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Abstract

Many economic and causal parameters depend on generated regressors. Examples

include structural parameters in models with endogenous variables estimated by control

functions and in models with sample selection, treatment effect estimation with propensity

score matching, and marginal treatment effects. Inference with generated regressors is com-

plicated by the very complex expression for influence functions and asymptotic variances.

To address this problem, we propose automatic Locally Robust/debiased GMM estimators

in a general setting with generated regressors. Importantly, we allow for the generated

regressors to be generated from machine learners, such as Random Forest, Neural Nets,

Boosting, and many others. We use our results to construct novel Double-Robust estima-

tors for the Counterfactural Average Structural Function and Average Partial Effects in

models with endogeneity and sample selection, respectively.
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1 Introduction

Many economic and causal parameters of interest depend on generated regressors. Leading

examples include the Counterfactural Average Structural Function (CASF) in models with en-

dogenous variables estimated by control functions (cf. Blundell and Powell, 2004; Stock, 1989,

1991), Average Partial Effects (APE) in sample selection models (Das et al., 2003), Propensity

Score Matching (Heckman et al., 1998), and Marginal Treatment Effects using Local Instrumen-

tal Variables (Heckman and Vytlacil, 2005). There are currently no econometric methods for

inference on these parameters allowing for generated regressors obtained by machine learning.

The goal of this paper is to propose Automatic Locally Robust/Debiased estimators of and

inference on structural parameters in such models.

We extend Chernozhukov et al. (2022a)’s results to build debiased moment conditions in the

presence of nonparametric/semiparametric generated regressors. By applying the chain rule, the

debiasing correction term can be decomposed into one accounting for a first step, which is used

to generate a regressor, and the term accounting for the second step, where the outcome variable

is regressed onto the generated variable (among other covariates). Chernozhukov et al. (2022a)

construct debiased moment conditions which account for this second step (with no generated

regressor). Our paper provides the additional correction term that accounts for (i) the plug-in

of generated regressors in the moment condition and (ii) the effect of generated regressor on

estimation of the second step.

Each of the two correction terms depends on additional nuisance parameters. Under a

linearization assumption (as in Ichimura and Newey, 2022; Newey, 1994), we show how the

additional nuisance parameters in the correction term can be estimated without knowing their

specific analytic shape. This process is called automatic estimation (see Chernozhukov et al.,

2022b). Automatic estimation is particularly well motivated in the case of generated regressors,

where the nuisance parameters in the correction term take complex shapes (see, for instance,

Escanciano et al., 2014; Hahn and Ridder, 2013; Mammen et al., 2016).

As an application of our methods we propose novel Automatic Locally Robust estimators

for the CASF parameter of Blundell and Powell (2004) and for the APE in a sample selection

model with a flexible selection equation estimated by machine learning. All these examples

are characterized by being linear functionals of a second step function satisfying orthogonality

conditions involving generated regressors (the control function or the propensity score) from a

first step. We show that it is straightforward to construct Automatic Double-Robust estimators

that are robust to functional form assumptions for the second step. For instance, a practical

approach could be to fit a partially linear specification for the second step, like in Robinson

(1988) but with a non-parametric function of the generated regressors. Our results cover this

case, in which the second step is semiparametric.

The Double-Robust estimators are, however, not Locally Robust to the generated regressors
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in general. To construct fully Locally Robust estimators we use numerical derivatives to account

for the presence of generated regressors. Fortunately, our automatic approach is amenable to any

machine learning method for which predictions out of sample are available. Another approach

could be to specify a model for the second step for which analytical derivatives are available. We

note that the Double-Robust moment conditions are robust to this model being misspecified.

The finite sample performance of the proposed estimator is evaluated through Monte Carlo

simulations. We use Lasso with different dictionaries (linear, quadratic, and one including

interactions) to fit the first and second step parameters, as well as the nuisance parameters in

the first and second step correction terms. Our result confirm that the plug-in estimator is

asymptotically biased (see also Chernozhukov et al., 2018, 2022a; Escanciano and Terschuur,

2022). Correcting the moment condition for the second step estimation reduces de bias, but a

first step correction must be added to totally remove it.

The paper builds on two different literatures. The first literature is the classical literature on

semiparametric estimators with generated regressors, see Ahn and Powell (1993); Heckman et al.

(1998); Ichimura and Lee (1991); Imbens and Newey (2009); Newey et al. (1999); Rothe (2009),

among others. The asymptotic properties of several estimators within this class is given by

Hahn and Ridder (2013, 2019) and Mammen et al. (2012, 2016). With respect to these papers,

we allow the second step to be semiparametric or parametric (on top of fully non-parametric).

Our results can be readily extended to allow for profiling, as in Mammen et al. (2016) and Hahn

et al. (2022). Furthermore, we contribute to this literature by allowing for machine learning

generated regressors.

The second literature we build on is the more recent literature on Locally Robust/Debiased

estimators, see Chernozhukov et al. (2018, 2022a). With the only exception of Sasaki and Ura

(2021), this literature has not considered models with generated regressors. Our results com-

plement the analysis of the Policy Relevant Treatment Effect (PRTE) in Sasaki and Ura (2021)

by providing automatic estimation of the influence function. Relative to the Automatic Locally

Robust literature (e.g. Chernozhukov et al., 2022b) we innovate in considering a nonlinear set-

ting with an implicit functional (the generated regressor as a conditioning argument) for which

an analytic derivative is not available for general machine learners.

The rest of the paper is organized as follows. Section 2 introduces the setting and the

examples. Section 2.1 finds the influence function of parameters identified by moments with

generated regressors. Section 3 gives the general construction of automatic Locally Robust

moments with generated regressors. In Section 4, we provide the details for Debiased Locally

Robust GMM estimation. A summary of the estimation algorithm is given in Section 4.2. The

asymptotic theory for the proposed estimator is developed in Section 5. Monte Carlo simulations

are presented in Section 6. Section 7 concludes.
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2 Setting and examples

We observe data W = (Y,D,Z) with cumulative distribution function (cdf) F0. For simplicity,

we consider that Y and D are one-dimensional. In our setting, there is a first step linking D

with Z. The first step results in a one-dimensional generated regressor

V ≡ φ(D,Z, g0),

where φ is a known function of observed variables (D,Z) and an unknown parameter g0 ∈ ∆1,

for ∆1 a linear and closed subspace of the Hilbert space L2(Z) of square-integrable functions of

Z.1 The unknown parameter g0 solves the orthogonal moments

E[δ1(Z)(D − g0(Z))] = 0 for all δ1 ∈ ∆1. (2.1)

This setting covers parametric, semiparametric, and non-parametric first steps. For example,

when ∆1 = L2(Z), we have g0(Z) = E[D|Z].

Next, there is a second step linking Y with a component of (D,Z), denoted by X, and the

generated regressor V , through the moment restrictions

E[δ2(D,Z)(Y − h0(X, V ))] = 0 for all δ2 ∈ ∆2(g0), (2.2)

where ∆2(g0) is a linear and closed subspace of L2(D,Z). The set ∆2(g0) may depend on

the fist step parameter g0. In some settings, ∆2(g0) includes only functions of X and the

generated regressor V . That is, ∆2(g0) includes functions with the following shape: δ2(D,Z) =

δ(X,φ(D,Z, g0)) for δ ∈ ∆, a linear and closed subspace of L2(X, V ). For instance, Hahn

and Ridder (2013) and Mammen et al. (2016) consider cases where the second step is a non-

parametric regression of Y on (X, V ). In that case, ∆2(g) = L2(g), with

L2(g) ≡ {(d, z) 7→ δ(x, φ(d, z, g)) : δ ∈ L2(X, V )} ⊆ L2(D,Z).

The above set plays a key role, since h0(X,φ(D,Z, g0)), understood as a function of (D,Z), is

an element of L2(g0)

Let Θ ⊆ R denote the space where the structural parameter of interest lies. We have the

moment function m : Rdim(W ) × L2(Z) × L2(X, V ) × Θ → R. The parameter of interest θ0 is

identified in a third step by a GMM moment condition

E[m(W, g0, h0, θ0)] = 0.

1Notation: For a (measurable) function f(w), E[f(W )] ≡
∫
f(w)dF0(w) denotes expectation w.r.t. the

distribution F0. For simplicity of notation, we omit the measure when referring to the L2 Hilbert spaces of

measurable functions with finite second moments. This measure is the marginal distribution that F0 induces on

some of the components of W .
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Here we assume that θ0 is identified by these moments, i.e. that θ0 is the unique solution to

E[m(W, g0, h0, θ)] = 0 over θ ∈ Θ.

Our result allows for an arbitrary number of parameters θ ∈ Rdim(θ) and moment conditions

m : Rdim(W ) × L2(Z) × L2(X, V ) × Θ → Rdim(m), with dim(m) ≥ dim(θ) ≥ 1. To ease the

exposition, most results are derived for the one dimensional case. Extensions are straightforward

by requiring each assumption to hold componentwise. Incorporating multiple variables D and

Y to our setup is also simple.

We illustrate the notation and concepts with two general running examples. Common to both

problems is that the evaluating moment condition m(w, g, h, θ) at a certain point w = (y, d, z)

requires the whole shape of the second step parameter h, and not only its value h(x, φ(d, z, g))

at (d, z) (cf. Hahn and Ridder, 2013).

Example 1 (Control Function Approach) We observe W = (Y,D,Z) satisfying the

model Y = H(X,U), for an unknown function H. The main feature of this model is that D, a

component of X, may be an endogenous regressor. We assume that the endogenous regressor

satisfies D = g0(Z) + V , with U and V being unobserved correlated error terms. The function

g0 could be identified by a conditional mean restriction, as in equation (2.1). We assume a

Control Function approach: where U |X, V ∼ U |V , where ∼ denotes equally distributed. Thus,

the corresponding φ is

V ≡ φ(X,Z, g0) ≡ D − g0(Z).

As in Blundell and Powell (2004), the Control Function assumption implies

E[Y |X = x, V = v] = E[H(X,U)|X = x, V = v] = E[H(x, U)|X = x, V = v]

= E[H(x, U)|V = v] ≡ h0(x, v).

This defines the second step. In this example, we have that ∆2(g) = L2(g).

The Control Function assumption allows us to identify the Average Structural Function

(ASF) at a point x ∈ Rdim(X):

ASF0(x) ≡ E[H(x, U)] = E[E[H(x, U)|V ]] = E[h0(x, V )].

Some conditions on the support of the random vectors are needed for the above equation to

hold (see Blundell and Powell, 2004; Imbens and Newey, 2009).

In this setup, a parameter of interest is the Counterfactual Average Structural Function

(CASF) given by

θ0 =

∫
ASF(x∗)dF ∗(x∗),

for an counterfactual distribution F ∗. When F ∗ is implied by a certain policy, the CASF may

be used to measure the effect of the policy (see Blundell and Powell, 2004; Stock, 1989, 1991).
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By Fubini’s Theorem, the CASF can be written as a function of (g0, h0):

θ0 =

∫
E[h0(x

∗, φ(D,Z, g0))]dF
∗(x∗) = E

[∫
h0(x

∗, φ(D,Z, g0))dF
∗(x∗)

]
.

Hence, the moment function that identifies the CASF is:

m(w, g, h, θ) =

∫
h(x∗, φ(d, z, g))dF ∗(x∗) − θ.

We note here that the CASF is not covered by the work of Hahn and Ridder (2013, 2019). The

key difference is that the functional defining the CASF cannot be written as E[η(X,ASF0(X))]

for a function η with domain in an Euclidean space. We will propose below a novel Double-

Robust estimator for the CASF. ■

Example 2 (Sample Selection Models) We observe W = (Y,D,Z) following the model

Y = Y ∗D ≡ H(X, ε)D, where X is a component of Z, and we do not observe Y ∗ when

D = 0. This is a very general setting for sample selection models. We do not know much about

the selection, so this is given by D = 1 [g0 (Z) − U ≥ 0], where U is uniformly distributed in

[0, 1] . The unobserved errors ε and U , though independent of Z, are correlated with each other

(selection on unobservables). In this example, V = g0 (Z) = E(D|Z). Then, it can be shown

that

E(Y |Z) = E(H(X, ε)1 [g0 (Z) − U ≥ 0] |Z)

= h0(X, V ).

This setting provides a nonparametric extension of the classical model of Heckman (1979), where

H(X, ε) = X ′β0 + ε, g0 (Z) = Z ′γ0, and the joint distribution of (ε, U) is bivariate Gaussian.

As a parameter of interest consider the Average Partial Effects (APE) given, for simplicity

of presentation for a one-dimensional continuous regressor, by

θ0 = E
[
∂h0
∂x

(X, V )

]
.

The moment function identifying the APE is

m(w, g, h, θ) =
∂

∂s
h(s, g(z))

∣∣∣∣
s=x

− θ.

This parameter is covered by Proposition 5 in Hahn and Ridder (2019). However, the authors

do not consider Locally Robust estimation. In Appendix A we propose a novel Locally Robust

estimator for the APE which (i) is Double-Robust to the second step and (ii) allows for ML first

and second step estimators. ■
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Remark 2.1 (Profiling) Our results can be extended to allow for profiling as in Mammen

et al. (2016). That is, we may consider that the second step nuisance parameter depends on θ:

h0(x, v, θ) is the solution in h of E[δ2(D,Z)(Y − h(X, V, θ))] = 0 for all δ2 ∈ ∆2(g0, θ). Note

that then h0(·, θ) is the projection of Y onto ∆2(g0, θ).

For instance, if h0 is the conditional expectation given some transformation of (D,Z), de-

noted T (D,Z, g, θ) as in Mammen et al. (2016), then one would take ∆2(g, θ) ≡ L2(T ). In

models with an index restriction, T (D,Z, g, θ) = (θ′X,φ(D,Z, g)), where X is a subvector of

(D,Z).

A modification of equation (2.2) also allows to cover partly linear models, as in the examples

discussed in Hahn et al. (2022). One may replace Y in (2.2) by an arbitrary transformation

ξ(W, θ) to get that h0(·, θ) is the solution in h to

E[δ2(D,Z)(ξ(W, θ) − h(X, V, θ))] = 0 for all δ2 ∈ ∆2(g0, θ).

For partly linear models, one can take X = ∅ and ξ(W, θ) = Y − θ′X̃ for X̃ (another) subvector

of (D,Z). In this case, X = ∅ indicates that only the generated regressor V enters non-linearly

in the structural equation. Thus, h0 is the projection of Y − θ′X̃ onto L2(V ) = ∆2(g0, θ).

2.1 Orthogonal Moment Functions with Generated Regressors

We follow Chernozhukov et al. (2022a, henceforth, CEINR) for the construction of Locally

Robust-Debiased-Orthogonal moment functions. Furthermore, we show that the effect of the

first and second step estimation can be studied separately. This will allow us to construct

separate automatic estimators of the nuisance parameters in first and second step Influence

Functions (IF).

We begin by introducing some additional concepts and notation. Let F denote a possible

cdf for a data observation W . We denote by g(F ) the probability limit an estimator ĝ of the

first step when the true distribution of W is F , i.e., under general misspecification (see Newey,

1994). Here, F is unrestricted except for regularity conditions such as existence of g(F ) or the

expectation of certain functions of the data. For example, if ĝ(z) is a nonparametric estimator

of E[D|Z = z] then g(F )(z) = EF [D|Z = z] is the conditional expectation function when F is

the true distribution of W , denoted by EF , which is well defined under the regularity condition

that EF [|D|] is finite. We assume that g(F ) is identified as the solution in g to

EF [δ1(Z)(D − g(Z))] = 0 for all δ1 ∈ ∆1.

Hence, we have that g(F0) = g0, consistent with g0 being the probability limit of ĝ when F0 is

the cdf of W .

To study the effect of the second step, suppose that W is distributed according to F . How-

ever, the first step parameter is independently fixed to g. Let h(F, g) be the solution in h
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to

EF [δ2(D,Z){Y − h(X,φ(D,Z, g))}] = 0 for all δ2 ∈ ∆2(g).

The solution of the above equation is a function of (x, v): h(F, g)(x, v). We have that h(F0, g0) =

h0. We may think of the mapping h(F, g) as the probability limit of an estimator of h0 under

the following conditions: (i) the true distribution of W is F and (ii) the estimator is built

with the first step parameter fixed to g. A feasible estimator ĥ of h0 will, however, rely on the

estimator ĝ. Therefore, we assume that the probability limit of ĥ under general misspecification

is h(F, g(F )).

To introduce orthogonal moments, let H be some alternative distribution that is unrestricted

except for regularity conditions, and Fτ ≡ (1 − τ)F0 + τH for τ ∈ [0, 1]. We assume that H is

chosen so that g(Fτ ) and h(Fτ , g(Fτ )) exist for τ small enough, and possibly other regularity

conditions are satisfied. The IF that corrects for both first and second step estimation, as

introduced in CEINR, is the function ϕ(w, g, h, α, θ) such that

d

dτ
E[m(W, g(Fτ ), h(Fτ , g(Fτ )), θ)] =

∫
ϕ(w, g0, h0, α0, θ)dH(w),

E[ϕ(W, g0, h0, α0, θ)] = 0, and E[ϕ(W, g0, h0, α0, θ)
2] <∞,

(2.3)

for all H and all θ. Here α is an unknown function, additional to (g, h), on which only the IF

depends. The “true parameter” α0 is the α such that equation (2.3) is satisfied. Throughout

the paper, d/dτ is the derivative from the right (i.e. for non-negative values of τ) at τ = 0. As

in the work of Mises (1947), Hampel (1974), and Huber (1981), equation (2.3) is the Gateaux

derivative characterization of the IF of the functional m̄(g(F ), h(F, g(F )), θ), with

m̄(g, h, θ) ≡ E[m(W, g, h, θ)].

Orthogonal moment functions can be constructed by adding this IF to the original identifying

moment functions to obtain

ψ(w, g, h, α, θ) ≡ m(w, g, h, θ) + ϕ(w, g, h, α, θ). (2.4)

This vector of moment functions has two key orthogonality properties. First, we have that vary-

ing (g, h) away from (g0, h0) has no effect, locally, on E[ψ(W, g, h, α0, θ)]. The second property is

that varying α will have no effect, globally, on E[ψ(W, g0, h0, α, θ)]. These properties are shown

in great generality in CEINR.

The IF in equation (2.3) measures the effect that the first step (estimation of g0) and the

second step (estimation of h0) will have on the moment condition. We can show that these

effects can be studied separately. The following lemma gives the result:
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Lemma 2.1 Assume that the chain rule can be applied. Then,

d

dτ
m̄(g(Fτ ), h(Fτ , g(Fτ )), θ) =

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ)

+
d

dτ
m̄(g0, h(Fτ , g0), θ).

The first derivative in the RHS accounts for the first step. As in Hahn and Ridder (2013), the

first step affects the moment condition in two ways (see Figure 1). We have a direct impact on

m̄, which includes the effect of evaluating h on the generated regressor. We also have an indirect

effect on the moment that comes from g affecting estimation of h0 in the second step (through

conditioning). This is present in the term h(F0, g(Fτ )). The second derivative accounts for the

effect of the second step. This effect is independent from the first step and, as such, considers

that g0 is known. This is captured by h(Fτ , g0).

τ Fτ g(Fτ ) h(Fτ , g(Fτ ))

m̄(g(Fτ ), h(Fτ , g(Fτ )), θ)

(E)

(2S)
(D)

Figure 1 The effect of a deviation Fτ on the moment condition. (2S) represents the second step

effect. (D) represents the direct effect of the first step. The path (E)-(2S) represents the estimation

effect of the first step.

We may then find an IF corresponding to each step: ϕ1(w, g, α1, θ) and ϕ2(w, h, α2, θ), re-

spectively. The IFs satisfy, for all θ and H:

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ) =

∫
ϕ1(w, g0, α10, θ)dH(w) and (2.5)

d

dτ
m̄(g0, h(Fτ , g0), θ) =

∫
ϕ2(w, h0, α20, θ)dH(w), (2.6)

on top of the zero mean and square integrability conditions (see equation (2.3)). We therefore

have that the IF accounting for both the first and second step is ϕ(w, g, h, α, θ) = ϕ1(w, g, α1, θ)+

ϕ2(w, h, α2, θ), with α = (α1, α2).

We now provide the orthogonality conditions that will serve as a basis for the automatic

estimation of the nuisance parameters α01 and α02. Define the following moment conditions:
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ψ1(w, g, α1, θ) ≡ m(w, g, h(F0, g), θ) + ϕ1(w, g, α1, θ) for the first step, and ψ2(w, h, α2, θ) ≡
m(w, g0, h, θ) + ϕ2(w, h, α2, θ) for the second step. We note here that, in general, ψ ̸= ψ1 + ψ2.

Applying separately Theorem 1 in CEINR to ψ1 and ψ2 one gets

d

dτ
E[ψ1(W, g(Fτ ), α1(Fτ ), θ)] = 0 and

d

dτ
E[ψ2(W,h(Fτ , g0), α2(Fτ ), θ)] = 0.

Since ∆1 and ∆2(g0) are linear, the above equations mean that, for all θ ∈ Θ,

d

dτ
E[ψ1(W, g0 + τδ1, α10, θ)] = 0 for all δ1 ∈ ∆1 and

d

dτ
E[ψ2(W,h0 + τδ2, α20, θ)] = 0 for all δ2 ∈ ∆2(g0).

(2.7)

This result comes from applying Theorem 3 in CEINR. Here δ1 represents a possible direction

of deviation of g(F ) from g0. In turn, δ2 represents a possible deviation of h(F, g0) from h0.

The parameter τ is the size of a deviation. The innovation with respect to CEINR is that we

can compute the IF ϕ by separately studying ψ1 and ψ2, corresponding to the first and second

steps, respectively.

Remark 2.2 (Profiling) The previous results and those of Section 3.1 readily extend to

allow for profiling (see Remark 2.1). Indeed, the IFs in equations (2.5)-(2.6) are defined for

a “fixed” parameter θ. Both equations are the Gateaux derivative of m̄(g, h(F0, g), θ) and

m̄(g0, h, θ) with respect to g and h, respectively, for each value of θ.

To be more precise, we discuss each IF separately. For the first-step IF, note that the

derivative is determined by how m̄(g, h(F0, g), θ) depends on g. It is thus straightforward to

allow for the second step to depend on θ and study, instead, the derivative of m̄(g, h(F0, g, θ), θ)

w.r.t. g. In turn, the second-step IF will also capture that the derivative of m̄(g0, h(Fτ , g0, θ), θ)

depends on how the paths τ 7→ h(Fτ , g0, θ) vary with θ.

3 Automatic estimation of the nuisance parameters

The debiased moments require a consistent estimator α̂ of the nuisance parameters α0 ≡
(α01, α02). When the form of α0 is known, one can plug-in nonparametric estimators of the

unknown components of α0 to form α̂. In the generated regressors setup, however, the nuisance

parameters (specially α01) have a complex analytical shape (see the result in equation (B.8) in

the Appendix, the examples in Section 3.1, and Hahn and Ridder, 2013). Therefore, the plug-in

estimator for α̂ may be cumbersome to compute.

We propose an alternative approach which uses the orthogonality of ψ1 and ψ2 with respect

to g and h, respectively, to construct estimators of (α10, α20). This approach does not require to

know the form of α0, it is “automatic” in only requiring the orthogonal moment functions and
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data for construction of α̂. Moreover, an automatic estimator can be constructed separately for

each step. For more details, we refer to Section 3.2.

This section shows that, under some assumptions, the correction term takes to form:

ϕ(w, g0, h0, α0, θ) = α01(z) · [d− g0(z)]︸ ︷︷ ︸
=ϕ1(w,g0,α01,θ)

+α02(x, φ(d, z, g0)) · [y − h0(x, φ(d, z, g0))]︸ ︷︷ ︸
=ϕ2(w,h0,α02,θ)

. (3.1)

That is, each correction term is build by multiplying the nuisance parameter by each step’s

prediction error. This is the first step to build the automatic estimators for α01 and α02. The

other ingredient is a consistent estimator of the linearization of the moment condition with

respect to each parameter (g for the first step and h for the second). Section 3.1 provides the

formal development.

3.1 First and Second Step Linearization

We start with the linearization of the second step effect. This result is well established in the

literature and will follow immediately if m̄(g0, h, θ) can be linearized in h (as in Newey, 1994,

Equation 4.1). The shape of the influence function can be found by applying the results in

Ichimura and Newey (2022).

Before introducing the result, we note that throughout this section (i) τ 7→ hτ denotes a

differentiable path, i.e., 0 7→ h0 and dhτ/dτ exists (equivalently for gτ ) and (ii) H is regular in

the sense that, for Fτ ≡ (1 − τ)F0 + τH, g(Fτ ) is a differentiable path in L2(Z), and h(Fτ , g0)

and h(F0, g(Fτ )) are differentiable paths in L2(X, V ).

Proposition 3.1 Under the following assumption:

(A1) There exists a function D2(w, h), linear and continuous in h, such that dm̄(g0, hτ , θ)/dτ =

dE[D2(W,hτ )]/dτ , for every θ ∈ Θ.

We have that:

(Lin) We can linearize the effect of the second step estimation:

d

dτ
m̄(g0, h(Fτ , g0), θ) =

d

dτ
E[D2(W,h(Fτ , g0))].

(IF) There exists an α02 ∈ ∆2(g0) ∩ L2(g0) such that the function

ϕ2(w, h0, α02, θ) = α02(x, φ(d, z, g0)) · {y − h0(x, φ(d, z, g0))},

satisfies equation (2.5) and is thus the Second Step IF.
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We note that, since m̄ is linearized at (g0, h0, θ), D2 (and also α02) may also depend on

(g0, h0, θ). This is omitted for notational simplicity, but will became relevant to construct

feasible automatic estimators (see Section 4). We now find the linearization of m̄(g0, h, θ) in

some examples:

Example 1 (continuing from p. 5) Assumption (A1) is easy to check for the CASF. Since

m(w, g0, h, θ) is already linear, we have that

D2(w, h) =

∫
h(x∗, φ(d, z, g0))dF

∗(x∗).

In this case, we can compute the analytic shape of the correction term nuisance parameter

α02. To find it, we follow Pérez-Izquierdo (2022) and assume the existence of densities f ∗, f v
0

and, fxv
0 for F ∗, F v

0 and F xv
0 , respectively. Here F v

0 and F xv
0 denote the distribution under F0

of V and (X, V ), respectively. We then have that

E[D2(W,h)] =

∫
h(x∗, v)f ∗(x∗)f v

0 (v)dx∗dv =

∫
f ∗(x∗)f v

0 (v)

fxv
0 (x∗, v)

h(x∗, v)fxv
0 (x∗, v)dx∗dv

= E[α02(X, V )h(X, V )],

with α02(x, v) ≡ f ∗(x∗)f v
0 (v)/fxv

0 (x∗, v). Note that, even if we have found the nuisance parameter

α02, it has a rather complex shape. It depends on the density of the generated regressor V and

on the joint density of (X, V ). These objects are generally hard to estimate and may cause the

plug-in estimator for α02 to behave poorly. We advocate automatic estimation (Section 3.2) as

a potential solution to this issue. ■

Example 3 (Hahn and Ridder (2013)’ Setup) This example discusses the non-parametric

setup in Hahn and Ridder (2013, Th. 5). Our theory generalizes their results in two ways: (i) we

will allow for a wider range of generated regressors φ(D,Z, g0) and (ii) we consider a larger class

of moment conditions. The authors focus on the case where there is a function η : Rdim(W )+1 → R
such that

m(w, g, h, θ) = η(w, h(x, g(z))) − θ.

That is, in Hahn and Ridder (2013)’s setup, (g, h) enters the moment condition by the values

that the “link” function η, with domain in an Euclidean space, takes at (w, h(x, g(z))). Note

that they fix φ(d, z, g) = g(z) and that their Theorem 5 covers the fully non-parametric case:

∆1 = L2(Z) and ∆2(g) = {δ(x, g(z)) : δ ∈ L2(X, V )} (other results in Hahn and Ridder, 2013,

cover parametric first steps, but not the semiparametric case as in equation (2.1)).

We start by linearizing the moment condition in h. To do it, we assume that η is differentiable
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w.r.t. y. In that case, as long as we can interchange differentiation and integration:

d

dτ
m̄(g0, hτ , θ) = E

[
d

dτ
η(W, gτ (X, g0(Z)))

]
= E

[
∂η

∂y
(W,h0(X, g0(Z)))

d

dτ
hτ (X, g0(Z))

]
=

d

dτ
E
[
∂η

∂y
(W,h0(X, g0(Z)))hτ (X, g0(Z))

]
,

so that D2(w, h) = ∂η/∂y(w, h0(x, g0(z))) · h(x, g0(z)). In the fully non-parametric case, the

second step nuisance parameter α02 is the Riesz Representer of E[D2(W,h)]. This is given by

the expectation of ∂η/∂y(W,h0(X, g0(Z))) conditional on (X, V ). ■

We now move to linearize the first step effect. Note that if the chain rule can be applied:

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ) =

d

dτ
m̄(g(Fτ ), h0, θ)

+
d

dτ
m̄(g0, h(F0, g(Fτ )), θ).

(3.2)

The first derivative in the RHS can be easily analyzed if we linearize m̄(g, h0, θ) in g (see

Assumption (A2) in Theorem 3.1 below).

To study dm̄(g0, h(F0, g(Fτ )), θ)/dτ we proceed as in Lemma 1 in Hahn and Ridder (2013).

Our extension of the lemma to allow for semiparametric second steps is based on Assump-

tion (A3) in Theorem 3.1. The assumption is discussed below. Under Assumption (A3), we

have that

d

dτ
m̄(g0, h(F0, g(Fτ )), θ) = − d

dτ
E[α02(X, V )h0(X,φ(D,Z, g(Fτ )))]

+
d

dτ
E [α02(X,φ(D,Z, g(Fτ ))) · (Y − h0(X, V ))] .

Therefore, the remaining step to linearize the moment condition in g is to linearize the terms

h0(X,φ(D,Z, g(Fτ ))) and α02(X,φ(D,Z, g(Fτ ))). To achieve this, we require h0, α0, and φ to

be differentiable in the appropriate sense (see Assumption (A4) bellow).

Theorem 3.1 Consider that Assumption (A1) holds and:

(A2) There exists a function D11(w, g), linear and continuous in g, such that dm̄(gτ , h0, θ)/dτ =

dE[D11(W, gτ )]/dτ , for every θ ∈ Θ.

(A3) For every g ∈ ∆1 and δ ∈ L2(X, V ), we have that δ(·, φ(·, ·, g)) ∈ ∆2(g) ⇔ δ(·, φ(·, ·, g0)) ∈
∆2(g0).

(A4) h0 and α02 are differentiable w.r.t. v. Moreover, the function φ(d, z, g), understood as a

mapping g 7→ φ(d, z, g) from L2(Z) to L2(D,Z), is Hadamard differentiable at g0, with

derivative Dφ.
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Then, we have that:

(Lin) The function

D1(w, g) ≡ D11(w, g) +
∂

∂v
[α02(x, v)(y − h0(x, v))] ·Dφg, (3.3)

where the derivative is evaluated at v = φ(d, z, g0), satisfies

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ) =

d

dτ
E[D1(W, g(Fτ ))].

(IF) There exists an α01 ∈ ∆1 such that the function

ϕ1(w, g0, α01, θ) = α01(z) · {d− g0(z)},

satisfies equation (2.6) and is thus the First Step IF.

Some comments are in order. Assumption (A3) simply means that the functions in ∆2(g)

(at least those that only depend on (X, V )) have the same shape. It does not rule out any

relevant case, up to our knowledge. For instance, the general case in which ∆2(g) = {(d, z) 7→
δ(x, φ(d, z, g)) : δ ∈ ∆}, for ∆ a linear subspace of L2(X, V ) satisfies the assumption. When

∆ = L2(X, V ) (i.e., ∆2(g) = L2(g)), the second step is a non-parametric regression on X and

the generated regressor. One can also take ∆ = {β′x+ η(v) : β ∈ Rdim(X), η ∈ L2(V )} to specify

a partly linear model for the second step (Robinson, 1988). What Assumption (A3) rules out is

to specify a partly linear model for some g’s and a non-parametric regression for others. We also

note that Assumption (A3) also covers the case in which ∆2(g) = L2(D,Z), as in Escanciano

et al. (2016, 2014).

Regarding Assumption (A4), the Haddamard derivative of φ is a linear and continuous map

Dφ : L2(Z) → L2(D,Z) such that

d

dτ
φ(d, z, gτ ) =

d

dτ
Dφgτ .

Usually, either φ(d, z, g) = g(z) (first step prediction) or φ(d, z, g) = d−g(z) (first step residual).

In those cases, Dφg = g or Dφg = −g, respectively.

The linearization of the first step effect is a rather complex function (see its definition in

equation (3.3)). The first term is standard and corresponds to the linearization of the direct

effect of g. It is given by D11, the linearization of dm̄(g, h0, θ)/τ . The second term corresponds to

the indirect effect. Consistent estimation of the second term requires estimators for (i) g0, (ii) h0,

(iii) ∂h0/∂v, (iv) α02, and (v) ∂α02/∂v. In Section 3.2, we propose an automatic estimator of the

second step nuisance parameter, α02. We can then plug-in to construct an automatic estimator

of the first step nuisance parameter. An estimator for ∂h0/∂v is discussed in Section 4.

We conclude the section by finding D1 for several examples:
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Example 1 (continuing from p. 12) The Control Function setup introduced in this paper

satisfies Assumption (A3). In addition, as discussed above, our result also covers the setup in

which it is assumed that U |X,Z ∼ U |X, V ∼ U |V (see Blundell and Powell, 2003, 2004). In

that case, since h0(X,φ(D,Z, g0)) = E[Y |D,Z], we would have that ∆2(g) = L2(D,Z) for every

g.

Moreover, the Control Function approach we follow here uses the residual of the first step to

control for potential endogeneity. Thus, φ(d, z, g) = d− g(z) and its linearization is Dφg = −g.

Provided that h0 is differentiable w.r.t. v (Assumption (A4)), this allows us to linearize, w.r.t.

g, the moment condition defining the CASF. We have that:

d

dτ
m̄(gτ , h0, θ) =

d

dτ
E
[∫

h0(x
∗, φ(D,Z, gτ ))dF ∗(x∗) − θ

]
= E

[∫
d

dτ
h0(x

∗, φ(D,Z, gτ ))dF ∗(x∗)

]
= E

[∫
∂h0
∂v

(x∗, φ(D,Z, g0))
d

dτ
φ(D,Z, gτ )dF ∗(x∗)

]
=

d

dτ
E
[
−
∫
∂h0
∂v

(x∗, φ(D,Z, g0))dF
∗(x∗)gτ (Z)

]
.

This means that the linearization of the moment condition w.r.t. g is D11(w, g) = D11(d, z)g(z),

with

D11(d, z) ≡ −
∫
∂h0
∂v

(x∗, d− g0(z))dF ∗(x∗).

We can now plug in the expression for D11 into equation (3.3), where the linearization of the

first step effect is defined. Recall that Dφg = −g. Then, for the CASF, equation (3.3) becomes

D1(w, g) ≡
{
D11(d, z) − ∂

∂v
[α02(x, v)(y − h0(x, v))]

}
g(z).

As discussed above, the linearization depends on h0 and α02 and the derivatives of these

functions w.r.t. v. It also depends on g0, as v ≡ d − g0(z). Section 3.2 discusses how to

construct an automatic estimator for the first step nuisance parameter α02, which we can latter

use to compute its derivative. Finding an estimator of the derivative of h0 will depend on the

estimator at hand. In Section 4 we propose a numerical derivative approach that works for a

variety of second step estimators, such as Random Forest. ■

Example 3 (continuing from p. 12) Theorem 3.1 generalizes Theorem 5 in Hahn and

Ridder (2013) to allow for (i) generated regressors given by arbitrary Hadamard differentiable

functions φ and (ii) arbitrary functionals m̄(g, h, θ) that are Hadamard differentiable w.r.t. g

and h. We show how the expression for D1 simplifies to that in Hahn and Ridder (2013, Th. 5).

We start by linearizing m̄(g, h0, θ) w.r.t. g. Note that Hahn and Ridder (2013), in the non-

parametric case, fix φ(d, z, g) = g(z). Then, Dφg = g. On top of η being differentiable w.r.t. y,
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we require h0 to be differentiable w.r.t. v (Assumption (A4)). Then:

d

dτ
m̄(gτ , h0, θ) = E

[
∂η

∂y
(W,h0(X, g0(Z)))

d

dτ
h0(X, gτ (Z))

]
= E

[
∂η

∂y
(W,h0(X, g0(Z)))

∂h0
∂v

(X, g0(Z))
d

dτ
gτ (Z)

]
=

d

dτ
E
[
∂η

∂y
(W,h0(X, g0(Z)))

∂h0
∂v

(X, g0(Z))gτ (Z)

]
,

and therefore D11(w, g) = ∂η/∂y(w, h0(x, g0(z))) · ∂h0/∂v(x, g0(z)) · g(z).

Recall from the previous discussion that the Second Step nuisance parameter satisfies:

α02(x, v) = E
[
∂η

∂y
(W,h0(X, g0(Z)))

∣∣∣∣X = x, g0(Z) = v

]
.

So, if we denote ξ(w) ≡ ∂η/∂y(w, h0(x, g0(z))), equation (3.3) becomes:

D1(w, g) ≡
{

(y − h0(x, v)) · ∂α02

∂v
(x, v) + (ξ(w) − α02(x, v)) · ∂h0

∂v
(x, v)

}
g(z),

where v ≡ g0(z). This is the result in Hahn and Ridder (2013, Th. 5).

Moreover, note that α02(x, v) = E[ξ(W )|X = x, V = v]. Then, if ξ is only a function of

(x, v), the second term in the above equation cancels out. This is the case in Theorem 2 in

Hahn and Ridder (2013). There, η : R → R, and therefore, ξ(w) = ∂η/∂y(h0(x, v)) is a function

of (x, v). ■

3.2 Building the automatic estimators

Equations (2.7) can be thought of as a population moment condition for (α01, α02) for each

(δ1, δ2) ∈ ∆1×∆2(g0). We start with the procedure to automatically estimate α02, the nuisance

parameter of the Second Step IF. We want to stress, nevertheless, that the procedure is quite

general. Indeed, we will also apply it, mutatis mutandis, to the estimation of the nuisance

parameter in the First Step IF.

The starting point is to expand the second equation in (2.7). For δ2 ∈ ∆2(g0),

d

dτ
m̄(g0, h0 + τδ2, θ) +

d

dτ
E[ϕ2(W,h0 + τδ2, α20, θ)] = 0. (3.4)

We will now combine the above equation with Proposition 3.1. By continuity and linearity of

D2, we have that

d

dτ
m̄(g0, h0 + τδ2, θ) =

d

dτ
E[D2(W,h0 + τδ2)] = E[D2(W, δ2)], for any δ2 ∈ ∆2(g0). (3.5)

Moreover, Proposition 3.1 gives us that ϕ2 = α02(y − h0). Thus, for any δ2 ∈ ∆2(g0),

d

dτ
E[ϕ2(W,h0 + τδ2, α20, θ)] = −E[δ2(D,Z)α20(X, V )]. (3.6)
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From equations (3.4)-(3.6), for each δ2 ∈ ∆2(g0),

E[D2(W, δ2)] − E[δ2(D,Z)α20(X, V )] = 0, for each δ2 ∈ ∆2(g0). (3.7)

Since E[D2(W, δ2)] is a linear functional, we will have a Riesz Representer r2 ∈  L2(D,Z) that

expresses the first term above as the L2 scalar product. This means that the above conditions

are projection moment conditions. Indeed, they embed the notion that α02 is the projection of

r2 onto ∆2(g0). However, the usefulness of the conditions in (3.7) is that they do not require

finding the Riesz Representer. They are based on a linearization of the moment condition, which

is generally easier to find.

We now assume that there is a dictionary (bj)
∞
j=1, with bj ∈ ∆2(g0) ∩ L2(g0), whose closed

linear span is ∆2(g0)∩L2(g0). That is, any function in ∆2(g0)∩L2(g0) can be approximated, in the

L2 sense, by a linear combination of bj’s. Then, there exists a sequence of real numbers (ρj)
∞
j=1

such that α02 =
∑∞

j=1 ρjbj. Thus, α02 can be approximated by b′
JρJ , where bJ = (b1, ..., bJ)′

and ρJ = (ρ1, ..., ρJ)′.2 We can now plug in b′
JρJ into equation (3.7) for δ2 = bj, j = 1, ..., J .

This gives the following J moment conditions:

E[bJ(X, V )bJ(X, V )′]ρJ = E[D2(W,bJ)],

where D2(w,bJ) ≡ (D2(w, b1), ..., D2(w, bJ))′.

The above moment conditions can be used to construct an OLS-like estimator of ρ. Note,

however, that in high dimensional settings E[bJ(X, V )bJ(X, V )′] may be near singular. There-

fore, we rather focus on a regularized estimator for ρ. Note that the moment conditions are the

first order conditions of the minimization problem:

min
ρJ∈RJ

{−2E[D2(W,bJ)′]ρJ + ρ′
JE[bJ(X, V )bJ(X, V )′]ρJ} .

We can regularize the problem by adding a penalty to the above objective function. Let ∥ρJ∥q ≡
(
∑J

j=1 |ρj|q)1/q for q ≥ 1. For a tunning parameter λ ≥ 0, we can estimate ρ by minimizing:

min
ρJ∈RJ

{
−2E[D2(W,bJ)′]ρJ + ρ′

JE[bJ(X, V )bJ(X, V )′]ρJ + λ∥ρJ∥qq
}
. (3.8)

For q = 1, the above is the Lasso objective function, while q = 2 corresponds to Ridge Regression.

Additionally, we could consider elastic net type penalties, where λ(ξ∥ρJ∥22 + (1 − ξ)∥ρJ∥1), for

ξ ∈ [0, 1], is added to the objective function.

We propose now an automatic estimator of α01, the nuisance parameter of the First Step

IF. The procedure is parallel to that proposed above. By Theorem 3.1, we can linearize

2For a d1 × d2 matrix A, A′ denotes its transpose. In this respect, vectors are considered d1 × 1 matrices.
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m̄(g, h(F0, g), θ) by D1(w, g) (see equation (3.3)). Again, we assume that there is a dictio-

nary (ck)∞k=1 that spans ∆1. Thus, α01 =
∑∞

k=1 βkck for a sequence of real numbers (βk)∞k=1. We

can therefore construct K moment conditions

E[cK(Z)cK(Z)′]βK = E[D1(W, cK)],

where cK = (c1, ..., cK)′, βK = (β1, ..., βK)′, and D1(w, cK) ≡ (D1(w, c1), ..., D1(w, cK))′. We use

these conditions as a basis to construct the objective function to estimate β:

min
βK∈RK

{
−2E[D1(W, cK)′]βK + β′

KE[cK(Z)cK(Z)′]βK + λ∥βK∥qq
}
, (3.9)

where the tuning parameter λ may be different from that of the second step.

From the above discussion we conclude that automatic estimation of the first and sec-

ond step nuisance parameters reduces to finding a consistent estimator of E[D2(W,bJ)′] and

E[D1(W, cK)]. We note that, in general, both D2 and D1 depend on (g0, h0, θ). In the sample

moment conditions, these are replaced by cross-fit estimators (Section 4.1).

Furthermore, D1 may additionally depend on ∂h0/∂v, the nuisance parameter of the Second

Step α02 and its derivative ∂α02/∂v (see equation (3.3)). Estimation of ∂h0/∂v is discussed in

Section 4.1. Here, we sketch a parsimonious approach to estimate the derivative of α02. Recall

that the Second Step nuisance parameter can be approximated by b′
JρJ . We may assume that

the atoms bj(x, v) are differentiable w.r.t. v. We can then replace the nuisance parameter by its

approximation b′
Jρ and its derivative by (∂bJ/∂v)′ρJ in equation (3.3).

4 Estimation

In this section, we build debiased sample moment conditions for GMM estimation of θ. Debiased

sample moments are based in the orthogonal moment function ψ in equation (2.4). The IF ϕ

that corrects for both the first and second step estimation is ϕ = ϕ1+ϕ2, the sum of the First and

Second Step IFs. Its shape is given in equation (3.1) (see also Proposition 3.1 and Theorem 3.1).

The full estimation algorithm is summarized in Figure 2 (Section 4.2).

We propose to construct the sample moment conditions using cross-fitting. That is, we

split the sample so that ψ(Wi, g, h, α, θ) is averaged over observations i that are not used to

estimate (g, h, α, θ). Cross-fitting (i) eliminates the “own observation bias”, helping remainders

to converge faster to zero, and (ii) eliminates the need for Donsker conditions for the estimators

of (g, h, α), which is important for first and second step ML estimators (see Chernozhukov et al.,

2018).

We partition the sample (Wi)
n
i=1 into L groups Iℓ, for ℓ = 1, ..., L. For each group, we have

estimators ĝℓ, ĥℓ and α̂ℓ = (α̂1ℓ, α̂2ℓ) that use observations that are not in Iℓ. We construct

automatic estimators of α0 satisfying this property in Section 4.1. Moreover, for each group, we
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consider that there is an initial estimator of θ0, namely θ̃ℓ, which does not use the observations

in Iℓ. CEINR propose to chose L = 5 for medium size datasets and L = 10 for small datasets.

Following CEINR, debiased sample moment functions are

ψ̂(θ) ≡ 1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂iℓ(θ), (4.1)

with,

ψ̂iℓ(θ) ≡ m(Wi, ĝℓ, ĥℓ, θ) + ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ)

= m(Wi, ĝℓ, ĥℓ, θ) + α̂1ℓ(Zi) · (Di − ĝℓ(Zi)) + α̂2ℓ(Xi, V̂iℓ) · (Yi − ĥℓ(Xi, V̂iℓ)),
(4.2)

for V̂iℓ ≡ φ(Di, Zi, ĝℓ). Note that the original moment condition is evaluated at θ. On the other

hand, the initial estimators θ̃ℓ are used to construct the correction term ϕ (i.e., to estimate α01

and α02).

In the general case where there is more than one moment condition, the correction term

for each component of m is constructed following equation (4.2). This means that a different

correctiont term must be estimated for each component of m (see Section 4.1 for the details

about how to proceed with automatic estimation of each term). We use these debiased moment

functions to construct the debiased GMM estimator:

θ̂ = argmin
θ∈Θ

ψ̂(θ)′Υ̂ψ̂(θ), (4.3)

where Υ̂ is a positive semi-definite weighting matrix of dimension dim(m) × dim(m). Under

some conditions (see Section 5), the above estimator will be asymptotically normal with the

usual GGM asymptotic variance. Indeed, as in Chernozhukov et al. (2022a), there is no need to

account for estimation of (g0, h0) and (α01, α02) because of orthogonality of ψ.

To introduce the asymptotic variance, let

M ≡ E
[
∂m

∂θ
(W, g0, h0, θ0)

]
and

Ψ ≡ E[ψ(W, g0, h0, α0, θ0)ψ(W, g0, h0, α0, θ0)
′],

where ∂m/∂θ is the dim(m) × dim(θ)-dimensional Jacobian matrix. If Υ̂
P−→ Υ, the asymptotic

variance of
√
n(θ̂ − θ0) is V ≡ (M ′ΥM)−1M ′Υ′ΨΥM(M ′ΥM)−1. A consistent estimator of the

asymptotic variance can be build by replacing the terms in V by their sample analogs:

M̂ ≡ 1

n

L∑
ℓ=1

∑
i∈Iℓ

∂m

∂θ
(Wi, ĝℓ, ĥℓ, θ̃ℓ) and (4.4)

Ψ̂ ≡ 1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂iℓ(θ̃ℓ)ψ̂iℓ(θ̃ℓ)
′. (4.5)
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As usual in GMM, a choice of Υ̂ that minimizes the asymptotic variance of θ̂ is Υ̂ = Ψ̂−1. With

that choice of a weighting matrix, the asymptotic variance can be estimated by (M̂ ′Ψ̂−1M̂)−1.

We illustrate the theory with the construction of debiased GMM estimator for the CASF:

Example 1 (continuing from p. 15) Note that ϕ1 = α01(d − g0) and ϕ2 = α02(y − h0)

(see Theorem 3.1 and Proposition 3.1, respectively). Thus, finding ϕ̂ is straightforward once we

have cross-fit estimators for the nuisance parameters (see Section 4.1 for the construction of α̂1ℓ

and α̂2ℓ).

Recall that the moment function defining the CASF is

m(w, g, h, θ) =

∫
h(x∗, φ(d, z, g))dF ∗(x∗) − θ.

We take as given that the econometrician has computed cross-fit estimators for the first and

second steps: ĝℓ and ĥℓ. Since the counterfactual distribution F ∗ is fixed by the econometrician,

we propose a numerical integration approach to obtain the debiased sample moments.

We consider that the econometrician can sample from F ∗. Let (X∗
s )Ss=1 be a sample of size

S from F ∗. For and observation i ∈ Iℓ, let V̂iℓ ≡ φ(Di, Zi, ĝℓ). We approximate the value of the

moment function m(Wi, ĝℓ, ĥℓ, θ) by

1

S

S∑
s=1

ĥℓ(X
∗
s , V̂iℓ) − θ.

Note that S may be arbitrarily large (increasing the computational cost), so that the above term

is close to m(Wi, ĝℓ, ĥℓ, θ).

Following equations (4.1) and (4.3), the debiased estimator for the CASF is

θ̂ =
1

nS

L∑
ℓ=1

∑
i∈Iℓ

S∑
s=1

ĥℓ(X
∗
s , V̂iℓ) +

1

n

L∑
ℓ=1

∑
i∈Iℓ

ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ). (4.6)

The next section develops an automatic estimator for the correction term ϕ. ■

Remark 4.1 (Profiling) Estimation of the correction term with a profiled-out h0 is based

on the initial estimators θ̃ℓ. For each ℓ, the ĥℓ(·, θ) is estimated for θ = θ̃ℓ. Additionally, we note

that the estimators ĥℓℓ′(·, θ) and ĥℓℓ′ℓ′′(·, θ) (required for automatic estimation), that do not use

observations in Iℓ ∪ Iℓ′ or not in Iℓ ∪ Iℓ′ ∪ Iℓ′′ , respectively, are estimated for initial estimators

θ̃ℓℓ′ and θ̃ℓℓ′ℓ′′ satisfying those same properties.

To sum up, in the presence of profiling, the debiased moment functions in equation (4.2) are

estimated by:

ψ̂iℓ(θ) ≡ m(Wi, ĝℓ, ĥℓ(·, θ), θ) + ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ(·, θ̃ℓ), θ̃ℓ).

Also, the Jacobian of m w.r.t. θ must be extended:

M ≡ E
[
∂m

∂θ
(W, g0, h0(·, θ), θ)

∣∣∣
θ=θ0

]
,
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which may be estimated by

M̂ ≡ 1

n

L∑
ℓ=1

∑
i∈Iℓ

∂m

∂θ
(Wi, ĝℓ, ĥℓ(·, θ̃ℓ), θ̃ℓ).

4.1 Automatic estimation with cross-fitting

Debiased sample moment function require estimators of the nuisance parameters (α̂1ℓ, α̂2ℓ) for

each group Iℓ. These estimators must use only observations not in Iℓ. This section is devoted

to the construction of automatic estimators satisfying this property. Through the section, we

consider that the econometrician has at her disposal first and second step estimators, ĝℓℓ′ and

ĥℓℓ′ , and an initial estimator, θ̃ℓℓ′ , that use only observations not in Iℓ∪Iℓ′ ; and estimators (ĝℓℓ′ℓ′′ ,

ĥℓℓ′ℓ′′ , θ̃ℓℓ′ℓ′′) that use only observations not in Iℓ ∪ Iℓ′ ∪ Iℓ′′ ..
The key to automatic estimation of the Second Step nuisance parameter is to find a con-

sistent estimator of the linearization of the moment condition. In this section, we will write

D2(w, h|g0, h0, θ) to make explicit that the linearization may depend on (h0, g0, θ) (see Ex-

amples 1 and 3). For the linearization of the effect of first step estimation, we will write

D1(w, g|g0, h0, α02, θ), to emphasize that it may also depend on the Second Step nuisance pa-

rameter. D1 generally depends also on the derivatives ∂h0/∂v and ∂α02/∂v. We do not make

this explicit, but we will address the issue in this section.

We start with the automatic estimator for the Second Step nuisance parameter. For each

ℓ, we provide a sample version of the objective function in (3.8) that uses only observations

not in Iℓ. Recall that we have a dictionary (bj)
∞
j=1 that spans ∆2(g0) ∩ L2(g0). We estimate

E[D2(W,bJ)] by

D̂2ℓ ≡
1

n− nℓ

∑
ℓ′ ̸=ℓ

∑
i∈Iℓ′

D2(Wi,bJ |ĝℓℓ′ , ĥℓℓ′ , θ̃ℓℓ′),

where nℓ is the number of observations in Iℓ. In turn, E[bJ(X,φ(D,Z, g0))bJ(X,φ(D,Z, g0))
′]

is estimated by

B̂ℓ ≡
1

n− nℓ

∑
ℓ′ ̸=ℓ

∑
i∈Iℓ′

bJ(Xi, φ(Di, Zi, ĝℓℓ′))bJ(Xi, φ(Di, Zi, ĝℓℓ′))
′.

With this, we can build an automatic estimator of the Second Step nuisance parameter that

only uses observations not in Iℓ. It is given by α̂2ℓ = b′
J ρ̂Jℓ, where

ρ̂Jℓ = argmin
ρJ∈RJ

{
−2D̂′

2ℓρJ + ρ′
JB̂ℓρJ + λ∥ρJ∥qq

}
. (4.7)

The tuning parameter λ can be chosen by cross-validation.
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Example 1 (continuing from p. 20) We provide the ingredients to conduct automatic

estimator of α02 for the CASF. Recall that the moment condition for the CASF was already

linear in h and hence

D2(w, bj|g0, h0, θ) =

∫
bj(x

∗, φ(d, z, g0))dF
∗(x∗),

for each atom bj in the dictionary.

We follow the same strategy as before and approximate D2 by numerical integration. Let

(X∗
s )Ss=1 be a sample drawn from F ∗. To construct the objective function to estimate ρ̂Jℓ, we

approximate D2(Wi, bj|ĝℓℓ′ , ĥℓℓ′ , θ̃ℓℓ′), for an observation i ∈ Iℓ′ , by

1

S

S∑
s=1

bj(X
∗
s , φ(Di, Zi, ĝℓℓ′)).

■

We now discuss automatic estimation of the First Step nuisance parameter. Again, for

each ℓ, the goal is to build a sample version of the objective function in (3.9) that uses only

observations not in Iℓ. The constructions is almost similar to the one above. We will focus in

the main differences.

For a dictionary (cj)
∞
j=1 that spans ∆1, we can estimate E[cK(Z)cK(Z)′] by

Ĉℓ ≡
1

n− nℓ

∑
ℓ′ ̸=ℓ

∑
i∈Iℓ′

cK(Zi)cK(Zi)
′,

and E[D1(W, cK)] by

D̂1ℓ ≡
1

n− nℓ

∑
ℓ′ ̸=ℓ

∑
i∈Iℓ′

D1(Wi, cK |ĝℓℓ′ , ĥℓℓ′ , α̂2ℓℓ′ , θ̃ℓℓ′). (4.8)

The first difference is that D1 depends on α02 on top of (g0, h0, θ). We therefore need to

plug-in an estimator α2ℓℓ′ that only uses observations not in Iℓ ∪ Iℓ′ . This estimator can be

constructed using the methodology above. The only adjustment needed is that one needs to

replace Iℓ by Iℓ ∪ Iℓ′ to define D̂2ℓℓ′ and B̂ℓℓ′ . For instance, to construct α2ℓℓ′ = b′
J ρ̂Jℓℓ′ , it is

simple to define the optimization problem that ρ̂Jℓℓ′ solves. Indeed, we can define

D̂2ℓℓ′ ≡
1

n− nℓ − nℓ′

∑
ℓ′′ /∈{ℓ,ℓ′}

∑
i∈Iℓ′′

D2(Wi,bJ |ĝℓℓ′ℓ′′ , ĥℓℓ′ℓ′′ , θ̃ℓℓ′ℓ′′) and

B̂ℓℓ′ ≡
1

n− nℓ − nℓ′

∑
ℓ′′ /∈{ℓ,ℓ′}

∑
i∈Iℓ′′

bJ(Xi, φ(Di, Zi, ĝℓℓ′ℓ′′))bJ(Xi, φ(Di, Zi, ĝℓℓ′ℓ′′))
′.

Thus, ρ̂Jℓℓ′ is given by the optimization problem in (4.7) with D̂2ℓℓ′ and B̂ℓℓ′ replacing D̂2ℓ and

B̂ℓ, respectively.
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The most important difference is that D1 generally depends also on the derivatives ∂h0/∂v

and ∂α02/∂v. In Section 3.2, we have presented a parsimonious approach to estimate the

derivative of α02. Indeed, it is simple to construct an estimator ∂α̂2ℓℓ′/∂v of the derivative

of α02 that uses only observations not in Iℓ∪Iℓ′ . Since we have already estimated α̂2ℓℓ = b′
J ρ̂Jℓℓ′ ,

if each bj is differentiable w.r.t. v, we have that ∂α̂2ℓℓ′/∂v ≡ (∂bJ/∂v)′ρ̂Jℓℓ′ .

Estimation of ∂h0/∂v may be more tricky. It will depend on the shape of the estimator ĥℓℓ.

Note that, since h0 ∈ ∆2(g0) ∩ L2(g0), we may use the dictionary (bj)
∞
j=1 to approximate the

parameter. In this case, ĥℓℓ will be a Lasso or Ridge Regression estimator and we can estimate

the derivative of h0 as we have estimated the derivative of α02. Moreover, estimating h0 is

usually a low dimensional problem. Hence, when ĥℓℓ is a Kernel or a Local Linear Regression

estimator, the derivatives of h0 can be estimated by finding the analytical expression of the

derivatives of the Kernel Function.

For a general ML estimator ĥℓℓ′ (e.g., Random Forest), we propose a numerical derivative

approach to estimate ∂h0/∂v. Let tn be a tuning parameter depending on the sample size. We

propose to estimate ∂h0/∂v(x, v) by

∂ĥℓℓ′

∂v
(x, v) ≡ ĥℓℓ′(x, v + tn) − ĥℓℓ′(x, v)

tn
. (4.9)

Note that, usually, we need to compute the derivative evaluated at (Xi, φ(Di, Zi, ĝℓℓ′)).

We have now seen all the difficulties in estimating D1ℓ in equation (4.8). With these solved,

we can proceed to construct and automatic estimator of the First Step nuisance parameter. The

estimator is given by α̂1ℓ = c′Kβ̂Kℓ, where

β̂Kℓ = argmin
βK∈RK

{
−2D̂′

1ℓβK + β′
KĈℓβK + λ∥βK∥qq

}
. (4.10)

We illustrate this procedure by constructing an automatic estimator of the First Step nui-

sance parameter for the CASF:

Example 1 (continuing from p. 21) From the previous discussion, we have that:

D1(w, g) =

{
D11(d, z) − ∂

∂v
[α02(x, v)(y − h0(x, v))]

}
g(z), with

D11(d, z) ≡ −
∫
∂h0
∂v

(x∗, d− g0(z))dF ∗(x∗).

We approximateD11 by numerical integration. Let (X∗
s )Ss=1 be a sample from F ∗. To estimate

D1ℓ, we approximate D11(Di, Zi), with i ∈ Iℓ′ , by

− 1

S

S∑
s=1

∂ĥℓℓ′

∂v
(X∗

s , Di − ĝℓℓ′(Zi)).
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To estimate D1ℓ, it remains to show how to estimate the second term in the brackets, for an

observation i ∈ Iℓ′ . Define Viℓℓ′ ≡ φ(Di, Zi, ĝℓℓ′) = Di − ĝℓℓ′(Zi). Following the chain rule, we

can estimate the second term by

−
(
∂bJ

∂v
(Xi, V̂iℓℓ′)

)′

ρ̂Jℓℓ′ · (Yi − ĥℓℓ′(Xi, V̂iℓℓ′)) + bJ(Xi, V̂iℓℓ′)
′ρ̂Jℓℓ′ ·

∂ĥℓℓ′

∂v
(Xi, V̂iℓℓ′). (4.11)

Therefore, to estimate D1ℓ according to equation (4.8), we have that, for i ∈ Iℓ′ ,

D1(Wi, ck|ĝℓℓ′ , ĥℓℓ′ , α̂2ℓℓ′ , θ̃ℓℓ′) = ck(Zi)·

{
− 1

S

S∑
s=1

∂ĥℓℓ′

∂v
(X∗

s , Viℓℓ′)

−
(
∂bJ

∂v
(Xi, V̂iℓℓ′)

)′

ρ̂Jℓℓ′ · (Yi − ĥℓℓ′(Xi, V̂iℓℓ′))

+bJ(Xi, V̂iℓℓ′)
′ρ̂Jℓℓ′ ·

∂ĥℓℓ′

∂v
(Xi, V̂iℓℓ′)

}
,

for each k = 1, ..., K. This can then be use to construct the objective function to estimate β̂Kℓ.

■

4.2 Estimation Algorithm

Here we provide an illustration of our estimation algorithm. The inputs to the algorithm are

cross-fit estimators of g0 and h0. An initial estimator of θ0 must also be supplied. We note that

one must provide a total of L estimators (ĝℓ, ĥℓ, θ̃ℓ) only using observations not in Iℓ, L(L−1)/2

estimators (ĝℓℓ′ , ĥℓℓ′ , θ̃ℓℓ′) only using observations not in Iℓ∪Iℓ′ , and L(L−1)(L−2)/6 estimators

(ĝℓℓ′ℓ′′ , ĥℓℓ′ℓ′′ , θ̃ℓℓ′ℓ′′) only using observations not in Iℓ ∪ Iℓ′ ∪ Iℓ′′ .
Figure 2 provides a diagram showing how to compute the moment condition ψ̂iℓ for an

observation i ∈ Iℓ. The debiased moment condition is given in equation (4.2). To this equation,

the diagram below adds the discussion in the above section, i.e., how to construct automatic

estimators of the nuisance parameters (α01 and α02) in the correction term. The arrows in the

diagram indicate how to estimate each term.

Once the debiased moment condition ψ̂iℓ is built, Automatic Debiased GMM estimation is

conducted with the objective function in equation (4.3).

5 Asymptotic theory

This section gives general conditions for asymptotic normality of the automatic debiased GMM

and conditions for consistent estimation of its asymptotic variance. The conditions are based in

the mean-square consistency, small interaction of estimation biases and locally robust conditions
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ĥ
ℓℓ

′ ,
α̂
2
ℓℓ

′ ,
θ̃ ℓ

ℓ′
)

A
ve

ra
ge

on
ℓ′
̸=
ℓ,
s
∈
I ℓ

′ ,
of

c K
(Z

s
)c

K
(Z

s
)′

·D
φ
c K

(y
−
ĥ
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discussed in CEINR. Furthermore, estimation rates for the nuisance parameters (α01, α02) require

(i) that the dictionaries approximate well the nuisance parameters and (ii) being able to estimate

the linear approximations of m̄(g, h, θ) given by E[D1(W, g)] and E[D2(W,h)] at a certain rate

(see Chernozhukov et al., 2022b).

In the presence of generated regressors, the theory needs to account for the fact that the

estimator of the correction term (and probably that of the moment condition) evaluate the

estimators ĥℓ and α̂2ℓ in the generated regressor V̂iℓ ≡ φ(Di, Zi, ĝℓ) (c.f., equation (4.2)). We

modify the expansion of ψ̂iℓ(θ0) − ψ(Wi, g0, h0, α0, θ0) given by CEINR to deal with this fact.

Also, we rely on smoothness conditions on the dictionaries and φ to ensure that evaluating at

the generated regressor is not problematic.

We begin with assumptions on the dictionaries. The first formaly states that the dictionaries

(bn)∞j=1 and (ck)∞k=1 span ∆2(g0) ∩ L2(g0) and ∆1, respectivelly.3

Assumption 5.1

a. For every j, bj ∈ ∆2(g0) ∩ L2(g0). Also, ∀δ2 ∈ ∆2(g0) ∩ L2(g0) and for every ε > 0, there

exist J and ρJ such that ∥δ2 − b′
JρJ∥2 < ε.

b. For every k, ck ∈ ∆1. Also, ∀δ1 ∈ ∆1 and for every ε > 0, there exist K and βK such that

∥δ1 − c′KβK∥2 < ε.

We also assume bounded dictionaries:

Assumption 5.2 supj∈N |bj(X, V )| <∞ and supk∈N |ck(Z)| <∞ almost surely.

The assumption translates into consistency of B̂ℓ and Ĉℓ. Also, on top of the following

assumption, it will guarantee that the correction term nuisance parameters are bounded:

Assumption 5.3 For the real-valued sequences (ρj)
∞
j=1 and (βk)∞k=1 such that α02(x, v) =∑∞

j=1 ρjbj(x, v) and α01(z) =
∑∞

k=1 βkck(z):

a.
∑∞

j=1 |ρj| <∞ and
∑∞

k=1 |βk| <∞.

b. For a C > 0, the atoms bj and ck corresponding to the largest C
√
n values of ρj and βk

are included in bJ and cK .

This Assumption guarantees the L1-norm of the coefficient of the Lasso penalized regression

to be under control. The result is relevant to estimate the asymptotic variance (see Cher-

nozhukov et al., 2022b) and to evaluate the estimators at the generated regressor.

We require the following estimation rates:

Assumption 5.4 There is 1/3 < r < 1/2 such that

3In this section, for a measurable function f(w), ∥f∥2 ≡
√
E[f(W )2] denotes its L2-norm. Also, for a d1 × d2

matrix A = (Ai,j)
d1,d2

i=1,j=1, ∥A∥∞ ≡ maxi,j |Aij |.
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a. ∥ĝℓ − g0∥2 = Op(n
−r) and ∥ĥℓ − h0∥2 = Op(n

−r).

b. ∥D̂1ℓ − E[D1(W, cK)]∥∞ = Op(n
−r) and ∥D̂2ℓ − E[D2(W,bJ)]∥∞ = Op(n

−r).

The assumption gives rate conditions on the estimators of the nuisance parameters and on the

linearization of the moment condition. Assumption 5.4.b may be derived from Assumption 5.4.a,

some regularity conditons on the linearizations (see Chernozhukov et al., 2022b, Ass. 12), and

some regularity conditions that allow evaluation at the generated regressor (see Assumption 5.9

below).

We also aks for the following rates for the Lasso penalty and the number of terms in the

dictionaries:

Assumption 5.5

a. The Lasso penalty term λ = λ(n) for estimation of (α01, α02) satisfies: n−r = o(λ) and

λ = o(nc−r) for every c > 0.

b. The number of terms in the dictionaries satisfy J,K = O(nκ) for a constant κ > 0.

This assumptions asks for the Lasso penalty to go to zero slightly slower than n−r. For

instance, a rate of log(n)/nr is allowed. Moreover, it requires polynomial rates in the growth of

the number of terms in the dictionaries.

The above are general conditions imposed on the dictionaries and the tunning parameters for

the Lasso penalized regression. The specific problem at hand only apears in two instances. First,

Assumption 5.1 requires that the dictionaries approximate well the correction term nuisance

parameters (living in ∆1 and ∆2(go)∩L2(g0)). Second, Assumption 5.4 requires (i) mean-square

rates for the estimators of g0 and h0 and (ii) to be able to estimate the linearizations at the

same rate. As discussed before, these conditions provide rates of estimators of the nuissance

parameters in correction terms α01 and α02 (see Chernozhukov et al., 2022b). For instance,

the convergence rate of α̂1ℓ will be fast enough to guarantee that the interaction term satisfies

∥α̂1ℓ − α01∥2 · ∥ĝℓ − g0∥2 = op(n
−1/2) (c.f. Assumption 2 in CEINR).

We now provide assumptions on the moment condition. The first is a mean-square consis-

tency condition similar to Assumption 1 in CEINR:

Assumption 5.6

a. E[m(W, g0, h0, θ0)
2] <∞.

b.
∫

[m(w, ĝℓ, ĥℓ, θ0) −m(w, g0, h0, θ0)]
2dF0(w)

P−→ 0.

c.
∫

[m(w, ĝℓ, ĥℓ, θ̃ℓ) −m(w, ĝℓ, ĥℓ, θ0)]
2dF0(w)

P−→ 0.

d. E[(Y − h0(X, V ))2|X, V ] and E[(D − g0(Z))2|Z] are bounded almost surely.
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The first point is necessary for regular estimation of θ0. Assumptions 5.6.b and 5.6.c are

mean-square consistency conditios for the moment condition. Boundedness of the conditional

variances (Assumption 5.6.d) easily translates into mean-square consistency conditions for the

correction term ϕ. We repeat here that boundedness of the correction term nuisance parameters

α01 and α02 is implied by Assumptions 5.2 and 5.3.a.

We require the linear approximation of m̄(g, h, θ0) to be good enoug (in a neighborhood of

(g0, h0)):

Assumption 5.7 There is a ε > 0 and a C > 0 such that, if ∥g− g0∥2 < ε and ∥h− h0∥2 < ε,

then
|E [m(W, g, h, θ0) −m(W, g0, h0, θ0) −D1(W, g − g0) −D2(W,h− h0)]|

≤ C
(
∥g − g0∥22 + ∥h− h0∥22

)
.

This Assumption translates in the Locally Robust property in Assumption 3.iii in CEINR.

It asks that, once we have removed the first-order effect of estimating (g0, h0), the remainder

term must be at most quadratic. In many case m̄(h, g, θ0) is affine in h, so the above assumption

translates into a quadratic bias condition on the effect of first-step estmation: |E[m(W, g, h0, θ0)−
m(W, g0, h0, θ0) −D1(W, g)]| ≤ C∥g − g0∥22.

The GMM procedure requires consistent estimation of the Jacobian of the moment condition.

The following assumption gives sufficient conditions:

Assumption 5.8 There exists a neighborhood N of θ0 such that, for small ∥g − g0∥2 and

∥h− h0∥2:

a. m(W, g, h, θ) is almost surely differentiable in N .

b. There exists a C > 0 and a function d(W, g, h), with E[d(W, g, h)] < C, such that for

θ ∈ N ∥∥∥∥∂m∂θ (W, g, h, θ) − ∂m

∂θ
(W, g, h, θ0)

∥∥∥∥
∞

≤ d(W, g, h)∥θ − θ0∥1/C∞ almost surely.

Moreover, we assume that:

c. M, the expectation of the Jacobian, exists.

d. It holds that ∫ ∥∥∥∥∂m∂θ (w, ĝℓ, ĥℓ, θ0) −
∂m

∂θ
(w, g0, h0, θ0)

∥∥∥∥
∞
dF0(w)

P−→ 0.

We conclude the set of sssumptions with smoothness conditions on the dictionary (bj)
∞
j=1

and the function giving the generated regressor φ. The following assumption allows us to deal

with ĥℓ and α̂2ℓ being evaluated at the generated regressor.
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Assumption 5.9

a. h0 also safisfies Assumption 5.3.

b. supj∈N |∂bj(X, V )/∂v| <∞ almost surely.

c. There exists a ε > 0 such that, if ∥g − g0∥2 < ε, bj(·, φ(·, ·, g)) ∈ ∆(g0) for every j ∈ N.

In Theorem 5.1, we give asymptotic normality of the automatic debiased GMM estimator

when ĥℓ is a Lasso penalized regression of Y onto bJ(X, V ) (see Section 4). For other estimators

of the second step nuisance paremeters, Assumption 5.9.a may be replaced by ∥h̃ℓ − h0∥2 =

Op(∥ĥℓ − h0∥2), where h̃ℓ(w) ≡ ĥℓ(x, φ(d, z, ĝℓ)).

Assumption 5.9.b alows us to bound the efect of departures from evaluation at the “true”

generated regressor V ≡ φ(D,Z, g0). Assumption 5.9.c simply requires that, for small ∥g−g0∥2,
the dictionary evaluated in the generated regressor is in the space where h0 and α02 live. For

instance, in the case ∆2(g) = {(d, z) 7→ δ(x, φ(d, z, g)) : δ ∈ ∆} for a subspace ∆ ⊆ L2(X, V ), the

assumption generaly requires that E[bj(X,φ(D,Z, g))2] < ∞. This will follow from Hadamard

differentiability of φ (Assumption (A4)) and 5.9.b.

Assumptions 5.3, 5.4, 5.6, and 5.7 are stated for a single moment condition. In the presence of

more than one condition, they must be understood to hold componentwise. The same happens

with Assumptions (A1), (A2), and (A4) in Section 3.1. Assumption 5.8, since it refers to a

GMM-specific situation, is already formulated in the general case. The remaining assumptions

do not depend on the dimension of the moment condition (they depend, on the other hand, on

the dimension of Y and D).

Recall that V ≡ (M ′ΥM)−1M ′Υ′ΨΥM(M ′ΥM)−1 gives the asymptotic variance of the

automatic debiased GMM estimator. Define V̂ ≡ (M̂ ′Υ̂M̂)−1M̂ ′Υ̂′Ψ̂Υ̂M̂(M̂ ′Υ̂M̂)−1 as the

plug-in estimator of the asymptotic variance, where M̂ and Ψ̂ are given in equations (4.4) and

(4.5), respectivelly. The following theorem ensures asymptotic normality of
√
n(θ̂ − θ0):

Theorem 5.1 Consider that Assumptions (A1)-(A4) and 5.1-5.9 are satisfied, Υ̂
P−→ Υ,

M ′ΥM is non-singular, and ĥℓ are Lasso estimators of h0. Then, the automatic debiased GMM

estimator in equation (4.3) satisfies
√
n(θ̂ − θ0)

D−→ N(0, V ).

Moreover, the plug-in estimator for the asymptotic variance is consistent: V̂
P−→ V .

6 Monte Carlo simulation

This section describes the Monte Carlo simulation to evaluate the finite sample properties of

the CASF-estimator proposed in this paper. Before presenting the results, we briefly describe

the Data Generating Process and the implemented estimators.
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6.1 Description

The Data Generating Process is

(Z,U, V ) ∼ N

0,

Id6 0 0

0 1 1/2

0 1/2 1


 ,

where Id6 denotes the 6 × 6 Identity Matrix. Therefore, Z is a 6-dimensional random vector.

The correlation between U and V is 1/2. Note that the fact that Z ⊥ U and Z ⊥ V guarantees

that the Control Function Assumption is satisfied.

Both D and Y are generated by the following linear models:

Y =
5∑

k=1

Zk + 2D + U and

D =
6∑

k=1

Zk + V.

So Z6 is excluded from the structural equation (i.e., it does not directly affect Y ) and may be

used as an instrument.

We estimate the CASF for the following counterfactual distribution F ∗
X : (i) the distribution

of (Z1, . . . , Z5) remains unchanged and (ii) D is normal with mean 1 (instead of 0) and the same

variance as in the DGP. Therefore, the true parameter is θ0 = 2.

We note here that, even if the model considered is linear, the second-step correction nuisance

parameter is highly non-linear. Letting s ≡
∑5

k=1 zk, the nuisance parameter is

α02(z1, . . . , z5, d, v) = C · exp

(
−1

4
− s

2
+
d

2
+
s2

4
+
v2

2
+
d2

4
− sd

2
+ sv − dv

)
,

for a constant C. This nuisance parameter is automatically estimated with dictionaries that do

not account for the complexity of the function (see below). Moreover, we would like to highlight

that the first-step correction nuisance parameter includes terms as E[α02(Z1, . . . , Z5, D, V )|Z].

We display results for three different estimators of the CASF:

• The naive plug-in estimator: θ̂PI ≡ n−1
∑n

i=1m(Wi, ĝ, ĥ).

• A cross-fitted debiased estimator that only corrects for the effect of pluging-in ĥ: θ̂DB2 is

as in equation (4.6) but with ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ) replaced by α̂2ℓ(Xi, V̂iℓ) · (Yi− ĥℓ(Xi, V̂iℓ)).

That is, the correction term for the first step is omitted.

• The cross-fitted fully debiased estimator: θ̂DBF as in equation (4.6). That is, it used the

debiased moment condition in equation (4.2).
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Numerical integration, with a sample of size S = 107, is used to solve the integrals w.r.t. F ∗
X .

The estimators for the nuisance parameters g0 and h0 are Lasso with three dictionaries: one that

includes linear terms, another including linear and quadratic terms, and a last one including

linear, quadratic, and interaction terms. The number of splits for cross-fitting is L = 5 for every

sample size.

To perform inference with each estimator, we present results that parallel common practice.

The fully debiased estimator uses the correct asymptotic variance, that does account for first and

second step estimation. This is given by equation (4.5). The estimator θ̂DB2 only accounts for the

second step when computing the asymptotic variance (as it does for estimation). Its asymptotic

variance can be constructed by replacing ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ) by α̂2ℓ(Xi, V̂iℓ) · (Yi − ĥℓ(Xi, V̂iℓ)),

the second step IF. To emphasize that plug-in estimation leads to an asymptotic bias problem,

confidence intervals for the plug-in estimator are built with correct asymptotic variance (the one

in equation (4.5)).

6.2 Results

The next tables report results for a Monte Carlo simulation with B = 1098 replications. Each

table gives results for a different dictionary: linear, quadratic or the one which also includes

interaction terms.

Mean Absolute Bias Standard Error Coverage

n PI DB2 DBF PI DB2 DBF PI DB2 DBF

100 0.2285 0.1463 0.1482 0.1649 0.1812 0.1733 0.6388 0.8681 0.8626

500 0.1425 0.0594 0.0516 0.0685 0.0692 0.0645 0.3876 0.8954 0.9208

1000 0.1236 0.0435 0.0376 0.049 0.0488 0.0462 0.2266 0.8744 0.9272

5000 0.0852 0.0234 0.0169 0.0227 0.0212 0.0202 0.0227 0.7925 0.9290

10000 0.0746 0.0181 0.0123 0.017 0.0148 0.0142 0.0018 0.7489 0.9163

Table 1 CASF results for the dictionary including linear terms.

Tables 1 and 2 present results for the linear and quadratic dictionaries, respectively. Cor-

recting for the second-step already reduces a large amount of the bias of the plug-in estimator.

Adding the first-step correction further decreases bias. It is worth highlighting that the the

better performance relative the the bias comes with a smaller standard deviation, particularly

for larger samples. As shown in the tables, however, the estimator accounting only for the

second-step fails to keep coverage at the nominal 95% level as sample size increases.

The tables highlight that the plug-in estimator suffers from severe asymptotic bias issues:

coverage decreases rapidly, even if the confidence interval is constructed with correct standard
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Figure 3 Distribution of the CASF estimators using a quadratic dictionary for a sample size of

n = 10000.

errors. Indeed, Figure 3 shows that, for a sample size of n = 10000, the distribution of plug-in

estimators has almost zero mass near the true parameter θ0 = 2.

Mean Absolute Bias Standard Error Coverage

n PI DB2 DBF PI DB2 DBF PI DB2 DBF

100 0.2764 0.1898 0.1957 0.1766 0.2003 0.2 0.5532 0.7534 0.7561

500 0.1462 0.0603 0.0527 0.0692 0.0709 0.0663 0.3794 0.8963 0.9327

1000 0.1214 0.0446 0.0374 0.0491 0.0488 0.0465 0.2329 0.8717 0.929

5000 0.079 0.0259 0.0161 0.0236 0.0212 0.0202 0.0437 0.737 0.9354

10000 0.0694 0.0209 0.0115 0.0172 0.0148 0.0143 0.0036 0.6533 0.9327

Table 2 CASF results for the dictionary including linear and quadratic terms.

Table 3 displays results for the the dictionary that also includes interaction terms. The

results are striking as the estimator only account for the second step performs well. It is able

to keep coverage at nominal levels, outperforming the fully debiased estimator. We believe that

this fact rests on the linear dictionary performing well to estimate α02 but notably worst to

estimate the more complex ∂α02/∂v, which is needed for the fist-step correction. Nevertheless,

the decrease in coverage is small: 1-2% for intermediate sample sizes (n = 500 and 1000) and

4-5% for large samples (n = 5000 and 10000). This result suggest that the complexity of the

dictionary must be increased faster when accounting for the first step.

7 Conclusion

We propose an Automatic Locally Robust estimators for structural parameters in the presence

of generated regressors. We show that the debiasing correction term can be decomposed into

terms accounting for first step and second step estimation. Each of the first and second step

IF depends on an additional nuisance parameter, which can be automatically estimated (i.e.,

estimated without finding their analytic shape).
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Mean Absolute Bias Standard Error Coverage

n PI DB2 DBF PI DB2 DBF PI DB2 DBF

100 0.3447 0.3583 0.3857 0.179 0.3606 0.4054 0.9016 0.7969 0.806

500 0.1707 0.0997 0.1085 0.0693 0.1213 0.1359 0.7925 0.9481 0.9227

1000 0.1367 0.0635 0.0674 0.0488 0.0776 0.0849 0.5883 0.9372 0.9262

5000 0.0846 0.0259 0.0283 0.0229 0.0312 0.0349 0.1383 0.9372 0.8926

10000 0.0729 0.0173 0.0205 0.017 0.0207 0.0228 0.0337 0.9399 0.8926

Table 3 CASF results for the dictionary including linear, quadratic, and interaction terms.

We apply our results to construct Automatic Locally Robust estimators for the CASF under

the control function assumption and Average Partial Effects in sample selection models. The

analytic shape of the nuisance parameters in these two cases is particularly complex, as the

moment conditions depend on the whole shape of the second step parameter (not only its

pointwise value). Therefore, automatic estimation is particularly suited for these problems.
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Appendix A Additional examples

Example 2 (continuing from p. 6) Let ∂h/∂x(x, v) denote the derivative of h(x, v) w.r.t.

its first argument at (x, v). Let ∂2h/∂x∂v(x, v) denote the derivative w.r.t. both arguments at

(x, v). For the APE, we have that the moment function is linear in h. Thus:

D2(w, h|g0, h0, θ) =
∂h

∂x
(x, g0(z)),

where we have already make explicit the dependence of D2 on (g0, h0, θ). We can also linearize

the moment condition in g to obtain:

D1(w, g|g0, h0, α0, θ) =

{
D11(d, z) +

∂

∂v
[α02(x, v)(y − h0(x, v))]

}
g(z), with

D11(d, z) ≡ ∂2h0
∂x∂v

(x, g0(z)).

The debias estimator for the APE is

θ̂ =
1

n

L∑
ℓ=1

∑
i∈Iℓ

∂ĥℓ
∂x

(Xi, ĝℓ(Zi)) + ϕ̂,

where, for the estimator ĥℓ, we can estimate its derivative w.r.t. x by

ĥℓ
∂x

(x, v) ≡ ĥℓ(x+ sn, v) − ĥℓ(x, v)

sn
,

for a tuning parameter sn. Alternatively, we can take advantage of a differentiable dictionary

(bj(x, v))∞j=1, as described below.

To construct ϕ̂, we need to estimate α01 and α02. We propose automatic estimators for

these nuisance parameters. We assume that ∂h0/∂x and ∂h0/∂v are differentiable, so we can

interchange the order of differentiation.

Consider a dictionary (bj)
∞
j=1 that is differentiable w.r.t. both x and v. To Estimate D̂2ℓ, we

can compute D2(Wi, bj|ĝℓℓ′ , ĥℓℓ′ , θ̃ℓℓ′) for an observation i ∈ Iℓ′ by

∂bj
∂x

(Xi, ĝℓℓ′(Zi)).

This derivative can be found analytically for each atom. We can use this to obtain an automatic

estimator of α02.

To construct D̂1ℓ, we need to estimate D1(Wi, ck|ĝℓℓ′ , ĥℓℓ′ , α̂2ℓℓ′ , θ̃ℓℓ′) for an observation i ∈ Iℓ′

and an arbitrary atom ck in a dictionary. The first term, D11(Di, Zi), can be estimated by(
∂2bJ

∂x∂v
(Xi, ĝℓℓ′(Zi))

)′

ηJ ,
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in case that h0(x, v) is approximated by bJ(x, v)′ηJ . To estimate the second term we can use

equation (4.11), replacing V̂iℓℓ′ by ĝℓℓ′(Zi). These are the ingredients to build an automatic

estimator for α01.

■
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Appendix B Proofs of the results

Proof of Lemma 2.1: Applying the chain rule several times to dm̄(g(Fτ ), h(Fτ , g(Fτ )), θ)/dτ ,

we have that:

d

dτ
m̄(g(Fτ ), h(Fτ , g(Fτ )), θ) =

d

dτ
m̄(g(Fτ ), h0, θ) +

d

dτ
m̄(g0, h(Fτ , g(Fτ )), θ).

Then, using the chain rule again:

d

dτ
m̄(g0, h(Fτ , g(Fτ )), θ) =

d

dτ
m̄(g0, h(F0, g(Fτ )), θ)

+
d

dτ
m̄(g0, h(Fτ , g0), θ).

Combining the above equations leads to:

d

dτ
m̄(g(Fτ ), h(Fτ , g(Fτ )), θ) =

d

dτ
m̄(g(Fτ ), h0, θ)

+
d

dτ
m̄(g0, h(F0, g(Fτ )), θ)

+
d

dτ
m̄(g0, h(Fτ , g0), θ).

(B.1)

Now, note that by the chain rule we have that:

d

dτ
m̄(g(Fτ ), h0, θ) +

d

dτ
m̄(g0, h(F0, g(Fτ )), θ)

=
d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ).

Hence the first two terms in equation (B.1) equal the derivative of m̄(g(Fτ ), h(F0, g(Fτ )), θ). ■

Proof of Proposition 3.1: For the (differentiable) path τ 7→ h(Fτ , g0), Assumption (A1)

implies
d

dτ
m̄(g0, h(Fτ , g0), θ) =

d

dτ
E[D2(W,h(Fτ , g0)].

This gives the linearization (LIN).

To find the shape of the IF, note that E[D2(W,h)] is a linear and continuous functional in

L2(X, V ), a Hilbert space of square-integrable functions. Thus, by the Riesz Representation

Theorem, there exists a r2 such that E[D2(W,h)] = E[r2(X, V )h(X, V )], with V ≡ φ(D,Z, g0).

Therefore:
d

dτ
m̄(g0, h(Fτ , g0), θ) =

d

dτ
E[r2(X, V )h(Fτ , g0)(X, V )],

where h(F, g)(x, v) denotes h(F, g) evaluated at (x, v). This is Assumption 1 in Ichimura and

Newey (2022). Since Assumption 2 in that paper is satisfied in our setup, Proposition 1 in
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Ichimura and Newey (2022) gives: ϕ2(w, h0, α02, θ) = α02(d, z){y − h0(x, φ(d, z, g0))}. The

parameter α20 is the L2-projection of r2 onto ∆2(g0):

α20 = argmin
α∈∆2(g0)

E[(r2(X,φ(D,Z, g0)) − α(D,Z))2]. (B.2)

We now show that, necessarily, α02 ∈ L2(g0) ≡ {(d, z) 7→ δ(x, φ(d, z, g)) : δ ∈ L2(X, V )}.

Note that r2 ∈ L2(g0). Moreover, since L2(g0) is a linear and closed subspace of L2(D,Z),

by Luenberger (1997, Th. 1 in Sec. 3.4), for every α ∈ ∆2(g0) we have the decomposition

α = m + m⊥, with m ∈ L2(g0) and m⊥ ∈ L2(g0)
⊥, the orthogonal complement of L2(g0).

Therefore, for every α ∈ ∆2(g0),

∥r2 − α∥2 = ∥r2 −m−m⊥∥2 = ∥r2 −m∥2 + ∥m⊥∥2 ≥ ∥r2 −m∥2.

Note that ∥δ∥2 = E[δ(D,Z)2] for every δ ∈ L2(D,Z). The above result uses that r2−m ∈ L2(g0)

and Pitagoras’ Theorem (Luenberger, 1997, Lemma 1 in Sec. 3.3). Since equality is achieved

when m⊥ = 0, we have that ∥r2 − α∥2 is minimized for an α ∈ ∆2(g0) ∩ L2(g0). This gives

Point (IF). ■

Proof of Theorem 3.1: We compute dm̄(g(Fτ ), h0, θ)/dτ and dm̄(g0, h(F0, g(Fτ )), θ)/dτ

separately and then add them according to equation (3.2). By Assumptions (A1) and (A2),

using the Riesz Representation Theorem, we have that for the differentiable paths τ 7→ g(Fτ )

and τ 7→ h(F0, g(Fτ )):

d

dτ
m̄(g(Fτ ), h0, θ) =

d

dτ
E[D11(W, g(Fτ ))] =

d

dτ
E[r1(Z)g(Fτ )(Z)] (B.3)

and, being V ≡ φ(D,Z, g0),

d

dτ
m̄(g0, h(F0, g(Fτ )), θ) =

d

dτ
E[D2(W,h(F0, g(Fτ )))] =

d

dτ
E[r2(X, V )h(F0, g(Fτ ))(X, V )].

(B.4)

In these equations, g(F )(z) means g(F ) evaluated at z, and h(F, g)(x, v) means h(F, g) evaluated

at (x, v).

We now proceed as in Hahn and Ridder (2013, Lma. 1). For any function δ ∈ ∆2(g(Fτ )) ∩
L2(g0), we have that

E[δ(X,φ(D,Z, g(Fτ ))) · {Y − h(F0, g(Fτ ))(X,φ(D,Z, g(Fτ )))}] = 0.

This is the orthogonality condition that defines h(F0, g(Fτ )), as equation (2.2) defines h0. Taking

derivatives in the above equation leads to:

d

dτ
E[δ2(X, V )h(F0, g(Fτ ))(X, V )] = − d

dτ
E[δ2(X, V )h0(X,φ(D,Z, g(Fτ )))]

+
d

dτ
E [δ2(X,φ(D,Z, g(Fτ ))) · (Y − h0(X, V ))] .

(B.5)
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A final step is needed to connect equation (B.4) with the above result. To perform it,

we use Assumption (A3) in two directions. First, since α02 ∈ ∆2(g0) ∩ L2(g0), we have that

α02(·, φ(·, ·, g(Fτ ))) ∈ ∆2(g(Fτ )) ∩ L2(g0). We can then apply equation (B.5) to α02. Moreover,

since h(F0, g(Fτ ))(·, φ(·, ·, g(Fτ ))) ∈ ∆2(g(Fτ )), we also have that h(F0, g(Fτ ))(·, φ(·, ·, g0)) ∈
∆2(g0). This means that, in equation (B.4), we can dismiss the component of r2 that is orthogo-

nal to ∆2(g0). Then, we can write dE[α02(X, V )h(F0, g(Fτ ))(X, V )]/dτ as RHS in equation (B.4).

Combining this with equation (B.5):

d

dτ
m̄(g0, h(F0, g(Fτ )), θ) =

d

dτ
E[α02(X, V )h(F0, g(Fτ ))(X, V )]

= − d

dτ
E[α02(X, V )h0(X,φ(D,Z, g(Fτ )))]

+
d

dτ
E [α02(X,φ(D,Z, g(Fτ ))) · (Y − h0(X, V ))] .

(B.6)

Under Assumption (A4), the term in the second row can be linearized in g(Fτ ) as

d

dτ
E[α02(X, V )h0(X,φ(D,Z, g(Fτ )))] = E

[
d

dτ
{α02(X, V )h0(X,φ(D,Z, g(Fτ )))}

]
= E

[
α02(X, V )

∂h0
∂v

(X, V )
d

dτ
φ(D,Z, g(Fτ ))

]
= E

[
α02(X, V )

∂h0
∂v

(X, V )
d

dτ
Dφg(Fτ )(D,Z)

]
=

d

dτ
E
[
α02(X, V )

∂h0
∂v

(X, V )Dφg(Fτ )(D,Z)

]
,

where Dφg(d, z) denotes Dφg evaluated at (d, z). We have assumed that derivatives and expec-

tations can be interchanged (we may impose some regularity conditions on H such that this is

possible). We can equivalently linearize the term in the third row of equation (B.6) to get

d

dτ
E [α02(X,φ(D,Z, g(Fτ ))) · (Y − h0(X, V ))] =

d

dτ
E
[
(Y − h0(X, V ))

∂α02

∂v
(X, V )Dφg(Fτ )(D,Z)

]
.

Pluging in these results back in equation (B.6):

d

dτ
m̄(g0, h(F0, g(Fτ )), θ) =

d

dτ
E
[{

−α02(X, V )
∂h0
∂v

(X, V )

+(Y − h0(X, V ))
∂α02

∂v
(X, V )

}
Dφg(Fτ )(D,Z)

]
= E

[
∂

∂v
{α02(X, v) · (Y − h0(X, v))}

∣∣∣∣
v=V

Dφg(Fτ )(D,Z)

]
.

(B.7)

Since Dφ is linear in g, the function inside the expectation in the RHS is linear in g. We now
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use equation (3.2) to combine the results in equations (B.3) and (B.7). This gives:

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ) =

d

dτ
E
[
D11(W, g(Fτ ))

+
∂

∂v
{α02(X, v) · (Y − h0(X, v))}

∣∣∣∣
v=V

Dφg(Fτ )(D,Z)

]
,

which gives the linearization result of the Theorem (LIN).

To find the shape of the IF, note that the adjoint D∗
φ of Dφ is defined by the equation

E[δ(D,Z)Dφg(D,Z)] = E[D∗
φδ(Z)g(Z)]. Therefore, by the Law of Iterated Expectations in

equation (B.7), noting that V ≡ φ(D,Z, g0) is a function of (D,Z):

d

dτ
m̄(g0, h(F0, g(Fτ )), θ) =

d

dτ
E
[
E
[
∂

∂v
{α02(X, v) · (Y − h0(X, v))}

∣∣∣∣
v=V

Dφg(Fτ )(D,Z)

∣∣∣∣D,Z]]
= E[ν(D,Z)Dφg(Fτ )(D,Z)] = E[D∗

φν(Z)g(Fτ )(Z)],

with

ν(d, z) ≡ ∂

∂v
{α02(x, v) · (E[Y |D = d, Z = z] − h0(x, v))}

∣∣∣∣
v=φ(d,z,g0)

.

Again, we can use equation (3.2) to combine this last result with that in equation (B.3):

d

dτ
m̄(g(Fτ ), h(F0, g(Fτ )), θ) =

d

dτ
E[{r1(Z) +D∗

φν(Z)}g(Fτ )(Z)].

This is Assumption 1 in Ichimura and Newey (2022). Since Assumption 2 in that paper is

satisfied in our setup, Proposition 1 in Ichimura and Newey (2022) gives the shape of the IF:

ϕ1(w, g0, α01, θ) = α01(z) · {d− g0(z)}. The parameter α10 is the L2-projection:

α10 = argmin
α∈∆1

E[(ν̃(Z) − α(Z))2], (B.8)

where ν̃ = r1 +D∗
φν. ■

The asymptotic normality and consistent estimation of the asymptotic variance result in

Theorem 5.1 relies on the following lemma:

Lemma B.1 Consider Assumptions (A4), 5.3, 5.4.a, and 5.9. Let r, ξ > 0. For h̃ℓ(w) ≡
ĥℓ(x, φ(d, z, ĝℓ)) and α̃2ℓ(w) ≡ α̂2ℓ(x, φ(d, z, ĝℓ)):

∥ĥℓ − h0∥2 = Op(n
−r) ⇒ ∥h̃ℓ − h0∥2 = Op(n

−r), and

∥α̂2ℓ − α02∥2 = op(n
ξn−r/2) ⇒ ∥α̃2ℓ − α02∥2 = op(n

ξn−r/2).

Proof of Lemma B.1: Recall that ĥℓ(x, v) ≡ bJ(x, v)′η̂J and α̂2ℓ(x, v) ≡ bJ(x, v)′ρ̂J . We

show that

∥ĥℓ − ĥℓ∥2 = Op(n
−r).
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The conclusion for α̃2ℓ follows the same reasoning.

Let b̃j(w) ≡ bj(w,φ(d, z, ĝℓ)). By the triangle inequality ∥ĥℓ − ĥℓ∥2 ≤
∑J

j=1 |η̂j|∥b̃j − bj∥2.
Moreover, by the Mean Value Theorem and Assumption 5.9.b,

∥b̃j − bj∥22 =

∫
(bj(x, φ(d, z, ĝℓ)) − bj(x, v))2dF0(w) ≤ κ2∥φ(·, ·, ĝℓ) − φ(·, ·, g0)∥22.

Then, supj≤J∥b̃j − bj∥2 ≤ κ∥φ(·, ·, ĝℓ) − φ(·, ·, g0)∥2. Also, since φ is Hadamard differentiable

(Assumption (A4)): ∥φ(·, ·, ĝℓ)−φ(·, ·, g0)−Dφ(ĝℓ− g0)∥2 = op(∥ĝℓ− g0∥) and ∥Dφ(ĝℓ− g0)∥2 ≤
C∥ĝℓ − g0∥2 (see Yamamuro, 1974, Result 1.2.6). Thus, by the triangle inequality:

sup
j≤J

∥b̃j − bj∥2 ≤ κC∥ĝℓ − g0∥2 + op(∥ĝℓ − g0∥2).

Now, Assumption 5.3 allows us to apply Lemma A9 in Chernozhukov et al. (2022b) to get∑J
j=1 |η̂j| = Op(1). Therefore, if Assumption 5.4.a holds,

∥ĥℓ − ĥℓ∥2 ≤
J∑

j=1

|η̂j|∥b̃j − bj∥2 ≤

(
J∑

j=1

|η̂j|

)
(κC∥ĝℓ − g0∥2 + op(∥ĝℓ − g0∥2))

= Op(1) · [Op(n
−r) + op(n

−r)] = Op(n
−r).

(B.9)

The conclusion for ∥h̃ℓ−h0∥2 follows directly from equation (B.9) and the triangle inequality.

The conclusion for ∥α̃2ℓ −α02∥2 follows equally, taking into account that Op(n
−r) = op(n

ξn−r/2)

for ξ > 0. ■

Proof of Theorem 5.1: We start with asymptotic normality of
√
n(θ̂ − θ0). The proof

follows standard GMM techniques and Theorem 9 in Chernozhukov et al. (2022b). A rele-

vant deviation from the previous results is that the estimators are evaluated at the generated

regressor. Lemma B.1 allows to deal with that situation.

The cornerstone of the result is Lemma 8 in Chernozhukov et al. (2022a), CEINR in what

follows, which states that:

√
nψ̂(θ0) =

1√
n

n∑
i=1

ψ(Wi, g0, h0, α0, θ0) + op(1) (B.10)

under some conditions. We will apply Lemma 8 to a modified expansion of the difference between

ψ̂(θ0) and n−1/2
∑n

i=1 ψ(Wi, g0, h0, α0, θ0) that allows to deal with estimators evaluated at the

generated regressor.

Consider first that equation (B.10) holds for each component of ψ̂. Consistency of θ̂ fol-

lows under standard conditions that guarantee uniform convergence of ψ̂(θ)′Υ̂ψ̂(θ) in Θ (c.f.

Wooldridge, 2010, Th. 14.1). These conditions will follow from Assumption 5.8 if Θ is compact.

Moreover, by Assumptions 5.4.a and 5.8.a we can apply the Mean Value Theorem to get

√
n
(
ψ̂(θ̂) − ψ̂ (θ0)

)
=

√
n
∂ψ̂

∂θ
(θ̄) · (θ̂ − θ0)
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for θ̄ a point between θ0 and θ̂ (that is θ̄
P−→ θ0). Then, if equation (B.10) holds:

√
n
∂ψ̂

∂θ
(θ̄) · (θ̂ − θ0) =

1√
n

n∑
i=1

ψ(Wi, g0, h0, α0, θ0) +
√
nψ̂(θ̂) + op(1). (B.11)

Now, note that

∂ψ̂

∂θ
(θ) =

∂

∂θ

(
1

n

L∑
ℓ=1

∑
i∈Iℓ

[
m(Wi, ĝℓ, ĥℓ, θ) + ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ)

])

=
1

n

L∑
ℓ=1

∑
i∈Iℓ

∂m

∂θ
(Wi, ĝℓ, ĥℓ, θ)

Then, since Assumptions 5.4.a and 5.8, on top of θ̂
P−→ θ0, guarantee that we can apply Lemma E2

in CEINR, we have that ∂ψ̂(θ̂)/∂θ
P−→ M , so it is bounded in probability. Therefore, since Υ̂ is

also Op(1), equation (B.11) implies

∂ψ̂

∂θ
(θ̂)′Υ̂

∂ψ̂

∂θ
(θ̄) ·

√
n(θ̂ − θ0) =

∂ψ̂

∂θ
(θ̂)′Υ̂ · 1√

n

n∑
i=1

ψ(Wi, g0, h0, α0, θ0)

+
√
n
∂ψ̂

∂θ
(θ̂)′Υ̂ψ̂(θ̂) + op(1).

Thus, since (∂ψ̂(θ̂)/∂θ)′Υ̂ψ̂(θ̂) = 0 is the first-order condition for the minimization problem

in equation (4.3), ∂ψ̂(θ̄)/∂θ
P−→M (by Lemma E2 in CEINR), and M ′ΥM is non-sigular:

√
n(θ̂ − θ0) = (M ′ΥM)−1 1√

n

n∑
i=1

ψ(Wi, g0, h0, α0, θ0) + op(1).

Then, the asymptotic normality result follows from n−1/2
∑n

i=1 ψ(Wi, g0, h0, α0, θ0)
D−→ N(0,Ψ).

It remains to verify the assumptions for Lemma 8 in CEINR, so that equation (B.10) holds

for each component of ψ̂. First, to handle estimators evaluated at the generated regressor, we

provide a modified expansion of the difference between ψ̂(θ0) and n−1/2
∑n

i=1 ψ(Wi, g0, h0, α0, θ0).

Let ϕ̄(w, v̄, g, h, α) ≡ α1(z) · (d − g(z)) + α2(x, v̄) · (y − h(x, φ(d, z, g))), which makes explicity

that α2 is evaluated at (x, v̄). Then, being ψ̂iℓ(θ) given by equation (4.2), we have that ψ̂iℓ(θ0)−
ψ(Wi, g0, h0, α0, θ0) = R̂1iℓ + R̂2iℓ + R̂3iℓ + ∆̂iℓ, where

R̂1iℓ ≡ m(Wi, ĝℓ, ĥℓ, θ0) −m(Wi, g0, h0, θ0),

R̂2iℓ ≡ ϕ̄(Wi, φ(Di, Zi, g0), ĝℓ, ĥℓ, α0) − ϕ(Wi, g0, h0, α0, θ0),

R̂3iℓ ≡ ϕ̄(Wi, φ(Di, Zi, ĝℓ), g0, h0, α̂ℓ) − ϕ(Wi, g0, h0, α0, θ0),

∆̂iℓ ≡ ϕ(Wi, ĝℓ, ĥℓ, α̂ℓ, θ̃ℓ) − ϕ̄(Wi, φ(Di, Zi, g0), ĝℓ, ĥℓ, α0), and

− ϕ̄(Wi, φ(Di, Zi, ĝℓ), g0, h0, α̂ℓ) + ϕ(Wi, g0, h0, α0, θ0).

(B.12)
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We will apply Lemma 8 in CEINR to this expansion.

Following Chernozhukov et al. (2022b), we begin by providing rates for estimation of α01 and

α02. Assumption 5.2 allows us to apply Lemma A10 in Chernozhukov et al. (2022b) to get ∥B̂ℓ−
E[bJ(X, V )bJ(X, V )′]∥∞ = Op(

√
log(J)/n) and ∥Ĉℓ − E[cK(Z)cK(Z)′]∥∞ = Op(

√
log(K)/n).

The fact that Assumption 5.5.b imposes a polynomial rate on J and K then implies that

Op(
√

log(J)/n) = Op(n
−r) and Op(

√
log(K)/n) = Op(n

−r), since r < 1/2 (Assumption 5.4).

This, on top of Assumptions 5.1, 5.3, 5.4.b, and 5.5, means that we can apply Theorem 2 in

Chernozhukov et al. (2022b) to get:

∥α̂1ℓ − α01∥2 = op(n
ξn−r/2) and ∥α̂2ℓ − α02∥2 = op(n

ξn−r/2)

for any ξ > 0. We choose a ξ satisfying 0 < ξ < (3r − 1)/2 < r/2, which is possible since, by

Assumption 5.4, r ∈ (1/3, 1/2). This guarantees that

∥α̂1ℓ − α01∥2 = op(1) and ∥α̂2ℓ − α02∥2 = op(1); and (B.13)
√
n∥α̂1ℓ − α01∥2∥ĝ − g0∥2 = op(1) and

√
n∥α̂2ℓ − α02∥2∥ĥℓ − h0∥ = op(1), (B.14)

where the last line follows from Assumption 5.4.a.

We now check Assumption 1 in CEINR. Assumption 1.i is identical to Assumption 5.6.a

and 5.6.b. To show the remaining points, define h̃ℓ(w) ≡ ĥℓ(x, φ(d, z, ĝℓ)) and α̃2ℓ(w) ≡
α̂2ℓ(x, φ(d, z, ĝℓ)). Note also that by Assumptions 5.2 and 5.3.a:

|α01(Z)| ≤
∞∑
k=1

|βk||ck(Z)| ≤ sup
k∈N

|ck(Z)| ·
∞∑
k=1

|βk| ≡ κ1 <∞ and

|α02(X, V )| ≤
∞∑
j=1

|ρj||bj(X, V )| ≤ sup
j∈N

|bj(X, V )| ·
∞∑
j=1

|ρj| ≡ κ2 <∞.

Thus, by the triangle inequality, being v ≡ φ(d, z, g0):∫ [
ϕ̄(w,φ(d, z, g0), ĝℓ, ĥℓ, α0) − ϕ(w, g0, h0, α0, θ0)

]2
dF0(w) ≤

∫
α01(z)2 [ĝℓ(z) − g0(z)]2 dF0(w)

+

∫
α02(x, v)2

[
h̃ℓ(w) − h0(x, v)

]2
dF0(w)

≤ κ21∥ĝℓ − g0∥22 + κ22∥h̃ℓ − h0∥22.

Assumption 1.ii in CEINR follows from the above display, Assumption 5.4.a, and Lemma B.1.

Also, calling κ3, κ4 <∞ to the bounds given by Assumption 5.6.d:∫ [
ϕ̄(w,φ(d, z, ĝℓ), g0, h0, α̂ℓ)− ϕ(w, g0, h0, α0, θ0)

]2
dF0(w) ≤

∫
[d− g0(z)]

2 [α̂1ℓ(z)− α01(z)]
2 dF0(w)

+

∫
[y − h0(x, v)]

2 [α̃2ℓ(w)− α02(x, v)]
2 dF0(w)

≤ κ23∥α̂1ℓ − α01∥22 + κ24∥α̃2ℓ − α02∥22,
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Thus, Assumption 1.iii in CEINR follows from the above display, equation (B.13), and Lemma B.1.

We now move to check Assumption 2 in CEINR. In particular, we show that 2.iii holds. We have

that

∆̂iℓ = [α̂1ℓ(Zi)− α01(Zi)] · [ĝℓ(Zi)− g0(Zi)] + [α̃2ℓ(Wi)− α02(Xi, Vi)] · [h̃ℓ(Wi)− h0(Xi, Vi)].

Thus, as in Chernozhukov et al. (2022b, proof of Th. 9), an application of the Cauchy-Schwarz, condi-

tional Markov, and triangle inequalities leads to:∣∣∣∣∣∣ 1√
n

∑
i∈Iℓ

∆̂iℓ

∣∣∣∣∣∣ = Op(
√
n∥α̂1ℓ − α01∥2∥ĝℓ − g0∥2) +Op(

√
n∥α̃2ℓ − α01∥2∥h̃ℓ − h0∥2).

Thus, by equation (B.14) and Lemma B.1, Assumption 2.iii in CEINR is satisfied.

To see that Assumption 3.iii in CEINR holds, note that by Assumptions (A1)-(A4): E[D1(W, g))] =

E[α01(Z)g(Z)] and E[D2(W,h(·, φ(·, ·, g)))] = E[α02(X,V )h(X,φ(D,Z, g))]. Moreover, D − g0(Z) and

Y − h0(X,V ) are orthogonal to ∆1 and ∆2(g0), respectively. Then,

E[ϕ̄(W,φ(D,Z, g0), g, h, α0)] = E[α01(Z)(g0(Z)− g(Z))] + E[α02(X,V )(h0(X,V )− h(X,φ(D,Z, g)))]

= −E[D1(W, g − g0)]− E[D2(W,h(·, φ(·, ·, g))− h0)].

Thus, by Assumption 5.7, for ∥g − g0∥2 < ε and ∥h− h0∥2 < ε:∣∣E[m(W, g, h, α0, θ0) + ϕ̄(W,φ(D,Z, g0), g, h, α0)]
∣∣

= |E [m(W, g, h, θ0)−m(W, g0, h0, θ0)−D1(W, g − g0)−D2(W,h(·, φ(·, ·, g))− h0)]|

≤ C
(
∥g − g0∥22 + ∥h(·, φ(·, ·, g))− h0∥22

)
.

The above display, on top of Assumption 5.4.a and Lemma B.1, gives Assumption 3.iii in CEINR for

the functional (g, h) 7→ E[m(W, g, h, α0, θ0) + ϕ̄(W,φ(D,Z, g0), g, h, α0)].

To conclude, we verify that Lemma 8 in CEINR can be applied to our modified expansion. Being

Icℓ all observations not in Iℓ, note that

E[R̂1iℓ + R̂2iℓ|Icℓ ] = E[m(W, ĝℓ, ĥℓ, α0, θ0) + ϕ̄(W,φ(D,Z, g0), ĝℓ, ĥℓ, α0)|Icℓ ] and

E[R̂3iℓ|Icℓ ] = 0.

The last equation follows from orthogonality of D − g0(Z) and Y − h0(X,V ) to ∆1 and ∆2(g0),

respectively, and Assumption 5.9.c. This means that the strategy of Lemma 8 can be applied to our

expansion (for more details, we refer to the proof of the lemma in Chernozhukov et al., 2022a).

We conclude the proof of Theorem 5.1 by providing consistency of V̂ . Call ψi ≡ ψ(Wi, g0, h0, α0, θ0)

and Ψ̄ ≡ n−1
∑n

i=1 ψiψ
′
i. We have that

∥Ψ̂− Ψ̄∥∞ ≤
L∑

ℓ=1

1

n

∑
i∈Iℓ

(
∥ψ̂iℓ − ψi∥2∞ + 2∥ψ̂iℓ − ψi∥∞∥ψi∥∞

)
We now expand ψ̂iℓ(θ̃ℓ)− ψ(Wi, g0, h0, α0, θ0) = R̂1iℓ + R̂2iℓ + R̂3iℓ + R̂4iℓ + ∆̂iℓ, with

R̂4iℓ ≡ m(Wi, ĝℓ, ĥℓ, θ̃ℓ)−m(Wi, ĝℓ, ĥℓ, θ0)

43



and the remaining terms are given in equation (B.12). Then

1

n

∑
i∈Iℓ

∥ψ̂iℓ − ψi∥2∞ ≤ C
1

n

∑
i∈Iℓ

(
∥R̂1iℓ∥2∞ + ∥R̂2iℓ∥2∞ + ∥R̂3iℓ∥2∞ + ∥R̂4iℓ∥2∞ + ∥∆̂iℓ∥2∞

)
by the triangle inequality. The constant C comes from the presence of the interation terms: e.g.,

2∥R̂1iℓ∥∞∥R̂2iℓ∥∞ ≤ 2max{∥R̂1iℓ∥∞, ∥R̂2iℓ∥∞}.
Applying Assumptions 5.6.b and 5.6.c to each component of R̂1iℓ and R̂4iℓ, respectively, yields

E[∥R̂1iℓ∥2∞|Icℓ ]
P−→ 0 and E[∥R̂4iℓ∥2∞|Icℓ ]

P−→ 0. Moreover, by the argument we have followed to show that

Assumption 1.ii and 1.ii in CEINR are satisfied: E[∥R̂2iℓ∥2∞|Icℓ ]
P−→ 0 and E[∥R̂3iℓ∥2∞|Icℓ ]

P−→ 0. Also, by

the Cauchy-Schwarz inequality, equation (B.14) and Lemma B.1 (applied to each component):

E[∥∆̂iℓ∥2∞|Icℓ ] ≤ 3
(
∥α̂1ℓ − α01∥2∥ĝℓ − g0∥2 + ∥α̃2ℓ − α02∥2∥h̃ℓ − h0∥2

)
= op(1).

Thus, collecting the above results:

E

 1

n

∑
i∈Iℓ

∥ψ̂iℓ − ψi∥2∞

∣∣∣∣∣∣ Icℓ
 ≤ CE

[
∥R̂1iℓ∥2∞ + ∥R̂2iℓ∥2∞ + ∥R̂3iℓ∥2∞ + ∥R̂4iℓ∥2∞ + ∥∆̂iℓ∥2∞

∣∣∣ Icℓ ] = op(1).

An application of the conditional Markov inequality gives then n−1
∑

i∈Iℓ∥ψ̂iℓ − ψi∥2∞ = op(1).

Also, by Assumptions 5.2, 5.3.a, 5.6.a, and 5.6.d: E[ψiψ
′
i] < ∞. So, by the Law of Large Numbers,

Ψ̄
P−→ E[ψiψ

′
i]. Therefore, by Cauchy-Schwarz:

∥Ψ̂− Ψ̄∥∞ ≤
L∑

ℓ=1

 1

n

∑
i∈Iℓ

∥ψ̂iℓ − ψi∥2∞ + 2

√
1

n

∑
i∈Iℓ

∥ψ̂iℓ − ψi∥2∞

√
1

n

∑
i∈Iℓ

∥ψi∥2∞


= op(1) + op(1) ·Op(1) = op(1).

This leads to Ψ̂ = Ψ̄ + op(1)
P−→ E[ψiψ

′
i]. ■
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