown in the �gure below. This im-

plies that stronger correlation (both positive and negative, if the latter is

su¢ ciently strong5) boosts incentives. A contributing factor to this e¤ect is

that increased correlation reduces the variance of each index (as can be seen

in the formula for varyi above), and hence makes the indexes more precise.

5The function R0(�) has a minimum at � = �0:236 . The same function actually also
appears in the single-task case in Kvaløy-Olsen 2019.
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This is however, not the whole story, since the same e¤ect operates in a

simple tournament based on the indexes y1 and y2. In such a tournament,

agent 1 gets the bonus whenever y1 > y2, and it is straightforward to see

that the marginal incentive for e¤ort e1 is then (in the present case of �a = 0)

equal to RT (�)�0b=s
p
1 + �212, where RT (�) = 1=

p
2(1� �). The graph of

RT (�) is depicted by the dashed curve in the �gure, and clearly illustrates

that incentives in a simple tournament are lower than those in the modi�ed

(and optimal) tournament with hurdles.6 This illustrates the importance of

the hurdle requirement in the tournament scheme.
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Since incentives are U-shaped in �, the optimal surplus will also be U-shaped.

This follows because if e¤orts (e; h) are optimal for a given �, then it will be

possible to implement the same e¤orts for a �0 with R0(�0) > R0(�), namely

by just reducing the bonus b accordingly.This will yield slack in EC, and

thus room for a higher bonus to induce e¤orts that will increase the surplus.

So far we have analysed the case where pairwise correlations between signals

from corresponding tasks "across" agents are equal (�1 = �2), and signals

from "internal" tasks are uncorrelated (�a = 0). We will now brie�y consider

the modi�cations that follow from �a 6= 0. Precise formulas are given in the
appendix, and show that higher �a reduces marginal incentives for e¤orts.

This is illlustrated in the �gure below, which shows, for given weight �12
and bonus b, the marginal incentives for e¤ort as functions of �, for 3 values

of �a, namely �a = �1
2 (top), �a = 0 (middle) and �a =

1
2 (bottom)

7.

6A similar comparison was made in the single-task case analysed in Kvaløy-Olsen 2019.
7The graphs in this �gure are de�ned and drawn such that the case �a = 0 corresponds

to R0(�)
p
2, hence the levels depicted for this case are higher than those in the previous
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The �gure clearly illustrates that higher correlation between signals from

"internal" tasks reduces incentives. A contributing factor for this is that

the higher correlation increases the variance of each index, and thus makes

the two performance indexes less precise. This in turn weakens incentives.

As outlined for the previous case of �a = 0, it will more generally be the case

that any change in the correlation structure that strengthens incentives, will

also enable a larger surplus to be achieved. The �gure tells us that large

negative "internal" correlation combined with strong pairwise correlation

(negative or positive) "between" agents�tasks are bene�cial in this respect.

3.1.1 Task organization.

The structure of signal correlations will have implications for the optimal

organization of tasks. If tasks are �exible, then an alternative to the task

allocation considered so far would be to allocate the "e-tasks" to one agent

and the "h-tasks" to the other agent. Assuming additive cost functions for

e¤orts, the best allocation would then be the one generating the strongest

incentives for (symmetric) e¤orts. The analysis above tells us that large

negative "internal" correlation combined with strong pairwise correlation

(negative or positive) "between" agents�tasks are bene�cial in this respect.

If �a is strong and negative and � is strong and positive, then the current

organization would be best, since the alternative would yield a strong and

positive internal correlation (then �), combined with strong and negative

�gure. (The graphs in the �gure are drawn for �12 = 1 and depicts a function ~R(�; �a)
such that ce1 = ~R(�; �a)

�0
2s
b, see (20) in the appendix. Comparing with (8 ) we thus have

~R(�; 0) = R0(�)
p
2.)
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correlation (then �a) "between" agents. If, however, �a is strong and positive

and � is strong and negative, the alternative organization would be better.

If both � and �a are positive, then the allocation that yields the smallest

"internal" correlation would be best. A full analysis is outside the scope

of this paper, but these esamples illustrate the issues involved in such an

analysis.

Another aspect of task organization is the possible abandonment of some

tasks. We have seen that increasing correlation (�a) between an agent�s "in-

ternal" tasks is detrimental for e¢ ciency, because such increasing correlation

weakens incentives on all tasks. If one task, say the "h-task" is abandoned,

then this e¤ect is eliminated, and the agents will here compete as single-

tasking agents. This abandonment (or shutting down) of the task can be

achieved by setting �12 = 0, and the question is then whether this may in

fact be optimal in some situations. Apart from eliminating the detrimen-

tal e¤ect of internal (positive) correlation, there is here also an additional

bene�cial e¤ect on incentives for the e-task, namely the e¤ect that follows

from those incentives being decreasing in �12, and thus maximal for �12 = 0.

This is readily seen in (8), and holds also more generally for �a > 0.

There will be a loss of output when shutting down one task, but the question

is now whether this detrimental e¤ect can be more than compensated by

the bene�cial e¤ects that we have just descibed. We show in the appendix

that there are situations where the answer is a¢ rmative, and hence that

shutting down one task from each agent is optimal, although this would

not be optimal in a �rst-best world. The proof considers the case � = 0

(which simpli�es the anlysis), and shows that for �a > 0 there will be value

and cost con�gurations that make �12 = 0 optimal for a range of discount

factors. As could be expected, this occurs when the cost of providing h-

e¤ort is relatively high, so that the value loss from shutting down this task

is relatively small. We can then summarize this discussion in the following

proposition.

Proposition 3 For �a > 0 there are con�gurations of cost and value func-
tions such that shutting down one task for each agent is optimal for a range

of discount factors, although this would not be optimal in a �rst-best world.
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4 Common tasks.

In this section we also consider two agents who exert two types of e¤ort

(ei; hi) each, but now we will consider a setting with common tasks, where

we can think of ei as e¤ort on "own task" and hi as help on the other agent�s

task. There are two signals x = (x1; x2) � N(:;�), and

Ex1 = e1 + h2, Ex2 = e2 + h1

We will also assume that the agents are symmetric, and then consider only

symmetric solutions, i.e. where the levels of own e¤ort and help, respectively,

are in equilibrium equal across agents (e1 = e2; h1 = h2).

From the multinormal distribution we have that the indexes in Lemma 1

take the following form under symmetry:

y1 = �1(x1 � e1 � h2) + �2(x2 � e2 � h1)

y2 = �1(x2 � e2 � h1) + �2(x1 � e1 � h2)

Again, by symmetry the weights on "own task" and "the other�s task" should

be equal across agents, and this leads to the two expressions for the two

indexes.

There are thus performance indexes y1 = �1x1 + �2x2 � y0 for agent 1,
y2 = �1x2 + �2x1 � y0 for agent 2, where (under symmetry) y0 = (�1 +

�2)(e1 + h1); such that agent i gets a bonus i¤ yi � max f0; yjg. If the
inequality is strict, only agent i is paid a bonus, and the bonus is then

maximal (�i =
�
1��Surplus � b). If y1 = y2 is a zero probability event,

then almost surely at most one agent is paid a bonus, and if so, the bonus

is maximal.

We see that, provided �1 > �2, we have y1 > y2 i¤ x1 > x2. So one way

to interpret this scheme is that agent 1 is awarded the bonus i¤ (i) the

performance on his own task exceeds that of his partner (x1 > x2), and (ii)

a "team performance index" �1x1 + �2x2 exceeds a hurdle y0. The former

aspect strongly motivates "own e¤ort" and de-motivates "help", but the

latter aspect may ensure that incentives for help are also in place. We will

refer to this scheme, which contains both a tournament element as well as

a team incentive element, as a hybrid scheme.
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The scheme is illustrated in the �gure below. Agent 1 gets the bonus for

outcomes in the region between the heavy lines. Agent 2 will get the bonus

in a symmetric region above the line x1 = x2.

Our next step is to characterize the incentives provided by this bonus scheme.

Assuming the weights �1; �2 are such that y1; y2 are not perfectly correlated

(i.e. corr(y1; y2)2 < 1), we can, as veri�ed in the appendix, use a procedure

completely analogous to the proof of Lemma 2 to see that the scheme yields

the following FOCs for symmetric e¤orts (e1 = e2 > 0, h1 = h2 > 0):

cei(ei; hi)i=1 = (�1 +
�1 � �2p
2(1� ~�(�))

)
�0
2~s(�)

b (11)

chi(ei; hi)i=1 = (�2 +
�2 � �1p
2(1� ~�(�))

)
�0
2~s(�)

b (12)

where ~s(�1; �2) = SD(yi), ~�(�1; �2) = corr(y1; y2), �0 =
1p
2�
and b is the

optimal bonus level.

It is straightforward to see that corr(y1; y2)2 < 1 if and only if �1 6= �2.

For �1 = �2 the two indexes y1 and y2 will be perfectly correlated (in fact

identical for symmetric e¤orts), and the formulas above will not apply. In

that case the tournament aspect of the overall incentive scheme vanishes,

and only the team aspect remains, implying hat both agents can be awarded
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a bonus only when the conmmon team index y1 = y2 = �1(x1 + x2) � y0
exceeds zero. Keeping the scheme symmetric, each agent is then awarded

a bonus b=2, and it is straightforward to verify that this scheme yields the

following FOCs for e¤orts

cei(ei; hi)i=1 = �1
�0

2~s(�1)
b = chi(ei; hi)i=1; (13)

where again ~s(�1) = SD(y1).

From the expressions for marginal incentives in the FOCs we see that they

depend on �1; �2 only via the ratio of the two components, say �2=�1. (This

is true for the correlation coe¢ cient ~�(�) as well as for ~s(�)=�1.) So we may

normalize by e.g. setting �1 = 1. In the following we will (with a slight

abuse of notation) let � denote this (scalar) ratio; i.e. � = �2=�1.

Keeping � ; b constant, we see that the expressions for margianl incentives

are larger when ~s is smaller, which can be due to smaller variance in the

signals xi. Such conditions will thus, for given b; � make incentives stronger,

which in the end will allow for higher levels of both types of e¤orts to be

implemented.

Taking account of the normalization, we have cov(y1; y2) = cov(x1+�x2; x2+

�x1) = (�+ 2� + �
2�)s2 and

~s2 = varyi = var(xi + �xj) = s
2(1 + �2 + 2��) (14)

~� = corr(y1; y2) =
2� + (1 + �2)�

1 + �2 + 2��
(15)

We see that both ~s and ~� increase with increasing x-correlation �. All

else equal, the higher ~s reduces incentives for both e¤orts. Assuming � =

�2=�1 < 1, we see that the higher ~� increases incentives for own e¤ort (ei),

and reduces incentives for helping e¤ort (hi). Higher x-correlation � thus

makes it "harder" to induce helping e¤ort.

In fact, it turns out that for � � 0 it becomes impossible to induce helping
e¤ort when � = �2=�1 < 1: the marginal incentive on the RHS of (12) then

becomes negative. Moreover, for � � 0 it becomes impossible to induce own
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e¤ort if � > 1, as the marginal incentive in (11) then becomes negative..

Thus, as we verify below, for � � 0 it is impossible to induce positive levels
of both e¤ort types when � 6= 1.

So, when the signals are non-negatively correlated, the hybrid incentive

scheme that involves both a tournament element and a team element cannot

provide positive incentives for both "own e¤ort" and helping e¤ort. If both

types of e¤ort are vital, this implies that a pure team based incentive scheme

(� = 1) becomes optimal, with marginal e¤ort incentives given in (13),

Under negative signal correlation (� < 0) it turns out that the hybrid scheme

can provide positive incentives for both types of e¤ort for a range of values

of � 6= 1. In this case the hybrid scheme may thus dominate a pure team

based scheme, and we verify below that it does indeed do so under some

conditions.

To verify these assertions we start by substituting for ~s and ~� into conditions

(11) - (12), which then take the following forms for � 6= 1 (as ver�ed in the
appendix):

cei(ei; hi)i=1 = (
1p

1 + �2 + 2��
+
1� �
j1� � j

1p
2(1� �)

)
�0
2s
b (16)

chi(ei; hi)i=1 = (
�p

1 + �2 + 2��
� 1� �
j1� � j

1p
2(1� �)

)
�0
2s
b (17)

From these expressions we see by straightforward calculations that for � < 1

the last one is positive i¤ (for � > 0) we have �(1� 2�) > 1, and for � > 1
that the �rst one is positive i¤ 1���2� > 0. These conditions can obviously
only hold if � < 0. For � � 0 they cannot hold, and the hybrid scheme (with
both a tournament and a team element) cannot provide positive incentives

for both types of e¤orts. If both e¤orts are essental, e.g. in the sense that

the gross value v(e; h) is positive only if both types of e¤orts are provided,

then the hybrid scheme cannot be optimal. A pure team incentive scheme

(with � = 1) is then optimal. In this scheme each agent gets bonus b=2 if

team output x1 + x2 exceeds its expected value, given equlibrium e¤orts,

and no agent gets a bonus otherwise.

For � < 0 we see that there is a range of values � 6= 1 where the hybrid

scheme induces positive incentives for both types of e¤orts. Whether such
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a scheme (with � 6= 1) dominates a pure team scheme (with � = 1) depends

on the primitives of the model, in particular the form of the gross value

and cost functions. In the appendix we identify some conditions where the

hybrid scheme dominates and hence is optimal. We summarize this in the

following proposition

Proposition 4 For � � �2=�1 6= 1 the hybrid incentive scheme generates

e¤ort incentives given by the right-hand sides of (16) - (17), and these cannot

both be positve if the signals (x1; x2) are non-negatively correlated (� � 0).
If both e¤ort types are essential, the hybrid scheme can then not be optimal,

and the optimal scheme is a pure team based scheme (� = 1), under which

symmetric equilibrium e¤orts (e1 = e2; h1 = h2) satisfy

cei(ei; hi)i=1 =
�0

2s
p
2(1 + �)

b = chi(ei; hi)i=1;

For negatively correlated signals (� < 0) the hybrid scheme generates positive

incentives for both e¤ort types if 1
1�2� < � < 1 or if 1 < � < 1� 2�. There

are conditions under which this scheme dominates a pure team based scheme,

and hence is optimal.

The incentives for a team based scheme displayed in the proposition follow

from (13) and (14) with �1 = � = 1. Observe that this gives identical

incentives for both types of e¤ort, which may be quite di¤erent from optimal

incentives in a �rst best solution. For example, if helping e¤ort is less

productive than e¤ort on the agent�s own task, the �rst-best solution may

require lower incentives for the latter type than for the former one. If � < 0,

a hybrid scheme can generate a certain such di¤erence with � < 1. We show

in the appendix that the hybrid scheme may in fact dominate, and hence be

optimal, under some such conditions.

We now provide some intuition for why the hybrid scheme exhibits the prop-

erties stated in the proposition, and in particular why it can only generate

positive incentives for both types of e¤ort if the signals are negatively cor-

related. To this end, consider the �gure below.
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x1

x2

Recall that the hybrid scheme (normalized with �1 = 1) awards the bonus

to agent 1 if x1 > x2 and the index x1 + �x2 exceeds a hurdle given by its

expectation (y0) for equilibrium e¤orts. This is represented by by outcomes

in the area between the heavy lines in the �gure, where the upward sloping

line has slope 1 (representing x2 = x1), and the downward sloping one has

slope �1=� (representing x1+ �x2 = y0) The �gure illustrates a case where
� < 1.

The �gure also depicts isocontours for the joint density of (x1; x2), given

equilibrium e¤orts, for two cases, namely for � = 0, represented by the blue

circle and for � < 0, represented by the red curve.8 The probability for

agent 1 to win the bonus is given by the total probability mass in the bonus

region for each of the two cases.

Consider now a small increase of helping e¤ort, say�h1 > 0 for agent 1. This

will shift the probability distribution vertically upwards, and hence imply a

loss of probability mass in the bonus region along the upper border (where

x1 = x2), and a gain of probability mass along the lower border (where

x1 + �x2 = y0). Letting g(x1; x2) represent the density, given equilibrium

e¤orts (and suppressing here its dependence on �), the marginal net gain

associated with increased helping e¤ort is thus, for given x1, represented by

�g(x1; x1) + g(x1; (y0 � x1)=�). This net gain is in the �gure represented
by the di¤erence in the density values at the two intersections between the

vertical (dashed) line and the border lines for the bonus region.

8The �gure implicitly assumes that equilibrium e¤orts ae the same for the two cases,
but this is just a simpli�cation to be able to illustrate both cases in one �gure, and is not
of importance for the argument.
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It follows from the geometry of the isocontours that for � = 0 (the blue

circle), the lower intersection is at a lower isocontour compared to the up-

per intersection, and hence that the relevant di¤erence in density values is

negative. Since this is true for every x1 in the bonus region, the total net

gain obtained by summing (integrating) over all relevant x1 is also negative.

The overall net gain associated with a marginal increase in helping e¤ort is

thus negative for the case � = 0.

We now see that the opposite conclusion holds for the case � < 0 illustrated

in the �gure. For given x1 the lower intersection is at a higher isocontour

compared to the upper intersection, and the net gain is thus positive for each

relevant x1, implying that the total net gain is also positive. The overall net

gain associated with a marginal increase in helping e¤ort is thus positive

for the case of � < 0 and � < 1 illustrated in the �gure. This explains the

di¤erences between incentives for helping e¤ort for the case � = 0 versus a

case with � < 0:

We �nally note that for � > 0 the relevant isocontour for the probability

density will be tilted upwards (rather than downwards, as was the case for

� < 0), and a conclusion similar to the conclusion for the case � = 0 will

then follow. The marginal incentive for helping e¤ort in the hybrid scheme

is thus negative also for � > 0. :

5 Conclusion

Workers are often evaluated along many dimensions. The evaluation of a

professor, for instance, will typically be based on his or her publications,

citations, student evaluations, research disseminations and services for the

department. The performances on each of the tasks will typically be cor-

related, and at least some of the performance measures will typically be

non-veri�able to a third party. Moreover, workers operate in environments

where they interact with other workers, and performances are often corre-

lated. The aim of this paper is to study this environment: Optimal incentives

for a group or team of multitasking agents whose performance measures are

non-veri�able and potentially correlated.

So we analyze optimal relational contracts for a group (team) of multitasking
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agents with hidden actions, where contracts are based on non-veri�able noisy

signals that may be correlated across agents and between tasks. We show

that the optimal contract de�nes a performance measure in the form of

an index (a scorecard) for each agent, and awards a bonus to the highest-

performing agent, provided his or her index exceeds a hurdle. An optimal

index generally involves benchmarking against other agents, and this may, in

combinantion with the hurdle requirement, introduce a cooperative element

in the otherwise competitive incentive structure.

For agents with separate tasks and normally distributed signals, we found

that strong correlation (either positive or negative) across agents is bene-

�cial, while larger correlation within each agent�s tasks is detrimental for

e¢ ciency, and that this has implications for optimal organization of tasks.

For agents with common tasks we �nd that the optimal contract may have

features of both tournament and team incentives. The tournament aspect

incentivizes an agent to exert e¤ort on his own task, while the hurdle nec-

essary to receive a bonus also incentivizes an agent to help his peers. In our

setting this hybrid scheme can only be optimal if signals from agents�tasks

are negatively correlated. Otherwise pure team incentives are optimal.

Our analysis has been con�ned to settings where all information signals are

non-veri�able. In reality there is often a mix of veri�able and non-veri�able

signals, which then allows the parties to use formal, externally enforced con-

tracts in addition to self-enforced relational contracts. A general framework

for analyzing such contracting has been developed by Watson et al (2020),

and an important insight from that framework is that optimal contracts

are no longer generally stationary. This makes the analysis of multitasking

agents with noisy signals quite challenging, and certainly outside the scope

of this paper, but we hope to return to this in future work.9
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APPENDIX

Proof of Lemma 1. Letting �i be a (row) vector of multipliers for agent i�s
IC constraint for action ai (represented by its FOC), and �(x) a multiplier

for the EC constraint, the Lagrangean for the problem is

L = v(a)� �ni=1c(ai) + �ni=1�i(
R
�i(x)raif(x; a)�rc(ai))

+
R
�(x)( �

1�� (v(a)� �
n
i=1c(a

i))� �ni=1�i(x))

Optimal bonuses entail, for all x:

@L
@�i(x)

= �iraif(x; a)� �(x) � 0, �i(x) � 0,

with complementary slackness. Moreover, given that the �rst-best allocation

cannot be attained, the EC constraint will bind and �(x) > 0. Hence: if

bonuses for two agents i and j are positive, then

�iraif(x; a) = �(x) = �jrajf(x; a)

This outcome (for the x0s) may or may not be a positive probability event.

If it is, then in this event of positive probability, both agents are awarded

a bonus. Otherwise at most one agent will be awarded a bonus. The

bonus will then optimally be assigned to that agent for which the expression

�iraif(x; a) is (a) positive and (b) largest among the agents.

Proof of Proposition 1. Consider agent 1, and partition the entire signal
vector x such that we can write x = (x1; x2), where in this proof only x2 �
x�1 consists of all signals in x not contained in x1. (We use this notation

here to avoid confusion with notation for inverses.) Aso de�ne

e1 = Q1a
1 = E(x1

�� a1) and e2 = E(x2
�� a);

where now e2 does not depend on agent 1�s actions a1. Observe that the

normal distribution implies that we can write

ln f(x; a) = �1
2
((x1�e1)0M11(x

1�e1)+2(x1�e1)0M12(x
2�e2)+(x2�e2)0M22(x

2�e2))+k;

where the matrices Mij are partitions of the inverse covariance matrix M �
��1 such that we can write the quadratic form (x � e)0��1(x � e) as just
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displayed. This implies, since e1 = Q1a1 and e2 does not depend on a1 that

we have

ra1 ln f(x; a) = Q01(M11(x
1 � e1) +M12(x

2 � e2)):

The partition matrices Mij can be expressed in terms of the correspond-

ing partitions �ij of the covariance matrix �, and we have in particu-

lar M12 = �M11�12�
�1
22 . (This follows from M� = I, which implies

M11�12 +M12�22 = 0.) The formula for M12 implies that we now have

�1ra1 ln f(x; a) = �1Q01M11(x
1 � e1 � �12��122 (x2 � e2)):

Moreover, it is a well known fact that conditional expectations for the multi-

normal distribution have the following form

E(x1
��x2) = e1 +�12��122 (x2 � e2);

where ei = Exi are the unconditional expecations.De�ning vector �1 =

�1Q01M11, it then follows that the formula for the index �1ra1 ln f(x; a) can
be written in the form given in the proposition. The same applies for all

agents j 6= 1..

Proof of Lemma 2. By assumption we consider a case where the coe¢ -
cients � ij imply corr(y1; y2)2 < 1; ensuring that Pr(y1 = y2) = 0. Note that

by symmetry of the coe¢ cients in the expressions de�ning y1; y2, and due

to identical variances for the x� signals, we have var(y1) = var(y2).

Fix equilibrium symmetric e¤orts e; h, and let g(y; e0; h0; �) be the (joint)

distribution for vector y, when agents exert e¤orts e0; h0. This distribution

is multinormal with expectations

Ey1 = �11(e
0
1 � e1) + �12(h01 � h1) + �21(e02 � e2) + �22(h02 � h2)

Ey2 = �11(e
0
2 � e2) + �12(h02 � h2) + �21(e01 � e1) + �22(h01 � h1);

and covariance matrix, say ~� = [~nij ], where the elements depend on � (and

on variance and covariance elements for x). In terms of y the FOCs for agent

1�s choice of e¤orts can be written

ce1(e1; h1) =
R
�1(y)ge1(y; e; h; �)dy = b

R
�1(y)>0

ge1(y; e; h; �)dy
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ch1(e1; h1) =
R
�1(y)gh1(x; e; h; �)dy = b

R
�1(y)>0

gh1(x; e; h; �)dy

where b is the magnitude of the bonus, and

ge1(y; e; h; �) =
@
@e01

g(y; e0; h; �)je0=e, gh1(y; e; h; �) = @
@h01

g(y; e; h0; �)jh0=h

Since the normal density is of the form g(y; e0; h0; �) = K exp(�1
2

h
(y � Ey)T ~��1(y � Ey)

i
),

and Ey depends linearly on e0 and h0, we have

@
@e01
g(y; e0; h; �) = � @

@y1
g(y; e0; h; �)@Ey1

@e01
� @

@y2
g(y; e0; h; �)@Ey2

@e01

@
@h01
g(y; e; h0; �) = � @

@y1
g(y; e0; h; �)@Ey1

@h01
� @

@y2
g(y; e0; h; �)@Ey2

@h01

Since here @Ey1
@e01

= �11,
@Ey2
@e01

= �21,
@Ey1
@h01

= �12, and
@Ey2
@h01

= �22 we obtainR
�1(y)>0

ge1(y; e; h; �)dy = ��11
R
�1(y)>0

gy1(y; e; h; �)dy��21
R
�1(y)>0

gy2(y; e; h; �)dyR
�1(y)>0

gh1(y; e; h; �)dy = ��12
R
�1(y)>0

gy1(y; e; h; �)dy��22
R
�1(y)>0

gy2(y; e; h; �)dy

We verify below the following claim

Claim. Z
�1(y)>0

gy1(y; e; h; �)dy = �
�0
2~s
(1 +

1p
2(1� ~�)

) (18)

Z
�1(y)>0

gy2(y; e; h; �)dy =
�0
2~s

1p
2(1� ~�)

(19)

where ~s = SD(yi) and ~� = corr(y1; y2):

Given this claim, the FOCs can thus be written as

ce1(e1; h1) = b�11(
�0
2~s +

�0
2~s

1p
2(1�~�)

)� b�21 �02~s
1p

2(1�~�)

ch1(e1; h1) = b�12(
�0
2~s +

�0
2~s

1p
2(1�~�)

)� b�22 �02~s
1p

2(1�~�)

This veri�es the formulas given in the lemma.

It remains to verify the claim. To this end, note �rst that for (e0; h0) =

(e; h) we have Ey = 0 and hence the density g(:) doesn�t depend on e; h.

Simplifying notation we therefore now write g(y; �) for this density; thus

g(y; �) = K exp(�1
2

h
y0 ~��1y

i
= K exp(�1

2

�
~m11y

2
1 + ~m22y

2
2 + 2 ~m12y1y2

�
);
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where the elements ~mij depend on � .

Since �1(y) > 0 i¤ y1 > y2 and y1 > 0, we have nowR
�1(y)>0

gy1(y; �)dy = (
R 0
�1 dy2

R1
0 dy1 +

R1
0 dy2

R1
y2
dy1)gy1(y; �)

=
R 0
�1 dy2(�g(0; y2; �)) +

R1
0 dy2(�g(y2; y2; �))

= �
R 0
�1 dy2K exp(�

1
2

�
~m22y

2
2

�
)�
R1
0 dy2K exp(�1

2 [ ~m11 + ~m22 + 2 ~m12] y
2
2)

= � K
p
2�

2
p
~m22

� K
p
2�

2
p
~m11+ ~m22+2 ~m12

The last line follows since (for k > 0)R 0
�1 dy2 exp(�

1
2ky

2
2) =

R1
0 dy2 exp(�1

2ky
2
2) =

1p
k

R1
0 dz2 exp(� z2

2 ) =
p
2�

2
p
k

Similarly we haveR
�1(y)>0

gy2(y; �)dy =
R1
0 dy1

R y1
�1 dy2gy2(y; �) =

R1
0 dy1g(y1; y1; �)

=
R1
0 dy1K exp(�1

2 [ ~m11 + ~m22 + 2 ~m12] y
2
1)

= K
p
2�

2
p
~m11+ ~m22+2 ~m12

From the properties of the normal distribution we have

~m11 =
1

~s21(1�~�2)
, ~m22 =

1
~s22(1�~�2)

, ~m12 = � ~�
~s1~s2(1�~�2)

, K = 1

2�~s1~s2
p
1�~�2

where ~s2i = varyi; ~� = corr(y1; y2). As noted above we have (by symmetry)

~s21 = ~s
2
2 = ~s

2, so

~m11 = ~m22 =
1

~s2(1�~�2) ; ~m12 = � ~m11~�; K = 1
2�~s

p
~m11

Hence

K
p
2�

2
p
~m22

= 1
2�~s

p
~m11

p
2�

2
p
~m22

= 1
2
p
2�~s

= �0
2~s

K
p
2�

2
p
~m11+ ~m22+2 ~m12

= 1
2�~s

p
~m11

p
2�

2
p
2 ~m11�2 ~m11~�

= 1p
2�~s

1

2
p
2(1�~�)

= �0
2~s

1p
2(1�~�)

This veri�es (18) - (19), hence veri�es the Claim, and thus completes the

proof.

Veri�cation of equations (8)-(9). We verify here equations (8)-(9), and
do so by �rst deriving the corresponding equations for the more general

case of a correlation �a not necessarily zero. Observe �rst that positive
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de�niteness of the correlation matrix requires 1��2��2a > 0 and (1��2)2�
(2�2 � �2a + 2)�2a > 0. Now, for �11 = 1, and thus from (6) �21 = �� and
�22 = ���12 we �nd, by straightforward calculations:

cov(y1; y2)=s
2 = ((1 + �212)(�

2 � 1)� 4�12�a)�

var(yi)=s
2 = (1 + �212)(1� �2) + 2�12(1 + �2)�a

Hence for ~� = corr(y1; y2) and ~s2 = var(yi) we get

(1� ~�)~s2=s2 = ((1 + �212)(1� �) + 2�12�a)(1 + �)2

Inserting this (and �11 = 1, �21 = ��, �22 = ���12) in the �rst formula in
Lemma 2 yields

(�11 +
�11��21p
2(1�~�)

) 12~s = (1 +
1+�p

2((1+�212)(1��)+2�12�a)(1+�)
~s
s)

1
2~s ;

and hence we have

cei(ei; hi)i=1 = (
1p

(1 + �212)(1� �2) + 2�12(1 + �2)�a
+

1p
2((1 + �212)(1� �) + 2�12�a)

)
�0b

2s

(20)

This reduces to the formula in (8) when �a = 0.

We note that the expression is decreasing in �a, which implies that the

strength of incentives are decreasing in this parameter.

From the second formula in Lemma 2 we now have

(�12 +
�12��22p
2(1�~�)

) 12~s = (�12 +
�12(1+�)p
2(1�~�)

) 12~s = (1 +
(1+�)p
2(1�~�)

) 12~s�12;

and hence this expression is equal to the expression in (20) multiplied by

�12. This veri�es formula (9).

Proof. of Proposition 3. Let R(�12; �a; �) be the function de�ned by the
expression in (20), so that the FOCs for equilibrium (symmetric) e¤orts are

given by

cei(ei; hi) = R(�12; �a; �)
�0
2s b and chi(ei; hi) = �12R(�12; �a; �)

�0
2s b

These conditions de�ne, for given b, e¤orts as functions of �12, and the

optimal �12 is then found by choosing it to maximize the total surplus

34



v(e; h)��ic(ei; hi). Letting ST (b) be the resulting surplus, the equilibrium
b is then found as the largest solution to b = �

1��S
T (b).

We will show that �12 = 0 can be optimal. Consider a case of quadratic

costs c(ei; hi) = e2i =2 + h
2
i =2� and linear gross value per agent v � (ei +

hi). To simplify further, consider the case � = 0. From the expression for

R(�12; �a; �) in (20) with � = 0 we then have FOCs for equilibrium e¤orts

for agent 1 (and symmetrically for agent 2) as follows

e1 = R(�12; �a; 0)
�0
2s b = (

1p
(1+�212)+2�12�a

+ 1p
2((1+�212)+2�12�a)

)�02s b;

h1=� = �12R(�12; �a; 0)
�0
2s b

The condition for optimal �12 > 0 is, for given b:

(v � ce1) @e1@�12
+ (v � ch1) @h1@�12

= 0;

and �12 = 0 is optimal if the expression on the LHS is negative at �12 = 0.

Noting that ch1 = h1=� = 0 when �12 = 0, the condition is then

(v �R(0; �a; 0)
�0
2s b)Rt12(0; �a; 0)

�0
2s b+ (v � 0)�R(0; �a; 0)

�0
2s b < 0

We have here

R(0; �a; 0) = 1 + 1=
p
2 and R�12(0; �a; 0) = �(1 + 1=

p
2)�a;

where the last equality follows from di¤erentiating the expression forR(�12; �a; 0).

The condition for �12 = 0 to be optimal is then

�(v �Kb)�a + v� < 0, where K = R(0; �a; 0)
�0
2s = (1 + 1=

p
2)�02s ,

i.e.

b < v(1� �=�a)=K (21)

We see that this condition is feasible when 0 < � < �a

It now remains to verify that the condition can hold for the equilibrium

bonus b. This bonus must satisfy b � �
1��2S

F , where SF is the �rst-best

surplus per agent. the latter is achieved for e1 = v and h1 = �v and equals

v2(1 + �)=2, hence b must satisfy

b � �
1��v

2(1 + �)
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Condition (21) will therefore certainly hold if

�

1� � v
2(1 + �) < v(1� �=�a)=K (22)

Let S(b) be the surplus per agent when �12 = 0 and thus e1 = R(0; �a; 0)
�0
2s b �

Kb and h1 = 0. We then have S(b) = vKb� (Kb)2=2, and the equilibrium
bonus is then given by b = �

1��2S(b). This equaton has a positive solution

i¤ 1 < �
1��2S

0(0) = �
1��2vK. This condition and condition (22) will now

hold if
1

2vK
<

�

1� � <
(1� �=�a)
v(1 + �)K

; (23)

where K = (1 + 1=
p
2)�02s as de�ned above. Condition (23) is feasible for

� su¢ ciently small, more precisely for � < (1 + 2=�a)
�1. For parameters

satisfying (23) and � = 0 we have thus shown that �12 = 0 is optimal in the

relational contract.

Veri�cation of equations (11)-(12). As in the proof of Lemma 2, �x
optimal and symmetric e¤orts e; h, and consider the distribution for vector

y when agents exert e¤orts e0; h0. This distribution is here multinormal with

expectations

Ey1 = �1(e
0
1 + h

0
2 � e1 � h2) + �2(e02 � e2 + h01 � h1)

Ey2 = �1(e
0
2 + h

0
1 � e2 � h1) + �2(e01 � e1 + h02 � h2);

By comparison with the expressions in the proof of Lemma 2, namely

Ey1 = �11(e
0
1 � e1) + �12(h01 � h1) + �21(e02 � e2) + �22(h02 � h2)

Ey2 = �11(e
0
2 � e2) + �12(h02 � h2) + �21(e01 � e1) + �22(h01 � h1);

we see that the present case is one where

�1 = �11 = �22; and �2 = �21 = �12

From the FOCs following formulas (18)-(19) in the proof of Lemma 2 we

thus have

ce1(e1; h1) = b�11(
�0
2~s+

�0
2~s

1p
2(1�~�)

)�b�21 �02~s
1p

2(1�~�)
= b�02~s (�1+

�1��2p
2(1�~�)

)
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ch1(e1; h1) = b�12(
�0
2~s+

�0
2~s

1p
2(1�~�)

)�b�22 �02~s
1p

2(1�~�)
= b�02~s (�2+

�2��1p
2(1�~�)

)

This veri�es the formulas (11)-(12) for the case of common tasks.

Veri�cation of equations (16)-(17). From the formulas for ~s and ~� in

(15) and (14) we have

1� ~� = (1� �)2 1��
�2+2��+1

= (1� �)2 (1� �)s=~s

So, from (11) with �1 = 1 and �2 = � we then get

(�1 +
�1��2p
2(1�~�)

)1~s = (1 +
1��p

2(1��)(1��)2
~s
s)
1
~s =

1
~s +

1��
j1�� j

1��p
2(1��)

1
s

Substituting for ~s = s
p
�2 + 2�� + 1 we see that this veri�es formula (16).

The formula (17) is similarly derived from (12).

Proof of Proposition 4. It remains to verify the assertion that a hybrid
scheme may dominate a pure team scheme. Consider a case of quadratic

costs c(ei; hi) = e2i =2 + h
2
i =2� and linear gross value per agent v � (ei + hi).

Observe that for � < 1 and � ! 1�, the incentives given in (16) - (17) for

the hybrid scheme converge to the following limits

ce1 = (
1p
2+2�

+ 1p
2(1��)

)�02s b = (1 +
q

1+�
1��)

�0
2s
p
2+2�

b;

ch1 = (
1p
2+2�

� 1p
2(1��)

)�02s b = (1�
q

1+�
1��)

�0
2s
p
2+2�

b

These are both positive for � < 0. De�ne � =
q

1+�
1�� and � =

�0
2s
p
2+2�

. For

quadratic costs we have then

e1 = (1 + �)�b; h1=� = (1� �)�b

If the associated surplus for these e¤orts is S(b; �), the hybrid scheme can

(for � < 1) do no worse than S(b; �)� ", for arbitrary " > 0.

Now observe that the incentives and associated e¤orts for a pure team

scheme are, according to the formula in Proposition 4, obtained by set-

ting � = 0. We can therefore compare the two schemes by comparing � > 0

and � = 0.

For e¤orts e1 = (1 + �)�b and h1 = �(1� �)�b the social surplus per agent
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is

S(b; �) = b2(vb ((1 + �)� + �(1� �)�)�
1
2(1 + �)

2�2 � �
2 (1� �)

2�2)

With EC binding, the equilibrium bonus b = b� satis�es b = �
1��2S(b; �).

For this equation to have a positive solution we must have �
1��2

@
@bS(0; �) >

1. Suppose now that � < 1 and moreover

v�(1 + �) = @
@bS(0; 0) �

1��
�
1
2 <

@
@bS(0; �) = v�((1 + �) + (1� �)�))

Then by the �rst inequality there is no positive bonus that can be sustained

under the pure team incentive scheme (� = 0), while by the second inequality

such a positive bonus exists under the hybrid scheme. The hybrid scheme

then generates a higher surplus than does the pure team scheme.
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